18.01.2015 Views

Abstracts of section talks 8-th European Conference on ...

Abstracts of section talks 8-th European Conference on ...

Abstracts of section talks 8-th European Conference on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Abstracts</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>talks</str<strong>on</strong>g><br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

8-<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><br />

<strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology,<br />

and<br />

Annual Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Society for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology,<br />

Kraków, June 28 - July 2, 2011


C<strong>on</strong>tents<br />

Bioengineering 13<br />

Andrey Cherstvy 13<br />

Sim<strong>on</strong>e Scacchi 14<br />

Yv<strong>on</strong>ne Stokes 15<br />

Paweł Lachor 16<br />

Bioimaging 19<br />

Yannis Kalaidzidis 19<br />

Alexey Doroshkov 20<br />

Il<strong>on</strong>a Kowalik-Urbaniak 21<br />

Raffaello Seri 22<br />

K<strong>on</strong>stantin Thierbach 23<br />

Bioinformatics and System Biology 1 25<br />

Laura Astola 25<br />

Pawel Foszner 26<br />

Bar<str<strong>on</strong>g>th</str<strong>on</strong>g>olomaeus Hirt 27<br />

Scott Fortmann-Roe 28<br />

William Weens 29<br />

Bioinformatics and System Biology 2 31<br />

Sara Jabbari 31<br />

Anne Arnold 32<br />

Sabrina Kleessen 32<br />

Michael Sadovsky 33<br />

Maurício Vieira Kritz 34<br />

Bioinformatics and System Biology 3 37<br />

Joerg Galle 37<br />

Ilya Akberdin 38<br />

Mirela Domijan 38<br />

Samuel Handelman 39<br />

Michał Marczyk 40<br />

Bioinformatics and System Biology 4 43<br />

Jose Nacher 43<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Świder 44<br />

Michał Zientek 45<br />

Ulyana Zubairova 45<br />

Julian Arndts 46<br />

3


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer 1 49<br />

Vincenzo Capasso 49<br />

Astrid Gasselhuber 50<br />

Juan Carlos López Alf<strong>on</strong>so 50<br />

Victor M. Pérez-García 51<br />

Marc Sturrock 52<br />

Cancer 2 55<br />

Maciej Swat 55<br />

Maym<strong>on</strong>a Al-husari 56<br />

Silvia Mahmood 57<br />

Gibin Powa<str<strong>on</strong>g>th</str<strong>on</strong>g>il 58<br />

Russell Rockne 59<br />

Cancer 3 61<br />

Benjamin Ribba 61<br />

Gianluca Ascolani 62<br />

Alicia Martinez-G<strong>on</strong>zalez 63<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Psiuk-Maksymowicz 64<br />

Zuzanna Szymaska 65<br />

Cancer 4 67<br />

Daniela Schlueter 67<br />

Maria Barbarossa 68<br />

Eunjung Kim 69<br />

Mark Roberts<strong>on</strong>-Tessi 70<br />

Nino Khatiashvili 70<br />

Cancer 5 73<br />

Carsten Wiuf 73<br />

Stefan Becker 74<br />

Mikhail Kolev 75<br />

Berta Mendoza-Juez 75<br />

Shabnam MoobedMehdiAbadi 78<br />

Cancer 6 79<br />

Ibrahim Cheddadi 79<br />

Niall Deakin 80<br />

Andrey Kolobov 80<br />

Carsten Mente 81<br />

Joanna Rodriguez Chrobak 82<br />

Cancer 7 85<br />

Gülnihal Meral 85<br />

Maciej Mrugala 86<br />

Arne Traulsen 87<br />

Jill Gallaher 87<br />

Philip Gerlee 88<br />

Cell and Tissue Biophysics 1 91<br />

Sara Tiburtius 91<br />

4


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Vladimir Zubkov 92<br />

Jan Fuhrmann 92<br />

Kyriaki Giorgakoudi 93<br />

Tracy Stepien 95<br />

Cell and Tissue Biophysics 2 / Neurosciences 3 97<br />

Keng-Hwee Chiam 97<br />

Adelle Coster 97<br />

Alina Toma 98<br />

Eirini Spanou 99<br />

Massimiliano Tamborrino 100<br />

Cell and Tissue Biophysics 3 103<br />

Z.J. Grzywna 103<br />

Z<str<strong>on</strong>g>of</str<strong>on</strong>g>ia J<strong>on</strong>es 105<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Li 106<br />

Uduak George 106<br />

Robert Bauer 108<br />

Cellular Systems Biology 1 109<br />

Peter Buske 109<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Kahm 110<br />

Max Sajitz-Hermstein 111<br />

Robert Heise 112<br />

Fabien Crauste 113<br />

Cellular Systems Biology 2 115<br />

Zoltan Neufeld 115<br />

Daniel Damineli 115<br />

Tetsuya Kobayashi 116<br />

Adam Makuchowski 117<br />

Tanny Lai 118<br />

Cellular Systems Biology 3 121<br />

Evgenii Volkov 121<br />

Marcus Tindall 123<br />

Elisenda Feliu 124<br />

Radek Erban 125<br />

Milan van Hoek 125<br />

Cellular Systems Biology 4 127<br />

Attila Csikasz-Nagy 127<br />

Mehrdad Jafari-Mamaghani 127<br />

J Krishnan 129<br />

Ilya Potapov 129<br />

Jaroslaw Śmieja 131<br />

Developmental Biology 1 133<br />

Michael Wats<strong>on</strong> 133<br />

Michael Kücken 133<br />

Suruchi Bakshi 134<br />

5


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>er Hardway 135<br />

Anotida Madzvamuse 135<br />

Developmental Biology 2 137<br />

Sascha Dalessi 137<br />

Hiroshi Yoshida 138<br />

Chadha Chettaoui 139<br />

Shar<strong>on</strong> Lubkin 140<br />

Victoria Mir<strong>on</strong>ova 140<br />

Developmental Biology 3 143<br />

Tilmann Glimm 143<br />

Eva Deinum 144<br />

Torbjörn Lundh 144<br />

Andrey Polezhaev 145<br />

Sergey Nikolaev 146<br />

Developmental Biology 4 149<br />

Yoshihiro Morishita 149<br />

Jörn Starruß 149<br />

Joanna Szymanowska-Pułka 150<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia Tapani 152<br />

Lisa Willis 153<br />

Ecosystems Dynamics 1 155<br />

Johannes Müller 155<br />

Baba Issa Camara 156<br />

Yoan Eynaud 157<br />

W<strong>on</strong>ju Je<strong>on</strong> 158<br />

Ecosystems Dynamics 2 159<br />

Helen Kettle 159<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Greenman 160<br />

Toshiyuki Namba 160<br />

Virginia Pasour 162<br />

Joe Yuichiro Wakano 162<br />

Ecosystems Dynamics 3 165<br />

Norio Yamamura 165<br />

María Vela-Pérez 166<br />

Ping Yan 167<br />

Catalina Ciric 167<br />

Andriamihaja Ramanantoanina 169<br />

Epidemics 1 171<br />

Andrea Pugliese 171<br />

Ellen Brooks-Pollock 171<br />

Eleanor Harris<strong>on</strong> 172<br />

Ludovic Mailleret 173<br />

Mateusz Plucinski 174<br />

6


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics 2 175<br />

Jesus R. Artalejo 175<br />

MJ Lopez-Herrero 175<br />

Rosalyn Porter 176<br />

Mick Roberts 176<br />

Jamie Prentice 177<br />

Epidemics 3 179<br />

Hiroshi Nishiura 179<br />

Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>fry Mercer 180<br />

Ludek Berec 181<br />

Roslyn Hicks<strong>on</strong> 181<br />

Olesya Melnichenko 182<br />

Epidemics 4 185<br />

Roberto Saenz 185<br />

Ross Davids<strong>on</strong> 186<br />

Thanate Dhirasakdan<strong>on</strong> 186<br />

Ekaterina A. Nosova 187<br />

Ait Dads Elhadi 188<br />

Epidemics 5 191<br />

Max v<strong>on</strong> Kleist 191<br />

Artem Novozhilov 192<br />

Megan Selbach-Allen 193<br />

Asher Uziel 193<br />

Sarunas Repsys 194<br />

Epidemics 6 / Populati<strong>on</strong> Dynamics 7 197<br />

Suzanne Touzeau 197<br />

Anan<str<strong>on</strong>g>th</str<strong>on</strong>g>i Anandanadesan 198<br />

Benjamin Franz 199<br />

Masahiro Anazawa 199<br />

Sebastian Weitz 200<br />

Epidemics 7 203<br />

Ryosuke Nishi 203<br />

K<strong>on</strong>stantin Avilov 204<br />

Luis Fernandez Lopez 205<br />

Toshikazu Kuniya 206<br />

Valeriy Perminov 206<br />

Epidemics 8 209<br />

Aziz Ouhinou 209<br />

S.Naser Hashemi 210<br />

Jing-an Cui 210<br />

Helen Johns<strong>on</strong> 211<br />

Amjad Khan 212<br />

Ahmed Elaiw 213<br />

Evoluti<strong>on</strong>ary Ecology 1 215<br />

7


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Alex Best 215<br />

Alexander Bratus 216<br />

Arseny Karkach 217<br />

Akiko Satake 218<br />

Tanya Kostova Vassilevska 219<br />

Evoluti<strong>on</strong>ary Ecology 2 221<br />

Stephen Cornell 221<br />

Tea Ammunét 221<br />

Magda Castel 223<br />

Ilmari Kar<strong>on</strong>en 224<br />

Anne Seppänen 224<br />

Evoluti<strong>on</strong>ary Ecology 3 227<br />

Atsushi Yamauchi 227<br />

Fátima Drubi Vega 227<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Bartoszek 228<br />

Elizabe<str<strong>on</strong>g>th</str<strong>on</strong>g> Elliott 229<br />

Jaakko Toiv<strong>on</strong>en 230<br />

Evoluti<strong>on</strong>ary Ecology 4 231<br />

Kalle Parvinen 231<br />

Roger Bowers 232<br />

Tuomas Nurmi 233<br />

Margarete Utz 233<br />

Chelsea Liddell 234<br />

Evoluti<strong>on</strong>ary Ecology 5 237<br />

Bernt Wennberg 237<br />

Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y Wallace 238<br />

Wojciech Borkowski 238<br />

Judi<str<strong>on</strong>g>th</str<strong>on</strong>g> Miller 239<br />

Jacob Scott 240<br />

Genetics and Genomics 1 241<br />

Veit Schwämmle 241<br />

Richard Kollár 242<br />

Paweł Błażej 242<br />

Katarína Boová 243<br />

Agnieszka Danek 244<br />

Łukasz Olczak 245<br />

Immunology 1 247<br />

Julia Kzhyshkowska 247<br />

Edgar Delgado-Eckert 248<br />

Marina Dolfin 249<br />

Sebastian Gerdes 249<br />

Shingo Iwami 251<br />

Immunology 2 253<br />

Jessica C<strong>on</strong>way 253<br />

8


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Yin Cai 253<br />

Jose A. Garcia 254<br />

Koichi Saeki 255<br />

Vladas Skakauskas 256<br />

Immunology 3 / Medical Physiology 2 257<br />

Gabriel Dimitriu 257<br />

Fernao Vistulo de Abreu 258<br />

Galina Gramotnev 258<br />

Masoomeh Taghipoor 259<br />

Medical Physiology 1 263<br />

John Ward 263<br />

Martina Gallenberger 263<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Hiorns 264<br />

Irene Vign<strong>on</strong>-Clementel 265<br />

Neurosciences 1 267<br />

Susanne Ditlevsen 267<br />

Daniel Forger 268<br />

Jan Pyrzowski 268<br />

Justyna Signerska 269<br />

Kseniya Kravchuk 270<br />

Neurosciences 2 273<br />

John Hertz 273<br />

Andrzej Bielecki 274<br />

Anastasia Lavrova 276<br />

Laura Sacerdote 277<br />

Charles Smi<str<strong>on</strong>g>th</str<strong>on</strong>g> 277<br />

Populati<strong>on</strong> Dynamics 1 279<br />

Carlos A. Braumann 279<br />

Chun Fang 280<br />

Nicola McPhers<strong>on</strong> 280<br />

Ye<strong>on</strong>taek Choi 281<br />

Populati<strong>on</strong> Dynamics 2 283<br />

Jaime Iranzo 283<br />

Wils<strong>on</strong> Ferreira Jr. 284<br />

Mickael Teixeira Alves 285<br />

Luis Sanz 286<br />

Andreas Bohn 287<br />

Populati<strong>on</strong> Dynamics 3 289<br />

Peter Jagers 289<br />

Juliana Berbert 289<br />

Iw<strong>on</strong>a Mroz 290<br />

Andrew Savory 291<br />

Wayne M. Getz 291<br />

9


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics 4 293<br />

Evgeniy Khain 293<br />

Roumen Anguelov 293<br />

Saliha Hamdous 294<br />

Hiromi Seno 295<br />

Glenn Mari<strong>on</strong> 296<br />

Populati<strong>on</strong> Dynamics 5 299<br />

Nick Britt<strong>on</strong> 299<br />

Etsuko N<strong>on</strong>aka 299<br />

Urszula Skwara 300<br />

Flora Cordoleani 301<br />

Lai Zhang 302<br />

Populati<strong>on</strong> Dynamics 6 305<br />

Luis Chaves 305<br />

Christian Winkel 305<br />

Nick Jagiella 307<br />

Je<strong>on</strong>g-Mi Yo<strong>on</strong> 307<br />

Jeremy Thibodeaux 308<br />

Populati<strong>on</strong> Dynamics 8 309<br />

Peter Pang 309<br />

Fabio Chalub 309<br />

Miguel A. Lopez-Marcos 310<br />

Hiroshi Toyoizumi 311<br />

Roberto Rosà 312<br />

Populati<strong>on</strong> Dynamics 9 313<br />

Christina Cobbold 313<br />

Erwan Hingant 313<br />

Jennifer Reynolds 314<br />

Xuxin Yang 315<br />

Populati<strong>on</strong> Dynamics 10 317<br />

Max Souza 317<br />

Atiyo Ghosh 317<br />

Ryan Chisholm 318<br />

Wes Maciejewski 318<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Rault 319<br />

Populati<strong>on</strong> Dynamics 11 321<br />

Isaias Chairez-Hernandez 321<br />

Joanna Jaroszewska 322<br />

Adriana Bernal Escobar 322<br />

Yo-Hey Otake 323<br />

Populati<strong>on</strong> Genetics 1 325<br />

Manuel Mota 325<br />

Thiemo Hustedt 326<br />

Satoshi Takahashi 326<br />

10


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Meike Wittmann 327<br />

Małgorzata Pułka 328<br />

Populati<strong>on</strong> Genetics 2 329<br />

Sivan Leviyang 329<br />

Wojciech Bartoszek 329<br />

Stephan Fischer 330<br />

Sandra Klu<str<strong>on</strong>g>th</str<strong>on</strong>g> 331<br />

Su-Chan Park 332<br />

Populati<strong>on</strong> Genetics 3 335<br />

Reinhard Bürger 335<br />

Ada Akerman 336<br />

Marina Rafajlovic 336<br />

Ute v<strong>on</strong> Wangenheim 337<br />

Robert Puddicombe 337<br />

Regulatory Networks 1 339<br />

Lorenzo Sella 339<br />

Jean-Luc Gouzé 340<br />

Mochamad Apri 341<br />

Ekaterina Roberts 342<br />

Robert Noble 343<br />

Regulatory Networks 2 345<br />

Daniele Muraro 345<br />

Christian Bodenstein 346<br />

Michael Knudsen 347<br />

Martin Koetzing 348<br />

Daniella Schittler 349<br />

Regulatory Networks 3 351<br />

Sim<strong>on</strong> van Mourik 351<br />

Elpida Tzafestas 352<br />

Marcin Zagórski 353<br />

Ben Fitzpatrick 354<br />

Anna Ochab-Marcinek 354<br />

Index <str<strong>on</strong>g>of</str<strong>on</strong>g> au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors 357<br />

11


Bioengineering<br />

Tuesday, June 28, 14:30, Room: UA3<br />

Chaired by: Yannis Kalaidzidis<br />

14:30–15:00<br />

Andrey Cherstvy<br />

ICS-2, FZ Juelich, 52425 Juelich, Germany<br />

e-mail: a.cherstvy@gmail.com<br />

A. Kolomeisky<br />

Rice University, Houst<strong>on</strong>, Texas 77005, USA<br />

A. Kornyshev<br />

Imperial College L<strong>on</strong>d<strong>on</strong>, SW7 2AZ, L<strong>on</strong>d<strong>on</strong>, UK<br />

Protein-DNA interacti<strong>on</strong>s: reaching and recognizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

targets<br />

Search and recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> targets <strong>on</strong> DNA by DNA-binding proteins is a vital<br />

biological process. Some proteins find <str<strong>on</strong>g>th</str<strong>on</strong>g>eir target sequences <strong>on</strong> DNA wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

rates <str<strong>on</strong>g>th</str<strong>on</strong>g>at are 100-1000 times faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an predicted by Smoluchowski diffusi<strong>on</strong> in<br />

3D space. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten claimed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>ality from 3D in<br />

soluti<strong>on</strong> to 1D <strong>on</strong> DNA is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic key to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>is facilitated diffusi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DNA-sliding proteins. Recent experiments have shown however <str<strong>on</strong>g>th</str<strong>on</strong>g>at protein<br />

diffusi<strong>on</strong> al<strong>on</strong>g DNA is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten much slower <str<strong>on</strong>g>th</str<strong>on</strong>g>an in soluti<strong>on</strong> (see data <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. [1]<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e lac repressor). Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e 3D1D space reducti<strong>on</strong> by itself does not ensure a<br />

faster target search. That c<strong>on</strong>troversy pushed us to revisit <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem [2].<br />

We present two <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe some physical and chemical<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> protein target search and mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA-protein electrostatic recogniti<strong>on</strong>.<br />

First, we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein target search as a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D diffusi<strong>on</strong><br />

in soluti<strong>on</strong> and 1D sliding al<strong>on</strong>g DNA. Our n<strong>on</strong>-equilibrium model accounts<br />

for protein binding/unbinding to DNA [2]. The model c<strong>on</strong>tains a new correlati<strong>on</strong><br />

term, missing in previous <str<strong>on</strong>g>th</str<strong>on</strong>g>eories, <str<strong>on</strong>g>th</str<strong>on</strong>g>at comes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e accurate descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein<br />

diffusi<strong>on</strong> process in stochastic DNA-protein potential. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e search<br />

time is optimal for an intermediate streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-DNA interacti<strong>on</strong>s and intermediate<br />

protein c<strong>on</strong>centrati<strong>on</strong>s. The fast search is achieved by a parallel scanning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DNA by many proteins. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong>s are c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recent large-scale M<strong>on</strong>te Carlo simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> protein diffusi<strong>on</strong> [3].<br />

Then, we focus <strong>on</strong> DNA-protein electrostatic interacti<strong>on</strong>s, known to give a<br />

large c<strong>on</strong>tributi<strong>on</strong> to protein-DNA binding affinity. C<strong>on</strong>trary to hydrogen b<strong>on</strong>ding,<br />

electrostatic protein-DNA forces are believed to be largely insensitive to DNA<br />

13


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

sequence. We show however how <str<strong>on</strong>g>th</str<strong>on</strong>g>e complementarity <str<strong>on</strong>g>of</str<strong>on</strong>g> charge patterns <strong>on</strong> target<br />

DNA sequence and <strong>on</strong> a model protein can result in electrostatic recogniti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a specific track <strong>on</strong> DNA. This recogniti<strong>on</strong> provokes protein pinning near <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

homologous regi<strong>on</strong> <strong>on</strong> DNA. We obtain analytical expressi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

capturing well and typical times proteins spend in it before <str<strong>on</strong>g>th</str<strong>on</strong>g>ermal escape. These<br />

times are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten l<strong>on</strong>g enough to allow a reorganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein structure, socalled<br />

interacti<strong>on</strong>-induced protein folding, and formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>ger (hydrogen)<br />

b<strong>on</strong>ds wi<str<strong>on</strong>g>th</str<strong>on</strong>g> DNA. One can <str<strong>on</strong>g>th</str<strong>on</strong>g>us suggest a two-step mechanism for DNA-protein<br />

recogniti<strong>on</strong> [2]: electrostatically mediated protein sliding and pinning followed by<br />

chemical recogniti<strong>on</strong> interacti<strong>on</strong>s.<br />

This mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-DNA recogniti<strong>on</strong> is reminiscent <str<strong>on</strong>g>of</str<strong>on</strong>g> charge adjustment<br />

predicted by us for sequence-specific DNA-DNA electrostatic interacti<strong>on</strong> [4].<br />

The charge complementarity is also known to dominate <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

protein-protein complexes in soluti<strong>on</strong> [5], rendering such charge zipper complexati<strong>on</strong><br />

pretty general.<br />

Theoretical model <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-DNA charge recogniti<strong>on</strong> has been validated by<br />

our recent analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> real DNA-protein complexes [6]. Structure visualizati<strong>on</strong> for<br />

many DNA-binding proteins indeed reveals a close proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> positively charged<br />

protein residues (Arg, Lys, and Hist) to negative DNA phosphate groups [6]. A<br />

detailed computati<strong>on</strong>al analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Protein Data Bank files <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallized DNAprotein<br />

complexes performed has indicated several important features. We have<br />

observed for instance <str<strong>on</strong>g>th</str<strong>on</strong>g>at in particularly for large structural proteins such as nucleosome<br />

core particles, <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence-specific DNA-protein charge zipper effects are<br />

str<strong>on</strong>gly pr<strong>on</strong>ounced. Namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lys and Arg <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein surface<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> bound DNA fragment is adjusted to provide a better fit to<br />

sequence-specific pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA phosphates. This indicates sequence-specificity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electrostatic interacti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese complexes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact largely overlooked in literature<br />

before. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively small DNA-protein complexes, <str<strong>on</strong>g>th</str<strong>on</strong>g>at implement<br />

standard motifs <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA recogniti<strong>on</strong>, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trary, did not reveal any statistical<br />

preference in distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positively charged protein amino acids wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tacting DNA phosphates [6,7].<br />

References.<br />

[1] R. Austin et al., Phys. Rev. Lett., 97 048302 (2006).<br />

[2] A. G. Cherstvy et al., J. Phys. Chem. B, 112 4741 (2008).<br />

[3] R. K. Das and A. B. Kolomeisky, PCCP, 12 2999 (2010).<br />

[4] A. G. Cherstvy et al., J. Phys. Chem. B, 108 6508 (2004).<br />

[5] A. J. McCoy et al., J. Mol. Biol., 268 570 (1997).<br />

[6] A. G. Cherstvy, J. Phys. Chem. B, 113 4242 (2009).<br />

[7] A. G. Cherstvy, Phys. Chem. Chem. Phys, accepted (2011).<br />

15:05–15:25<br />

P. Colli Franz<strong>on</strong>e<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pavia<br />

e-mail: colli@imati.cnr.it<br />

L. F. Pavarino<br />

14


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Milan<br />

e-mail: luca.pavarino@unimi.it<br />

S. Scacchi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Milan<br />

e-mail: sim<strong>on</strong>e.scacchi@unimi.it<br />

The anisotropic Bidomain model <str<strong>on</strong>g>of</str<strong>on</strong>g> electrocardiology: a<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled and uncoupled parallel<br />

prec<strong>on</strong>diti<strong>on</strong>ers<br />

The anisotropic Bidomain model describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e bioelectric activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac<br />

tissue and c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> a parabolic n<strong>on</strong>-linear partial differential equati<strong>on</strong><br />

(PDE) and an elliptic linear PDE. The PDEs are coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary<br />

differential equati<strong>on</strong>s (ODEs), modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular membrane i<strong>on</strong>ic currents.<br />

The discretizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bidomain model in <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al (3D) ventricular geometries<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> realistic size yields <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large scale and ill-c<strong>on</strong>diti<strong>on</strong>ed linear<br />

systems at each time step. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to c<strong>on</strong>struct and study parallel<br />

multilevel and block prec<strong>on</strong>diti<strong>on</strong>ers, in order to str<strong>on</strong>gly reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e high computati<strong>on</strong>al<br />

costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bidomain model, allowing <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole heart<br />

beat in 3D realistic domains. We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalability <str<strong>on</strong>g>of</str<strong>on</strong>g> multilevel Schwarz<br />

block-diag<strong>on</strong>al and block-factorized prec<strong>on</strong>diti<strong>on</strong>ers for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bidomain model and<br />

compare <str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multilevel Schwarz coupled prec<strong>on</strong>diti<strong>on</strong>ers. 3D parallel numerical<br />

tests show <str<strong>on</strong>g>th</str<strong>on</strong>g>at block prec<strong>on</strong>diti<strong>on</strong>ers are scalable, but less efficient <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e coupled prec<strong>on</strong>diti<strong>on</strong>ers. Finally, we present simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac virtual<br />

electrode phenomen<strong>on</strong>, yielding anode make and break mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> excitati<strong>on</strong>,<br />

using <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed parallel solver.<br />

15:25–15:45<br />

Yv<strong>on</strong>ne Stokes<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Adelaide, SA<br />

5005, Australia.<br />

e-mail: Yv<strong>on</strong>ne.Stokes@adelaide.edu.au<br />

Alys Clark<br />

Auckland Bioengineering Institute, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Auckland, Auckland,<br />

New Zealand.<br />

e-mail: alys.clark@auckland.ac.nz<br />

Improving success rates <str<strong>on</strong>g>of</str<strong>on</strong>g> assisted reproducti<strong>on</strong> technology<br />

by ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling<br />

Assisted reproducti<strong>on</strong> technology (ART) involves support <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes (eggs) and<br />

embryos in <str<strong>on</strong>g>th</str<strong>on</strong>g>e laboratory for some period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, and success rates are known to be<br />

highly dependent <strong>on</strong> laboratory c<strong>on</strong>diti<strong>on</strong>s. It is believed <str<strong>on</strong>g>th</str<strong>on</strong>g>at better reproducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normal in-vivo c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e laboratory will bring improved success rates. At<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e very least knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>diti<strong>on</strong>s provides valuable guidance for setting<br />

laboratory c<strong>on</strong>diti<strong>on</strong>s. Because measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> in-vivo c<strong>on</strong>diti<strong>on</strong>s is difficult, if<br />

15


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

not impossible in some circumstances, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling is a valuable tool<br />

for gaining understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> in-vivo envir<strong>on</strong>ments.<br />

We report <strong>on</strong> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling for gaining a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e nutriti<strong>on</strong>al envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> mammalian oocytes in antral follicles. In particular<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> models have been used in c<strong>on</strong>juncti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experiments to investigate<br />

oxygen and glucose c<strong>on</strong>centrati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e bovine follicle. Unlike oxygen<br />

which diffuses readily <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cell walls, glucose molecules pass <str<strong>on</strong>g>th</str<strong>on</strong>g>rough via facilitated<br />

transport mechanisms. The model for glucose transport must reflect <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

fact and is, c<strong>on</strong>sequently, more complicated <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>at for oxygen. Experimental<br />

validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our models is challenging and will be discussed.<br />

The ultimate aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to improve <str<strong>on</strong>g>th</str<strong>on</strong>g>e developmental competence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes <str<strong>on</strong>g>th</str<strong>on</strong>g>at have been harvested at an immature stage and matured in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

laboratory, a procedure known as in-vitro maturati<strong>on</strong>. The ability to successfully<br />

use such oocytes in an IVF program reduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e need for stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ovary<br />

to yield multiple mature oocytes for harvest and use in a traditi<strong>on</strong>al IVF program.<br />

This, in turn, makes ART available to women for whom ovarian stimulati<strong>on</strong> drugs,<br />

as used in traditi<strong>on</strong>al IVF me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, are likely to cause life <str<strong>on</strong>g>th</str<strong>on</strong>g>reatening illnesses.<br />

Reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese drugs also has <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g> IVF.<br />

15:45–16:05<br />

Paweł Lachor<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: pawel.lachor@polsl.pl<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Puszyński<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>.puszynski@polsl.pl<br />

Andrzej Polański<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: andrzej.polanski@polsl.pl<br />

Accuracy indices for assessing performance <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Gillespie Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for stochastic molecular<br />

simulati<strong>on</strong>s<br />

Dynamics in populati<strong>on</strong> models at <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular level are comm<strong>on</strong>ly described using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic approach based <strong>on</strong> systems <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled first-order ordinary<br />

differential equati<strong>on</strong>s (ODEs). Deterministic approach al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough fast in calculati<strong>on</strong><br />

is not always accurate for systems c<strong>on</strong>taining low-rate reacti<strong>on</strong>s particularly for<br />

species occurring in small quantities. To account for random fluctuati<strong>on</strong>s in numbers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecular species numerous variants <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic Gillespie Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m has<br />

been introduced. There are already several survey studies comparing and summarizing<br />

different approaches in stochastic modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular mechanisms. In<br />

16


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese studies <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling is addressed at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> simplifying<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir verificati<strong>on</strong> [3], [4]. In our talk we critically discuss<br />

several possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> assessing accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> different strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic molecular<br />

modeling. We also propose a new, direct and precise me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> comparing<br />

different stochastic modeling strategies based <strong>on</strong> comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> probability distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observed time instants <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular events. By using our me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

we compare several variants <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic simulati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, direct, approximate<br />

and hybrid (numerical integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs and stochastic simulati<strong>on</strong>) [5], [6]. We<br />

grade accuracies <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> differences betweeen<br />

c<strong>on</strong>diti<strong>on</strong>al distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> times <str<strong>on</strong>g>of</str<strong>on</strong>g> sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular events. In comparis<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gillespie algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m is c<strong>on</strong>sidered as an accurate<br />

<strong>on</strong>e, predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are analyzed based <strong>on</strong> its comparis<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gillespie Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m [1], [2]. Dedicated system written in C++<br />

is used as a computati<strong>on</strong>al platform for calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> models applying deferent approaches.<br />

Efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> system is also evaluated in comparis<strong>on</strong> to comm<strong>on</strong> soluti<strong>on</strong>s.<br />

Acknowledgment. This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Community from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Social Fund.<br />

Acknowledgment. This work was financially supported by The Fundati<strong>on</strong> for<br />

Polish Science.<br />

References.<br />

[1] D. T. Gillespie, Exact stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled chemical reacti<strong>on</strong>s The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Physical Chemistry 81 25.<br />

[2] D. T. Gillespie, Approximate accelerated stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemically reacting systems<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics 115 4.<br />

[3] J. Pahle, Biochemical simulati<strong>on</strong>s: stochastic, approximate stochastic and hybrid approaches<br />

Briefings in Bioinformatics 10 53-64.<br />

[4] Mario Pineda-Krch, GillespieSSA: Implementing <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gillespie Stochastic Simulati<strong>on</strong> Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m<br />

in R Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistical S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware 25 12.<br />

[5] E.L. Haseltine, J.B. Rawlings, Approximate simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled fast and slow reacti<strong>on</strong>s for<br />

stochastic chemical kinetics Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics 117 15.<br />

[6] K. Puszyński, R. Bertolusso, T. Lipniacki, Crosstalk between p53 and NF-kB systems: proand<br />

anti-apoptotic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NF-kB IET System Biology 3 5.<br />

17


Bioimaging<br />

Tuesday, June 28, 11:00, Room: CP1<br />

Chaired by: Włodzimierz Kl<strong>on</strong>owski<br />

11:00–11:30<br />

Yannis Kalaidzidis<br />

MPI-CBG<br />

e-mail: kalaidzi@mpi-cbg.de<br />

Claudio Collinet<br />

MPI-CBG<br />

Akhila Chandrashaker<br />

MPI-CBG<br />

Thierry Galvez<br />

MPI-CBG<br />

Rachel Meyers<br />

Alnylam Pharm. Inc.<br />

Marino Zerial<br />

MPI-CBG<br />

Quantitative Multiparametric Image Analysis for Estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> siRNA Induced Off-target Effect<br />

Small Interfering RNA (siRNA) and automated high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput high-resoluti<strong>on</strong><br />

microscopy provides technological platform for systematic genome-wide survey <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individual gene knockdown phenotype. Quantitative multi-parametric descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> knockdown phenotype can be used for gene functi<strong>on</strong>s elucidati<strong>on</strong> and establishing<br />

mechanistic models <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular processes in which genes participate. However,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e large degree <str<strong>on</strong>g>of</str<strong>on</strong>g> morphological variati<strong>on</strong> between cells in repetiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

experiment as well as variati<strong>on</strong> between phenotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> different siRNAs, which are<br />

targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e same gene, represents a major challenge to <str<strong>on</strong>g>th</str<strong>on</strong>g>e reliable identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gene silencing phenotypes. We have developed a system for <str<strong>on</strong>g>th</str<strong>on</strong>g>e high c<strong>on</strong>tent<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> automatically acquired high-resoluti<strong>on</strong> images, which describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e endosomal<br />

organelles in quantitative terms (gene silencing pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile) (Collinet et al, Nature<br />

2010). The stability <str<strong>on</strong>g>of</str<strong>on</strong>g> individual parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles between<br />

different imaging sessi<strong>on</strong>s and experimental replicates were tested. The analysis<br />

showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at different parameters reveal a wide variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilities which dependent<br />

<strong>on</strong> biological variability, typical automatic imaging problems and parameter<br />

calculati<strong>on</strong> details. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-parametric phenotype pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles produced by<br />

independent siRNAs, which are targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e same gene, reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

19


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f-target effect, its dependence <strong>on</strong> siRNA c<strong>on</strong>centrati<strong>on</strong> and chemical modificati<strong>on</strong>.<br />

The estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> independent siRNAs which are required<br />

to infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene knockdown phenotype wi<str<strong>on</strong>g>th</str<strong>on</strong>g> given c<strong>on</strong>fidence was d<strong>on</strong>e. Quantitative<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>f-target effect gives an objective feedback for no <str<strong>on</strong>g>of</str<strong>on</strong>g>f-target<br />

siRNA selecti<strong>on</strong>, for <str<strong>on</strong>g>th</str<strong>on</strong>g>e new generati<strong>on</strong> siRNA development and could provide<br />

insight for deeper understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> siRNA-mediated gene silencing mechanism.<br />

11:35–11:55<br />

Alexey Doroshkov<br />

THE INSTITUTE OF CYTOLOGY AND GENETICS The Siberian Branch<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: ad@bi<strong>on</strong>et.nsc.ru<br />

Mikhail Genaev<br />

Tatyana Pshenichnikova<br />

Dmitry Af<strong>on</strong>nikov<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness in wheat Triticum Aestivum L.<br />

using image processing technique<br />

Leaf hairiness in wheat is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance for adaptati<strong>on</strong> to envir<strong>on</strong>mental factors<br />

including protecti<strong>on</strong> from pests. For example, <str<strong>on</strong>g>th</str<strong>on</strong>g>is trait is <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> drought resistant wheat cultivars referred to <str<strong>on</strong>g>th</str<strong>on</strong>g>e steppe ecological<br />

group. Study <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness morphology and identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

genes will allow obtaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e varieties which are resistant to hard climatic c<strong>on</strong>diti<strong>on</strong>s<br />

and certain pests. To identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf hairiness,<br />

mass analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a great number <str<strong>on</strong>g>of</str<strong>on</strong>g> plants bel<strong>on</strong>ging to different hybrid populati<strong>on</strong>s<br />

is needed, accompanying wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a laborious manual job. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

more accurate descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait for correct<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic classes is timely. We developed <str<strong>on</strong>g>th</str<strong>on</strong>g>e computerbased<br />

technology for descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative traits <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness. It c<strong>on</strong>tains <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

LHDetect program wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e feature <str<strong>on</strong>g>of</str<strong>on</strong>g> image processing [1,2]. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e LHDetect<br />

<strong>on</strong>e can count <str<strong>on</strong>g>th</str<strong>on</strong>g>e trichome number, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trichomes, and evaluate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e trichome leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> vector for each leaf sample. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong>,<br />

we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e LHDetect program for determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphological properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leaf hairiness <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat genotypes. The technology appeared to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effective approach for a large scale analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness morphological peculiarities<br />

in individual plants. In according wi<str<strong>on</strong>g>th</str<strong>on</strong>g> genotyping <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach can be useful<br />

for quantitative trait loci (QTL) mapping. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study we carried out <str<strong>on</strong>g>th</str<strong>on</strong>g>e detailed<br />

morphology analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness in 8 wheat cultivars: Golubka, Saratovskaya<br />

29, Rodina (almost glabrous leaf), Rodina introgressi<strong>on</strong> line 102/00i (genome c<strong>on</strong>tains<br />

Aegilops speltoides gene, resp<strong>on</strong>sible for trichomes, line has well-haired leaf),<br />

Houng mang may, Janetzkis probat, Chinese syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic and Diamant 2. Chosen cultivares<br />

represent a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness morphology: <str<strong>on</strong>g>th</str<strong>on</strong>g>e trichome density,<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and distributi<strong>on</strong> pattern greatly varied. Golubka cultivar plants was grown<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e various c<strong>on</strong>diti<strong>on</strong>s. It was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at drought stressed Golubka plants form<br />

20


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

more trichomes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf surface, but <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are significantly shorter <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

from plants grown in a favourable c<strong>on</strong>diti<strong>on</strong>s. There are at least two possible explanati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s. First, much more trichomes are needed to form <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

microclimat in <str<strong>on</strong>g>th</str<strong>on</strong>g>e drought c<strong>on</strong>diti<strong>on</strong>s. Sec<strong>on</strong>d, plant cells cant produce enough<br />

turgor pressure to form a l<strong>on</strong>g trichomes while <str<strong>on</strong>g>th</str<strong>on</strong>g>e drougt stress.<br />

References.<br />

[1] Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e computer-based image processing technique in genetic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness<br />

in wheat Triticum aestivum L./ A.V.Doroshkov, M.A.Genaev, T.A.Pshenichnikova,<br />

D.A.Af<strong>on</strong>nikov //<str<strong>on</strong>g>th</str<strong>on</strong>g>e 7-<str<strong>on</strong>g>th</str<strong>on</strong>g> internati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> bioinformatics <str<strong>on</strong>g>of</str<strong>on</strong>g> genome regulati<strong>on</strong><br />

and structure/ systems biology, june 20-27 2010 Novosibirsk, Russia.<br />

[2] WheatPGE system for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ships between phenotype, genotype and envir<strong>on</strong>ment<br />

in wheat/ M.A.Genaev, A.V.Doroshkov, D.A.Af<strong>on</strong>nikov //<str<strong>on</strong>g>th</str<strong>on</strong>g>e 7-<str<strong>on</strong>g>th</str<strong>on</strong>g> internati<strong>on</strong>al<br />

c<strong>on</strong>ference <strong>on</strong> bioinformatics <str<strong>on</strong>g>of</str<strong>on</strong>g> genome regulati<strong>on</strong> and structure/ systems biology, june 20-27<br />

2010 Novosibirsk, Russia.<br />

11:55–12:15<br />

Il<strong>on</strong>a Anna Kowalik-Urbaniak<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo, Waterloo, Ontario, Canada N2L 3G1<br />

e-mail: iakowali@uwaterloo.ca<br />

Edward R. Vrscay<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo, Waterloo, Ontario, Canada N2L 3G1<br />

e-mail: ervrscay@uwaterloo.ca<br />

Zhou Wang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electrical and Computer Engineering, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo, Waterloo, Ontario, Canada N2L<br />

3G1<br />

e-mail: zhouwang@ieee.org<br />

David K<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Diagnostic Imaging, Hamilt<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences, Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Radiology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences, McMaster University,<br />

Hamilt<strong>on</strong>, Ontario, Canada L8S4L8<br />

e-mail: k<str<strong>on</strong>g>of</str<strong>on</strong>g>f@hhsc.ca<br />

Objective quality assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> JPEG- and JPEG2000-<br />

compressed CT neuro images<br />

We have employed various objective image fidelity measures to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> JPEG- and JPEG2000-compressed CT neuro images. Lossy compressi<strong>on</strong><br />

degrades image quality. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e compressi<strong>on</strong> ratio is increased, JPEG produces<br />

blocking and ringing artifacts whereas JPEG2000 introduces blurring and ringing<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e rec<strong>on</strong>structed images. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough subjective me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to evaluate quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

compressed medical images are complicated and difficult to c<strong>on</strong>duct, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most accepted way for measuring diagnosis reliability. In order to overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

21


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

problems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> subjective quality assessment and to automate <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> assessing<br />

degradati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a need for reliable objective quality assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

medical images. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no generally accepted objective quality measure<br />

for medical images, Mean Squared Error (MSE) is widely used. It is, however, well<br />

known <str<strong>on</strong>g>th</str<strong>on</strong>g>at MSE does not corresp<strong>on</strong>d well wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human visual system (HVS).<br />

We are <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore led to <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong>, “Which quality measures should be used <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

best corresp<strong>on</strong>d to visual and diagnostic quality”<br />

The HVS is highly sensitive to structural informati<strong>on</strong> and distorti<strong>on</strong>s (e.g.<br />

JPEG blockiness, “salt-and-pepper” noise, ringing effect, blurring). The structural<br />

similarity (SSIM) index, introduced by Wang and Bovik [2], assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>at images<br />

are highly structured and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exist str<strong>on</strong>g neighbouring dependencies am<strong>on</strong>g<br />

pixels. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese features are completely ignored by <str<strong>on</strong>g>th</str<strong>on</strong>g>e MSE.<br />

We also introduce ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er approach to measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality <str<strong>on</strong>g>of</str<strong>on</strong>g> compressed CT<br />

images, <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called “Weberized L 2 ” me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. It is a weighted versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e MSE<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e Weber model <str<strong>on</strong>g>of</str<strong>on</strong>g> percepti<strong>on</strong>.<br />

We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality maps <str<strong>on</strong>g>of</str<strong>on</strong>g> compressed images associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e L 1 , L 2 ,<br />

Weberized L 2 and SSIM measures. Our investigati<strong>on</strong> supports <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an extensive subjective quality evaluati<strong>on</strong> study c<strong>on</strong>ducted by radiologists in K<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

et al. [1] . The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> edge artifacts introduced by JPEG2000 compressi<strong>on</strong><br />

is revealed <strong>on</strong>ly by <str<strong>on</strong>g>th</str<strong>on</strong>g>e SSIM quality map and may explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> K<str<strong>on</strong>g>of</str<strong>on</strong>g>f et<br />

al.. In c<strong>on</strong>clusi<strong>on</strong>, our study suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e SSIM measure and <str<strong>on</strong>g>th</str<strong>on</strong>g>e SSIM quality<br />

map provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e most promising approach to predict subjective quality assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> compressed brain CT images.<br />

References.<br />

[1] D. K<str<strong>on</strong>g>of</str<strong>on</strong>g>f, P. Bak and P. Brownrigg, D. Hosseinzadeh, A. Khademi, A. Kiss, L. Lepanto, T.<br />

Michalak, H. Shulman and A. Volkening. Pan-Canadian evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> irreversible compressi<strong>on</strong><br />

ratios ("Lossy Compressi<strong>on</strong>") for development <str<strong>on</strong>g>of</str<strong>on</strong>g> nati<strong>on</strong>al guidelines J Digit Imaging. 2009<br />

Dec;22, 6, pp. 569-78. Oct 2008.<br />

[2] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Sim<strong>on</strong>celli, Image quality assessment: From<br />

error visibility to structural similarity. IEEE Transacti<strong>on</strong>s <strong>on</strong> Image Processing, 13, no. 4, pp.<br />

600-612, Apr. 2004.<br />

12:15–12:35<br />

Raffaello Seri<br />

Università degli Studi dell’Insubria<br />

e-mail: raffaello.seri@uninsubria.it<br />

C<strong>on</strong>fidence sets for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Aumann mean <str<strong>on</strong>g>of</str<strong>on</strong>g> a random closed set<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk is to develop a set <str<strong>on</strong>g>of</str<strong>on</strong>g> reliable me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to build c<strong>on</strong>fidence<br />

sets for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Aumann mean <str<strong>on</strong>g>of</str<strong>on</strong>g> a random closed set (RACS) as estimated<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e Minkowski empirical mean. In order to do so, we introduce a procedure<br />

to build a c<strong>on</strong>fidence set based <strong>on</strong> an asymptotic distributi<strong>on</strong>al result for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Hausdorff distance between <str<strong>on</strong>g>th</str<strong>on</strong>g>e Minkowski empirical and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Aumann means; <str<strong>on</strong>g>th</str<strong>on</strong>g>en,<br />

we introduce ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er procedure based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e support functi<strong>on</strong>.<br />

22


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wid<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RACS <strong>on</strong> a<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong>s and are <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore suitable for computerized tomography, tactile<br />

sensing and laser-radar systems. Some M<strong>on</strong>te Carlo results show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

work in practice.<br />

This c<strong>on</strong>tributi<strong>on</strong> is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Christine Choirat (Universidad de Navarra,<br />

Spain).<br />

12:35–12:55<br />

K<strong>on</strong>stantin Thierbach<br />

Institute for Medical Informatics and Biometry , Medical Faculty<br />

Carl Gustav Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: k<strong>on</strong>stantin.phil@googlemail.com<br />

Nico Scherf<br />

IMB, Medical Faculty, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Ingmar Glauche<br />

IMB, Medical Faculty, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Ingo Roeder<br />

IMB, Medical Faculty, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>al shape models in single cell<br />

tracking<br />

The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> single cells provides valuable insights into ex vivo cell assays. This<br />

is achieved by taking time series <str<strong>on</strong>g>of</str<strong>on</strong>g> images <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cultures and analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to migrati<strong>on</strong>, divisi<strong>on</strong>, mitosis and cell-cell<br />

interacti<strong>on</strong>.<br />

However, due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> data complete manual rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell trajectories is not feasible, which indicates a urgent need for automated<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. As computerized approaches lack <str<strong>on</strong>g>th</str<strong>on</strong>g>e highly optimized features <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

percepti<strong>on</strong>, it is especially <str<strong>on</strong>g>th</str<strong>on</strong>g>e reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> cell detecti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tracking in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> object occlusi<strong>on</strong> and large displacements between single images which<br />

represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e major difficulties for individual cell tracking.<br />

We present an essentially novel approach to mitigate <str<strong>on</strong>g>th</str<strong>on</strong>g>ese problems using recently<br />

developed me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in image processing incorporating prior shape knowledge<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> objects. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> object occlusi<strong>on</strong>s and<br />

blurry object outlines due to noise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e data can be handled by <str<strong>on</strong>g>th</str<strong>on</strong>g>is extensi<strong>on</strong>. We<br />

adapted <str<strong>on</strong>g>th</str<strong>on</strong>g>e active c<strong>on</strong>tour framework wi<str<strong>on</strong>g>th</str<strong>on</strong>g> prior shape informati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> robust cell detecti<strong>on</strong>. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is able to detect cell shapes more accurately<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>us allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> refined tracking algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms using more robust<br />

object features for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> cells between images. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er present a direct<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e active c<strong>on</strong>tour models to <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint detecti<strong>on</strong> and tracking <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moving, deformable cells.<br />

23


Bioinformatics and System Biology 1<br />

Wednesday, June 29, 08:30, Room: UA1<br />

Chaired by: Jerzy Tiuryn<br />

08:30–09:00<br />

Marian Groenenboom 1,3<br />

e-mail: marian.groenenboom@wur.nl<br />

Laura Astola 1,3<br />

e-mail: laura.astola@wur.nl<br />

Victoria Choserot 2,3<br />

e-mail: victoria.choserot@wur.nl<br />

Jaap Molenaar 1,3<br />

e-mail: jaap.molenaar@wur.nl<br />

1 Biometris, Plant Sciences Group, Wageningen University and Research<br />

Center, Wageningen, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

2 Bioscience, Plant Research Internati<strong>on</strong>al, Wageningen, University<br />

and Research Center, Wageningen, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

3 Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology, Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

Glycosylati<strong>on</strong> Networks in Tomato, Top-down and<br />

Bottom-up Inference Combined<br />

Tomato (Solanum Lycopersicum) is a comm<strong>on</strong> element in human diet. In 2009,<br />

more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 140000 milli<strong>on</strong> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tomatoes were produced worldwide. Tomato fruit<br />

c<strong>on</strong>tains relatively large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> flav<strong>on</strong>oids. Flav<strong>on</strong>oids have recently gained<br />

growing interest due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir anticipated positive heal<str<strong>on</strong>g>th</str<strong>on</strong>g> effects as antioxidants.<br />

As is <str<strong>on</strong>g>th</str<strong>on</strong>g>e case for many plant metabolites, flav<strong>on</strong>oids mainly occur in glycosylated<br />

form. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough it is widely accepted <str<strong>on</strong>g>th</str<strong>on</strong>g>at glycosylati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance<br />

to maintain metabolic homeostasis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e diverse glycosides,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e involved enzymes is not known. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we combine<br />

experiments and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling to infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e network governing flav<strong>on</strong>ol<br />

glycosylati<strong>on</strong>, and study its functi<strong>on</strong>ing in vivo.<br />

Tomato seedlings are grown under different c<strong>on</strong>diti<strong>on</strong>s, and flav<strong>on</strong>oid glycoside<br />

c<strong>on</strong>centrati<strong>on</strong>s are measured for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>secutive days. To infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

flav<strong>on</strong>oid glycosylati<strong>on</strong> network from <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting time-series, we combine two different<br />

approaches. First, we make use <str<strong>on</strong>g>of</str<strong>on</strong>g> a top-down approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at has as starting<br />

point a priori obtained general biological knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular reacti<strong>on</strong>s and<br />

metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in plants. This knowledge leads to a number <str<strong>on</strong>g>of</str<strong>on</strong>g> candidate<br />

25


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

structures for <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. In a fitting procedure, we estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> rates in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model, formulated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s, by applying an<br />

iterative minimizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od in order to match <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s.<br />

The best fitting network is <str<strong>on</strong>g>th</str<strong>on</strong>g>en selected.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e bottom-up approach <strong>on</strong>e directly infers <str<strong>on</strong>g>th</str<strong>on</strong>g>e network structure from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

data via a statistical approach. We explore a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>th</str<strong>on</strong>g>at involves <strong>on</strong>ly simple<br />

matrix manipulati<strong>on</strong>s and standard statistics. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> frameworks we inherently<br />

exploit <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-series structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data. Because <str<strong>on</strong>g>th</str<strong>on</strong>g>e data are noisy, it turned<br />

out difficult to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e flav<strong>on</strong>oid network using ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e top-down or <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bottom-up approach separately. However, by combining bo<str<strong>on</strong>g>th</str<strong>on</strong>g> approaches we were<br />

able to obtain a reliable estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network model for flav<strong>on</strong>oid glycosylati<strong>on</strong><br />

in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable noise.<br />

09:05–09:25<br />

Pawel Foszner<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Pawel.Foszner@polsl.pl<br />

Roman Jaksik<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Roman.Jaksik@polsl.pl<br />

Aleksandra Gruca<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Aleksandra.Gruca@polsl.pl<br />

Joanna Polanska<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Joanna.Polanska@polsl.pl<br />

Andrzej Polanski<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Andrzej.Polanski@polsl.pl<br />

Efficient reannotati<strong>on</strong> system for verifying genomic targets<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DNA microarray probes<br />

Systems for data cleaning for supporting analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA microarray<br />

experiments are becoming important elements <str<strong>on</strong>g>of</str<strong>on</strong>g> bioinformatics aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> gene<br />

expressi<strong>on</strong> analysis [1]. It has been dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at data cleaning at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> microarray probes, based <strong>on</strong> most recent knowledge <strong>on</strong> genomic data, can substantially<br />

improve results <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular classifiers. However, due to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole genome browsing projects, available services and data for<br />

reannotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microarray probes are still quite sparse. In our research we have<br />

created an efficient reannotati<strong>on</strong> tool by combining <str<strong>on</strong>g>th</str<strong>on</strong>g>e well known gene search tool<br />

BLAT [2] wi<str<strong>on</strong>g>th</str<strong>on</strong>g> appropriately designed database and tools for operati<strong>on</strong>s <strong>on</strong> it.<br />

We show properties <str<strong>on</strong>g>of</str<strong>on</strong>g> our tool by using two Affymetrix chips HG U133A and<br />

HG 1.0 ST. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e Affymetrix microarrays, <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene intensity is calculated <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

26


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> gene probes c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> 25-mer oligo-nucleotides. For many reas<strong>on</strong>s, in<br />

many cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculated value does not match <str<strong>on</strong>g>th</str<strong>on</strong>g>e real expressi<strong>on</strong>. These reas<strong>on</strong>s<br />

include single nucleotide polymorphism, adjusting <str<strong>on</strong>g>th</str<strong>on</strong>g>e probe to ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er gene or intr<strong>on</strong>.<br />

Our task was to check how many probes can truly determine gene expressi<strong>on</strong>.<br />

We have developed a database which c<strong>on</strong>tains informati<strong>on</strong> about how <str<strong>on</strong>g>th</str<strong>on</strong>g>e probes<br />

are aligned to <str<strong>on</strong>g>th</str<strong>on</strong>g>e latest human genome. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>ose matches to <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome, for<br />

each probe we found mRNA and EST sequences. In our presentati<strong>on</strong> we compare<br />

reannotati<strong>on</strong> results for analyzed Affymetrix chips, based <strong>on</strong> two different built <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Human Genome, HG18 and HG19. Improving <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality <str<strong>on</strong>g>of</str<strong>on</strong>g> data can be fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

verified by comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e misclassificati<strong>on</strong> rates for classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microarray data<br />

obtained using <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial affymetrix CDF files and CDF file created by us. The<br />

informati<strong>on</strong> obtained from reannotati<strong>on</strong>s can help to update <str<strong>on</strong>g>th</str<strong>on</strong>g>e CDF files, and can<br />

significantly improve <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality <str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong>.<br />

Acknowledgements. This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Community<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Social Fund.<br />

References.<br />

[1] Ramil N. Nurtdinov, Mikhail O. Vasiliev,Anna S. Ershova, Ilia S. Lossev and Anna S. Karyagina,<br />

PLANdbAffy: probe-level annotati<strong>on</strong> database for Affymetrix expressi<strong>on</strong> microarrays Nucleic<br />

Acids Research, 2010, 38 D726–D730.<br />

[2] Kent,W.J., BLAT–<str<strong>on</strong>g>th</str<strong>on</strong>g>e BLAST-like alignment tool. Genome Res. 12 656–664.<br />

09:25–09:45<br />

Bar<str<strong>on</strong>g>th</str<strong>on</strong>g>olomäus Hirt<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: pmxbvh@nottingham.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical investigati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-cancer<br />

compound RHPS4 <strong>on</strong> cell-cycle dynamics<br />

The pentacyclic acridinium salt RHPS4 displays anti-tumour properties in vitro<br />

as well as in vivo and is potentially cell-cycle specific. We have collected experimental<br />

data and formulated a compartmental model using ordinary differential<br />

equati<strong>on</strong>s to investigate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e compound affects cells in each stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

cycle. The eukaryotic cell cycle primarily c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> five phases, namely a resting<br />

state, G 0 , and four cycling phases: G 1 , S, G 2 and M phase wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cells progressing<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is order and <str<strong>on</strong>g>th</str<strong>on</strong>g>en dividing into two cells back in G 1 . Understanding how a<br />

drug affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle could give insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug’s mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong><br />

and may assist research into potential treatment strategies.<br />

We treated colorectal cancer cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

drug and fitted simulati<strong>on</strong>s from our models to experimental observati<strong>on</strong>s. We<br />

found <str<strong>on</strong>g>th</str<strong>on</strong>g>at RHPS4 caused a c<strong>on</strong>centrati<strong>on</strong>-dependent, marked cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> in treated<br />

cells, which is best modelled by allowing rate parameters in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle to be<br />

time-dependent functi<strong>on</strong>s. Our compartmental models fit data from c<strong>on</strong>trol cells<br />

and cells treated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> lower c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> RHPS4 particularly well. We have<br />

27


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

also shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is “identifiable", meaning <str<strong>on</strong>g>th</str<strong>on</strong>g>at, at least in principle,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter values can be determined from observable quantities. Our fitting<br />

procedure generates informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at at low c<strong>on</strong>centrati<strong>on</strong>s RHPS4 primarily affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ behaviour<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e G 2 /M phase, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug has a delayed effect wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e delay decreasing<br />

at larger doses. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug diffuses into <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed delayed effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e compound is unexpected and is a novel finding <str<strong>on</strong>g>of</str<strong>on</strong>g> our research into <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

compound. We propose <str<strong>on</strong>g>th</str<strong>on</strong>g>at sec<strong>on</strong>dary effects lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed<br />

cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>at changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-coding DNA<br />

sequences at chromosome ends, called telomeres, might be a precursor <str<strong>on</strong>g>of</str<strong>on</strong>g> delayed<br />

cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

09:45–10:05<br />

Scott Fortmann-Roe<br />

UC Berkeley<br />

e-mail: scottfr@berkeley.edu<br />

Orr Spiegel<br />

Hebrew University <str<strong>on</strong>g>of</str<strong>on</strong>g> Jerusalem<br />

Roi Harel<br />

Hebrew University <str<strong>on</strong>g>of</str<strong>on</strong>g> Jerusalem<br />

Wayne Getz<br />

UC Berkeley<br />

Ran Na<str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

Hebrew University <str<strong>on</strong>g>of</str<strong>on</strong>g> Jerusalem<br />

Automatic Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Vulture Behavior using Machine<br />

Learning Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms Applied to Accelerometer Data<br />

Accelerometer data has been shown to be an effective tool for identifying certain<br />

animal behaviors. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I present <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> tri-axial accelerometer data<br />

as a predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> seven ground-tru<str<strong>on</strong>g>th</str<strong>on</strong>g>ed Griff<strong>on</strong> vulture (Gyps fulvus) behaviors:<br />

active flight, eating, laying down, passive flight, preening, running, and standing.<br />

Five different machine learning algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms were trained and validated <strong>on</strong> subsets<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> over nine-hundred observati<strong>on</strong>s, each 16 to 25 sec<strong>on</strong>ds in leng<str<strong>on</strong>g>th</str<strong>on</strong>g>. Prior to classificati<strong>on</strong>,<br />

summary statistics for <str<strong>on</strong>g>th</str<strong>on</strong>g>e accelerometer data were calculated and used<br />

as inputs into <str<strong>on</strong>g>th</str<strong>on</strong>g>e machine learning algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. The algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms tested were Linear<br />

Discriminate Analysis, Classificati<strong>on</strong> and Regressi<strong>on</strong> Trees, Random Forests,<br />

Artificial Neural Networks, and Support Vector Machines. Of <str<strong>on</strong>g>th</str<strong>on</strong>g>ese me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Random Forest predictors were found to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e most accurate while Linear Discriminate<br />

Analysis predictors were <str<strong>on</strong>g>th</str<strong>on</strong>g>e least accurate. Classificati<strong>on</strong> accuracies for<br />

all predictors were in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 80% to 90% range. Using results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e machine learning<br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms we determined <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e different summary statistics for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e classificati<strong>on</strong> effort. Generally, measures <str<strong>on</strong>g>of</str<strong>on</strong>g> variance were found to be more<br />

important <str<strong>on</strong>g>th</str<strong>on</strong>g>an measures <str<strong>on</strong>g>of</str<strong>on</strong>g> central tendency or correlati<strong>on</strong>.<br />

28


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

10:05–10:25<br />

William Weens<br />

INRIA<br />

e-mail: william.weens@inria.fr<br />

Sabine Colnot<br />

INSERM<br />

Dirk Drasdo<br />

INRIA<br />

Jan G. Hengstler<br />

IFADO<br />

Stefan Hoehme<br />

IZBI<br />

Modeling tumor development in liver<br />

As recently dem<strong>on</strong>strated for liver regenerati<strong>on</strong> after drug-induced damage, organizati<strong>on</strong><br />

and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> processes can be systematically analysed by a process chain <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiments, image analysis and modeling [1]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>at paper our group was able to<br />

quantitatively characterize <str<strong>on</strong>g>th</str<strong>on</strong>g>e architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> liver lobules, <str<strong>on</strong>g>th</str<strong>on</strong>g>e repetitive functi<strong>on</strong>al<br />

building blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> liver, and turn <str<strong>on</strong>g>th</str<strong>on</strong>g>is into a quantitative ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model capable<br />

to predict a previously unrecognized order mechanism. The model predicti<strong>on</strong><br />

could subsequently be experimentally validated. Here, we extend <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

multi-lobular scale and study, guided by experimental findings, cancerogenesis in<br />

liver. We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible scenarios leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e different tumor phenotypes<br />

experimentally observed in mouse. Our model c<strong>on</strong>siders <str<strong>on</strong>g>th</str<strong>on</strong>g>e hepatocytes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e main<br />

cell type in liver, as individual units wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a single cell based model and <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood<br />

vessel system as a network <str<strong>on</strong>g>of</str<strong>on</strong>g> extensible objects. The model is parameterized by<br />

measurable values <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell and tissue scale and its results are directly compared<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental findings.<br />

References.<br />

[1] Hoehme, et al. (2010) Predicti<strong>on</strong> and validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell alignment al<strong>on</strong>g microvessels as order<br />

principle to restore tissue architecture in liver regenerati<strong>on</strong>. Proc. Natl. Acad. Sci (USA) vol.<br />

107 no. 23 10371-10376<br />

29


Bioinformatics and System Biology 2<br />

Wednesday, June 29, 11:00, Room: UA1<br />

Chaired by: Jerzy Tiuryn<br />

11:00–11:30<br />

Sara Jabbari<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

e-mail: sara.jabbari@nottingham.ac.uk<br />

Systems biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium acetobutylicum<br />

A renewed interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels has emerged in recent years,<br />

principally due to dwindling crude oil reserves and c<strong>on</strong>cerns over <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. Bacterial fermentati<strong>on</strong> is a possible soluti<strong>on</strong> to questi<strong>on</strong>s over<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e source <str<strong>on</strong>g>of</str<strong>on</strong>g> future bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels.<br />

Clostridium acetobutylicum is an anaerobic, n<strong>on</strong>-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic, Gram-positive<br />

bacterium capable <str<strong>on</strong>g>of</str<strong>on</strong>g> producing <str<strong>on</strong>g>th</str<strong>on</strong>g>e solvents acet<strong>on</strong>e, butanol and e<str<strong>on</strong>g>th</str<strong>on</strong>g>anol. Though<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese can be used as a bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uel, <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> butanol make it <str<strong>on</strong>g>th</str<strong>on</strong>g>e most<br />

promising energy source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree. For butanol producti<strong>on</strong> by C. acetobutylicum<br />

to be exploited <strong>on</strong> an industrial scale, however, genetically-engineered strains must<br />

be designed which can produce butanol at much higher levels <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose achieved<br />

by wild-type strains.<br />

The SysMO and SysMO2 programmes COSMIC (Clostridium acetobutylicum<br />

Systems Microbiology) were established to apply a systems approach to understanding<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e complex mechanisms behind solvent producti<strong>on</strong> by C. acetobutylicum and to<br />

establish <str<strong>on</strong>g>th</str<strong>on</strong>g>is bacterium as <str<strong>on</strong>g>th</str<strong>on</strong>g>e paradigm for clostridial systems biology. An iterative<br />

approach is adopted whereby experimental work is designed to complement ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> solventogenesis which in turn generate experimentally-testable<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses. Notably, <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene regulati<strong>on</strong> networks governing solvent producti<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>nected process <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> are modelled and parametrised according<br />

to experimental data. Systematic in silico alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> for each<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks enables identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose genes most crucial for<br />

butanol producti<strong>on</strong> and will elucidate <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal genetic engineering strategies for<br />

maximising butanol yield.<br />

31<br />

11:35–11:55


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Anne Arnold<br />

Zoran Nikoloski<br />

Systems Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling Group<br />

Max-Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, 14476 Potsdam,<br />

Germany<br />

e-mail: arnold@mpimp-golm.mpg.de<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Comparative model analyis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin-Bens<strong>on</strong> cycle<br />

Carb<strong>on</strong> fixati<strong>on</strong>, especially <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin-Bens<strong>on</strong> cycle (CBC), is <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

for energy storage in carbohydrate products in C 3 -plants. Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay<br />

between regulati<strong>on</strong> and efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> CBC and its end-products (e.g., sucrose,<br />

starch and amino acids) requires <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models which<br />

can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic transformati<strong>on</strong>s. Here, we address<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is questi<strong>on</strong> by comparing and ranking <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CBC to<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> best-performing models.<br />

The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CBC and <str<strong>on</strong>g>th</str<strong>on</strong>g>e related pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways for <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase <str<strong>on</strong>g>of</str<strong>on</strong>g> plant<br />

biomass has already resulted in 15 models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> various level <str<strong>on</strong>g>of</str<strong>on</strong>g> detail. The existing<br />

models can be categorized biologically based <strong>on</strong>: (1) chosen boundaries, i.e.,<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> CBC including or excluding end-product syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis, (2) details <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong><br />

modeling, i.e., leaf, cell, or compartment-level, and (3) hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> kinetics<br />

[4], translating <str<strong>on</strong>g>th</str<strong>on</strong>g>e model structure into ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical equati<strong>on</strong>s amenable to extensive<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> spatiotemporal properties. Our focus is placed <strong>on</strong> mass acti<strong>on</strong>,<br />

Michaelis-Menten-like, equilibrium approximati<strong>on</strong>s, and special functi<strong>on</strong>s in c<strong>on</strong>juncti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> terms.<br />

The ranking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SBML-implemented compendium <str<strong>on</strong>g>of</str<strong>on</strong>g> models is carried out<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e following criteria: (1) stability analysis [3], (2) sensitivity analysis,<br />

(3) ability to capture key features extracted from <str<strong>on</strong>g>th</str<strong>on</strong>g>e data [1], and (4) analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> yield. The obtained scores are <str<strong>on</strong>g>th</str<strong>on</strong>g>en combined <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a comprehensive model<br />

ranking scheme, based <strong>on</strong> which <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> best-performing models is selected wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

regard to metabolomics data and detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> candidates for genetic engineering.<br />

References.<br />

[1] S. Arrivault, et al., Use <str<strong>on</strong>g>of</str<strong>on</strong>g> reverse-phase liquid chromatography, linked to tandem mass spectrometry,<br />

to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin cycle and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er metabolic intermediates in arabidopsis rosettes<br />

at different carb<strong>on</strong> dioxide c<strong>on</strong>centrati<strong>on</strong>s Plant J 59 826–839 (2009).<br />

[2] W.W. Chen, M. Niepel, P.K. Sorger, Classic and c<strong>on</strong>temporary approaches to modeling biochemical<br />

reacti<strong>on</strong>s Genes & Development 24 1861–1875 (2010).<br />

[3] S. Grimbs, J. Selbig, S. Bulik, H.G. Holzhutter, R. Steuer, The stability and robustness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

metabolic states: identifying stabilizing sites in metabolic networks Mol Syst Biol 3 146 (2007).<br />

[4] S. Grimbs, et al., Spatiotemporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin cycle: Multistati<strong>on</strong>arity and symmetry<br />

breaking instabilities BioSystems (2011), in press.<br />

11:55–12:15<br />

32


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Sabrina Kleessen<br />

Max Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, Potsdam, Germany<br />

e-mail: kleessen@mpimp-golm.mpg.de<br />

Zoran Nikoloski<br />

Max Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology and Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Potsdam, Potsdam, Germany<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Dynamic regulatory <strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f minimizati<strong>on</strong> infers key<br />

regulators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin cycle under internal temporal<br />

perturbati<strong>on</strong>s<br />

Flux balance analysis (FBA) toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its dynamic extensi<strong>on</strong>, DFBA, have<br />

proven instrumental for analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks. Under <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> minimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic adjustment, DFBA has recently been employed<br />

to analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> between metabolic states at systemic level. Here we<br />

propose a suite <str<strong>on</strong>g>of</str<strong>on</strong>g> novel me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> perturbed metabolic<br />

networks and quantifying <str<strong>on</strong>g>th</str<strong>on</strong>g>eir robustness wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> kinetic parameters.<br />

Following <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemically meaningful premise <str<strong>on</strong>g>th</str<strong>on</strong>g>at metabolite c<strong>on</strong>centrati<strong>on</strong>s exhibit<br />

smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> temporal changes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods rely <strong>on</strong> minimizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e significant<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-resolved metabolic<br />

state characterized by bo<str<strong>on</strong>g>th</str<strong>on</strong>g> fluxes and c<strong>on</strong>centrati<strong>on</strong>s. On a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin<br />

cycle, we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e principle <str<strong>on</strong>g>of</str<strong>on</strong>g> regulatory <strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f minimizati<strong>on</strong> (ROOM)<br />

coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> DFBA can accurately predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e changes in metabolic states. Our<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods outperform <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing DFBA-based modeling alternatives, and help in<br />

revealing <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms for maintaining robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic processes in metabolic<br />

networks over time.<br />

12:15–12:35<br />

Eugene Bushmelev<br />

Siberian Federal university<br />

e-mail: hoochie_cool@list.ru<br />

Michael Sadovsky<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> SB RAS<br />

e-mail: msad@icm.krasn.ru<br />

Close order in triplet compositi<strong>on</strong> in genomes<br />

We studied a two-particle distributi<strong>on</strong> functi<strong>on</strong> l (ω 1 , ω 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> a distance defined in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotides between two given triplets ω 1 = ν 1 ν 2 ν 3 and ω 2 = µ 1 µ 2 µ 3 .<br />

For each entry <str<strong>on</strong>g>of</str<strong>on</strong>g> a given triplet ω 1 <str<strong>on</strong>g>th</str<strong>on</strong>g>e distance to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nearest given triplet ω 2 has<br />

been determined, <str<strong>on</strong>g>th</str<strong>on</strong>g>us revealing <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> functi<strong>on</strong> l (ω 1 , ω 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e couples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triplets in a genetic entity. The functi<strong>on</strong> is defined in ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er multi-dimensi<strong>on</strong>al<br />

33


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

space (64 2 = 4096) <str<strong>on</strong>g>th</str<strong>on</strong>g>at makes <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems <str<strong>on</strong>g>of</str<strong>on</strong>g> its analysis and visualizati<strong>on</strong> ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

acute.<br />

The distributi<strong>on</strong> functi<strong>on</strong> l (ω 1 , ω 2 ) was found to be ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er complex; it has<br />

several maxima, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number and locati<strong>on</strong> (relative distance) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose maxima<br />

are specific, for various couples <str<strong>on</strong>g>of</str<strong>on</strong>g> triplets. For yeast genome <str<strong>on</strong>g>of</str<strong>on</strong>g> Pichia stipitis CBS<br />

6054, typical number <str<strong>on</strong>g>of</str<strong>on</strong>g> maxima was equal to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree, for any chromosome. Intragenomic<br />

variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> l (ω 1 , ω 2 ) is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er significant; at least, different<br />

chromosomes have indistinctively discrete types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>.<br />

Special attenti<strong>on</strong> has been paid to <str<strong>on</strong>g>th</str<strong>on</strong>g>e couples <str<strong>on</strong>g>of</str<strong>on</strong>g> triplets <str<strong>on</strong>g>th</str<strong>on</strong>g>at make so called<br />

complementary palindrome. That latter is a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> triplets read equally in opposite<br />

directi<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e complimentary rule substituti<strong>on</strong>, say, ATG ↔ CAT<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> GCA ↔ TGC. Such triplets (and l<strong>on</strong>ger strings) are well known for a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetry<br />

in genomes: <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> each string in a complementary palindrome is<br />

pretty close each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. Informati<strong>on</strong> charge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e triplets composing a complimentary<br />

palindrome is ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er important issue, for <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e close order in<br />

genomes. This former is a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> real frequency f ν1ν 2ν 3<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mostly expected<br />

<strong>on</strong>e ˜f ν1ν 2ν 3<br />

, which is defined as<br />

˜f ν1ν 2ν 3<br />

= f ν 1ν 2<br />

× f ν2ν 3<br />

f ν2<br />

.<br />

Informati<strong>on</strong> charge p ν1ν 2ν 3<br />

is more sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

genetic entity under c<strong>on</strong>siderati<strong>on</strong>.<br />

We have examined more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 20 genomes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> as many sequences, as <strong>on</strong>e<br />

hundred. All <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigated genetic entities exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e close order <str<strong>on</strong>g>of</str<strong>on</strong>g> triplet<br />

compositi<strong>on</strong>. The pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e order was different for <str<strong>on</strong>g>th</str<strong>on</strong>g>e different species (and<br />

higher taxa). Moreover, even an intra-genetic variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns was high<br />

enough to put <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e comprehensive analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern itself.<br />

To verify <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns observed at <str<strong>on</strong>g>th</str<strong>on</strong>g>e real genetic entities, we have carried out<br />

several computati<strong>on</strong>al experiments. We have generated a surrogate random n<strong>on</strong>correlated<br />

sequence wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotides and <str<strong>on</strong>g>th</str<strong>on</strong>g>e same leng<str<strong>on</strong>g>th</str<strong>on</strong>g>,<br />

and developed similar patterns to figure out <str<strong>on</strong>g>th</str<strong>on</strong>g>e deviati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns observed<br />

over a real sequence from similar observed over a surrogate. Significant difference<br />

has been detected.<br />

Some biological issues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed order are discussed. The work is a part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a greater project <str<strong>on</strong>g>of</str<strong>on</strong>g> a study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>ger strings wi<str<strong>on</strong>g>th</str<strong>on</strong>g> increased<br />

informati<strong>on</strong> charge al<strong>on</strong>gside a genome.<br />

12:35–12:55<br />

Maurício Vieira Kritz<br />

LNCC/MCT, Av. Getúlio Vargas 333, 25651-075 Petrópolis, Brazil<br />

e-mail: kritz@lncc.br<br />

34<br />

Biological Informati<strong>on</strong>, Biological Interacti<strong>on</strong> and<br />

Anticipati<strong>on</strong>


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Understanding biological organisati<strong>on</strong>s and interacti<strong>on</strong>s is becoming ever more<br />

important. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, a c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> designed to handle informati<strong>on</strong><br />

c<strong>on</strong>veyed by organizati<strong>on</strong>s is introduced. This c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> may be used<br />

at all biological scales: from molecular and intracellular to multi-cellular organisms<br />

and human beings, and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er <strong>on</strong> into collectivities, societies and culture.<br />

This c<strong>on</strong>cept is based <strong>on</strong> whole-part graphs, a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for biological<br />

organizati<strong>on</strong> introduced earlier [1]. This model supports <str<strong>on</strong>g>th</str<strong>on</strong>g>e formal investigati<strong>on</strong><br />

about properties <str<strong>on</strong>g>of</str<strong>on</strong>g> biological organisati<strong>on</strong>s, allowing for ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organisati<strong>on</strong> transformati<strong>on</strong>s [2].<br />

Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er c<strong>on</strong>cept, necessary for developing <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong>, will also be introduced.<br />

It is <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> synexi<strong>on</strong>s, or organisati<strong>on</strong>s immersed in space-time.<br />

The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> also formalizes percepti<strong>on</strong>, observers and interpretati<strong>on</strong>;<br />

al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough observers appear just as acknowledgers <str<strong>on</strong>g>of</str<strong>on</strong>g> changes. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is setting,<br />

informati<strong>on</strong> and interpretati<strong>on</strong> stand as seminal elements <str<strong>on</strong>g>of</str<strong>on</strong>g> (biological) interacti<strong>on</strong><br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organisati<strong>on</strong>s. Some aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>cepts will be<br />

clarified while arguing why <str<strong>on</strong>g>th</str<strong>on</strong>g>e immersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> whole-part graphs in (<str<strong>on</strong>g>th</str<strong>on</strong>g>e physical)<br />

space-time is needed. This immersi<strong>on</strong> c<strong>on</strong>nects <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> to<br />

issues related to anticipati<strong>on</strong>.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for identifying organisati<strong>on</strong>s in biological data may be derived based<br />

<strong>on</strong> whole-part graphs. However, me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for inspecting and identifying organisati<strong>on</strong>s<br />

in bio-chemical networks grounded solely <strong>on</strong> network informati<strong>on</strong> and not<br />

c<strong>on</strong>sidering interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment do not work satisfactorily [4] for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

following reas<strong>on</strong>. It can be proved <str<strong>on</strong>g>th</str<strong>on</strong>g>at de-organizing <str<strong>on</strong>g>th</str<strong>on</strong>g>ings into <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interc<strong>on</strong>nected<br />

parts is a deterministic process, while re-organizing associated parts into<br />

wholes is a n<strong>on</strong>-deterministic process. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at raw relati<strong>on</strong>al data [6],<br />

like bio-chemical networks, is insufficient to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natural organisati<strong>on</strong><br />

and how biological organisati<strong>on</strong>s come to be, indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> neatly<br />

c<strong>on</strong>sidering interacti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e organisati<strong>on</strong> process.<br />

It has been suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at informati<strong>on</strong> exchange is <str<strong>on</strong>g>th</str<strong>on</strong>g>e distinctive mode <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interacti<strong>on</strong> in biological phenomena [5]. The arguments presented in support to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is claim are grounded <strong>on</strong> Shann<strong>on</strong>’s informati<strong>on</strong>, what keeps informati<strong>on</strong> more<br />

as an investigatory aid <str<strong>on</strong>g>th</str<strong>on</strong>g>an as some<str<strong>on</strong>g>th</str<strong>on</strong>g>ing intrinsically entailing <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomen<strong>on</strong>.<br />

Shann<strong>on</strong> himself called attenti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at his definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>c<strong>on</strong>tend<br />

precludes meaning and interpretati<strong>on</strong>, addressing <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e communicati<strong>on</strong><br />

(signal transmissi<strong>on</strong>) aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> exchange [7].<br />

The present definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> ties interpretati<strong>on</strong> to changes in organisati<strong>on</strong><br />

[3]. Therefore, informati<strong>on</strong>-grounded biological interacti<strong>on</strong>s mold organisati<strong>on</strong>s.<br />

The fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> is grounded <strong>on</strong> synexi<strong>on</strong>s ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an whole-part<br />

graphs intertwines anticipati<strong>on</strong> to informati<strong>on</strong> recogniti<strong>on</strong>. Indeed, <str<strong>on</strong>g>th</str<strong>on</strong>g>e percepti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an interpretati<strong>on</strong> event relies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e violati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e anticipati<strong>on</strong> by an observer<br />

about propensities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interpreter <str<strong>on</strong>g>of</str<strong>on</strong>g> a signal. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is sense, biological<br />

informati<strong>on</strong> and anticipati<strong>on</strong> are at <str<strong>on</strong>g>th</str<strong>on</strong>g>e very core <str<strong>on</strong>g>of</str<strong>on</strong>g> biological interacti<strong>on</strong>s<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequent formati<strong>on</strong> and transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological organisati<strong>on</strong>s.<br />

References.<br />

[1] M.V. Kritz, Biological Organizati<strong>on</strong>. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e IV Brazilian Symposium <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

and Computati<strong>on</strong>al Biology — BIOMAT IV, R. Modaini, ed. e-papers Editora, Rio<br />

de Janeiro, 2005.<br />

35


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] M.V. Kritz, Organizing biological observati<strong>on</strong>s: a model and some properties. Book<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Abstracts</str<strong>on</strong>g>. ECMTB08, Edinburg, June 29<str<strong>on</strong>g>th</str<strong>on</strong>g> – July 4<str<strong>on</strong>g>th</str<strong>on</strong>g>. Available <strong>on</strong>line at<br />

http://www.ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk/ecmtb08, last access <strong>on</strong> .<br />

[3] M. V. Kritz, Biological informati<strong>on</strong> and knowledge. P&D Report #23/2009, LNCC/MCT,<br />

Petrópolis, December 2009.<br />

[4] M. V. Kritz, M. T. dos Santos, S. Urrutia and J.-M. Schwartz, Organizing metabolic networks:<br />

Cycles in flux distributi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology, 265(3):250–260, August 2010.<br />

doi:10.1016/j.jtbi.2010.04.026<br />

[5] J. G. Roederer, The Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> in Nature. The Fr<strong>on</strong>tiers Collecti<strong>on</strong>. Springer Verlag,<br />

Berlin, 2005.<br />

[6] R. Rosen, Life Itself: A Comprehesive Inquiry into <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nature, Origin, and Fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Life. Complexity in Ecological Systems Series. Columbia University Press, New York, NY,<br />

1991.<br />

[7] C. E. Shann<strong>on</strong> and W. Weaver, The Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Communicati<strong>on</strong>. University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Illinois Press, Urbana, 1949.<br />

36


Bioinformatics and System Biology 3<br />

Wednesday, June 29, 14:30, Room: UA1<br />

Chaired by: Michael Sadovsky<br />

14:30–15:00<br />

Joerg Galle<br />

Interdisciplinary Centre for Bioinformatics, University Leipzig<br />

e-mail: galle@izbi.uni-leipzig.de<br />

Lydia Steiner<br />

Interdisciplinary Centre for Bioinformatics, University Leipzig<br />

Hans Binder<br />

nterdisciplinary Centre for Bioinformatics, University Leipzig<br />

Transcripti<strong>on</strong>al regulati<strong>on</strong> by hist<strong>on</strong>e modificati<strong>on</strong>s<br />

Transcripti<strong>on</strong>al regulati<strong>on</strong> in cells makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> diverse mechanisms to ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

functi<strong>on</strong>al states can be maintained and adapted to variable envir<strong>on</strong>ments. Am<strong>on</strong>g<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese mechanisms are cis-regulatory modules and chromatin modificati<strong>on</strong>s. Unraveling<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese different layers <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> represents a challenge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Molecular Systems Biology. We here introduce a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> genomewide<br />

transcripti<strong>on</strong>al regulati<strong>on</strong> governed by hist<strong>on</strong>e modificati<strong>on</strong>s. This model describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> protein complexes to DNA which are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> reading and<br />

writing hist<strong>on</strong>e marks. Cooperative molecular interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein<br />

complexes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA and <str<strong>on</strong>g>th</str<strong>on</strong>g>e modified hist<strong>on</strong>es create a regulatory memory and<br />

allow for switch-like changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome. We provide<br />

analytical results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory states <strong>on</strong> i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e (de-) modificati<strong>on</strong><br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e (de-)me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylases, ii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA-binding<br />

regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein complexes and iii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>es <str<strong>on</strong>g>th</str<strong>on</strong>g>at act cooperatively;<br />

and discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular envir<strong>on</strong>ment <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese properties. We<br />

dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at according to our model proliferati<strong>on</strong> activity per se can switch<br />

expressi<strong>on</strong> states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> suppressed inheritance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hist<strong>on</strong>e marks. We apply our model to transcripti<strong>on</strong>al regulati<strong>on</strong> by trxG- and<br />

PcG-binding to DNA. By analysing ChIP-seq data <str<strong>on</strong>g>of</str<strong>on</strong>g> mouse ESC we provide evidence<br />

for cooperative modes <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e modificati<strong>on</strong>s. Thereby, our data suggest a<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperative chromatin regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> about 10kb which agrees<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e loop leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an un-interrupted chromatin fibre. Our results provide new<br />

insights into genome-wide transcripti<strong>on</strong>al regulati<strong>on</strong> by hist<strong>on</strong>e modificati<strong>on</strong>s and<br />

represent a first step towards simulati<strong>on</strong> studies <strong>on</strong> changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epigenome during<br />

ageing and disease.<br />

37


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:05–15:25<br />

Ilya Akberdin ∗,1<br />

Fedor Kazantsev 1<br />

Maxim Ri 1<br />

Natalya Ri 1<br />

Vladimir Tim<strong>on</strong>ov 1,2,3<br />

Tamara M. Khlebodarova 1<br />

Vitaly A. Likhoshvai 1,2<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Systems Biology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytology and Genetics,<br />

Siberian Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Lavrentyev Ave.,<br />

10, Novosibirsk, 630090, Russia<br />

2 Novosibirsk State University, Novosibirsk, Pirogova str. 2, 630090,<br />

Russia<br />

3 Siberian State University <str<strong>on</strong>g>of</str<strong>on</strong>g> Telecommunicati<strong>on</strong>s and Informati<strong>on</strong><br />

Sciences, Novosibirsk, Kirova str. 86, 630102, Russia<br />

e-mail: ∗ akberdin@bi<strong>on</strong>et.nsc.ru<br />

Automatic generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

molecular-genetic systems<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular-genetic systems are based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong><br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>e structural and functi<strong>on</strong>al organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene networks and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir dynamic<br />

properties <str<strong>on</strong>g>th</str<strong>on</strong>g>at disseminated over hundreds and <str<strong>on</strong>g>th</str<strong>on</strong>g>ousands <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific papers. The<br />

problem arises <str<strong>on</strong>g>of</str<strong>on</strong>g> data comparis<strong>on</strong> and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-uniformed experimental<br />

data, analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> cause-and-effect relati<strong>on</strong>s between molecular structure, dynamics<br />

and phenotypic features <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular-genetic system, and s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware development for<br />

automatic generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models, storage <str<strong>on</strong>g>of</str<strong>on</strong>g> creating models in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

database and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir numerical analysis. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> solving some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above<br />

menti<strong>on</strong>ed problems we have developed an integrated computer system and models<br />

database <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not <strong>on</strong>ly render automatically <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models<br />

rec<strong>on</strong>structi<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structural and functi<strong>on</strong>al organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene networks<br />

but also implements original approaches and algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms to modeling and studying<br />

molecular-genetic systems. The examples <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system are dem<strong>on</strong>strated<br />

<strong>on</strong> a modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> some gene regulatory networks.<br />

15:25–15:45<br />

Mirela Domijan<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warwick<br />

e-mail: mirela.domijan@warwick.ac.uk<br />

38<br />

Light and temperature effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian clock


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The circadian clock is endogenous 24h timer driving numerous metabolic, physiological,<br />

biochemical and developmental processes. The clock has a complex interacti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its envir<strong>on</strong>ment as it resp<strong>on</strong>ds to light and temperature cues. It can be<br />

entrained to daily cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> light and temperature, yet it also remains very robust to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir stochastic fluctuati<strong>on</strong>s. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er key striking feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e clock is <str<strong>on</strong>g>th</str<strong>on</strong>g>at it can<br />

maintain nearly c<strong>on</strong>stant period over a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological temperatures<br />

(a feature called temperature compensati<strong>on</strong>). These properties enable <str<strong>on</strong>g>th</str<strong>on</strong>g>e clock to<br />

do a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s: it can be used to predict transiti<strong>on</strong>s at dusk and dawn,<br />

measure day leng<str<strong>on</strong>g>th</str<strong>on</strong>g>, and it allows an organism to resp<strong>on</strong>d accurately to seas<strong>on</strong>al<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. Elucidating <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e clock wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its envir<strong>on</strong>ment can help us<br />

gain greater understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e design principles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is important mechanism.<br />

Here I will present some recent work in <str<strong>on</strong>g>th</str<strong>on</strong>g>is directi<strong>on</strong> [1, 2].<br />

References.<br />

[1] M. Domijan and D.A. Rand, Balance equati<strong>on</strong>s can buffer noisy and sustained envir<strong>on</strong>mental<br />

perturbati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> circadian clocks Interface Focus 1 177–186.<br />

[2] P.D. Gould , N. Ugarte, J. Foreman, M. Domijan, D. McGregor, S. Penfield, D.A. Rand, A.<br />

Hall, K. Halliday, A.J. Millar, Photoreceptors c<strong>on</strong>tribute temperature-specific regulati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

biological clock in Arabidopsis, preprint.<br />

15:45–16:05<br />

Samuel Handelman<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, The Ohio State University, Columbus<br />

OH<br />

e-mail: shandelman@mbi.osu.edu<br />

J. S. Verducci<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, The Ohio State University, Columbus OH<br />

J. J. Kwiek<br />

The Center for Microbial Interface Biology, Ohio State University<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Columbus OH<br />

S. B. Kumar<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Biosciences, The Ohio State University,<br />

Columbus OH<br />

D. A. Janies<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Informatics, Ohio State University College<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Columbus OH<br />

GENPHEN: Genotype/Phenotype Associati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Reference to Phylogeny<br />

When genome sequences are obtained from organisms wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different associated phenotypes,<br />

it should be possible to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>ose sequence properties which c<strong>on</strong>fer a<br />

given phenotype. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary relati<strong>on</strong>ships between organisms lead<br />

to n<strong>on</strong>-independence between <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence properties. For example, <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV-1<br />

virus has a populati<strong>on</strong> structure reflecting bo<str<strong>on</strong>g>th</str<strong>on</strong>g> transmissi<strong>on</strong> between individuals<br />

and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV-1 quasispecies wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in each patient. This n<strong>on</strong>-independence<br />

39


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

can introduce interdependence between unrelated mutati<strong>on</strong>s giving a false appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> causati<strong>on</strong>. These evoluti<strong>on</strong>ary relati<strong>on</strong>ships are an issue even in HIV-1<br />

where recombinati<strong>on</strong> is rapid, and are pervasive in humans, where linkage disequilibrium<br />

is extensive. In human disease studies, <str<strong>on</strong>g>th</str<strong>on</strong>g>is can sometimes be overcome by<br />

comparing siblings: alleles comm<strong>on</strong> <strong>on</strong>ly in sick siblings are likely true causative alleles.<br />

GENPHEN identifies, in a phylogenetic rec<strong>on</strong>structi<strong>on</strong>, sibling lineages where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype varies. Then, GENPHEN uses modified proporti<strong>on</strong>al hazard models<br />

to identify causal polymorphisms. GENPHENs advantages include: speed practical<br />

for high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput sequence data, estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g> or speed <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

effects, and improved precisi<strong>on</strong> even vs. o<str<strong>on</strong>g>th</str<strong>on</strong>g>er tree-based me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: 50%-300%<br />

improvement in precisi<strong>on</strong> at same recall, ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er to predict experimental correlati<strong>on</strong>s<br />

(obtained from STRING: http://string-db.org/) or in simulati<strong>on</strong>s under biologically<br />

reas<strong>on</strong>able parameters <strong>on</strong> HIV quasispecies sequence trees.<br />

16:05–16:25<br />

Michał Marczyk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Michal.Marczyk@polsl.pl<br />

Roman Jaksik<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Joanna Polańska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Andrzej Polański<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Discriminative gene selecti<strong>on</strong> in low dose radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

microarray data for radiosensitivity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile search<br />

In radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy total dose delivered to targeted tumor tissue is limited to minimize<br />

late side effects in normal tissue, which also limits its healing effect. Ability to adjust<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dose to <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual patient radiosensitivity wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> given<br />

after low dose radiati<strong>on</strong> will help in reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

while increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer treatment. In most gene expressi<strong>on</strong> studies<br />

selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> significant features for sample classificati<strong>on</strong> is a comm<strong>on</strong> task. The<br />

main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is step is to discover <str<strong>on</strong>g>th</str<strong>on</strong>g>e smallest possible set <str<strong>on</strong>g>of</str<strong>on</strong>g> genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows<br />

to achieve good predictive performance. However, in analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer patients<br />

radiosensitivity, differences between analyzed groups are hardly noticed. Also clinical<br />

observati<strong>on</strong>s indicate large variati<strong>on</strong>s between individuals wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in group, which<br />

provides a need to explore different me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> feature selecti<strong>on</strong>.<br />

Examined data c<strong>on</strong>tain two groups <str<strong>on</strong>g>of</str<strong>on</strong>g> breast cancer patients showing clinical<br />

differences in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir normal tissue late resp<strong>on</strong>se to radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. Data pre-processing<br />

includes probe sets re-annotati<strong>on</strong> using PLANdbAffy database, tRMA background<br />

correcti<strong>on</strong>, normalizati<strong>on</strong> and summarizati<strong>on</strong>. Preliminary data analysis and quality<br />

c<strong>on</strong>trol pointed out str<strong>on</strong>g batch effect, which was corrected using ComBat<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware.<br />

40


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

To select significant genes, which can predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e status <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sample <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, we use statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods (t-test, modified Welch<br />

test, F-test) and recurrent feature replacement me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods (Recursive Feature Eliminati<strong>on</strong>,<br />

fuzzy C-Means RFE). In statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods correcti<strong>on</strong> due to correlati<strong>on</strong><br />

between genes was applied. We perform comprehensive experiments to compare<br />

feature selecti<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms using two classifiers as SVM, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> linear and n<strong>on</strong>linear<br />

kernel, and Naive Bayes. The validati<strong>on</strong> step was divided into 2 stages. Training<br />

pilot study patient set, which in opini<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clinicians was more informative, and<br />

testing set, which c<strong>on</strong>tained <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> samples, were used to see if <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exist gene<br />

signature related to radiosensitivity. Multiple random validati<strong>on</strong> procedure using<br />

all data was later performed to prove generalizability <str<strong>on</strong>g>of</str<strong>on</strong>g> selected features.<br />

As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e above described algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms, it was possible to c<strong>on</strong>struct<br />

a classifier <str<strong>on</strong>g>th</str<strong>on</strong>g>at could discriminate patients based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir late resp<strong>on</strong>se to<br />

radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 25% error rate using SVM and n<strong>on</strong>linear kernel. This<br />

result was proven <str<strong>on</strong>g>th</str<strong>on</strong>g>rough multiple random validati<strong>on</strong>. When comparing me<str<strong>on</strong>g>th</str<strong>on</strong>g>odologies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> feature selecti<strong>on</strong> recruitment modified Welch test which deals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unequal<br />

variability <str<strong>on</strong>g>of</str<strong>on</strong>g> genes between groups performed best, however <strong>on</strong>ly wi<str<strong>on</strong>g>th</str<strong>on</strong>g> correcti<strong>on</strong><br />

due to correlati<strong>on</strong>.<br />

This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Program FP6 - 036452, GENEPIlowRT<br />

and Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Higher Educati<strong>on</strong> grant no N N519 647840.<br />

41


Bioinformatics and System Biology 4<br />

Wednesday, June 29, 17:00, Room: UA1<br />

Chaired by: Michael Sadovsky<br />

17:00–17:30<br />

J.C. Nacher 1<br />

e-mail: nacher@fun.ac.jp<br />

M. Hayashida 2<br />

e-mail: morihiro@kuicr.kyoto-u.ac.jp<br />

T. Akutsu 2<br />

e-mail: takutsu@kuicr.kyoto-u.ac.jp<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex and Intelligent Systems, Future University<br />

Hakodate, Japan<br />

2 Bioinformatics Center, Institute for Chemical Research, Kyoto University,<br />

Uji, Japan<br />

Data analysis and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> internal<br />

duplicati<strong>on</strong> process in multi-domain proteins<br />

Multi-domain proteins have likely been shaped by selective genome grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics<br />

during evoluti<strong>on</strong>. Emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> new protein domains allows to perform<br />

new functi<strong>on</strong>s as well as to create polypeptide structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at fold <strong>on</strong> a biologically<br />

feasible time scale. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> genome grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough shuffling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protein domains have been studied extensively over decades, recent experimental<br />

observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a significantly large number <str<strong>on</strong>g>of</str<strong>on</strong>g> domain repeats <str<strong>on</strong>g>of</str<strong>on</strong>g> several domains<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e same family suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e more process involving domain recombinati<strong>on</strong><br />

may still remain hidden [1, 2]. Here we examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein domain statistics<br />

retrieved from Pfam, SMART, Gene3D, ProDom and TIGRFAMs databases and<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> 68 eukaryotic, 56 archaeal, and 929 bacterial organisms. We show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis c<strong>on</strong>firms earlier observati<strong>on</strong>s [3] and extends <str<strong>on</strong>g>th</str<strong>on</strong>g>em to numerous<br />

organisms in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree kingdoms <str<strong>on</strong>g>of</str<strong>on</strong>g> life. The results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

protein domains and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> domain families in a protein are governed by<br />

different statistical laws. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e former follows a power-law distributi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

latter exhibits an exp<strong>on</strong>ential statistics. We develop a me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology and propose<br />

an evoluti<strong>on</strong>ary dynamics model, based <strong>on</strong> a rate equati<strong>on</strong> formalism, and c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> domain fusi<strong>on</strong>, mutati<strong>on</strong>, protein duplicati<strong>on</strong> and internal duplicati<strong>on</strong><br />

processes. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese distinct distributi<strong>on</strong>s are in fact rooted<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e internal domain duplicati<strong>on</strong> mechanism. The analytical results derived from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary dynamics model as well as computer simulati<strong>on</strong> show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

43


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

domain-repeats event generates a wide number <str<strong>on</strong>g>of</str<strong>on</strong>g> domains in a protein while at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

same time preserving a <str<strong>on</strong>g>th</str<strong>on</strong>g>in number <str<strong>on</strong>g>of</str<strong>on</strong>g> domain families across proteome species.<br />

To our knowledge, <str<strong>on</strong>g>th</str<strong>on</strong>g>is is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> protein domain evoluti<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at explicitly takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> internal duplicati<strong>on</strong> mechanism and<br />

provides analytical soluti<strong>on</strong>. These findings bring in our view new insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fundamental mechanisms governing genome expansi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> potential implicati<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> protein interacti<strong>on</strong> network models and related evoluti<strong>on</strong>ary<br />

studies.<br />

References.<br />

[1] A.D. Moore, Arrangements in <str<strong>on</strong>g>th</str<strong>on</strong>g>e modular evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins Trends in Biochemical Sciences<br />

33 444-451.<br />

[2] A.K. Björklund, D. Ekman and A. El<str<strong>on</strong>g>of</str<strong>on</strong>g>ss<strong>on</strong>, Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein domain repeats PLoS Computati<strong>on</strong>al<br />

Biology 2, e114.<br />

[3] E.V. Ko<strong>on</strong>in, Y.I. Wolf and G. P. Karev, The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> protein universe and genome<br />

evoluti<strong>on</strong> Nature 420, 218-223.<br />

17:35–17:55<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Świder<br />

Rzeszow University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: kswider@prz-rzeszow.pl<br />

Bartosz Jędrzejec<br />

Rzeszow University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Modeling and Integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

BiNArr<br />

The investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological networks for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir better understanding and making<br />

available for practical use is currently an important task in systems biology.<br />

The au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors developed an integrated envir<strong>on</strong>ment BiNArr (Biological Network Arranger)<br />

aimed to perform a number <str<strong>on</strong>g>of</str<strong>on</strong>g> practically useful operati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network<br />

data stored in biological databases. Dissimilar to <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing tools like Cytoscape<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> our applicati<strong>on</strong> is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er limited and strictly oriented for transforming<br />

structured data from real databases into graphs. This allows its fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

processing e.g. wi<str<strong>on</strong>g>th</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> graph mining algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. We proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>e unified<br />

graph representati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e structures extracted from original resources and developed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modules for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir visualizati<strong>on</strong> and editi<strong>on</strong>. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er wor<str<strong>on</strong>g>th</str<strong>on</strong>g>y features are:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e automatic coding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting graphs in several formats, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to generate<br />

graphic files for presentati<strong>on</strong> purposes and an open architecture enabling to<br />

cooperate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> existing biological databases. In order to present capabilities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> BiNArr we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological structures representing metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

extracted from KEGG (Kyoto Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Genes and Genomes) as well as<br />

protein-protein interacti<strong>on</strong>s provided in DIP (Database <str<strong>on</strong>g>of</str<strong>on</strong>g> Interacting Proteins).<br />

44


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

17:55–18:15<br />

Michał Zientek<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology. Faculty Of Automatic C<strong>on</strong>trol,<br />

Electr<strong>on</strong>ics And Computer Science. Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science<br />

e-mail: michal.zientek@gmail.com<br />

Paweł Foszner<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology. Faculty Of Automatic C<strong>on</strong>trol,<br />

Electr<strong>on</strong>ics And Computer Science. Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science<br />

Andrzej Polański<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology. Faculty Of Automatic C<strong>on</strong>trol,<br />

Electr<strong>on</strong>ics And Computer Science. Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science<br />

Improving functi<strong>on</strong>al coherence <str<strong>on</strong>g>of</str<strong>on</strong>g> gene signatures by using<br />

Gene Ontology terms<br />

Molecular classifiers based <strong>on</strong> gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles obtained in DNA microarray<br />

expreriments are very extensively studied due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir potential to be apllied in a<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> areas, such as diagnosis, predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy results etc. The secific<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles is <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e feature<br />

selecti<strong>on</strong> step. This stems from <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at in DNA microarray experiments very<br />

large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> genes expressi<strong>on</strong>s are obtained for relatively small number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> samples.<br />

Therefore in recent years significant effort has been paid to development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

feature selecti<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms leading to choosing appropriate subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> genes, called<br />

gene signatures, which are <str<strong>on</strong>g>th</str<strong>on</strong>g>en used as arguments for discriminant functi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

molecular classifier.<br />

Am<strong>on</strong>g me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for gene selecti<strong>on</strong>, proposed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, an interesting<br />

group are algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms using <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> combining <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> <strong>on</strong> expressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

genes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> <strong>on</strong> functi<strong>on</strong>al coherence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> selected genes. Several<br />

papers in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at such an approach can lead to improvement<br />

in classificati<strong>on</strong> quality.<br />

In our study we propose an algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Steiner tree metrics, which<br />

was recently proposed as a tool for measuring functi<strong>on</strong>al coherence <str<strong>on</strong>g>of</str<strong>on</strong>g> subsets <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

genes. The proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>od uses a recursive procedure for signature slimming<br />

by removing least coherent genes. The obtained signature has largest measures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

functi<strong>on</strong>al coherence. We present <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed algoritm for classificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> several publicly available DNA microarra datasets.<br />

This work was financially supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science under<br />

Grant No. N516 441938 Efficient me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> genome browsing based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Burrows<br />

Wheeler Transform.<br />

18:15–18:35<br />

Ulyana Zubairova<br />

45


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytology and Genetics The Siberian Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: ulyanochka@bi<strong>on</strong>et.nsc.ru<br />

The Cell Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Divisi<strong>on</strong> Can Destroy Stem Cell Niche<br />

in a Reacti<strong>on</strong>-Diffusi<strong>on</strong> Model<br />

A minimal 1D-model <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cell niche structure regulati<strong>on</strong> al<strong>on</strong>g vertical axis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM was developed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a qualitative hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> interplay between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e CLV and WUS genes. Previously it was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

supplying a stati<strong>on</strong>ary soluti<strong>on</strong> in qualitative corresp<strong>on</strong>dence wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental<br />

observati<strong>on</strong>s. But <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> arises what will be <str<strong>on</strong>g>th</str<strong>on</strong>g>e model dynamics under cell<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and divisi<strong>on</strong>.<br />

Using DL-system formalism we developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cell<br />

niche structure regulati<strong>on</strong> <strong>on</strong> 1D-array <str<strong>on</strong>g>of</str<strong>on</strong>g> growing and dividing cells. A number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

computer simulati<strong>on</strong>s were performed to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e model dynamics.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e issue <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stem cell niche destructi<strong>on</strong><br />

<strong>on</strong> cell cycle durati<strong>on</strong> relative to diffusi<strong>on</strong> time scale was obtained. Increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e specific cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate results in m<strong>on</strong>ot<strong>on</strong>ic increase <str<strong>on</strong>g>of</str<strong>on</strong>g> system destructi<strong>on</strong><br />

probability and in decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> its mean lifetime.<br />

Cell divisi<strong>on</strong>s account for relevant perturbati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM structure and may<br />

result in destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it. The stem cell niche survivability depends <strong>on</strong> relati<strong>on</strong>s<br />

between model parameters.<br />

18:35–18:55<br />

Julian Arndts<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge; Humboldt University <str<strong>on</strong>g>of</str<strong>on</strong>g> Berlin<br />

e-mail: ja268@cam.ac.uk<br />

Transacti<strong>on</strong> costs and structure formati<strong>on</strong>: an ec<strong>on</strong>omic<br />

approach to biological systems<br />

We harness insights from ec<strong>on</strong>omics and informati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and apply <str<strong>on</strong>g>th</str<strong>on</strong>g>em to biological<br />

systems. Using informati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory as a c<strong>on</strong>ceptual bridge between biology<br />

and ec<strong>on</strong>omics, biological and ec<strong>on</strong>omic systems can be analyzed and compared,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ereby paving <str<strong>on</strong>g>th</str<strong>on</strong>g>e way towards new models in bioec<strong>on</strong>omics. Driven by <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> replicati<strong>on</strong>, variati<strong>on</strong> and selecti<strong>on</strong>, systems in biology and ec<strong>on</strong>omics evolve<br />

towards ever more refined informati<strong>on</strong> architecture, <str<strong>on</strong>g>th</str<strong>on</strong>g>us lowering transacti<strong>on</strong> costs<br />

in general and informati<strong>on</strong> costs in particular. Hence, transacti<strong>on</strong> costs drive structure<br />

formati<strong>on</strong>. To illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>is principle, we present a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> examples<br />

from biology and ec<strong>on</strong>omics, and explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e following c<strong>on</strong>cepts: First, <str<strong>on</strong>g>th</str<strong>on</strong>g>e role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> entropy in biological and ec<strong>on</strong>omic systems and <str<strong>on</strong>g>th</str<strong>on</strong>g>ree applicati<strong>on</strong>s: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kelly<br />

criteri<strong>on</strong>, which relates <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shann<strong>on</strong> informati<strong>on</strong> entropy to <str<strong>on</strong>g>th</str<strong>on</strong>g>e limits <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

and ec<strong>on</strong>omic grow<str<strong>on</strong>g>th</str<strong>on</strong>g>; structure formati<strong>on</strong> as local entropy reducti<strong>on</strong>; and <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum<br />

entropy principle. Sec<strong>on</strong>d, <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> higher-order informati<strong>on</strong> and Schelling<br />

points in biological and ec<strong>on</strong>omic systems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> Schelling points, or<br />

46


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

focal points, can transform informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> first and sec<strong>on</strong>d order into informati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> higher order as well as comm<strong>on</strong> knowledge and hence fundamentally change <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

informati<strong>on</strong> architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> a system. Third, bounded rati<strong>on</strong>ality: due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e limitati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al capacity, biological and ec<strong>on</strong>omic systems face fundamental<br />

trade<str<strong>on</strong>g>of</str<strong>on</strong>g>fs when processing informati<strong>on</strong>. Four<str<strong>on</strong>g>th</str<strong>on</strong>g>, strategic evoluti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive<br />

market hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis. And fif<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-equilibrium: escaping<br />

local maxima in biology and ec<strong>on</strong>omics. Utilizing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>cepts and comparing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems and ec<strong>on</strong>omic systems allows to<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential <str<strong>on</strong>g>of</str<strong>on</strong>g> applying ec<strong>on</strong>omic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory to biology, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e limits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such applicati<strong>on</strong>s.<br />

47


Cancer 1<br />

Tuesday, June 28, 11:00, Room: AM5<br />

Chaired by: Luigi Preziosi<br />

11:00–11:30<br />

Vincenzo Capasso<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Milan<br />

e-mail: vincenzo.capasso@unimi.it<br />

Edoardo Beretta<br />

CIMAB, Italy<br />

Nadya Morozova<br />

CNRS, France<br />

Populati<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer stem cells<br />

Stem cells are cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two specific features - <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to differentiate into all<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> specialized cell types and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to renew <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves. There are several<br />

possible scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer stem cells evoluti<strong>on</strong>, am<strong>on</strong>g which <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymmetric<br />

cell divisi<strong>on</strong>s providing self-renewing, is <str<strong>on</strong>g>th</str<strong>on</strong>g>e main <strong>on</strong>e. The main <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for today<br />

for ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er normal or cancer stem cells is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey differentiate when <str<strong>on</strong>g>th</str<strong>on</strong>g>ey receive<br />

some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> “instructive" signal influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern and speed <str<strong>on</strong>g>of</str<strong>on</strong>g> cell divisi<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e given c<strong>on</strong>diti<strong>on</strong>s. All current experiments reporting <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer<br />

stem cell populati<strong>on</strong>s in culture allow to c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e main feature is <str<strong>on</strong>g>th</str<strong>on</strong>g>e same<br />

- <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cell populati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e starting c<strong>on</strong>diti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we compare<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cells evoluti<strong>on</strong>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an underlying signal. In absence <str<strong>on</strong>g>of</str<strong>on</strong>g> an underlying field, we propose a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model described by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s, while<br />

in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an underlying field it is described by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> delay differential<br />

equati<strong>on</strong>s, by admitting a delayed signal originated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing cells. In particular<br />

we show <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> percentages for <str<strong>on</strong>g>th</str<strong>on</strong>g>e ODE system, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell populati<strong>on</strong>s <strong>on</strong>ly in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an underlying field. The<br />

hope is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper may stimulate fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er experiments to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

validate or not <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above menti<strong>on</strong>ed “instructive" signals.<br />

Keywords: Cancer stem cells, delay differential equati<strong>on</strong>s, qualitative behavior,<br />

stability, oscillati<strong>on</strong>s.<br />

49


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

11:35–11:55<br />

Astrid Gasselhuber<br />

Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina; Vienna University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: astrid.gs@gmail.com<br />

Dieter Haemmerich<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pediatric Cardiology, Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina,<br />

Charlest<strong>on</strong>, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina, USA; Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioengineering,<br />

Clems<strong>on</strong> University, Clems<strong>on</strong>, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina, USA<br />

Computati<strong>on</strong>al Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Targeted Drug Delivery via<br />

Low-Temperature Sensitive Liposomes and image-guided<br />

focused ultrasound<br />

The chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic agent doxorubicin (DOX) is comm<strong>on</strong>ly used in cancer treatment,<br />

but causes dose limiting side effects. Various liposomal drug carriers were<br />

developed to overcome short plasma half-life and negative side effects <str<strong>on</strong>g>of</str<strong>on</strong>g> chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

agents. Low temperature sensitive liposomes (LTSL) release <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>tent<br />

<strong>on</strong>ly if exposed to a temperature above approximately 40 C and in c<strong>on</strong>trast release<br />

a relatively small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> drug at normal body temperature. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

LTSL wi<str<strong>on</strong>g>th</str<strong>on</strong>g> local heat generated by image-guided focused ultrasound enables n<strong>on</strong>invasively<br />

targeted drug delivery. We developed an axial symmetric computati<strong>on</strong>al<br />

model to simulate temperature, blood perfusi<strong>on</strong>, and drug c<strong>on</strong>centrati<strong>on</strong>s in different<br />

compartments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. The model describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e release <str<strong>on</strong>g>of</str<strong>on</strong>g> drug from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e liposomes, transport mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug between different compartments<br />

and spatio-temporal drug and liposome c<strong>on</strong>centrati<strong>on</strong>s. We compared two cases:<br />

Tissue heated to hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermic temperatures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a target temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 43C, and<br />

hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermia followed by a short high temperature exposure wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a target temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 68 C <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same regi<strong>on</strong>. Blood perfusi<strong>on</strong> was reduced <str<strong>on</strong>g>of</str<strong>on</strong>g> 7% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e baseline<br />

value wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e heated area after hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermia, whereas it was completely eliminated<br />

inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e target regi<strong>on</strong> in case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e high-temperature exposure. Due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

eliminated blood flow drug is facilitated to remain trapped wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue. The<br />

plasma c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DOX reached a peak value <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.1 g/g at t=3 min in bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

cases. The intracellular c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DOX during hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermia followed by<br />

short high temperature exposure was almost two times higher <str<strong>on</strong>g>th</str<strong>on</strong>g>an hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermia<br />

al<strong>on</strong>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g> peak values <str<strong>on</strong>g>of</str<strong>on</strong>g> 18 g/g and 10 g/g, respectively. The complex interacti<strong>on</strong><br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>ermal cancer treatments and locally induced chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy agents,<br />

require a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between heat exposure<br />

and pharmacokinetics in order to optimize drug delivery.<br />

11:55–12:15<br />

Juan Carlos López Alf<strong>on</strong>so<br />

Interdisciplinary Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute (IMI), Complutense University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Madrid, Spain<br />

50


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

e-mail: jc.atlantis@gmail.com<br />

Dr. Miguel A. Herrero<br />

Interdisciplinary Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute (IMI), Complutense University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Madrid, Spain<br />

Dr. Luis Nunez<br />

Radiophysics Department, Hospital Universitario Puerta de Hierro,<br />

Majadah<strong>on</strong>da, Spain<br />

Some Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Problems in Radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

Determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> over a target and selecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

best manner to deliver it are two key issues in radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is lecture, I shall<br />

describe recent results <strong>on</strong> optimizati<strong>on</strong>s me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods aimed at addressing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese goals,<br />

and some examples <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese techniques will be presented.<br />

12:15–12:35<br />

Víctor M. Pérez-García<br />

Departamento de Matemáticas, E.T.S. de Ingenieros Industriales &<br />

IMACI-Instituto de Matemática Aplicada a la Ciencia y la Ingeniería,<br />

Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain<br />

e-mail: victor.perezgarcia@uclm.es<br />

J. Belm<strong>on</strong>te-Beitia, G. F. Calvo, D. Diego<br />

Departamento de Matemáticas, IMACI-Instituto de Matemática Aplicada<br />

a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha,<br />

13071, Ciudad Real, Spain<br />

Bright solit<strong>on</strong>s in malignant gliomas<br />

Malignant gliomas are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> and deadly brain tumors. Survival<br />

for patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> glioblastoma multiforme (GBM), <str<strong>on</strong>g>th</str<strong>on</strong>g>e most aggressive glioma, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough<br />

individually variable, is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s to 14 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s after diagnosis,<br />

using standard treatments which include surgery, radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

(temozolamide and antiangiogenic drugs such as bevacizumab) [1]. GBM is a<br />

rapidly evolving astrocytoma <str<strong>on</strong>g>th</str<strong>on</strong>g>at is distinguished pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologically from lower grade<br />

gliomas by <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> necrosis and microvascular hyperplasia.<br />

Many ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models have been proposed to describe specific aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

GBM cell lines in vitro [2,3] and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in vivo even under <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy [4-6]. Recently some applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models have been used<br />

to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e survival <str<strong>on</strong>g>of</str<strong>on</strong>g> patients after surgical re<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> GBMs [7].<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models in use for GBM are based <strong>on</strong> a simple<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fischer equati<strong>on</strong> [8]. This equati<strong>on</strong> in <strong>on</strong>e spatial<br />

dimensi<strong>on</strong>s has travelling wave soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> kink type but has no travelling<br />

wave soluti<strong>on</strong>s in higher dimensi<strong>on</strong>s [9].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is communicati<strong>on</strong> we will first describe two extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fischer equati<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first <strong>on</strong>e accounting for <str<strong>on</strong>g>th</str<strong>on</strong>g>e necrotic core and <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal tissue and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

sec<strong>on</strong>d <strong>on</strong>e incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e vasculature. We will <str<strong>on</strong>g>th</str<strong>on</strong>g>en show how bright tumor<br />

51


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

solit<strong>on</strong>s arise sp<strong>on</strong>taneously separating a kink <str<strong>on</strong>g>of</str<strong>on</strong>g> normal tissue from a kink <str<strong>on</strong>g>of</str<strong>on</strong>g> growing<br />

necrotic tissue. We will relate <str<strong>on</strong>g>th</str<strong>on</strong>g>e solit<strong>on</strong> parameters (corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

active tumor area) to <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinically relevant parameters. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surgical re<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system will be discussed. In our analysis<br />

we will resort to different tools <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear waves: time-dependent<br />

variati<strong>on</strong>al me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [10], moment me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [11], Lie group <str<strong>on</strong>g>th</str<strong>on</strong>g>eory me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [12],<br />

similarity transformati<strong>on</strong>s [13], and numerical simulati<strong>on</strong>s. We will also discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> multidimensi<strong>on</strong>al travelling waves employing analytical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods and<br />

advanced numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e system’s geometry [14].<br />

References.<br />

[1] E. G. Van Meir, C. G. Hadjipanayis, A. D. Norden, H.-K. Shu, P. Y. Wen, and J. J. Ols<strong>on</strong>,<br />

Exciting New Advances in Neuro-Oncology: The Avenue to a Cure for Malignant Glioma,<br />

CA Cancer J. Clin. 60 166-193 (2010).<br />

[2] E. Khain and L. M. Sander, Dynamics and Pattern Formati<strong>on</strong>s in Invasive Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g>,<br />

Physical Review Letters, 96, 188103 (2006).<br />

[3] K. Swans<strong>on</strong>, Quantifying glioma cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and invasi<strong>on</strong> in vitro, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Computer<br />

Modelling 47 638-648 (2008).<br />

[4] P.-Y. B<strong>on</strong>diau, O. Clatz, M. Sermensant, P.-Y. Marcy, H. Delingette, M. Frenay, N. Ayache,<br />

Biocomputing: numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> using diffusi<strong>on</strong> tensor imaging,<br />

Physics in Medicine and Biology 53 879-893 (2008).<br />

[5] E. K<strong>on</strong>ukoglu, O. Clatz, P.-Y. B<strong>on</strong>diau, H. Delingette, N. Ayache, Medical Image Analysis 14<br />

111-125 (2010).<br />

[6] R. Rockne, J. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, K. Hendricks<strong>on</strong>, A. Lai, T.<br />

Cloughesy, E. C. Alvord, K. R. Swans<strong>on</strong>, Predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in individual<br />

glioblastoma patients in vivo: a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling approach, Physics in Medicine and<br />

Biology 55 3271-3285 (2010).<br />

[7] K.R. Swans<strong>on</strong>, R.C. Rostomily and E.C. Alvord Jr, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling tool for predicting<br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> individual patients following re<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma: a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> principle,<br />

British Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer 98 113-119 (2008).<br />

[8] J. D . Murray, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology, Springer, Third Editi<strong>on</strong> (2007).<br />

[9] P. V. Brazhnik, J. J. Tys<strong>on</strong>, On travelling wave soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Fischers equati<strong>on</strong> in two spatial<br />

dimensi<strong>on</strong>s, SIAM J. <strong>on</strong> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics 60 371 (2000).<br />

[10] B. A. Malomed, Variati<strong>on</strong>al me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in n<strong>on</strong>linear fiber optics and related fields, Progress in<br />

Optics 43 71-193 (2002).<br />

[11] Víctor M. Pérez-García, P. J. Torres, G. D. M<strong>on</strong>tesinos, The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> moments for n<strong>on</strong>linear<br />

Schrödinger equati<strong>on</strong>s: Theory and Applicati<strong>on</strong>s, SIAM J. Appl. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. 67 990-1015 (2007).<br />

[12] J. Belm<strong>on</strong>te-Beitia, Víctor M. Pérez-García, V. Vekslerchik, P. Torres, Lie symmetries and<br />

solit<strong>on</strong>s in n<strong>on</strong>linear systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> spatially inhomogeneous n<strong>on</strong>linearities, Physical Review<br />

Letters 98 064102 (2007).<br />

[13] J. Belm<strong>on</strong>te-Beitia, Víctor M. Pérez-García, V. Vekslerchik, V. V. K<strong>on</strong>otop, Localized n<strong>on</strong>linear<br />

waves in systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time- and space-modulated n<strong>on</strong>linearities, Physical Review Letters<br />

100 164102 (2008).<br />

[14] A. Bueno-Orovio, Víctor M. Pérez-García, F. H. Fent<strong>on</strong>, Spectral Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for Partial Differential<br />

Equati<strong>on</strong>s in Irregular Domains: The Spectral Smoo<str<strong>on</strong>g>th</str<strong>on</strong>g>ed Boundary Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, SIAM<br />

Journal <strong>on</strong> Scientific Computing 28 886 (2006).<br />

12:35–12:55<br />

Marc Sturrock<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: msturrock@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

52


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Spatio-temporal modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hes1 and p53 pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

The correct localisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factors is vitally important for <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper<br />

functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> many intracellular signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Experimental data has revealed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at many pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways exhibit oscillati<strong>on</strong>s, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> temporally and spatially, in<br />

resp<strong>on</strong>se to certain external stimuli. Negative feedback loops are important comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese oscillati<strong>on</strong>s, providing fine regulati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e factors involved. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> two such pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways–Hes1 and p53–are presented.<br />

Building <strong>on</strong> previous ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling approaches, we derive systems <str<strong>on</strong>g>of</str<strong>on</strong>g> partial<br />

differential equati<strong>on</strong>s to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> in space and time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variables<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hes1 and p53 systems. Through computati<strong>on</strong>al simulati<strong>on</strong>s we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at our<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> models are able to produce sustained oscillati<strong>on</strong>s bo<str<strong>on</strong>g>th</str<strong>on</strong>g> spatially<br />

and temporally, accurately reflecting experimental evidence and advancing previous<br />

models. The simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our models also allow us to calculate a diffusi<strong>on</strong> coefficient<br />

range for <str<strong>on</strong>g>th</str<strong>on</strong>g>e variables in each mRNA and protein system, as well as ranges<br />

for o<str<strong>on</strong>g>th</str<strong>on</strong>g>er key parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models, where sustained oscillati<strong>on</strong>s are observed.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, by exploiting <str<strong>on</strong>g>th</str<strong>on</strong>g>e explicitly spatial nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e partial differential<br />

equati<strong>on</strong>s, we are also able to manipulate ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ribosomes, <str<strong>on</strong>g>th</str<strong>on</strong>g>us c<strong>on</strong>trolling where <str<strong>on</strong>g>th</str<strong>on</strong>g>e proteins are syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esized wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasm.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese simulati<strong>on</strong>s predict an optimal distance outside <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

nucleus where protein syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis should take place in order to generate sustained<br />

oscillati<strong>on</strong>s.<br />

Using partial differential equati<strong>on</strong> models, new informati<strong>on</strong> can be gained about <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

precise spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA and proteins. The ability to determine<br />

spatial localisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell is likely to yield fresh insight into a<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular diseases such as diabetes and cancer.<br />

References.<br />

[1] M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thomps<strong>on</strong>, M. A. J. Chaplain, Spatiotemporal<br />

modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hes1 and p53-Mdm2 intracellular signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Biology 273 15–31.<br />

53


Cancer 2<br />

Tuesday, June 28, 14:30, Room: AM5<br />

Chaired by: Victor M. Pérez-García<br />

14:30–15:00<br />

Maciej Swat<br />

Biocomplexity Institute, Indiana University, Bloomingt<strong>on</strong> ,IN, USA<br />

e-mail: mswat@indiana.edu<br />

Abbas Shirinifard<br />

Biocomplexity Institute, Indiana University, Bloomingt<strong>on</strong> ,IN, USA<br />

Multi-Cell Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> Modeling Using CompuCell3D<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and computer simulati<strong>on</strong> have become crucial to biological<br />

fields from genomics to ecology. However, multi-cell, tissue-level simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

development and disease have lagged behind o<str<strong>on</strong>g>th</str<strong>on</strong>g>er areas because <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

more complex and lacked easy-to-use s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware tools <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow building<br />

and running in-silico experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out requiring in-dep<str<strong>on</strong>g>th</str<strong>on</strong>g> knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> programming.<br />

Recent advances in development <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-scale, multi-cell simulati<strong>on</strong><br />

envir<strong>on</strong>ments allow broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers to develop relatively easily sophisticated<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> development or disease. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will present Glazier<br />

Graner Hogeweg (GGH) model, its extensi<strong>on</strong>s to support subcellular Reacti<strong>on</strong>-<br />

Kinetics(RK) models and CompuCell3D a simulati<strong>on</strong> envir<strong>on</strong>ment supporting GGH<br />

and RK modeling. To dem<strong>on</strong>strate CompuCell3D [1] capabilities I will present a<br />

3D multi-cell simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> [2]<br />

which can be easily extended and adapted to describe more specific vascular tumor<br />

types and host tissues. Initially, tumor cells proliferate as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey take up <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>e pre-existing vasculature supplies. The tumor grows exp<strong>on</strong>entially. When<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen level drops below a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold, <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cells become hypoxic and start<br />

secreting pro-angiogenic factors. At <str<strong>on</strong>g>th</str<strong>on</strong>g>is stage, <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor reaches a maximum diameter<br />

characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> an avascular tumor spheroid. The endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pre-existing vasculature resp<strong>on</strong>d to <str<strong>on</strong>g>th</str<strong>on</strong>g>e pro-angiogenic factors bo<str<strong>on</strong>g>th</str<strong>on</strong>g> by chemotaxing<br />

towards higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pro-angiogenic factors and by forming new blood<br />

vessels via angiogenesis. The tumor-induced vasculature increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting vascularized solid tumor compared to an avascular tumor, allowing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor to grow bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>e spheroid in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese linear-grow<str<strong>on</strong>g>th</str<strong>on</strong>g> phases. In c<strong>on</strong>trast<br />

to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er simulati<strong>on</strong>s in which avascular tumors remain spherical, our simulated<br />

avascular tumors form cylinders following <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood vessels, leading to a different<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoxic cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor. Our simulati<strong>on</strong>s cover time periods<br />

55


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

which are l<strong>on</strong>g enough to produce a range <str<strong>on</strong>g>of</str<strong>on</strong>g> biologically reas<strong>on</strong>able complex morphologies,<br />

allowing us to study how tumor-induced angiogenesis affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate, size and. morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated tumors. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk I will<br />

show a live demo (5-10 minutes) <str<strong>on</strong>g>of</str<strong>on</strong>g> CompuCell3D and dem<strong>on</strong>strate how, starting<br />

from relatively simple toy-models <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-sorting, c<strong>on</strong>tact-inhibited chemotaxis and<br />

nutrient-dependent cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g>/cell divisi<strong>on</strong>, we can build a fairly realistic simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vascularized tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Such simulati<strong>on</strong> can be fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er improved to<br />

produce simulati<strong>on</strong> equivalent to <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e published in [2].<br />

References.<br />

[1] Multi-Cell Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Development and Disease Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e CompuCell3D Simulati<strong>on</strong> Envir<strong>on</strong>ment,<br />

Maciej Swat, Susan D. Hester, Randy W. Heiland, Benjamin L. Zaitlen, James<br />

A. Glazier. In Ivan V. Maly ed., Systems Biology Series: Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Molecular Biology, pp.<br />

138-190<br />

[2] 3D Multi-Cell Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Angiogenesis, Abbas Shirinifard, John S.<br />

Gens, Benjamin L. Zaitlen, Nikodem J. Poplawski, Maciej Swat, James A. Glazier, PLoS<br />

ONE 4: e7190, doi:10.1371/journal.p<strong>on</strong>e.0007190 (2009).<br />

15:05–15:25<br />

Maym<strong>on</strong>a Al-husari<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stra<str<strong>on</strong>g>th</str<strong>on</strong>g>clyde, UK, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics<br />

e-mail: maym<strong>on</strong>a.al-husari@stra<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Dr Steven Webb<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stra<str<strong>on</strong>g>th</str<strong>on</strong>g>clyde, UK, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics<br />

Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumour Intracellular pH: A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Model Examining <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between hydrogen i<strong>on</strong>s and<br />

lactate<br />

N<strong>on</strong>-invasive measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> pH have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> tumour and normal cells<br />

have intracellular pH (pHi) <str<strong>on</strong>g>th</str<strong>on</strong>g>at lies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alkaline side <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrality (7.1-7.2).<br />

However, extracellular pH (pHe) is reported to be more acidic in some tumours<br />

compared to normal tissues. Many cellular processes and <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic agents are<br />

known to be highly pH dependent which makes <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular pH regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> paramount importance. We <str<strong>on</strong>g>th</str<strong>on</strong>g>us develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

examines <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> various membrane-based i<strong>on</strong> transporters in tumour pH regulati<strong>on</strong>,<br />

in particular, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between lactate and H+ i<strong>on</strong>s and<br />

whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e lactate/H+ symporter activity is sufficient to give rise to <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed<br />

reversed pH gradient. Using linear stability analysis and numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, we are<br />

able to gain a clear understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between lactate and H+ i<strong>on</strong>s.<br />

We extend <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis using perturbati<strong>on</strong> techniques to specifically examine a<br />

rapid change in <str<strong>on</strong>g>th</str<strong>on</strong>g>e H+ i<strong>on</strong>s c<strong>on</strong>centrati<strong>on</strong>s relative to lactate. We finally perform<br />

a parameter sensitivity analysis to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> robustness to parameter<br />

variati<strong>on</strong>s. An important result from our study is <str<strong>on</strong>g>th</str<strong>on</strong>g>at a reversed pH gradient is<br />

56


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

possible but for unrealistic parameter estimates-pointing to <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible involvement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er mechanisms in <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> such as acidic vesicles, lysosomes,<br />

golgi and endosomes.<br />

15:25–15:45<br />

, Mohammed Shuker<br />

Mohammed Shuker Mahmood<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Mechanical Engineering Faculty,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Žilina, 010 26 Žilina, Slovakia<br />

e-mail: mahmoodm@fstroj.uniza.sk<br />

Silvia Mahmood<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Biochemistry, Jessenius Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Comenius<br />

University, 037 54 Martin, Slovakia<br />

e-mail: mahmood@jfmed.uniba.sk<br />

Dušan Dobrota<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Biochemistry, Jessenius Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Comenius<br />

University, 037 54 Martin, Slovakia<br />

e-mail: dobrota@jfmed.uniba.sk<br />

Numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>tinuum model for avascular<br />

tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Avascular grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is a benign stage <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer. Multicellular spheroids serve as<br />

powerful 3D experimental model system for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> solid<br />

tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. We present results obtained from using a c<strong>on</strong>tinuum model <str<strong>on</strong>g>th</str<strong>on</strong>g>at we<br />

previously developed (Mahmood et al., 2010, 2011). The <str<strong>on</strong>g>th</str<strong>on</strong>g>ree cell types c<strong>on</strong>sidered<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model are: <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferating cells, able to grow and divide at intervals<br />

dependent up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir size, envir<strong>on</strong>ment and regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cycle; <str<strong>on</strong>g>th</str<strong>on</strong>g>e quiescent<br />

n<strong>on</strong>-dividing cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at may return to <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferative part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cycle ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er by<br />

an increase in nutrient c<strong>on</strong>centrati<strong>on</strong> or in resp<strong>on</strong>se to external stimuli such as<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor; dead cells due to apoptosis or necrosis. We assume a different motile<br />

resp<strong>on</strong>se kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferating and quiescent cells to <str<strong>on</strong>g>th</str<strong>on</strong>g>e available nutrient<br />

gradient. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model includes viable cell diffusi<strong>on</strong>, diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular<br />

material, viability inhibitor c<strong>on</strong>tributing to <str<strong>on</strong>g>th</str<strong>on</strong>g>e expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> necrotic centre and<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> dead cell. This means <str<strong>on</strong>g>th</str<strong>on</strong>g>at our model is a system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> parabolic and hyperbolic types. The numerical simulati<strong>on</strong>s are performed using<br />

different sets <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, including biologically realistic <strong>on</strong>es, to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese model parameters <strong>on</strong> reaching <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady state reflecting<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> saturati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> viable cells, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spheroid size.<br />

Acknowledgement: This work was supported by project "CENTER OF EXCEL-<br />

LENCY FOR RESEARCH IN PERSONALIZED THERAPY (CEVYPET)", code:<br />

26- 220120053, co-financed from EU sources and <str<strong>on</strong>g>European</str<strong>on</strong>g> Regi<strong>on</strong>al Development<br />

Fund and by project "CENTER OF TRANSLATIONAL MEDICINE" co-financed<br />

from EC sources and <str<strong>on</strong>g>European</str<strong>on</strong>g> Regi<strong>on</strong>al Development Fund, by Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Slovak Republic 2007/57-UK-17.<br />

References.<br />

57


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] Mahmood, M. S., Mahmood, S., Dobrota, D., A numerical algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for avascular tumour<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> model. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computers in Simulati<strong>on</strong>, Vol. 80 (6),(2010), pp. 1269-1277.<br />

[2] Mahmood, M. S., Mahmood, S., Dobrota, D., Formulati<strong>on</strong> and numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

c<strong>on</strong>tinuum model <str<strong>on</strong>g>of</str<strong>on</strong>g> avascular tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Accepted in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Bioscience.<br />

15:45–16:05<br />

Gibin Powa<str<strong>on</strong>g>th</str<strong>on</strong>g>il<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, Dundee, United Kingdom.<br />

e-mail: gibin@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Mark Chaplain<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, Dundee, United Kingdom.<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cycle heterogeneity <strong>on</strong> tumour<br />

resp<strong>on</strong>se to chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy: Biological insights from a hybrid<br />

multi-scale cellular automat<strong>on</strong> model<br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid tumour depends critically <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

individual cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>stitute <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire tumour mass. A particular cells spatial<br />

locati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour and intracellular interacti<strong>on</strong>s, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in each cell, has an impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir decisi<strong>on</strong> to grow and<br />

divide. They are also influenced by external signals from o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells, and oxygen<br />

and nutrient c<strong>on</strong>centrati<strong>on</strong>s. Hence, it is important to take <str<strong>on</strong>g>th</str<strong>on</strong>g>ese into account when<br />

modelling tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se to various cell-kill <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies, including<br />

chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

In order to address <str<strong>on</strong>g>th</str<strong>on</strong>g>is multi-scale nature <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, we propose a<br />

hybrid, individual-based approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at analyses spatio-temporal dynamics at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, linking individual cell behaviour wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

organisati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment. The individual tumour cells are modelled<br />

by using a cellular automat<strong>on</strong> (CA) approach, where each cell has its own internal<br />

cell cycle, modelled using a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs. The internal cell-cycle dynamics<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> strategy in <str<strong>on</strong>g>th</str<strong>on</strong>g>e CA model, making it more predictive and<br />

biologically relevant. It also helps to classify <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells according to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir cell-cycle<br />

states and to analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> various cell-cycle dependent cytotoxic drugs.<br />

Moreover, we have incorporated <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is hybrid<br />

model in order to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment in cell-cycle regulati<strong>on</strong><br />

and tumour treatments. An important factor from <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment point <str<strong>on</strong>g>of</str<strong>on</strong>g> view is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e low c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen can result in a hypoxia-induced quiescence<br />

(G0/G1 arrest) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells, making <str<strong>on</strong>g>th</str<strong>on</strong>g>em resistant to key cytotoxic drugs.<br />

Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is multi-scale model, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen heterogeneity <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal patterning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell distributi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir cell-cycle status.<br />

We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at oxygen transport limitati<strong>on</strong>s result in significant heterogeneity<br />

in HIF-1 alpha signalling and cell-cycle status, and when <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

drug transport limitati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is significantly impaired.<br />

58


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

16:05–16:25<br />

Russell Rockne<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

e-mail: rockne@uw.edu<br />

Susan Massey<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Maciej M. Mrugala<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurology<br />

Alexandar R. A. Anders<strong>on</strong><br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center Integrative Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology<br />

Kristin R. Swans<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Resp<strong>on</strong>se to anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in human brain tumors:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment and heterogeneity<br />

Background: Gliomas are diffuse and invasive primary brain tumors <str<strong>on</strong>g>th</str<strong>on</strong>g>at are notoriously<br />

difficult to treat and uniformly fatal. Angiogenesis is <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> neovascularizati<strong>on</strong><br />

and is a hall mark <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma, which are c<strong>on</strong>sidered am<strong>on</strong>gst <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most angiogenic <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors. This suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at interacti<strong>on</strong>s between glioma cells<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cascade <str<strong>on</strong>g>of</str<strong>on</strong>g> biological events leading to tumor-induced neoangiogenesis play<br />

an important role in aggressive tumor formati<strong>on</strong> and progressi<strong>on</strong>.<br />

Anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies have been used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> gliomas wi<str<strong>on</strong>g>th</str<strong>on</strong>g> spurious<br />

results ranging from no apparent resp<strong>on</strong>se to significant imaging improvement<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> extremely diffuse patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor recurrence. The clinical task <str<strong>on</strong>g>of</str<strong>on</strong>g> assessing<br />

a patients resp<strong>on</strong>se to brain tumor <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is difficult, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e topic <str<strong>on</strong>g>of</str<strong>on</strong>g> much current<br />

debate. Paradoxically, anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies likely increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor vasculature <str<strong>on</strong>g>th</str<strong>on</strong>g>rough normalizati<strong>on</strong>, leading to a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> abnormality<br />

<strong>on</strong> imaging, while at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumors invasive phenotype and<br />

actually promote ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an hinder tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. As a result, resp<strong>on</strong>se to antiangiogenic<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies is inadequately assessed by current imaging techniques but<br />

may be interpretable by multi-modality approaches combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulty in improving <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

gliomas lies wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extensive invasive potential and incredible phenotypic heterogeneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tumors. To quantitatively explore <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tumor-microenvir<strong>on</strong>ment<br />

interacti<strong>on</strong>s, we extend our previous experience wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biologically-based ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models for glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and invasi<strong>on</strong> to explicitly incorporate <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normoxic glioma cells, hypoxic glioma cells, vascular endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells, diffusible<br />

angiogenic factors and <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> necrosis, hallmarks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e histological diagnosis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glioma and investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e role and effects <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies in<br />

silico.<br />

Results: Using in silico experimentati<strong>on</strong>, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies<br />

drastically decrease <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypoxic phenotype and promote <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive phenotype.<br />

However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree and characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se to anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies<br />

depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative extent <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor, and can<br />

59


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

vary from <strong>on</strong>e patient to <str<strong>on</strong>g>th</str<strong>on</strong>g>e next. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese effects vary across histologic<br />

grades and may promote malignant progressi<strong>on</strong> from low to higher grades. These<br />

results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies must be used if anti-angiogenic<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies are to be effective in human gliomas.<br />

60


Cancer 3<br />

Tuesday, June 28, 17:00, Room: AM5<br />

Chaired by: Maciej Swat<br />

17:00–17:30<br />

Benjamin Ribba<br />

INRIA, project-team NUMED, Ecole Normale Supérieure de Ly<strong>on</strong>, 46<br />

allée d’Italie, Ly<strong>on</strong> cedex 07, France<br />

François Ducray<br />

Hospices Civils de Ly<strong>on</strong>, Hôpital Neurologique, Neuro-<strong>on</strong>cologie,Ly<strong>on</strong>,<br />

69003 France<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e antitumor effect <str<strong>on</strong>g>of</str<strong>on</strong>g> PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong><br />

diffuse low-grade gliomas wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a l<strong>on</strong>gitudinal tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

inhibiti<strong>on</strong> model<br />

Objective: To develop a tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> inhibiti<strong>on</strong> (TGI) model able to describe<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffuse low-grade gliomas (LGGs) grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics after first-line<br />

PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and to use <str<strong>on</strong>g>th</str<strong>on</strong>g>is model as a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical tool to suggest potential<br />

improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy regimen.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: The model was formulated as systems <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s<br />

distinguishing between two cell populati<strong>on</strong>s: <strong>on</strong>e proliferative treatmentsensitive<br />

cell populati<strong>on</strong> and <strong>on</strong>e quiescent treatment-resistant cell populati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

sp<strong>on</strong>taneously undergoes apoptosis. Model evaluati<strong>on</strong> was performed in a series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

21 patients treated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> first-line PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mean tumor diameter had been previously assessed.<br />

Results: C<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> LGGs biology, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model estimated <str<strong>on</strong>g>th</str<strong>on</strong>g>at LGGs c<strong>on</strong>sist<br />

mostly <str<strong>on</strong>g>of</str<strong>on</strong>g> quiescent cells. Despite large inter-individual variability <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

correctly predicted individual tumor resp<strong>on</strong>se pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 21 patients. Unexpectedly,<br />

model simulati<strong>on</strong>s suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e 6 weeks interval between PCV cycles<br />

might be suboptimal and <str<strong>on</strong>g>th</str<strong>on</strong>g>at leng<str<strong>on</strong>g>th</str<strong>on</strong>g>ening <str<strong>on</strong>g>th</str<strong>on</strong>g>e time interval between cycles might<br />

significantly improve treatment efficacy.<br />

Interpretati<strong>on</strong>: Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at LGGs c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferative<br />

treatment-sensitive cells and quiescent treatment-resistant cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at sp<strong>on</strong>taneously<br />

undergo apoptosis we propose a mixed-effect model <str<strong>on</strong>g>th</str<strong>on</strong>g>at accurately describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tumors during and after PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. Model simulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different PCV schedules illustrate how <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach could possibly help<br />

designing more effective chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy regimens for LGGs.<br />

61


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

17:35–17:55<br />

Gianluca Ascolani<br />

Laboratory IMNC, CNRS-UMR 8165 and Universities Paris Diderot-<br />

Paris 7 and Paris Sud-11, Orsay, France<br />

e-mail: ascolani@imnc.in2p3.fr<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ilde Badoual<br />

Laboratory IMNC, University Paris Diderot-Paris 7, France<br />

e-mail: badoual@imnc.in2p3.fr<br />

Christophe Deroulers<br />

Laboratory IMNC, University Paris Diderot-Paris 7, France<br />

e-mail: deroulers@imnc.in2p3.fr<br />

Basil Grammaticos<br />

Laboratory IMNC, CNRS-UMR 8165 and Universities Paris Diderot-<br />

Paris 7 and Paris Sud-11, Orsay, France<br />

e-mail: grammaticos@univ-paris-diderot.fr<br />

Migrati<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cancerous cells: bey<strong>on</strong>d<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mean field approximati<strong>on</strong><br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> studying diffuse tumors is understanding how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

diffuse inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e hosting tissues and how fast <str<strong>on</strong>g>th</str<strong>on</strong>g>ey spread. To shed light <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese issues,<br />

we use an approach based <strong>on</strong> a microscopical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ dynamics<br />

to reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e meso-macroscopical scale. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> a tumor<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e glioblastoma which grows in <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain and is very invasive. The glioma cells<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e glioblastoma interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cancerous cells exchanging small molecules<br />

and i<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>rough very short links named gap juncti<strong>on</strong> c<strong>on</strong>necti<strong>on</strong>s [1]. In [2], <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors proposed a model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> automat<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancerous<br />

cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at takes into c<strong>on</strong>siderati<strong>on</strong> gap juncti<strong>on</strong> type interacti<strong>on</strong>s. In [3], <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hydrodynamic limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ diffusi<strong>on</strong> equati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean field-approximati<strong>on</strong><br />

is found, and some differences wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s are shown. Using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e approach proposed in [3], we study and analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong><br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> cancerous cells <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-points correlati<strong>on</strong> functi<strong>on</strong>. The cells move<br />

<strong>on</strong> a single occupancy hexag<strong>on</strong>al sites lattice wi<str<strong>on</strong>g>th</str<strong>on</strong>g> periodical border c<strong>on</strong>diti<strong>on</strong>s and<br />

interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nearest neighbors. The interacti<strong>on</strong> affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells by<br />

imposing <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> preserving at least <strong>on</strong>e gap juncti<strong>on</strong> c<strong>on</strong>necti<strong>on</strong> am<strong>on</strong>g<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e closest neighbors wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given probability. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

correlati<strong>on</strong> functi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparis<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and numerical simulati<strong>on</strong>s<br />

for different values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancerous cells’ density and interacti<strong>on</strong> parameter.<br />

The interacti<strong>on</strong> introduces a short leng<str<strong>on</strong>g>th</str<strong>on</strong>g> correlati<strong>on</strong> am<strong>on</strong>g cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at dynamically<br />

evolves toward stable values depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system variables. Numerical simulati<strong>on</strong>s<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>e stable c<strong>on</strong>diti<strong>on</strong> differs from <str<strong>on</strong>g>th</str<strong>on</strong>g>e uniform c<strong>on</strong>diti<strong>on</strong> due to spatial<br />

inhomogeneity and clusters formati<strong>on</strong> also in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> sources and sinks.<br />

References.<br />

[1] L. Cr<strong>on</strong>ier, Gap Juncti<strong>on</strong>s and Cancer: New Functi<strong>on</strong>s for an Old Story, Antioxidants &<br />

Redox Signaling, 11, 2 (2009).<br />

[2] M. Aubert et al., A cellular automat<strong>on</strong> model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioma cells, Phys Biol., 3,<br />

93-100 (2006).<br />

62


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] C. Deroulers et al., Modeling tumor cell migrati<strong>on</strong>: From microscopic to macroscopic models,<br />

Phys. Rev. E, 79, 031917 (2009).<br />

17:55–18:15<br />

A. Martínez-G<strong>on</strong>zález<br />

Departamento de Matemáticas, E.T.S. de Ingenieros Industriales &<br />

IMACI-Instituto de Matemática Aplicada a la Ciencia y la Ingeniería,<br />

Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain<br />

e-mail: alicia.martinez@uclm.es<br />

G. F. Calvo<br />

Departamento de Matemáticas, E.T.S. de Ingenieros de Caminos, Canales<br />

y Puertos & IMACI-Instituto de Matemática Aplicada a la Ciencia y<br />

la Ingeniería, Universidad de Castilla-La Mancha, 13071, Ciudad Real,<br />

Spain<br />

e-mail: gabriel.fernandez@uclm.es<br />

V. M. Pérez-García<br />

Departamento de Matemáticas, E.T.S. de Ingenieros Industriales &<br />

IMACI-Instituto de Matemática Aplicada a la Ciencia y la Ingeniería,<br />

Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain<br />

e-mail: victor.perezgarcia@uclm.es<br />

Hypoxic Migratory Cell Waves around Necrotic Cores in<br />

Glioblastomas: A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model<br />

Malignant gliomas are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> and deadly brain tumors. Survival<br />

for patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> glioblastoma (GBM), <str<strong>on</strong>g>th</str<strong>on</strong>g>e most aggressive glioma, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough individually<br />

variable, is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s to 14 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s after diagnosis, using<br />

standard treatments which include surgery, radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy (temozolamide<br />

and antiangiogenic drugs such as bevacizumab) [1]. GBM is a rapidly evolving<br />

astrocytoma <str<strong>on</strong>g>th</str<strong>on</strong>g>at is distinguished pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologically from lower grade gliomas by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> necrosis and microvascular hyperplasia. Interestingly, necrotic foci<br />

are tipically surrounded by a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly moving tumor cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at superimpose<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>emselves <strong>on</strong> a more stati<strong>on</strong>ary populati<strong>on</strong>, causing increased cell density,<br />

known as "pseudopalisades" [2, 3]. Evidence suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is tumor cell migrati<strong>on</strong><br />

is caused by a vaso-occlusive event where <str<strong>on</strong>g>th</str<strong>on</strong>g>e local tumor blood vessels no l<strong>on</strong>ger<br />

provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e necessary oxygen supply. This leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a wave <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor<br />

cells actively migrating away from central hypoxia (oxygen deprivati<strong>on</strong>) <str<strong>on</strong>g>th</str<strong>on</strong>g>at arises<br />

after a vascular insult. Indeed, pseudopalisading cells show nuclear expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hypoxia-inducible factor 1α, c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir hypoxic nature [2, 3].<br />

We have developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal<br />

interplay am<strong>on</strong>g two tumor cell phenotypes, a necrotric core and <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen distributi<strong>on</strong>.<br />

Our scenario c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cells embedded wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in two blood<br />

vessels. We will assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypoxic phenotype is <str<strong>on</strong>g>th</str<strong>on</strong>g>e migratory <strong>on</strong>e but n<strong>on</strong>proliferative,<br />

whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e normoxic is less migratory but proliferative [4, 5]. In<br />

additi<strong>on</strong>, our model takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e switching mechanisms between bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

63


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

phenotypes when <str<strong>on</strong>g>th</str<strong>on</strong>g>e local oxygen levels cross a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold value characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hypoxia. Our numerical simulati<strong>on</strong>s reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a superimposed travelling<br />

wave <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoxic cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at qualitatively reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally observed<br />

patterns. This suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at our model could be fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er extended to include <str<strong>on</strong>g>th</str<strong>on</strong>g>e selective<br />

acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cells depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir oxic state.<br />

References.<br />

[1] E. G. Van Meir, C. G. Hadjipanayis, A. D. Norden, H.-K. Shu, P. Y. Wen, and J. J. Ols<strong>on</strong>,<br />

Exciting New Advances in Neuro-Oncology: The Avenue to a Cure for Malignant Glioma,<br />

CA Cancer J. Clin. 60 166-193 (2010).<br />

[2] D. J. Brat, A. A. Castellano-Sanchez, S. B. Hunter, M. Pecot, C. Cohen, E. H. Hamm<strong>on</strong>d, S.<br />

N. Devi, B. Kaur, and E. G. Van Meir, Pseudopalisades in Glioblastoma Are Hypoxic, Express<br />

Extracellular Matrix Proteases, and Are Formed by an Actively Migrating Cell Populati<strong>on</strong>,<br />

Cancer Res. 64 920-927 (2004).<br />

[3] Y. R<strong>on</strong>g, D. L. Durden, E. G. Van Meir, and D. J. Brat, ’Pseudopalisading’ Necrosis in<br />

Glioblastoma: A Familiar Morphologic Feature That Links Vascular Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Hypoxia, and<br />

Angiogenesis, J Neuropa<str<strong>on</strong>g>th</str<strong>on</strong>g>ol Exp Neurol 65 529-539 (2006).<br />

[4] A. Giese, R. Bjerkvig, M. E. Berens and M. Westphal, Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> Migrati<strong>on</strong>: Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Malignant<br />

Gliomas and Implicati<strong>on</strong>s for Treatment, J Clin Oncology 21 1624-1636 (2003).<br />

[5] R. G. Bristow and R. P. Hill, Hypoxia, DNA repair and genetic instability, Nature Rev Cancer<br />

8 180-192 (2008).<br />

18:15–18:35<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Psiuk-Maksymowicz<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol,<br />

Gliwice, Poland<br />

e-mail: Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>.Psiuk-Maksymowicz@polsl.pl<br />

Computati<strong>on</strong>al study <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

in resp<strong>on</strong>se to combined <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies<br />

The microvascular network plays crucial role in development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solid tumours.<br />

It c<strong>on</strong>stitutes a source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrient for <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour and enables its c<strong>on</strong>tinuous<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. However, due to fast metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour cells hypoxic regi<strong>on</strong>s<br />

may occur. Such regi<strong>on</strong>s are <str<strong>on</strong>g>th</str<strong>on</strong>g>en cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e angiogenesis. This study is intended<br />

to analyse computati<strong>on</strong>ally interplay between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour cells and vascular network,<br />

and additi<strong>on</strong>ally to find optimal scheduling for <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

and anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy [1].<br />

The deterministic model is represented by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-linear partial differential<br />

equati<strong>on</strong>s and enables to simulate grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solid tumour in its vascular<br />

phase as well as a process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e angiogenesis. In c<strong>on</strong>trast to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er models (e.g. [2])<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e microvascular network is modelled explicite, not as a density <str<strong>on</strong>g>of</str<strong>on</strong>g> blood vessels.<br />

It enables to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour tissue, not <strong>on</strong>ly its averaged<br />

picture. In order to find optimal parameters for <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and<br />

anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy a few heuristic algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are employed, including simulated<br />

annealing [3] and evoluti<strong>on</strong>ary algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m.<br />

64


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] A. Swierniak, M. Kimmel and J. Smieja, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling as a tool for planning anticancer<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <str<strong>on</strong>g>European</str<strong>on</strong>g> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacology 625 (2009) 108–121.<br />

[2] J. Panovska, H.M. Byrne and P.K. Maini Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and implicati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, Volume I: Modeling<br />

and Simulati<strong>on</strong> in Science, Engineering and Technology, 2007, Part IV, 205–216.<br />

[3] Z. Agur, R. Hassin and S. Levy, Optimizing chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy scheduling using local search heuristics<br />

Operati<strong>on</strong>s Research 54 (2006) 829–846.<br />

18:35–18:55<br />

Zuzanna Szymańska<br />

ICM, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: Z.Szymanska@icm.edu.pl<br />

Mark A. J. Chaplain<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

Mirosław Lachowicz<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

Dariusz Wrzosek<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong>: distinguishing<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell adhesi<strong>on</strong> and<br />

cell-matrix adhesi<strong>on</strong><br />

The process <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue by cancer cells is crucial for metastasis – <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary tumours – which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e main cause <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality in patients<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cancer. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> process itself, adhesi<strong>on</strong>, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cell-cell and cell-matrix,<br />

plays an extremely important role. In our talk we present a novel ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix taking into account cellcell<br />

adhesi<strong>on</strong> as well as cell-matrix adhesi<strong>on</strong>. C<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between<br />

cancer cells, extracellular matrix and matrix degrading enzymes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> partial integro-differential equati<strong>on</strong>s, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>-local<br />

(integral) terms describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesive interacti<strong>on</strong>s between cancer cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

host tissue, i.e. cell-cell adhesi<strong>on</strong> and cell-matrix adhesi<strong>on</strong>. We first describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

main results <str<strong>on</strong>g>th</str<strong>on</strong>g>at we obtained from a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

existence and uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> global in time classical soluti<strong>on</strong>s which are uniformly<br />

bounded. Then, using computati<strong>on</strong>al simulati<strong>on</strong>s we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell adhesi<strong>on</strong> and cell-matrix adhesi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong><br />

process. In particular we examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e roles <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell adhesi<strong>on</strong> and cell-matrix<br />

adhesi<strong>on</strong> in generating heterogeneous spatio-temporal soluti<strong>on</strong>s.<br />

References.<br />

65


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] M. A. J. Chaplain, M. Lachowicz, Z. Szymańska and D. Wrzosek (2011) Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell adhesi<strong>on</strong> and cell-matrix adhesi<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

Models Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods Appl. Sci., 21, 1-25.<br />

66


Cancer 4<br />

Wednesday, June 29, 08:30, Room: AM5<br />

Chaired by: Andreas Deutsch<br />

08:30–09:00<br />

Daniela Schlüter<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: dkschlueter@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Ignacio Ramis-C<strong>on</strong>de<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong> Cuenca, Universidad<br />

de Castilla la Mancha<br />

e-mail: ignacio@ramis-c<strong>on</strong>de.com<br />

Mark Chaplain<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: chaplain@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

The Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell-Cell and Cell-Matrix Adhesi<strong>on</strong> in Cancer<br />

Cell Invasi<strong>on</strong>: A Multiscale Individual-Based Modelling<br />

Approach<br />

The malignancy <str<strong>on</strong>g>of</str<strong>on</strong>g> almost all types <str<strong>on</strong>g>of</str<strong>on</strong>g> solid tumours is determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cancer cells to invade <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissues and <str<strong>on</strong>g>th</str<strong>on</strong>g>en to form sec<strong>on</strong>dary tumours<br />

(metastases) at distant sites in <str<strong>on</strong>g>th</str<strong>on</strong>g>e body. These metastases are resp<strong>on</strong>sible for 90%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancer dea<str<strong>on</strong>g>th</str<strong>on</strong>g>s. In order to advance and improve cancer treatment strategies, it<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>of</str<strong>on</strong>g> high importance to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes involved in cancer cell<br />

invasi<strong>on</strong>.We focus <strong>on</strong> modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e first steps driving localised cancer cell invasi<strong>on</strong><br />

and try to identify key processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to observed invasi<strong>on</strong> patterns and <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

allow collective cell migrati<strong>on</strong> and/or <str<strong>on</strong>g>th</str<strong>on</strong>g>e detachment <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells or small<br />

cell clusters from <str<strong>on</strong>g>th</str<strong>on</strong>g>e main tumour mass.<br />

In order to do <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we use an individual-based, force-based multi-scale approach<br />

and model <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells and intra- and inter-cellular protein<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways involved in tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, cell-cell and cell-matrix adhesi<strong>on</strong>. The key<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways include <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> E-cadherin and beta-catenin. Our approach also allows<br />

us to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix explicitly (e.g. fibr<strong>on</strong>ectin<br />

fibres).<br />

Using computati<strong>on</strong>al simulati<strong>on</strong>s, we c<strong>on</strong>sider a growing mass <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and investigate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E-cadherin and beta-catenin levels in<br />

individual cancer cells and predict what implicati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>is has for <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells to each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er and to <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix. By examining <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

67


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

cell-matrix interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> our model we can fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment in tumour progressi<strong>on</strong> and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e matrix toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e E-cadherin/beta-catenin dynamics may lead to different<br />

invasi<strong>on</strong> patterns. We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix realignment caused by<br />

cell tracti<strong>on</strong> forces <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ invasive behaviour and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal patterns<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at emerge.<br />

09:05–09:25<br />

Maria Barbarossa<br />

Technische Universität München, Chair for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling<br />

e-mail: barbarossa@ma.tum.de<br />

Christina Kuttler<br />

Technische Universität München, Chair for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling<br />

Delay equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> tumoral cells<br />

Cancer is nowadays <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most complex severe diseases in <str<strong>on</strong>g>th</str<strong>on</strong>g>e world. To better<br />

understand it, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biologists have been working for <str<strong>on</strong>g>th</str<strong>on</strong>g>e last decades <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we model a combined treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> immuno- and chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and<br />

its effects <strong>on</strong> a solid tumor.<br />

Many au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors (e.g. Arino, Dys<strong>on</strong> et al.) suggested structured populati<strong>on</strong> models<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer biology. Here, we start wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a tumoral cell populati<strong>on</strong><br />

structured by age and introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs and immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumoral<br />

mass. For a better descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> phase-specific drugs, we define<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree sub-populati<strong>on</strong>s for interphase, mitotic and quiescent cells. Effectors from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

immune system work against every kind <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, whereas chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is<br />

assumed to be mitosis-specific <strong>on</strong>ly.<br />

Following a similar approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> Bocharov and Hadeler (2000), we derive<br />

a system <str<strong>on</strong>g>of</str<strong>on</strong>g> delay differential equati<strong>on</strong>s equivalent to <str<strong>on</strong>g>th</str<strong>on</strong>g>e original age-structured<br />

model. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough our results apparently resemble <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> Villasana (2003) and Liu<br />

(2007), <str<strong>on</strong>g>th</str<strong>on</strong>g>e model here is not deduced from <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass acti<strong>on</strong> kinetics principles. But<br />

our approach allows us to take care <str<strong>on</strong>g>of</str<strong>on</strong>g> all delayed and undelayed variables and to<br />

locate <str<strong>on</strong>g>th</str<strong>on</strong>g>em at <str<strong>on</strong>g>th</str<strong>on</strong>g>e right place in <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>us providing a better descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological phenomen<strong>on</strong>.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e delay model bo<str<strong>on</strong>g>th</str<strong>on</strong>g> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e analytical and <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view and focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer-free equilibrium. Inspired by <str<strong>on</strong>g>th</str<strong>on</strong>g>e work<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors (e.g. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, 2010), we simulate different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

and estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Our aim is to find c<strong>on</strong>diti<strong>on</strong>s<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor or for its reducti<strong>on</strong> to a life-compatible<br />

size.<br />

References.<br />

[1] O. Arino, A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> structured cell populati<strong>on</strong> dynamics, Acta Bio<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretica 43 (1995).<br />

68


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] G. Bocharov, K.P. Hadeler, Structured populati<strong>on</strong> model, c<strong>on</strong>servati<strong>on</strong> laws and delay equati<strong>on</strong>s,<br />

J. Diff. Equa. 168 (2000).<br />

[3] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio et al., Delay-induced oscillatory dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour-immune system interacti<strong>on</strong>,<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Comp. Mod., Vol.51 (2010)<br />

[4] J. Dys<strong>on</strong>, Asynchr<strong>on</strong>ous exp<strong>on</strong>ential grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in an age-structured populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferating<br />

and quiescent cells, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosc. 177 (2002).<br />

[5] W. Liu et al., A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for M-phase specific chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy including <str<strong>on</strong>g>th</str<strong>on</strong>g>e G 0 -<br />

phase and immunoresp<strong>on</strong>se. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosc. Eng. 4(2), (2007)<br />

[6] M. Villasana, A. Radunskaya, A delay differential equati<strong>on</strong> model for tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

Bio. 47(3), (2003)<br />

[7] M. Barbarossa, C. Kuttler, J. Zinsl, Delay models for tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, in progress.<br />

09:25–09:45<br />

Eunjung Kim<br />

e-mail: Eunjung.Kim@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

David Basanta<br />

e-mail: david@basanta.org.es<br />

Keiran S. Smalley<br />

e-mail: Keiran.Smalley@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Alexander R. A. Anders<strong>on</strong><br />

e-mail: Alexander.Anders<strong>on</strong>@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology,<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center,<br />

12902 Magnolia Dr., Tampa, FL 33612.<br />

Getting old and misbehaving:<br />

Can stromal aging drive melanoma initiati<strong>on</strong><br />

We have implemented a hybrid cellular automata model <str<strong>on</strong>g>of</str<strong>on</strong>g> skin <str<strong>on</strong>g>th</str<strong>on</strong>g>at focuses<br />

<strong>on</strong> key variables implicated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal homeostatic skin functi<strong>on</strong><br />

and its disrupti<strong>on</strong> in melanoma initiati<strong>on</strong> and progressi<strong>on</strong>. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete cellular species such as melanocytes, transformed melanocytes, keratinocytes,<br />

and fibroblasts, and c<strong>on</strong>tinuous microenvir<strong>on</strong>mental variables such as<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors and extracellular matrix. The behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete cell<br />

species is defined using life cycle flowcharts. Based <strong>on</strong> experimental observati<strong>on</strong>s,<br />

we know <str<strong>on</strong>g>th</str<strong>on</strong>g>at when fibroblasts age <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can become senescent and start producing<br />

factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at may disrupt <str<strong>on</strong>g>th</str<strong>on</strong>g>e very homeostasis <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey should maintain. We incorporate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese phenotypic changes as fibroblasts age and use our model to examine<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese changes affect skin functi<strong>on</strong>.<br />

Specifically, we examined <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> disrupting interacti<strong>on</strong>s between melanocytes,<br />

keratinocytes, fibroblasts and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir microenvir<strong>on</strong>ment and <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> aged fibroblasts<br />

in driving melanoma initiati<strong>on</strong>. Model simulati<strong>on</strong>s provide a series <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual<br />

skin pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies <str<strong>on</strong>g>th</str<strong>on</strong>g>at readily recapitulate a spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> true aberrant clinical<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies. Direct comparis<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies allowed us to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

69


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

critical perturbati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at drive melanoma initiati<strong>on</strong> and progressi<strong>on</strong>. We also utilize<br />

an in vitro 3D organotypic skin model to fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er investigate some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

predicti<strong>on</strong>s.<br />

09:45–10:05<br />

Mark Roberts<strong>on</strong>-Tessi<br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa,<br />

FL<br />

e-mail: mark.roberts<strong>on</strong>tessi@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

R. J. Gillies<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL<br />

R. A. Gatenby<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL<br />

A. R. A. Anders<strong>on</strong><br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL<br />

Metabolism: Integrating cellular and microenvir<strong>on</strong>mental<br />

heterogeneity to drive tumor progressi<strong>on</strong><br />

Clinical and experimental evidence increasingly suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at cellular and microenvir<strong>on</strong>mental<br />

heterogeneity plays a significant role in tumor progressi<strong>on</strong> and resp<strong>on</strong>se<br />

to treatment. Z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoxia, acidosis, and necrosis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor and surrounding<br />

tissue can exert selecti<strong>on</strong> pressure <strong>on</strong> a dynamic heterogeneous tumor populati<strong>on</strong>,<br />

driving <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> increasingly aggressive phenotypes. Critically, cellular<br />

metabolism acts as a key integrator between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cellular and microenvir<strong>on</strong>mental<br />

comp<strong>on</strong>ents. In order to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex interplay between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese elements,<br />

we have developed a hybrid multi-scale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in a<br />

vascularized tissue. Cellular behavior, including proliferati<strong>on</strong>, migrati<strong>on</strong>, dea<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

signaling, are driven by microenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, mediated <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cellular<br />

metabolism. A range <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor phenotypes emerges due to selecti<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneous<br />

microenvir<strong>on</strong>ment. The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a tumor to treatment depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> different tumor phenotypes, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e local c<strong>on</strong>diti<strong>on</strong>s. By tracking<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e multiple routes <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor progressi<strong>on</strong>, we use <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to predict optimal<br />

treatment strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at can block <str<strong>on</strong>g>th</str<strong>on</strong>g>e most malignant routes.<br />

10:05–10:25<br />

Nino Khatiashvili<br />

Iv. Javakhishvili Tbilisi State University<br />

e-mail: ninakhat@yahoo.com<br />

Christina Pirumova<br />

Iv. Javakhishvili Tbilisi State University<br />

e-mail: chr4mk@gmail.com<br />

70


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Vladimer Akhobadze<br />

Iv. Javakhishvili Tbilisi State University<br />

e-mail: vakhobadze@gmail.com<br />

The n<strong>on</strong>-linear ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different forms<br />

The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is c<strong>on</strong>structed taking into <str<strong>on</strong>g>th</str<strong>on</strong>g>e account<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal and tumor cells for <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrients supply and new vessels<br />

formati<strong>on</strong> under oxygenal stress. The character <str<strong>on</strong>g>of</str<strong>on</strong>g> different geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is c<strong>on</strong>sidered (such as cylindrical and spherical). The system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-linear<br />

differential equati<strong>on</strong>s is obtained<br />

dx<br />

dt = g 1x 2 3 − ν1 y,<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial c<strong>on</strong>diti<strong>on</strong>s<br />

dy<br />

dt = g 2y α − ν 2 y,<br />

x(0) = x 0 , y(0) = y 0 ,<br />

where x(t) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume <str<strong>on</strong>g>of</str<strong>on</strong>g> normal cells, y(t)- is <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, which<br />

depends <strong>on</strong> time t, a and b are <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrients c<strong>on</strong>sumpti<strong>on</strong> rates, g 1 , g 2 are <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> x(t) and y(t) c<strong>on</strong>sequently, ν 1 and ν 2 reflects a necrotic factors,<br />

α is a geometric characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor volume.<br />

The system is investigated numerically, computer simulati<strong>on</strong>s are given.<br />

The designated project has been fulfilled by financial support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Georgia<br />

Rustaveli Foundati<strong>on</strong> (Grant #GNSF/ST08/3-395). Any idea in <str<strong>on</strong>g>th</str<strong>on</strong>g>is publicati<strong>on</strong><br />

is possessed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e au<str<strong>on</strong>g>th</str<strong>on</strong>g>or and may not represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e opini<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Foundati<strong>on</strong><br />

itself.<br />

71


Cancer 5<br />

Wednesday, June 29, 11:00, Room: AM5<br />

Chaired by: Andreas Deutsch<br />

11:00–11:30<br />

Carsten Wiuf<br />

Bioinformatics Research Centre<br />

e-mail: wiuf@cs.au.dk<br />

Stochastic Modeling and Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA Sequence Data<br />

from Heterogeneous Tumors<br />

Many cancers are believed to have cl<strong>on</strong>al origin, starting from a single cell wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a defining mutati<strong>on</strong> and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er acquiring <strong>on</strong>e or more additi<strong>on</strong>al mutati<strong>on</strong>s before<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first cancerous cell is established. For example, in Follicular Lymphoma, a blood<br />

cancer, <str<strong>on</strong>g>th</str<strong>on</strong>g>e total number <str<strong>on</strong>g>of</str<strong>on</strong>g> required mutati<strong>on</strong>s M is believed to be two <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first is a translocati<strong>on</strong> called t(14;18).<br />

A populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells evolves fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er over time and accumulates genetic<br />

changes, many <str<strong>on</strong>g>of</str<strong>on</strong>g> which are random and o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers potentially beneficial for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer.<br />

C<strong>on</strong>sequently, cells in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> a tumor might show differences in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir genomes, or DNA. This phenomen<strong>on</strong> is referred to as genetic tumor heterogeneity<br />

and is comparable to <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic heterogeneity observed in individuals in a<br />

populati<strong>on</strong>.<br />

Here, I address <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling how <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor evolves over time and<br />

accumulates changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA, starting from <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial cell wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e defining<br />

mutati<strong>on</strong>. The model is stochastic and relies <strong>on</strong> bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes; it allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

first required M mutati<strong>on</strong>s to be under selective pressure, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e subsequent mutati<strong>on</strong>s<br />

are neutral. I show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a simple descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>th</str<strong>on</strong>g>e (stochastic)<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system changes over time and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model imposes<br />

c<strong>on</strong>straints <strong>on</strong> parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducibility and <str<strong>on</strong>g>th</str<strong>on</strong>g>e survival <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cells; <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>e model leads to biological insight.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model leads to a simple way <str<strong>on</strong>g>of</str<strong>on</strong>g> simulating tumor evoluti<strong>on</strong>. Based<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is, I show how a sample <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA sequences taken from distinct parts <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

heterogeneous tumor might be used to draw inference <strong>on</strong> model parameters and<br />

date <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e defining and subsequent mutati<strong>on</strong>s.<br />

The latter might have clinical importance as it provides an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time<br />

from tumor initiati<strong>on</strong> to diagnosis.<br />

73


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Finally, I show a simple applicati<strong>on</strong> to DNA sequence data from Follicular<br />

Lymphoma patients and outlining some fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and statistical work<br />

to be d<strong>on</strong>e.<br />

11:35–11:55<br />

S. Becker, A. Mang, T.A. Schütz, A. Toma, T.M. Buzug<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lübeck, Germany<br />

e-mail: {becker,buzug}@imt.uni-luebeck.de<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> brain tumor and normal tissue<br />

resp<strong>on</strong>ses to radiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

The present work introduces a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at simulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> malignant brain tumors as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong> cancerous and<br />

normal tissue. The spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a tumor cell density is described<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>. In additi<strong>on</strong> to passive diffusi<strong>on</strong> and<br />

proliferati<strong>on</strong> [1–3] <str<strong>on</strong>g>th</str<strong>on</strong>g>is equati<strong>on</strong> incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiati<strong>on</strong> [2,3]. To account<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e anisotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor diffusi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in white matter, tensor informati<strong>on</strong><br />

deduced from a probabilistic white matter atlas is incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

The model also assumes logistic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cell populati<strong>on</strong> resulting in a<br />

lower net proliferati<strong>on</strong> in regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> high cell density. The spatio-temporal effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radiati<strong>on</strong> is described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear-quadratic model.<br />

In current ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models used to predict tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different treatment schedules, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong><br />

resp<strong>on</strong>se in general is limited to cancerous cells. An optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment outcome,<br />

which includes a maximizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor c<strong>on</strong>trol while minimizing normal<br />

tissue toxicity, however necessitates not <strong>on</strong>ly a quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological effect<br />

<strong>on</strong> cancerous tissue but also <strong>on</strong> heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y tissue. The present model <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore extends<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e standard approaches [2,3] by also modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong><br />

normal tissue. A sec<strong>on</strong>d differential equati<strong>on</strong> describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e necrotic density, incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiati<strong>on</strong> <strong>on</strong> cancerous and<br />

normal tissue and a degradati<strong>on</strong> due to phagocytosis. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor radiosensitivity<br />

is varied according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e local density <str<strong>on</strong>g>of</str<strong>on</strong>g> cancerous cells. This allows<br />

for indirectly c<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygenati<strong>on</strong> and its influence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e radiosensitivity,<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e growing tumor increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e lack <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen, which directly corresp<strong>on</strong>ds to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extent <str<strong>on</strong>g>of</str<strong>on</strong>g> radioresistance.<br />

The numerical results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary brain tumors can<br />

plausibly be determined. The model is also used to quantitatively study <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> irradiati<strong>on</strong> under a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment schedules and dose distributi<strong>on</strong>s.<br />

The results illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed model in finding a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

between tumor c<strong>on</strong>trol and normal tissue toxicity. Incorporati<strong>on</strong> into clinical planning<br />

systems could ultimately facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more appropriate,<br />

patient-specific treatment schedules and <str<strong>on</strong>g>of</str<strong>on</strong>g>fers <str<strong>on</strong>g>th</str<strong>on</strong>g>e promise <str<strong>on</strong>g>of</str<strong>on</strong>g> highly individualized<br />

radiati<strong>on</strong> treatment for cancer patients. Avenues for future research include fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

74


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

clinical evaluati<strong>on</strong>s, incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cycle dynamics and extensi<strong>on</strong> to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> external beam radiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

References.<br />

[1] S. Becker and A. Mang and A. Toma and T.M. Buzug, In-Silico Oncology: An Approximate<br />

Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Brain Tumor Mass Effect based <strong>on</strong> Directly Manipulated Free Form Deformati<strong>on</strong>,<br />

2010 Int J CARS 5(5) 607–622.<br />

[2] G. Powa<str<strong>on</strong>g>th</str<strong>on</strong>g>il and M. Kohandel and S. Sivalogana<str<strong>on</strong>g>th</str<strong>on</strong>g>an and A. Oza and M. Milosevic, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> brain tumor: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, 2007 Phys Med<br />

Biol 52 3291–3306.<br />

[3] R. Rockne and E.C. Alvord jr and J.K. Rockhill and K.R. Swans<strong>on</strong>, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

for brain tumor resp<strong>on</strong>se to radiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, 2009 J Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biol 58 561–578.<br />

11:55–12:15<br />

Mikhail Kolev<br />

Warmia and Mazury University <str<strong>on</strong>g>of</str<strong>on</strong>g> Olsztyn, Poland<br />

e-mail: kolev@matman.uwm.edu.pl<br />

Barbara Zubik-Kowal<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Boise State University, USA<br />

e-mail: zubik@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.boisestate.edu<br />

Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong><br />

We present a new algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model proposed by Chaplain and colleagues [1-3] describing tumor invasi<strong>on</strong> and<br />

metastasis. The model takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells to produce and<br />

secrete matrix degradative enzymes, which allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular<br />

matrix, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells due to diffusi<strong>on</strong> and haptotactic migrati<strong>on</strong>.<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cells and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissue, we apply numerical approximati<strong>on</strong>s, which are spectrally<br />

accurate and based <strong>on</strong> small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> grid-points. Our numerical experiments<br />

illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastatic ability <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells.<br />

References.<br />

[1] M.A.J. Chaplain and A.R.A. Anders<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue invasi<strong>on</strong>, in Cancer<br />

modelling and simulati<strong>on</strong>, L. Preziosi, ed., Chapman & Hall/CRC, Boca Rat<strong>on</strong>, FL, 269–297,<br />

2003.<br />

[2] M.A.J. Chaplain, G. Lolas, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue: The<br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e urokinase plasminogen activati<strong>on</strong> system Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Models Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods Appl. Sci. 15<br />

1685–1734, 2005.<br />

[3] M.A.J. Chaplain, G. Lolas, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue: dynamic<br />

heterogeneity Netw. Heterog. Media 1 399–439, 2006.<br />

12:15–12:35<br />

B. Mendoza-Juez<br />

75


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Departamento de Matemáticas, E.T.S. de Ingenieros industriales &<br />

IMACI - Instituto de Matemática Aplicada a la Ciencia y la Ingeniería,<br />

Universidad de Castilla - La Mancha, 13071, Ciudad Real, Spain<br />

e-mail: berta.mendoza@uclm.es<br />

A. Martínez-G<strong>on</strong>zález, D. Diego, G. F. Calvo, V. M. Pérez-García<br />

Departamento de Matemáticas & IMACI - Instituto de Matemática<br />

Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla - La<br />

Mancha, 13071, Ciudad Real, Spain<br />

e-mail: alicia.martinez@uclm.es, david.diego@uclm.es,<br />

gabriel.fernandez@uclm.es,victor.perezgarcia@uclm.es<br />

P. Melgar, P. Sanchez-Prieto<br />

Laboratorio de Oncología Molecular, CRIB, Facultad de Medicina,<br />

Universidad de Castilla - La Mancha, Avda. Almansa s/n, 02071 Albacete,<br />

Spain<br />

e-mail: pedro.melgar@uclm.es, ricardo.sanchez@uclm.es<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic symbiosis in tumors<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e 1920s <str<strong>on</strong>g>th</str<strong>on</strong>g>e findings by Otto Warburg’s highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental differences<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>cogene revoluti<strong>on</strong> somehow<br />

pushed tumor metabolism to an ancillary level in cancer research. It is currently<br />

becoming clear <str<strong>on</strong>g>th</str<strong>on</strong>g>at many key <strong>on</strong>cogenic signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways c<strong>on</strong>verge to adapt tumor<br />

cell metabolism to support grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and survival, and some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese alterati<strong>on</strong>s<br />

seem to be required for malignant transformati<strong>on</strong> [1, 2, 3].<br />

The abnormal tumor microenvir<strong>on</strong>ment has a major role in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

metabolic phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells. Tumor vasculature is irregular and malfuncti<strong>on</strong>ing,<br />

creating spatial and temporal heterogeneity in oxygenati<strong>on</strong>, pH, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, lactate and many o<str<strong>on</strong>g>th</str<strong>on</strong>g>er metabolites. Under such varying<br />

and extreme c<strong>on</strong>diti<strong>on</strong>s, adaptive resp<strong>on</strong>ses are induced <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

switching metabolic phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant cells greatly influencing tumor progressi<strong>on</strong>.<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough aerobic glycolysis (<str<strong>on</strong>g>th</str<strong>on</strong>g>e Warburg effect) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e best documented<br />

metabolic phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, it is not a universal feature <str<strong>on</strong>g>of</str<strong>on</strong>g> all human cancers.<br />

Moreover, even in glycolytic tumors, oxidative phosphorylati<strong>on</strong> is not completely<br />

shut down.<br />

Hypoxic cells use glucose for glycolysis, producing large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> lactate<br />

and exporting it via m<strong>on</strong>ocarboxylate transporters (mainly <str<strong>on</strong>g>th</str<strong>on</strong>g>e is<str<strong>on</strong>g>of</str<strong>on</strong>g>orm MCT4), a<br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins <str<strong>on</strong>g>th</str<strong>on</strong>g>at when expressed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e plasma membrane are resp<strong>on</strong>sible<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules [4,5]. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e accelerated<br />

metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese transporters are up-regulated in many different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> cancers [2,4,6]<br />

This fact has been recognized in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last few years as opening a potential target<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies since blocking <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese transporters might lead to different<br />

scenarios leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cell [2,7-10]<br />

It has been recently dem<strong>on</strong>strated [10] <str<strong>on</strong>g>th</str<strong>on</strong>g>at oxygenated cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor<br />

can import extracellular lactate using ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er transporter (MCT1) to fuel respirati<strong>on</strong>,<br />

preserving glucose for use by <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypoxic cells and regulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e medium pH.<br />

76


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

This metabolic symbiosis between oxidative and glycolytic tumor cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at mutually<br />

regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir access to energy metabolites and pH makes <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor progressi<strong>on</strong><br />

very robust. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, it has been shown in [10] <str<strong>on</strong>g>th</str<strong>on</strong>g>at inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MCT1 induces<br />

a switch <strong>on</strong> oxidative cells from lactate-fueled respirati<strong>on</strong> to glycolysis. As<br />

a c<strong>on</strong>sequence, hypoxic cells die from glucose starvati<strong>on</strong> rendering <str<strong>on</strong>g>th</str<strong>on</strong>g>e remaining<br />

better-oxygenated cells sensitive to irradiati<strong>on</strong> and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies.<br />

Similar symbiotic phenomena between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor and its altered microenvir<strong>on</strong>ment<br />

have been reported in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er tumor models [11,12].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is communicati<strong>on</strong> we will present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells<br />

behavior in vitro able to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose and lactate uptake in different scenarios.<br />

The model fits <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-vitro experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. [10], toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

measurements reported in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature [13], as well as our own experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

glioma cell lines.<br />

We will discuss how to extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-vitro model to incorporate o<str<strong>on</strong>g>th</str<strong>on</strong>g>er phenomena<br />

present in cancers such as hypoxia and reoxygenati<strong>on</strong>. Finally, it will be<br />

examined how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models can assist in <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> optimized combinati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies wi<str<strong>on</strong>g>th</str<strong>on</strong>g> radiati<strong>on</strong> and inhibitors <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ocarboxylate transporters.<br />

References.<br />

[1] M.G. Vander Heiden, L.C. Cantley and C.B. Thomps<strong>on</strong>, Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e Warburg Effect:<br />

The Metabolic Requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Proliferati<strong>on</strong>, Science 324 1029 (2009).<br />

[2] D.A. Tennant, R.V. Durán and E. Gottlieb, Targeting metabolic transformati<strong>on</strong> for cancer<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, Nature Reviews Cancer 10 267 (2010).<br />

[3] R. A. Cairns, I. S. Harris, T. W. Mak, Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell metabolism, Nature Reviews<br />

Cancer 11 85–95 (2011).<br />

[4] C. Pinheiro, R. M. Reis, S. Ricardo, A. L<strong>on</strong>gatto-Filho, F. Schmitt, and F. Baltazar, Expressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>ocarboxylate Transporters 1, 2, and 4 in Human Tumours and Their Associati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

CD147 and CD44, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedicine and Biotechnology 2010, 427694 (2010).<br />

[5] A. P. Halestrap, N. T. Price, The prot<strong>on</strong>-linked m<strong>on</strong>ocarboxylate transporter (MCT) family :<br />

structure, functi<strong>on</strong> and regulati<strong>on</strong>, Biochem. J. 343 (1999) 281-299.<br />

[6] C. Pinheiro et al., M<strong>on</strong>ocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma,<br />

Histopa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology 56 (2010) 860-867.<br />

[7] K. M. Kennedy, M. W. Dewhrist, Tumor metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> lactate: <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence and <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

potential for MCT and CD147 regulati<strong>on</strong>, Future Oncology 6 (2010) 127.<br />

[8] S. P. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>upala, P. Parajuli, A. E. Sloan, Silencing <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ocarboxylate transportes via siRNA<br />

inhibits glycolisis and induces cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> in malignant glioma: An in vitro study, Neurosurgery<br />

55 (2004) 1410<br />

[9] J. Fang, Q. J. Quin<strong>on</strong>es, T. L. Holman, M. J. Morowitz, Q. Wang, H. Zhao, F. Sivo, J. M.<br />

Maris, and M. L. Wahl, The H+-Linked M<strong>on</strong>ocarboxylate Transporter (MCT1/SLC16A1):<br />

A Potential Therapeutic Target for High-Risk Neuroblastoma, Molecular Pharmacology 70<br />

(2006) 2108.<br />

[10] P. S<strong>on</strong>veaux et al., Targeting lactate-fueled respirati<strong>on</strong> selectively kills hypoxic tumor cells in<br />

mice The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Investigati<strong>on</strong> 118 3930 (2008).<br />

[11] S. Pavlides et al., The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor stroma, Cell Cycle 8 (2009) 3984-4001.<br />

[12] G. Migneco et al., Glycolytic cancer associated fibroblasts promote breast cancer tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out a measurable increase in angiogenesis: Evidence for stromal-epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial metabolic<br />

coupling, Cell Cycle 9 (2010) 2412-2422.<br />

[13] R. L. Elstrom, D. E. Bauer, M. Buzzai, R. Karnauskas, M. H. Harris,1 D. R. Plas, H. Zhuang,<br />

R. M. Cinalli, A. Alavi, C. M. Rudin, and C. B. Thomps<strong>on</strong>, Akt stimulates aerobic glycolisys<br />

in cancer cells, Cancer Research 64 (2004) 3892-3899.<br />

77


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

12:35–12:55<br />

Shabnam Moobedmehdiabadi<br />

Deaprtment <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Irvine, CA<br />

e-mail: smoobedm@uci.edu<br />

John Lowengrub<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Irvine, CA<br />

e-mail: lowengrb@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.uci.edu<br />

Haralampos Hatzikirou<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> New<br />

Mexico, Albuquerque, NM<br />

e-mail: hhatzikirou@salud.unm.edu<br />

Lattice Gas Cellular Automata modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> lineage dynamics<br />

and feedback c<strong>on</strong>trol<br />

This study is important in understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism and dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

biological problems such as tumor invasi<strong>on</strong> and wound healing. Firstly, we describe<br />

microscopically <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and we derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding mesoscopic approximati<strong>on</strong>,<br />

via <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean field assumpti<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e following, we upscale our model<br />

providing a PDE which serves as a macroscopic manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

cellular interacti<strong>on</strong>s. We focus <strong>on</strong> investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed and <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> fr<strong>on</strong>t, using <str<strong>on</strong>g>th</str<strong>on</strong>g>e above menti<strong>on</strong>ed approximati<strong>on</strong>s, as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

underling cell phenotypes and microenvir<strong>on</strong>mental factors (i.e. nutrients).<br />

References.<br />

[1] A. D. Lander, K. K. Gok<str<strong>on</strong>g>of</str<strong>on</strong>g>fski, F. Y. M. Wan, Q. Nie, A. L. Cal<str<strong>on</strong>g>of</str<strong>on</strong>g>, Cell lineages and <str<strong>on</strong>g>th</str<strong>on</strong>g>e logic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> proliferative c<strong>on</strong>trol PLOSBiology, Vol 7,Issue 9, January 2009.<br />

[2] H. Hatzikirou, L.Brusch, A. Deutsch, From Cellular Automata rules to a macroscopic meanfield<br />

descripti<strong>on</strong> Acta Physica Pol<strong>on</strong>ica B Proceedings Supplement, Vol 3, 2010.<br />

78


Cancer 6<br />

Friday, July 1, 14:30, Room: AM8<br />

Chaired by: Carsten Wiuf<br />

14:30–15:00<br />

Ibrahim Cheddadi<br />

INRIA-Rocquencourt, France<br />

e-mail: ibrahim.cheddadi@inria.fr<br />

Dirk Drasdo<br />

INRIA-Rocquencourt, France<br />

Benoît Per<str<strong>on</strong>g>th</str<strong>on</strong>g>ame<br />

Laboratoire Jacques-Louis Li<strong>on</strong>s, Université Pierre et Marie Curie,<br />

Paris, France<br />

Min Tang<br />

Laboratoire Jacques-Louis Li<strong>on</strong>s, Université Pierre et Marie Curie,<br />

Paris, France<br />

Nicolas Vauchelet<br />

Laboratoire Jacques-Louis Li<strong>on</strong>s, Université Pierre et Marie Curie,<br />

Paris, France<br />

Irène Vign<strong>on</strong>-Clémentel<br />

INRIA-Rocquencourt, France<br />

Towards quantitative individual-based and c<strong>on</strong>tinuum<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor multicellular aggregates<br />

Recent development <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental techniques permits <str<strong>on</strong>g>th</str<strong>on</strong>g>e measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters necessary to parameterize quantitative models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and cancer development.On <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e hand, Individual-cell Based<br />

Models (IBMs) allow to incorporate a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> details <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-level behavior but are<br />

limited to <str<strong>on</strong>g>th</str<strong>on</strong>g>e millimeter scale. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, c<strong>on</strong>tinuum models are well<br />

adapted to larger scales but do not permit such a detailed descripti<strong>on</strong>. Building<br />

a hybrid c<strong>on</strong>tinuum/discrete model is a promising way to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e multiscale<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors from <str<strong>on</strong>g>th</str<strong>on</strong>g>e single cell up to centimeter scale. However, it requires<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> approaches lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e same predicti<strong>on</strong>s. Recently, Byrne and Drasdo<br />

(J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 2009) studied c<strong>on</strong>tinuum models able to capture important aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er compact or very diluted tumor aggregates <str<strong>on</strong>g>of</str<strong>on</strong>g> a previously introduced IBM<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at has been shown to reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e typical grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetic <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers and<br />

multi-cellular spheroids (Drasdo et al., J. Stat. Phys. 2007) . Here we extend<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>cept towards a c<strong>on</strong>tinuum model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e intermediate range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

79


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

phenotypes by representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e different aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e IBM in more detail. The<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics predicted by <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two models are quantitatively compared.<br />

15:05–15:25<br />

Niall Deakin<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: niall@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Spread: The<br />

Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Enzyme Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tissue<br />

Metastatic spread <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer is <str<strong>on</strong>g>th</str<strong>on</strong>g>e main cause <str<strong>on</strong>g>of</str<strong>on</strong>g> dea<str<strong>on</strong>g>th</str<strong>on</strong>g> in patients suffering from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e disease - cancer cells from a primary tumour break away from <str<strong>on</strong>g>th</str<strong>on</strong>g>e central mass<br />

and are disseminated <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>e body where <str<strong>on</strong>g>th</str<strong>on</strong>g>ey re-grow to form sec<strong>on</strong>dary<br />

tumours or metastases. A crucial aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> metastatic spread is <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> local<br />

invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissue. The cancer cells achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>is by <str<strong>on</strong>g>th</str<strong>on</strong>g>e secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

certain enzymes involved in proteolysis (tissue degradati<strong>on</strong>), namely plasmin and<br />

matrix metalloproteinases (MMPs). These overly-expressed proteolytic enzymes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en proceed to degrade <str<strong>on</strong>g>th</str<strong>on</strong>g>e host tissue allowing <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells to spread <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment by active migrati<strong>on</strong> and interacti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix such as collagen.<br />

Here, we present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a host tissue<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e macro-scale (cell populati<strong>on</strong>) level. The model c<strong>on</strong>siders cancer cells and<br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different matrix-degrading enzymes (MDEs) from <str<strong>on</strong>g>th</str<strong>on</strong>g>e MMP family<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>, and effect <strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix (ECM) using<br />

systems <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong>-taxis partial differential equati<strong>on</strong>s in an attempt to<br />

capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migratory resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells,<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a specific focus placed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane-bound MMPs. We use ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

analysis and computati<strong>on</strong>al simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e- and two-space<br />

dimensi<strong>on</strong>s to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cell density, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>centrati<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various enzymes and <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular<br />

matrix. The model exhibits ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er travelling-wave soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells, which<br />

can be used to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum speed <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue, or very<br />

dynamic and heterogeneous spatio-temporal soluti<strong>on</strong>s, which match experimentally<br />

and clinically observed results for aggressive invading carcinoma.<br />

15:25–15:45<br />

Andrey V. Kolobov<br />

P. N. Lebedev Physical Institute, Moscow, Russia<br />

e-mail: kolobov@lpi.ru<br />

Vladimir V. Gubernov<br />

P. N. Lebedev Physical Institute, Moscow, Russia<br />

80


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

e-mail: gubernov@lpi.ru<br />

Andrey A. Polezhaev<br />

P. N. Lebedev Physical Institute, Moscow, Russia<br />

e-mail: apol@lpi.ru<br />

Speed selecti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrative tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> account <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>-proliferati<strong>on</strong> dichotomy<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrative tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> taking into account transiti<strong>on</strong>s<br />

between two possible states <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant cells: proliferating and migrating, is<br />

developed. These transiti<strong>on</strong>s are c<strong>on</strong>sidered to depend <strong>on</strong> oxygen level in a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold<br />

manner: high oxygen c<strong>on</strong>centrati<strong>on</strong> allows cell proliferati<strong>on</strong>, while c<strong>on</strong>centrati<strong>on</strong><br />

below a certain critical value induces cell migrati<strong>on</strong>. Whenever a moving cell<br />

reaches <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high oxygen level it recruits into proliferati<strong>on</strong>, o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise<br />

it necrotizes.<br />

It is dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at model soluti<strong>on</strong> for localized initial tumour cell distributi<strong>on</strong><br />

tends to autowave soluti<strong>on</strong>. We investigate mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> autowave speed<br />

selecti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> migrati<strong>on</strong>-proliferati<strong>on</strong> dichotomy and compare results<br />

obtained wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at for Kolmogorov-Petrovskii-Piskunov and Fisher (KPP-F) equati<strong>on</strong>s.<br />

It is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at in KPP-F equati<strong>on</strong>s speed is defined by asymptotics at<br />

leading edge <str<strong>on</strong>g>of</str<strong>on</strong>g> autowave (pulled regime). It is dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

c<strong>on</strong>sidered autowave speed is determined by falling edge (pushed regime). The dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumour spreading rate <strong>on</strong> model parameters is obtained. It is shown<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e spreading rate depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen level in tissue in a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold manner.<br />

This work was supported by grants No. 10-01-00289 and 11-01-00392 from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Russian Foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Basic Research.<br />

15:45–16:05<br />

Carsten Mente<br />

Technische Universität Dresden, Center for Informati<strong>on</strong> Services and<br />

High Performance Computing, 01062 Dresden Germany<br />

e-mail: carsten.mente@tu-dresden.de<br />

Andreas Deutsch<br />

Technische Universität Dresden, Center for Informati<strong>on</strong> Services and<br />

High Performance Computing, 01062 Dresden Germany<br />

e-mail: andreas.deutsch@tu-dresden.de<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Cell Dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Individual-based<br />

Lattice-gas Cellular Automata<br />

Malignant tumors can be c<strong>on</strong>sidered as populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a high amount <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic heterogeneity. To model cooperative phenomena<br />

(e.g. cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g>) in interacting cell populati<strong>on</strong>s, lattice-gas cellular automat<strong>on</strong><br />

(LGCA) models are increasingly used. Major advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> LGCA models are<br />

81


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey admit computati<strong>on</strong>ally efficient simulati<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten analytical treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeled problem. However, it has not been possible so far to distinguish<br />

individual biological cells in LGCA models making <str<strong>on</strong>g>th</str<strong>on</strong>g>em unsuitable to model<br />

phenomena where <str<strong>on</strong>g>th</str<strong>on</strong>g>e explicit descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells is required. However,<br />

lattice-gas cellular automata have been successfully applied to model specific tumors<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out specifically c<strong>on</strong>sidering individual cells, e.g. grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma<br />

tumors. N<strong>on</strong>e<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are processes during tumor formati<strong>on</strong> for which a "classical<br />

lattice-gas model" is unsuitable. One such process is <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surrounding<br />

tissue by single tumor cells, a prerequisite for <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis.<br />

We propose an extensi<strong>on</strong> to (classical) lattice-gas cellular automata which allows<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> and tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells. In particular, we derive stochastic<br />

differential equati<strong>on</strong>s (Langevin equati<strong>on</strong>s) corresp<strong>on</strong>ding to specific LGCA<br />

models. The LGCA model toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

Langevin equati<strong>on</strong> allows computati<strong>on</strong>ally efficient simulati<strong>on</strong>s and feasible analytical<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cells.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, our proposed approach facilitates <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual-based<br />

LGCA models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cell-dependent dynamics. This also supports <str<strong>on</strong>g>th</str<strong>on</strong>g>e incorporati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> LGCA models into multi-scale models which c<strong>on</strong>sider processes at sub-cellular<br />

and cellular scales.<br />

We present applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our individual-based LGCA appoach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e following<br />

examples: random walk, adhesi<strong>on</strong>, and collective moti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we use<br />

an individual-based LGCA model to investigate c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue<br />

invasi<strong>on</strong> by single tumor cells.<br />

16:05–16:25<br />

Joanna M. Rodríguez Chrobak<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Castilla - La Mancha, Avda.<br />

Camilo José Cela No. 3, 13071 Ciudad Real, Spain<br />

e-mail: Joanna.Chrobak@uclm.es<br />

Henar Herrero<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Castilla - La Mancha, Avda.<br />

Camilo José Cela No. 3, 13071 Ciudad Real, Spain<br />

e-mail: Henar.Herrero@uclm.es<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> lymphoma as a failure in<br />

maintanance <str<strong>on</strong>g>of</str<strong>on</strong>g> naïve T cell repertoire<br />

We introduce a stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> lymphoma based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitive<br />

exclusi<strong>on</strong> between different cl<strong>on</strong>otypes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e naïve T<br />

cell repertoire [1,2]. Two cl<strong>on</strong>otypes <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells compete wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er and wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cl<strong>on</strong>otypes for survival stimuli provided by pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al cells (APCs) [3,4]. We<br />

assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>otypes is normal and <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er is tumorous. We model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> as a c<strong>on</strong>tinuous-time bivariate Markov process [5]. To model <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumorous cl<strong>on</strong>otype we introduce an augmented rate <str<strong>on</strong>g>of</str<strong>on</strong>g> influx <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

new naïve T cells, descendants <str<strong>on</strong>g>of</str<strong>on</strong>g> mutated stem cells, from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus. We obtain<br />

82


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

a deterministic approximati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic model using Van Kampen’s large<br />

N expansi<strong>on</strong> technique [6] and analyse four cases <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

cl<strong>on</strong>otypes <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> analitically and numerically.<br />

We obtain two possible scenarios, depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e values <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters: ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cl<strong>on</strong>otypes survive in <str<strong>on</strong>g>th</str<strong>on</strong>g>e repertoire or <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>otype <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal T cells<br />

becomes extinct, meanwhile <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>otype <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumorous T cells is maintained,<br />

after achieving some maximum level <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at if <str<strong>on</strong>g>th</str<strong>on</strong>g>e income <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

new T cells from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus is augmented, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumorous cl<strong>on</strong>otype, which<br />

is very competitive, would never be removed from <str<strong>on</strong>g>th</str<strong>on</strong>g>e repertoire; meanwhile <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

normal cl<strong>on</strong>otype could become extinct if it was not specialized enough to compete<br />

effectively for survival stimuli. This result supports <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> mutated<br />

stem cells as <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer, in particular lymphoma. Any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells might<br />

initiate an outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e illness, so as l<strong>on</strong>g as we do not entirely get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mutated stem cells, we can not successfully defeat lymphoma.<br />

References.<br />

[1] E. R. Stirk, C. Molina-París and H. A. van den Berg, Stochastic niche structure and diversity<br />

maintenance in <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell repertoire Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 255 (2008) 237–249.<br />

[2] E. R. Stirk, G. Ly<str<strong>on</strong>g>th</str<strong>on</strong>g>e, H. A. van den Berg and C. Molina-París, Stochastic competitive<br />

exclusi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e naïve T cell repertoire Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology<br />

265 (2010) 396–410.<br />

[3] R. J.De Boer and A. S. Perels<strong>on</strong>, T cell repertoires and competitive exclusi<strong>on</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Biology 169 (1994) 375–390.<br />

[4] A. W. Goldra<str<strong>on</strong>g>th</str<strong>on</strong>g> and M. J. Bevan, Selecting and maintining a diverse t-cell repertoire Nature<br />

402 (1999) 255–262.<br />

[5] L. J. S. Allen, An introducti<strong>on</strong> to stochastic processes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong>s to biology Prentice<br />

Hall (2003).<br />

[6] N. G. Van Kampen, Stochastic processes in physics and chemistry Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>-Holland Pers<strong>on</strong>al<br />

Library (2007).<br />

83


Cancer 7<br />

Saturday, July 2, 14:30, Room: AM5<br />

Chaired by: Vitaly Volpert<br />

14:30–15:00<br />

Gülnihal Meral<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Arts and Sciences<br />

Z<strong>on</strong>guldak Karaelmas University<br />

67100 Z<strong>on</strong>guldak<br />

Turkey<br />

e-mail: gulnihal@karaelmas.edu.tr<br />

Christina Surulescu<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Einsteinstr. 62<br />

48149 Münster<br />

Germany<br />

e-mail: christina.surulescu@uni-muenster.de<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling and Numerical Simulati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat Shock Proteins <strong>on</strong> Tumour Invasi<strong>on</strong><br />

Invasi<strong>on</strong> is a key property <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells; <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey encounter a large variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soluble and substratum-bound factors which can influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e different stages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir migrati<strong>on</strong>. There are at least two mechanisms promoted by such factors:<br />

chemotaxis and haptotaxis. These in turn are influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular dynamics.<br />

In our talk we focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> heat shock proteins (HSP), a class <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

functi<strong>on</strong>ally related proteins whose expressi<strong>on</strong> is enhanced when cells are exposed<br />

to elevated temperature or o<str<strong>on</strong>g>th</str<strong>on</strong>g>er stresses and which have been recently proposed to<br />

influence cancer cell migrati<strong>on</strong>. Our ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model has a multiscale character,<br />

accounting bo<str<strong>on</strong>g>th</str<strong>on</strong>g> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic, intracellular level <strong>on</strong> which <str<strong>on</strong>g>th</str<strong>on</strong>g>ese proteins<br />

are acting and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic level <str<strong>on</strong>g>of</str<strong>on</strong>g> cell populati<strong>on</strong>. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular<br />

matrix and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix degrading enzymes, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>en coupled<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a delay differential equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e HSP dynamics. We propose several different<br />

ways for modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e time lag and perform numerical simulati<strong>on</strong>s in order<br />

to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> our choices <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

85


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:05–15:25<br />

Maciej Mrugala<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurology<br />

e-mail: mmrugala@u.washingt<strong>on</strong>.edu<br />

Kristin Swans<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

e-mail: krae@u.washingt<strong>on</strong>.edu<br />

Addie Bo<strong>on</strong>e<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology<br />

Russell Rockne<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Predicting pseudoprogressi<strong>on</strong> in glioblastoma patients: A<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and clinical perspective<br />

Background: Glioblastoma multiforme (GBM) is a highly invasive primary brain<br />

tumor <str<strong>on</strong>g>th</str<strong>on</strong>g>at diffusely invades <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding normal appearing tissue and yields<br />

short life expectancies despite aggressive treatment. A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemo and<br />

radiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies is <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard <str<strong>on</strong>g>of</str<strong>on</strong>g> care for newly diagnosed GBM. However,<br />

published data estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>at 20%-50% <str<strong>on</strong>g>of</str<strong>on</strong>g> progressive enhancement <strong>on</strong> MRI occurring<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in 12 weeks post chemoradio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> pseudoprogressi<strong>on</strong><br />

(Psp) and does not indicate true progressi<strong>on</strong> (TP) <str<strong>on</strong>g>of</str<strong>on</strong>g> disease. Though many novel<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods and modalities are currently being evaluated to distinguish Psp from TP,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no widely accepted n<strong>on</strong>invasive mechanism to predict Psp in individual<br />

patients.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: A reacti<strong>on</strong>-diffusi<strong>on</strong> model has effectively quantified <str<strong>on</strong>g>th</str<strong>on</strong>g>e net proliferati<strong>on</strong><br />

() and invasti<strong>on</strong> rate (D) (P-I) <str<strong>on</strong>g>of</str<strong>on</strong>g> untreated glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and invasi<strong>on</strong>.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e P-I model as a mechanism to predict which<br />

patents will be more likely to experience pseudoprogressi<strong>on</strong> and true progressive<br />

disease. The pre- and post-chemoradio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy MRI scans <str<strong>on</strong>g>of</str<strong>on</strong>g> 57 patients were reviewed<br />

retrospectively.<br />

Results: Eleven <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 57 patients were clinically c<strong>on</strong>firmed to exhibit pseudoprogressi<strong>on</strong><br />

and 46 patients were c<strong>on</strong>firmed to exhibit true progressi<strong>on</strong>. These<br />

patients were <str<strong>on</strong>g>th</str<strong>on</strong>g>en evaluated based <strong>on</strong> model-generated parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e net migrati<strong>on</strong><br />

(D) and proliferati<strong>on</strong> rates () <str<strong>on</strong>g>of</str<strong>on</strong>g> each patients glioma tumor. Of <str<strong>on</strong>g>th</str<strong>on</strong>g>e 11<br />

Psp patients, 9 (82%) had pretreatment D/1 mm2.<br />

C<strong>on</strong>clusi<strong>on</strong>: A pre-treatment D/rho


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:25–15:45<br />

Arne Traulsen<br />

Evoluti<strong>on</strong>ary Theory Group, Max Planck Institute for Evoluti<strong>on</strong>ary<br />

Biology, Plön, Germany<br />

e-mail: traulsen@evolbio.mpg.de<br />

Jorge M. Pacheco<br />

Departamento de Matemática e Aplicações, Universidade do Minho,Braga,<br />

Portugal<br />

David Dingli<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hematology, Mayo Clinic, Rochester, MN, USA<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> blood diseases and <str<strong>on</strong>g>th</str<strong>on</strong>g>e hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hematopoiesis<br />

Hematopoiesis is a process <str<strong>on</strong>g>th</str<strong>on</strong>g>at is based <strong>on</strong> a hierarchical organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

types, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> stem cells at <str<strong>on</strong>g>th</str<strong>on</strong>g>e very basis <str<strong>on</strong>g>th</str<strong>on</strong>g>at differentiate into more specialized<br />

cells. A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>is process has been proposed<br />

[1]. This hierarchical structure has important effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases,<br />

including blood cancers [2]. For example, it is becoming increasingly clear <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

our bodies harbor numerous mutant cl<strong>on</strong>es <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not give rise to no disease at<br />

all, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong>s are typically associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diseases. The fate <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

mutant cl<strong>on</strong>e will depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e target cell and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness advantage, if any,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong> c<strong>on</strong>fers <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell [3]. In general, we can expect <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>ly a<br />

mutati<strong>on</strong> in a hematopoietic stem cell will give l<strong>on</strong>g-term disease; <str<strong>on</strong>g>th</str<strong>on</strong>g>e same mutati<strong>on</strong><br />

taking place in a cell located more downstream may produce just a ripple in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hematopoietic ocean [4].<br />

References.<br />

[1] D. Dingli, A. Traulsen, and J.M. Pacheco, Compartmental Architecture and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hematopoiesis PLoS One 4 345 (2007).<br />

[2] T. Lenaerts, J.M. Pacheco, A. Traulsen, and D. Dingli, Tyrosine kinase inhibitor <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy can<br />

cure chr<strong>on</strong>ic myeloid leukemia wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out hitting leukemic stem cells Haematologica 95, 900-907<br />

(2010).<br />

[3] A. Traulsen, J.M. Pacheco, D. Dingli, Reproductive fitness advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> BCR-ABL expressing<br />

leukemia cells, Cancer Letters 294 43-48 (2010).<br />

[4] A. Traulsen, J.M. Pacheco, L. Luzzatto, D. Dingli, Somatic mutati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hematopoiesis, BioEssays 32 1003-1008 (2010).<br />

15:45–16:05<br />

Jill Gallaher<br />

e-mail: jill.gallaher@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Alexander R. A. Anders<strong>on</strong><br />

e-mail: alexander.anders<strong>on</strong>@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology,<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center,<br />

12902 Magnolia Dr., Tampa, FL 33612.<br />

87


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Phenotypic inheritance transforms heterogeneity in tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Cell-to-cell variati<strong>on</strong> is seen in almost all aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer from initiati<strong>on</strong> to<br />

invasi<strong>on</strong> and subsequent metastasis. Our current understanding at <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic scale<br />

gives little informati<strong>on</strong> <strong>on</strong> translating to actual changes in cell behavior, which<br />

will ultimately dictate tumor aggressiveness and treatability. Cell behavior can be<br />

described in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic traits, e.g., proliferati<strong>on</strong>, migrati<strong>on</strong>, and apoptosis<br />

rates. Because <str<strong>on</strong>g>th</str<strong>on</strong>g>ese traits vary across a tumor populati<strong>on</strong> a useful way to represent<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em is in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong>s. How traits are passed <strong>on</strong> as cells divide and<br />

compete for space and resources affects how <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait distributi<strong>on</strong>s evolve.<br />

An <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice cellular automata model is built where cells are ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er initiated as<br />

a tight cluster, to simulate a growing tumor mass, or as a dispersed populati<strong>on</strong>, to<br />

represent a cell culture experiment. These initial spatial distributi<strong>on</strong>s give different<br />

outcomes and lead us to questi<strong>on</strong> how heterogeneity in vitro can be translated in<br />

vivo. We combine <str<strong>on</strong>g>th</str<strong>on</strong>g>e model’s trait distributi<strong>on</strong>s, repopulati<strong>on</strong> times, and morphological<br />

features wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biological data to analyze how treatment resistance emerges<br />

and how it might be regulated.<br />

16:05–16:25<br />

Philip Gerlee<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: philip.gerlee@gu.se<br />

Sven Nelander<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: sven.nelander@gu.se<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic switching <strong>on</strong> glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is c<strong>on</strong>tingent <strong>on</strong> numerous intra-cellular and extra-cellular processes,<br />

such as an elevated rate <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferati<strong>on</strong>, evasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis and angiogenesis<br />

[1]. Out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese, proliferati<strong>on</strong> has traditi<strong>on</strong>ally been singled out as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most important, and has generally been <str<strong>on</strong>g>th</str<strong>on</strong>g>e target <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-cancer <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies. Recently,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere has been a growing interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell motility, and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is is especially true in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma, which generally exhibit diffuse<br />

morphologies stemming from <str<strong>on</strong>g>th</str<strong>on</strong>g>e high motility <str<strong>on</strong>g>of</str<strong>on</strong>g> individual glioma cells.<br />

In order to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong>, we propose a 3-dimensi<strong>on</strong>al cellular<br />

automat<strong>on</strong> model, which describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a glioma c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> up 10 6<br />

cells. In accordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e go or grow hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis [2] each cell can be ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er in a<br />

proliferating or motile state. The switching between <str<strong>on</strong>g>th</str<strong>on</strong>g>e states is achieved by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a two-state Markov chain wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in each cell, characterised by two parameters p m ,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> remaining in <str<strong>on</strong>g>th</str<strong>on</strong>g>e motile state, and p p <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding parameter<br />

for proliferati<strong>on</strong>. Simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular automat<strong>on</strong> and by sweeping <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter<br />

88


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotypic switching model we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e most invasive tumours<br />

(i.e. wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e highest grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate) occur at (p m , p p ) ≈ (0.9, 0.9), i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are<br />

characterised by bo<str<strong>on</strong>g>th</str<strong>on</strong>g> proliferative and motile behaviour, and by a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phenotypic persistence. We also find <str<strong>on</strong>g>th</str<strong>on</strong>g>at for each p p ∈ [0, 1] <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a p m ≠ 0 such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate is maximised.<br />

These observati<strong>on</strong>s are in agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental results, where glioma<br />

cell lines wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a lower proliferative capacity have been observed to rise to larger<br />

tumours when implanted in mice [3]. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er it suggest cancer cell motility as a<br />

potential target for <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

References.<br />

[1] Hanahan, D., Weinberg, R., 2000. The hallmarks <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer. Cell 100:57–70.<br />

[2] A. Giese, R. Bjerkvig, M.E. Berens and M Westphal, 2003. Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>: invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

malignant gliomas and implicati<strong>on</strong>s for treatment. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Oncology 8:1624–1636.<br />

[3] R. Chen et al. 2010. A Hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> Self-Renewing Tumor-Initiating Cell Types in Glioblastoma.<br />

Cancer Cell 17:362–375.<br />

89


Cell and Tissue Biophysics 1<br />

Thursday, June 30, 11:30, Room: AM8<br />

Chaired by: Zbigniew Peradzyński<br />

11:30–12:00<br />

Sara Tiburtius<br />

TU Darmstadt<br />

e-mail: tiburtius@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik.tu-darmstadt.de<br />

Quentin Grimal<br />

Laboratoire d’Imagerie Paramétrique, Université Paris 6<br />

e-mail: quentin.grimal@upmc.fr<br />

Ferenc Molnar<br />

Charité - Universitätsmedizin Berlin<br />

e-mail: ferenc-lajos.molnar@charite.de<br />

Kay Raum<br />

Charité - Universitätsmedizin Berlin<br />

e-mail: kay.raum@charite.de<br />

Alf Gerisch<br />

TU Darmstadt<br />

e-mail: gerisch@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik.tu-darmstadt.de<br />

A multiscale model <str<strong>on</strong>g>of</str<strong>on</strong>g> mineralized fibril bundles - a<br />

homogenizati<strong>on</strong> approach<br />

Modeling complex biological tissues like musculoskeletal mineralized tissues (e.g<br />

b<strong>on</strong>e or tend<strong>on</strong>) is a challenging task. These tissues are characterized by <strong>on</strong>e comm<strong>on</strong><br />

building block, <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called mineralized collagen fibril (MCF). Depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue type <str<strong>on</strong>g>th</str<strong>on</strong>g>e fibrils are organized in different pattern across many leng<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

scales. One important aim is to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e elastic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue at a coarser<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scale (effective stiffness) based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure and <str<strong>on</strong>g>th</str<strong>on</strong>g>e material properties<br />

at a finer scale. This can be achieved using homogenizati<strong>on</strong>.<br />

Most homogenizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective stiffness based <strong>on</strong> different<br />

structural assumpti<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>e finer scale and achieve hence different estimates. The<br />

choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore a crucial part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model definiti<strong>on</strong>. We analyze<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different homogenizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, i.e. self-c<strong>on</strong>sistent me<str<strong>on</strong>g>th</str<strong>on</strong>g>od,<br />

Mori-Tanaka and asymptotic homogenizati<strong>on</strong>, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective stiffness estimates<br />

using a simple collagen-mineral material. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results we build up a<br />

multiscale model for mineralized fibril bundles as present in mineralized tend<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese fibril bundles <str<strong>on</strong>g>th</str<strong>on</strong>g>e MCFs are aligned in parallel and additi<strong>on</strong>al stiffness is<br />

91


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

achieved by extrafibrillar mineralizati<strong>on</strong>. We apply <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to experimental data<br />

from circumferential tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mineralized turkey leg tend<strong>on</strong> (MTLT) assessed<br />

by Scanning Acoustic Microscopy.<br />

Our stiffness estimates are in very good agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data.<br />

The experimental studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e MTLT also revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is tissue exhibits (besides<br />

circumferential tissue) ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er fine structure: loosely packed fibril bundles<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high porosity (interstitial tissue). Its specific porous structure needs to be<br />

incorporated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er homogenizati<strong>on</strong> step.<br />

12:05–12:25<br />

Vladimir Zubkov<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: vladimir.s.zubkov@gmail.com<br />

Chris Breward<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Eam<strong>on</strong>n Gaffney<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Hyperosmolarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tear film in dry eye syndrom.<br />

The biophysical factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at dictate hyperosmolarity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed patterns<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tear film break-up in dry eye are poorly understood and are difficult to interrogate<br />

experimentally, highlighting <str<strong>on</strong>g>th</str<strong>on</strong>g>e need for ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and computati<strong>on</strong>al<br />

modelling in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field. We have examined a model incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polar lipids overlying an aqueous layer, while tracking <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osmolarity.<br />

Our strategic objective was to identify factors which may influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> developing or exacerbating dry eye as well as exploring how such factors differ<br />

between evaporative dry eye and aqueous tear deficient dry eye. In particular, we<br />

focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solute c<strong>on</strong>centrati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single blink<br />

and interblink. Our ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model tracks <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aqueous layer,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polar lipid, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solute.<br />

Firstly, we have observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at tear film osmolarity is very sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e evaporati<strong>on</strong><br />

rate, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> salt c<strong>on</strong>centrati<strong>on</strong>s readily exceeding irritati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>resholds when using<br />

dry eye parameters. The results also highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> in reducing<br />

osmolar stress in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> black lines during <str<strong>on</strong>g>th</str<strong>on</strong>g>e interblink. N<strong>on</strong>e<str<strong>on</strong>g>th</str<strong>on</strong>g>eless,<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese regi<strong>on</strong>s diffusi<strong>on</strong> is not sufficient to prevent potentially damaging osmolarities,<br />

especially as <str<strong>on</strong>g>th</str<strong>on</strong>g>e evaporati<strong>on</strong> rate is increased (c<strong>on</strong>stituting evaporative dry<br />

eye) or <str<strong>on</strong>g>th</str<strong>on</strong>g>e tear volume is decreased (i.e. aqueous deficient dry eye). Simulati<strong>on</strong>s<br />

also indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at saccades (rapid eye movements) could have a positive effect <strong>on</strong><br />

osmolarities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e black lines.<br />

12:25–12:45<br />

92


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Jan Fuhrmann<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Universität Heidelberg<br />

e-mail: jan.fuhrmann@uni-hd.de<br />

Angela Stevens<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Universität Münster;<br />

formerly Universität Heidelberg<br />

e-mail: stevens@mis.mpg.de<br />

On a parabolic model for particle alignment<br />

In [1] we proposed a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> <strong>on</strong> cell polarizati<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e first<br />

steps <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular moti<strong>on</strong>. Now, numerical simulati<strong>on</strong>s indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shocks in <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equati<strong>on</strong>s which may be interpreted as fr<strong>on</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

active barbed ends <str<strong>on</strong>g>of</str<strong>on</strong>g> actin filaments being established in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell.<br />

The original model included <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> actin m<strong>on</strong>omers and filaments<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out taking into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutual alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter. In order to understand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aligning filaments we deduced from <str<strong>on</strong>g>th</str<strong>on</strong>g>e given model a simple<br />

parabolic system describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oriented particles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fixed velocity,<br />

undergoing diffusi<strong>on</strong> and mutual alignment. This system, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> no more<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an two equati<strong>on</strong>s, may be used to model different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> aligning particles, e.g.<br />

myxobacteria.<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>is model we analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e totally symmetric state which<br />

corresp<strong>on</strong>ds to a n<strong>on</strong> polarized cell against small perturbati<strong>on</strong>s. Here, <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> alignment terms will be discussed. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore derive<br />

traveling wave soluti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e system and show how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey emerge numerically from<br />

small initial data. We will <str<strong>on</strong>g>th</str<strong>on</strong>g>us observe polarizati<strong>on</strong> fr<strong>on</strong>ts developing from an<br />

initially almost symmetric state.<br />

References.<br />

[1] J. Fuhrmann, J. Käs, A. Stevens, Initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoskeletal asymmetry for cell polarizati<strong>on</strong><br />

and movement. J Theor Biol 249.2 278–288.<br />

12:45–13:05<br />

Kyriaki Giorgakoudi<br />

Institute for Animal Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Pirbright Laboratory, Ash Road,<br />

Surrey, GU24 0NF, UK<br />

e-mail: Kyriaki.Giorgakoudi@bbsrc.ac.uk, K.Giorgakoudi@lboro.ac.uk<br />

Sim<strong>on</strong> Gubbins<br />

Institute for Animal Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Pirbright Laboratory, Ash Road,<br />

Surrey, GU24 0NF, UK<br />

e-mail: Sim<strong>on</strong>.Gubbins@bbsrc.ac.uk<br />

John Ward<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Loughborough University,<br />

Leicestershire, LE11 3TU, UK<br />

e-mail: John.Ward@lboro.ac.uk<br />

Zhid<strong>on</strong>g Zhang<br />

93


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Nati<strong>on</strong>al Centre for Foreign Animal Disease, Canadian Food<br />

Inspecti<strong>on</strong> Agency, 1015 Arlingt<strong>on</strong> Street, Winnipeg, MB, R3E 3M4,<br />

Canada<br />

e-mail: Zhid<strong>on</strong>g.Zhang@inspecti<strong>on</strong>.gc.ca<br />

David Schley<br />

Institute for Animal Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Pirbright Laboratory, Ash Road,<br />

Surrey, GU24 0NF, UK<br />

e-mail: David.Schley@bbsrc.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease virus<br />

infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells.<br />

Foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease (FMD) is a highly infectious animal disease <str<strong>on</strong>g>th</str<strong>on</strong>g>at affects<br />

cloven ho<str<strong>on</strong>g>of</str<strong>on</strong>g>ed animals (including cattle, sheep and pigs) and causes acute clinical<br />

signs such as vesicular lesi<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e foot and mou<str<strong>on</strong>g>th</str<strong>on</strong>g>, lameness, fever and pain; in<br />

more severe cases it can lead to dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> young livestock. In areas where FMD is<br />

endemic, it is c<strong>on</strong>sidered to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e main <str<strong>on</strong>g>th</str<strong>on</strong>g>reat to animal heal<str<strong>on</strong>g>th</str<strong>on</strong>g> and ec<strong>on</strong>omic development,<br />

while an outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> FMD in 2001 in <str<strong>on</strong>g>th</str<strong>on</strong>g>e United Kingdom, a disease-free<br />

country, resulted in 6.5 milli<strong>on</strong> animals being slaughtered and losses <str<strong>on</strong>g>of</str<strong>on</strong>g> £6 billi<strong>on</strong>.<br />

Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> FMD virus (FMDV) occurs in previously infected but apparently<br />

recovered animals, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pharyngeal area, specifically in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal s<str<strong>on</strong>g>of</str<strong>on</strong>g>t palate [1].<br />

These carrier animals are a possible source <str<strong>on</strong>g>of</str<strong>on</strong>g> virus transmissi<strong>on</strong>, and potentially<br />

facilitate viral mutati<strong>on</strong>s. In additi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> FMDV, <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus appears<br />

not to cause lysis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal s<str<strong>on</strong>g>of</str<strong>on</strong>g>t palate, even <str<strong>on</strong>g>th</str<strong>on</strong>g>ough lesi<strong>on</strong>s appears <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e t<strong>on</strong>gue and cor<strong>on</strong>ary band.<br />

Presented in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model which aims to test <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at it is <str<strong>on</strong>g>th</str<strong>on</strong>g>e different structure <str<strong>on</strong>g>of</str<strong>on</strong>g> epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells, ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e intrinsic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e t<strong>on</strong>gue and dorsal s<str<strong>on</strong>g>of</str<strong>on</strong>g>t palate <str<strong>on</strong>g>th</str<strong>on</strong>g>at determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent <str<strong>on</strong>g>of</str<strong>on</strong>g> FMDV lysis. A<br />

simple ODE compartmental model <str<strong>on</strong>g>of</str<strong>on</strong>g> Schley et al (2010) [2] c<strong>on</strong>sidered static live<br />

cells and indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial tissues in <str<strong>on</strong>g>th</str<strong>on</strong>g>e t<strong>on</strong>gue and<br />

dorsal s<str<strong>on</strong>g>of</str<strong>on</strong>g>t palate are important for cell lysis and FMDV persistence. Here, <str<strong>on</strong>g>th</str<strong>on</strong>g>is has<br />

been extended to a spatially explicit system <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial layers <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> tissue types. The model<br />

accounts for <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <str<strong>on</strong>g>th</str<strong>on</strong>g>rough grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and includes heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell layers which form <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium. New experimental data, required to fit<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model, has been collected and applied, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> existing results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

literature. We will present numerical results from a limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, relevant<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e timescale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e early infecti<strong>on</strong> stages before <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se becomes<br />

effective and discuss key insights. A full active system which accounts for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lesi<strong>on</strong>s is work in progress.<br />

References.<br />

[1] S. Alexandersen, Z. Zhang, A. I. D<strong>on</strong>alds<strong>on</strong>, and A. J. M. Garland, The pa<str<strong>on</strong>g>th</str<strong>on</strong>g>o- genesis and<br />

diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Comparative Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology 129 1–36.<br />

[2] D. Schley, J. Ward, and Z. Zhang, Modelling foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease virus dynamics in<br />

oral epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium to help identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> lysis. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology<br />

http://dx.doi.org/10.1007/s11538-010-9576-6 11–26.<br />

94


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

13:05–13:25<br />

Tracy Stepien<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

e-mail: tls52@pitt.edu<br />

David Swig<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

Stretch-dependent proliferati<strong>on</strong> in a <strong>on</strong>e-dimensi<strong>on</strong>al elastic<br />

c<strong>on</strong>tinuum model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell layer migrati<strong>on</strong><br />

Collective cell migrati<strong>on</strong> plays an important role in maintaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e cohesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell layers and wound healing. Disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> can cause<br />

disease such as necrotizing enterocolitis, an intestinal inflammatory disease <str<strong>on</strong>g>th</str<strong>on</strong>g>at is<br />

a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> dea<str<strong>on</strong>g>th</str<strong>on</strong>g> in premature infants. A recently developed ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell layer migrati<strong>on</strong> during experimental necrotizing enterocolitis based <strong>on</strong><br />

an assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elastic deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell layer leads to a generalized Stefan<br />

problem. The model is here extended to incorporate stretch-dependent proliferati<strong>on</strong>,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting PDE system is solved analytically and numerically. The<br />

efficiency and accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive finite difference and MOL schemes for numerical<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem are compared. We find a large class <str<strong>on</strong>g>of</str<strong>on</strong>g> assumpti<strong>on</strong>s about<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferati<strong>on</strong> <strong>on</strong> stretch <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to traveling wave soluti<strong>on</strong>s.<br />

95


Cell and Tissue Biophysics 2 / Neurosciences<br />

3<br />

Friday, July 1, 14:30, Room: AM5<br />

Chaired by: Zbigniew J. Grzywna<br />

14:30–15:00<br />

Keng-Hwee Chiam<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Performance Computing, Singapore<br />

e-mail: chiamkh@ihpc.a-star.edu.sg<br />

F<strong>on</strong>g Yin Lim<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Performance Computing, Singapore<br />

e-mail: limfy@ihpc.a-star.edu.sg<br />

L. Mahadevan<br />

Havard University, USA<br />

Bleb Statics, Dynamics, Adaptati<strong>on</strong> and Directed Cell<br />

Migrati<strong>on</strong><br />

Cellular blebs are spherical cell membrane protrusi<strong>on</strong>s powered by cytoplasmic flow.<br />

To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular blebs, we develop a quantitative model to<br />

study how a bleb develops when a porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane detaches from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying cortex. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, we calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimum cytoplasmic<br />

pressure and minimum unsupported membrane leng<str<strong>on</strong>g>th</str<strong>on</strong>g> for a bleb to nucleate and<br />

grow. We also show how a bleb may travel around <str<strong>on</strong>g>th</str<strong>on</strong>g>e periphery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. We find<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e traveling speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bleb is governed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure pulse<br />

induced by local cortical c<strong>on</strong>tracti<strong>on</strong> and we c<strong>on</strong>struct a phase diagram for bleb<br />

existence and moti<strong>on</strong>. Finally, we propose a bleb-based mechanism for directed<br />

migrati<strong>on</strong> during chemotaxis based <strong>on</strong> adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> blebbing. This<br />

adaptati<strong>on</strong> is shown to be robust and is insensitive to perturbati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters.<br />

15:05–15:25<br />

Adelle Coster<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> New Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Wales, Australia<br />

e-mail: A.Coster@unsw.edu.au<br />

97


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling Insulin Acti<strong>on</strong> <strong>on</strong> Glucose Transporters<br />

The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin to a cell causes membrane-embedded glucose transporter<br />

proteins to be transported to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell surface. An experimental technique <str<strong>on</strong>g>th</str<strong>on</strong>g>at is<br />

ideally suited to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>is dynamic process is total internal reflecti<strong>on</strong> microscopy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> single cells, where fluorescent markers are attached to <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecules<br />

and movements recorded. To create s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware capable <str<strong>on</strong>g>of</str<strong>on</strong>g> annotating <str<strong>on</strong>g>th</str<strong>on</strong>g>e recordings<br />

automatically, ideal ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models are required. Features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models and<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware are outlined and compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biological recordings.<br />

15:25–15:45<br />

Alina Toma<br />

Andreas Mang<br />

Tina A. Schütz<br />

Stefan Becker<br />

Thorsten M. Buzug<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Luebeck, Ratzeburger<br />

Allee 160, 23538 Lübeck, Germany<br />

e-mail: {toma,buzug}@imt.uni-luebeck.de<br />

Philipp-Niclas Pfenning, Wolfgang Wick<br />

Clinical Cooperati<strong>on</strong> Unit Neuro<strong>on</strong>cology, German Cancer Research<br />

Center Heidelberg and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neuro<strong>on</strong>cology, University<br />

Hospital Heidelberg, Germany<br />

A Nutrient-Quided Chemotaxis-Haptotaxis Approach for<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Cells<br />

We propose a hybrid c<strong>on</strong>tinuum-discrete model to simulate nutrient-guided malignant<br />

brain tumor cell invasi<strong>on</strong>. The lattice-based spatio-temporal model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree reacti<strong>on</strong>–diffusi<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe interacti<strong>on</strong>s between cancer cells,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix (ECM) and nutrients. In additi<strong>on</strong> to random diffusi<strong>on</strong> and<br />

haptotactic movement, <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells is directed towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e gradient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusible nutrients as oxygen and glucose [3], which is referred to as<br />

chemotaxis. As for <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial migratory resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

cells to <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor angiogenic factors and <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix macromolecule<br />

fibr<strong>on</strong>ectin [2], we model a system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear partial differential equati<strong>on</strong>s. While<br />

[1] focuses <strong>on</strong> tumor cell adhesi<strong>on</strong>, we model bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECM and, additi<strong>on</strong>ally, by <str<strong>on</strong>g>th</str<strong>on</strong>g>e attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher nutrient<br />

c<strong>on</strong>centrati<strong>on</strong>s. Moreover, we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at every cell is able to push a neighboring<br />

cell <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same size towards an empty site.<br />

Simulati<strong>on</strong> studies show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental invitro<br />

invasi<strong>on</strong> results as regards <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor interacting<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECM. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model realizing<br />

simulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> varying arrangements <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient delivering blood vessels.<br />

98<br />

References.


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] A.R.A. Anders<strong>on</strong>, A hybrid ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> solid tumour invasi<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cell adhesi<strong>on</strong>, 2005 Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Med. and Biol. 22(2) 163–186.<br />

[2] A.R.A. Anders<strong>on</strong>, M.A.J. Chaplain, C<strong>on</strong>tinuous and Discrete Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tumour-Induced Angiogenesis, 1998 Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 60 857–899.<br />

[3] Y. Mansury, M. Kimura, J. Lobo, T.S. Deisboeck, Emerging Patterns in Tumor Systems:<br />

Simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Multicellular Clusters wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an Agent-based Spatial Agglomerati<strong>on</strong><br />

Model, 2002 J. <str<strong>on</strong>g>th</str<strong>on</strong>g>eor. Biol. 219 343–370.<br />

15:45–16:05<br />

E.N. Spanou<br />

Democritus University <str<strong>on</strong>g>of</str<strong>on</strong>g> Thrace, Xan<str<strong>on</strong>g>th</str<strong>on</strong>g>i, Greece<br />

e-mail: ispanou@ee.du<str<strong>on</strong>g>th</str<strong>on</strong>g>.gr<br />

A.G. Rigas<br />

Democritus University <str<strong>on</strong>g>of</str<strong>on</strong>g> Thrace, Xan<str<strong>on</strong>g>th</str<strong>on</strong>g>i, Greece<br />

e-mail: rigas@ee.du<str<strong>on</strong>g>th</str<strong>on</strong>g>.gr<br />

V.G. Vassiliadis<br />

Democritus University <str<strong>on</strong>g>of</str<strong>on</strong>g> Thrace, Xan<str<strong>on</strong>g>th</str<strong>on</strong>g>i, Greece<br />

e-mail: bvasil@ee.du<str<strong>on</strong>g>th</str<strong>on</strong>g>.gr<br />

The identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a neuroelectric system in <str<strong>on</strong>g>th</str<strong>on</strong>g>e time and<br />

frequency domain when an alpha stimulati<strong>on</strong> is present<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a neuroelectric system, called muscle spindle,<br />

is studied when it is affected by an alpha mot<strong>on</strong>eur<strong>on</strong> (alpha stimulati<strong>on</strong>). The<br />

muscle spindle is an element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neuromuscular system and plays an important<br />

role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> movement and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e posture. The<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e muscle spindle and <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulus imposed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e mot<strong>on</strong>eur<strong>on</strong> are<br />

sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> potentials and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are c<strong>on</strong>sidered as realizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stati<strong>on</strong>ary point processes. A frequency and a time domain approach has been<br />

employed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency domain, <str<strong>on</strong>g>th</str<strong>on</strong>g>e muscle spindle can be described by a Volterra<br />

- type model involving <strong>on</strong>e input and <strong>on</strong>e output. Spectral analysis techniques <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stati<strong>on</strong>ary point processes are applied in order to estimate two important functi<strong>on</strong>s,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e coherence coefficient and <str<strong>on</strong>g>th</str<strong>on</strong>g>e impulse resp<strong>on</strong>se. The linear relati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system and <str<strong>on</strong>g>th</str<strong>on</strong>g>e input is described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coherence<br />

coefficient, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impulse resp<strong>on</strong>se functi<strong>on</strong> provides <str<strong>on</strong>g>th</str<strong>on</strong>g>e best<br />

linear predictor for <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e input.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e time domain approach <str<strong>on</strong>g>th</str<strong>on</strong>g>e input and <str<strong>on</strong>g>th</str<strong>on</strong>g>e output <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system can<br />

also be c<strong>on</strong>sidered as binary time series and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> generalized<br />

linear models (GLM) can be applied. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach is based <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system’s parameters can be obtained by using <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

maximum likelihood functi<strong>on</strong>. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum<br />

likelihood estimates since <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-complete separati<strong>on</strong> occurs.<br />

To overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem an approach based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e penalized likelihood functi<strong>on</strong><br />

is used, which provides an ideal soluti<strong>on</strong> and it is computati<strong>on</strong>ally much faster<br />

compared to <str<strong>on</strong>g>th</str<strong>on</strong>g>e M<strong>on</strong>te Carlo me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>th</str<strong>on</strong>g>at has been already used. The stochastic<br />

99


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

model which is proposed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system involves <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e summati<strong>on</strong> functi<strong>on</strong>. The estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e summati<strong>on</strong> functi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> great<br />

interest as it describes whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is excitatory or inhibitory. A validity<br />

test for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitted model based <strong>on</strong> randomized quantile residuals is proposed. The<br />

validity test is transformed to a goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit test and <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> Q-Q plot is also<br />

discussed.<br />

The estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impulse resp<strong>on</strong>se functi<strong>on</strong> indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e system accelerates<br />

for 1–2 ms shortly after <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alpha mot<strong>on</strong>eur<strong>on</strong>, is blocked for<br />

about 30 ms and after <str<strong>on</strong>g>th</str<strong>on</strong>g>at does not change. Similar results are obtained by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e summati<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e GLM.<br />

References.<br />

[1] D.R. Brillinger, K.A. Lindsay, J.R. Rosenberg, 2009. Combining frequency and time domain<br />

approaches to systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple spike train input Biological Cybernetics 100 459–474.<br />

[2] D. Fir<str<strong>on</strong>g>th</str<strong>on</strong>g>, 1993. Bias reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum likelihood estimates Biometrika 80(1) 27–38.<br />

[3] G. Heinze, M. Schemper, 2003. A soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> in logistic regressi<strong>on</strong><br />

Statistics in Medicine 21(16) 2409–2419.<br />

[4] V.K. Kotti, A.G. Rigas, 2003. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a complex neurophysiological system using <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

maximum likelihood J. Biological Systems 11(2) 189–243.<br />

[5] V.K. Kotti, A.G. Rigas, 2008. A M<strong>on</strong>te Carlo Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od Used for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Muscle<br />

Spindle In: A. Deutsch et al. (Eds) Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, Volume II,<br />

Birkhauser, Bost<strong>on</strong>, 237–243.<br />

[6] A.G. Rigas, P. Liatsis, 2000. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a neuroelectric system involving a single input<br />

and a single output Signal Processing 80(9) 1883–1894.<br />

16:05–16:25<br />

Massimiliano Tamborrino<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Universitetsparken<br />

5, DK 2100, Copenhagen, Denmark.<br />

e-mail: mt@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

Susanne Ditlevsen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Universitetsparken<br />

5, DK 2100, Copenhagen, Denmark.<br />

e-mail: susanne@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

Petr Lansky<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Czech Republic,<br />

142 20 Prague 4, Czech Republic<br />

e-mail: lansky@biomed.cas.cz<br />

Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first-spike latency<br />

Resp<strong>on</strong>se latency is <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> a stimulus and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se.<br />

In neurosciences, it is <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e first-spike latency, i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

intertime between <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> a stimulus and <str<strong>on</strong>g>th</str<strong>on</strong>g>e first-resp<strong>on</strong>se spike. However,<br />

when sp<strong>on</strong>taneous activity is observed, <str<strong>on</strong>g>th</str<strong>on</strong>g>is task becomes more complicated. To<br />

deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem, we apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od introduced recently by Lansky<br />

et al. [1]. Some preliminary analysis <strong>on</strong> real data as well as some <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

results <strong>on</strong> Wiener processes are here presented.<br />

100


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] P. Lansky et al. (2010), First-spike latency in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous activity, Neural<br />

Computati<strong>on</strong> 22, 1675–1697.<br />

101


Cell and Tissue Biophysics 3<br />

Saturday, July 2, 11:00, Room: AM5<br />

Chaired by: Keng-Hwee Chiam<br />

11:00–11:30<br />

Z.J. Grzywna<br />

P. Borys<br />

M. Krasowska<br />

P. Pawełek<br />

Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics and Biophysics, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical<br />

Chemistry and Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Silesian<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Gliwice, Poland<br />

e-mail: Zbigniew.Grzywna@polsl.pl<br />

Role and activity <str<strong>on</strong>g>of</str<strong>on</strong>g> some chosen voltage-gated K+ and Na+<br />

channels ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> and analyses.<br />

I<strong>on</strong> channels play crucial role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical impulses,<br />

particularly in nerve and muscle cells. Channels are integral proteins immersed in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells lipid bilayer, which itself has usually poor i<strong>on</strong>ic permeati<strong>on</strong>. Channels<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ird order structure creates a transmembrane pore a passage for i<strong>on</strong>s. As comes<br />

out from experiments, permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>rough channels fluctuates in time, and<br />

is determine by varying structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e channel. Modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ic flux is called<br />

gating, which may be driven by different stimuli like chemical species or variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electric potential. It is interesting <str<strong>on</strong>g>th</str<strong>on</strong>g>at even if channel is subjected to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stant,<br />

positive transmembrane voltage <str<strong>on</strong>g>th</str<strong>on</strong>g>at should keep it open, its permeability decreases<br />

after short time channel inactivati<strong>on</strong>. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>an clear <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e voltage gating is not<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly <strong>on</strong>e mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> gating present in i<strong>on</strong> channels. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we will discuss,<br />

so called ball and chain model <str<strong>on</strong>g>of</str<strong>on</strong>g> inactivati<strong>on</strong> addressed to potassium Shaker<br />

channel [1-3]. Polypeptide ball a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e channels protein <str<strong>on</strong>g>th</str<strong>on</strong>g>at is resp<strong>on</strong>sible<br />

for inactivati<strong>on</strong>, is treaded as a Brownian particle te<str<strong>on</strong>g>th</str<strong>on</strong>g>ered <strong>on</strong> polypeptide chain.<br />

Its wandering was described by means <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> (parabolic and hyperbolic operators)<br />

[4,5]. First passage time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ball was calculated and compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

experimental data [2]. Sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e paper is devoted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e sodium channel<br />

activity in rat prostate cancer cells as well as human breast cancer cells. Fractal<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods were used to analyze quantitative differences in secretory membrane activities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two rat prostate cancer cell lines (Mat-LyLu and AT-2) <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g and weak<br />

metastatic potential, respectively [6]. Each cells endocytic activity was determined<br />

103


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

by horseradish peroxidase uptake. Digital images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicular staining<br />

were evaluated by multifractal analyses: generalized fractal dimensi<strong>on</strong> (Dq)<br />

and its Legendre transform f(a), as well as partiti<strong>on</strong>ed iterated functi<strong>on</strong> system<br />

semifractal (PIFS-SF) analysis. These approaches revealed c<strong>on</strong>sistently <str<strong>on</strong>g>th</str<strong>on</strong>g>at, under<br />

c<strong>on</strong>trol c<strong>on</strong>diti<strong>on</strong>s, all multifractal parameters and PIFS-SF codes determined<br />

had values greater for Mat-LyLu compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> AT-2 cells. This would agree generally<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endocytic/vesicular activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e str<strong>on</strong>gly metastatic Mat-LyLu<br />

cells being more developed <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding weakly metastatic AT-2 cells.<br />

All <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters studied were sensitive to tetrodotoxin (TTX) pre-treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells, which blocked voltage-gated Na+ channels (VGSCs). Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters<br />

had a simple dependence <strong>on</strong> VGSC activity, whereby pre-treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> TTX<br />

reduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e values for <str<strong>on</strong>g>th</str<strong>on</strong>g>e MAT-LyLu cells and eliminated <str<strong>on</strong>g>th</str<strong>on</strong>g>e differences between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e two cell lines. For o<str<strong>on</strong>g>th</str<strong>on</strong>g>er parameters, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere was a complex dependence<br />

<strong>on</strong> VGSC activity. The possible physical/physiological meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

parameters studied and <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> VGSC activity in c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> endocytosis/ secreti<strong>on</strong> are discussed. Basically, <str<strong>on</strong>g>th</str<strong>on</strong>g>e same sort <str<strong>on</strong>g>of</str<strong>on</strong>g> approach had<br />

been used to analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e endocytic membrane activities <str<strong>on</strong>g>of</str<strong>on</strong>g> two human breast cancer<br />

cell lines (MDA-MB-231 and MCF-7) <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g and weak metastatic potential,<br />

respectively, were studied in a comparative approach [7]. Uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> horseradish<br />

peroxidase was used to follow endocytosis. Dependence <strong>on</strong> i<strong>on</strong>ic c<strong>on</strong>diti<strong>on</strong>s and<br />

voltage-gated sodium channel (VGSC) activity were characterized. Fractal me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

were used to analyze quantitative differences in vesicular patterning. Digital<br />

quantificati<strong>on</strong> showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at MDA-MB-231 cells took up more tracer (i.e., were more<br />

endocytic) <str<strong>on</strong>g>th</str<strong>on</strong>g>an MCF-7 cells. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e former, uptake was totally dependent <strong>on</strong><br />

extracellular Na+ and partially dependent <strong>on</strong> extracellular and intracellular Ca2+<br />

and protein kinase activity. Analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e generalized fractal dimensi<strong>on</strong> (D(q )) and<br />

its Legendre transform f(alpha) revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at under c<strong>on</strong>trol c<strong>on</strong>diti<strong>on</strong>s, all multifractal<br />

parameters determined had values greater for MDA-MB-231 compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

MCF-7 cells, c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> endocytic/vesicular activity being more developed in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e str<strong>on</strong>gly metastatic cells. All fractal parameters studied were sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

VGSC blocker tetrodotoxin (TTX). Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters had a "simple" dependence<br />

<strong>on</strong> VGSC activity, if present, whereby pretreatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> TTX reduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

values for <str<strong>on</strong>g>th</str<strong>on</strong>g>e MDA-MB-231 cells and eliminated <str<strong>on</strong>g>th</str<strong>on</strong>g>e differences between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

cell lines. For o<str<strong>on</strong>g>th</str<strong>on</strong>g>er parameters, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere was a "complex" dependence <strong>on</strong><br />

VGSC activity. The possible physical/physiological meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

parameters studied and <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> VGSC activity in c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

endocytosis/secreti<strong>on</strong> are discussed.<br />

References.<br />

[1] K.Małysiak, P.Borys, Z.J.Grzywna, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e ball and chain model by simple and hyperbolic<br />

diffusi<strong>on</strong> - an analytical approach, Acta Physica Pol<strong>on</strong>ica B, 5, (2007)<br />

[2] K.Małysiak, Z.J.Grzywna, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ball and chain model <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> channel inactivati<strong>on</strong>, Cellular and Molecular Biology Letters, 13,<br />

535 - 552 (2008)<br />

[3] K. Małysiak, Z. J. Grzywna, Electrostatic interacti<strong>on</strong>s during Kv1.2 N-type inactivati<strong>on</strong>: random<br />

walk simulati<strong>on</strong>, <str<strong>on</strong>g>European</str<strong>on</strong>g> Biophysics Journal 38, 1003 (2009)<br />

[4] P. Borys, Z. J. Grzywna, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e recovery from inactivati<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e chain in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ball and chain<br />

model, Cellular and Molecular Biology Letters, 13, 526-534 (2008)<br />

[5] A. Wawrzkiewicz, K.Pawelek, P.Borys, B. Dworakowska, Z.J. Grzywna, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e random walk<br />

model s<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e BK i<strong>on</strong> channel kinetics, Physical Biology -submitted<br />

104


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[6] M. Krasowska, Z.J. Grzywna, M.E. Mycielska, M.B.A. Djamgoz, Patterning <str<strong>on</strong>g>of</str<strong>on</strong>g> endocytic vesicles<br />

and its c<strong>on</strong>trol by voltage - gated Na+ channel activity in rat prostate cancer cells: fractal<br />

analyses , Eur.Biophys. J., 33, 535, (2004)<br />

[7] M. Krasowska, Z. J. Grzywna, M. E. Mycielska, M. B. A. Djamgoz, Fractal analysis and i<strong>on</strong>ic<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> endocytic membrane activity <str<strong>on</strong>g>of</str<strong>on</strong>g> human breast cancer cells. <str<strong>on</strong>g>European</str<strong>on</strong>g> Biophysics<br />

Journal, 38, 1115 (2009)<br />

11:35–11:55<br />

Z<str<strong>on</strong>g>of</str<strong>on</strong>g>ia J<strong>on</strong>es<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, Nottingham, NG7<br />

2RD, UK<br />

e-mail: pmxzj1@nottingham.ac.uk<br />

Helfrich Energy Model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Phagocytosis <str<strong>on</strong>g>of</str<strong>on</strong>g> a Fibre<br />

CNTs are a form <str<strong>on</strong>g>of</str<strong>on</strong>g> High Aspect Ratio Nanoparticles (HARN). Their radius is<br />

typically <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly a few nanometres (10 −9 ) while <str<strong>on</strong>g>th</str<strong>on</strong>g>eir leng<str<strong>on</strong>g>th</str<strong>on</strong>g> can be <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e micr<strong>on</strong><br />

scale (10 −6 ). Their shape has been found to make <str<strong>on</strong>g>th</str<strong>on</strong>g>eir removal from <str<strong>on</strong>g>th</str<strong>on</strong>g>e lung<br />

surface <strong>on</strong> inhalati<strong>on</strong> by macrophages especially difficult. This is widely regarded<br />

as a key mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicity [1] [2]. Frustrated phagocytosis leads to scarring<br />

and granuloma formati<strong>on</strong> which impairs <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lung.<br />

Following <str<strong>on</strong>g>th</str<strong>on</strong>g>e precendent set by Helfrich and Deuling [3] [4], <str<strong>on</strong>g>th</str<strong>on</strong>g>e free energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a cell membrane is taken to be given by<br />

∫<br />

∫ ∫<br />

F = ∆ p + λ + (mean curvature − c 0 ) 2<br />

V<br />

} {{ }<br />

S<br />

}{{}<br />

S<br />

} {{ }<br />

Volume Energy Surface Energy Helfrich Energy<br />

The Helfrich energy was introduced in [3] to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

cell membrane <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular shape. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred to as <str<strong>on</strong>g>th</str<strong>on</strong>g>e bending energy.<br />

The sp<strong>on</strong>taneous curvature c 0 takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell<br />

membrane due to proteins in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lipid bilayer and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong>.<br />

For a given set <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane is<br />

found by solving <str<strong>on</strong>g>th</str<strong>on</strong>g>e associated Euler-Lagrange equati<strong>on</strong>s. The topology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

surface is restricted to <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> a surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong> around an axis which is taken<br />

to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e axis <str<strong>on</strong>g>of</str<strong>on</strong>g> a fibre. Due to singularities in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese Euler-Lagrange equati<strong>on</strong>s,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e problem is a boundary value problem ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an an initial value problem.<br />

The soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is energy minimisati<strong>on</strong> problem in [4] corresp<strong>on</strong>d to soluti<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g> a vanishing radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell <strong>on</strong> a fibre problem. Boundary c<strong>on</strong>diti<strong>on</strong>s<br />

specific to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell <strong>on</strong> a fibre problem are introduced. These boundary c<strong>on</strong>diti<strong>on</strong>s<br />

can be chosen to ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first variati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e free<br />

energy are set to zero. They can also be chosen to fix <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact angle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

membrane wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fibre surface.<br />

It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a lipid membrane which has successfully engulfed<br />

a particle will be energetically stable, in order to c<strong>on</strong>serve <str<strong>on</strong>g>th</str<strong>on</strong>g>e limited resources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a macrophage. This does not take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy required to remodel<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell to reach <str<strong>on</strong>g>th</str<strong>on</strong>g>is shape. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e bending energy<br />

105


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cell membranes <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing leng<str<strong>on</strong>g>th</str<strong>on</strong>g> can be used to suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy required in <str<strong>on</strong>g>th</str<strong>on</strong>g>is dynamical process.<br />

References.<br />

[1] G. Oberdörster, V. St<strong>on</strong>e and K. D<strong>on</strong>alds<strong>on</strong>, Toxicology <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoparticles: A historical perspective<br />

Nanotoxicology 1 2–25, 2007.<br />

[2] K. D<strong>on</strong>alds<strong>on</strong> et al, Carb<strong>on</strong> nanotubes: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir properties in relati<strong>on</strong> to pulm<strong>on</strong>ary<br />

toxicology and workplace safety Toxicological Sciences 92 5–22,2006.<br />

[3] W. Helfrich, Elastic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid bilayers: Theory and possible experiments, 28 Z. Naturforsch<br />

693–703, 1973.<br />

[4] H.J. Deuling and W. Helfrich, The curvature elasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid membranes: A catalogue <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vesicle shapes J. Phys. France 37 1335-1345, 1976<br />

11:55–12:15<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an F. Li<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Irvine<br />

e-mail: j<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an.li@smes.org<br />

John Lowengrub<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Irvine<br />

e-mail: lowengrb@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.uci.edu<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Compressibility, Motility and C<strong>on</strong>tact<br />

Inhibiti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Cell Clusters<br />

We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong>, compressi<strong>on</strong>, and c<strong>on</strong>tact inhibiti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cell clusters using <str<strong>on</strong>g>th</str<strong>on</strong>g>e Cellular Potts Model (CPM) in a m<strong>on</strong>olayer<br />

geometry. Cell proliferati<strong>on</strong>, motility, cell-to-cell adhesi<strong>on</strong>, c<strong>on</strong>tact inhibiti<strong>on</strong>, and<br />

cell compressibility are incorporated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at increased motility<br />

has a direct effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters. Cell lines wi<str<strong>on</strong>g>th</str<strong>on</strong>g> greater motility<br />

overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>e attractive forces <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-to-cell adhesi<strong>on</strong> and have more space to proliferate.<br />

We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between cell motility and compressibility wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e CPM, and find <str<strong>on</strong>g>th</str<strong>on</strong>g>at more motile cells are generally smaller <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>eir more<br />

sedentary counterparts, which can lead to smaller clusters. We obtain an explicit<br />

inverse-relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell compressibility and motility parameters and<br />

use <str<strong>on</strong>g>th</str<strong>on</strong>g>is relati<strong>on</strong>ship to compensate for motility-induced cell compressi<strong>on</strong>. Clusters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> motile cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not experience significant compressi<strong>on</strong> grow faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> less motile cells. In additi<strong>on</strong>, c<strong>on</strong>tact inhibiti<strong>on</strong> amplifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

motility. Strict c<strong>on</strong>tact inhibiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e CPM penalizes clumped cells by halting<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, giving motile cells a greater advantage. We have begun testing our<br />

model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> in vitro data obtained from a collaborator and our model is reflective<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data.<br />

12:15–12:35<br />

106


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Uduak George<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, Bright<strong>on</strong>, BN1 9QH,<br />

UK<br />

e-mail: ude20@sussex.ac.uk<br />

Angélique Stéphanou<br />

IN3S, Faculté de Médecine de Grenoble, 38706 La Tr<strong>on</strong>che cedex,<br />

France<br />

e-mail: angelique.stephanou@imag.fr<br />

Anotida Madzvamuse<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, Bright<strong>on</strong>, BN1 9QH,<br />

UK<br />

e-mail: a.madzvamuse@sussex.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell membrane<br />

deformati<strong>on</strong>s as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> actin dynamics<br />

Actin is a molecule <str<strong>on</strong>g>th</str<strong>on</strong>g>at exists in two different forms which can be m<strong>on</strong>omeric as<br />

globular actin (G-actin) or assembled into <str<strong>on</strong>g>th</str<strong>on</strong>g>e polar filamentous form (F-actin).<br />

It resides in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cytoskelet<strong>on</strong> and plays an important role in c<strong>on</strong>trolling cell<br />

motility and maintaining cell shape [3]. Cell motility c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous highly<br />

coordinated events which involve a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical kinetics and physical<br />

forces, transport and movements <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer protein network interacting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

vast number <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er proteins. These events can be treated ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically by combining<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuum mechanics and biochemical kinetics [2]. These models<br />

have proven to be useful for decoding cell motility processes [1]. The model we c<strong>on</strong>sider<br />

is a system <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a force balance equati<strong>on</strong> and a reacti<strong>on</strong>-diffusi<strong>on</strong><br />

equati<strong>on</strong> describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical properties and biochemical kinetic <str<strong>on</strong>g>of</str<strong>on</strong>g> actin respectively.<br />

We solve <str<strong>on</strong>g>th</str<strong>on</strong>g>e model equati<strong>on</strong>s by use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e moving grid finite element<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od whose key advantage is in its ability to treat moving boundary problems<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pr<strong>on</strong>ounced curvature and is very beneficial in <str<strong>on</strong>g>th</str<strong>on</strong>g>e accurate representati<strong>on</strong><br />

and approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. Assuming slow domain evoluti<strong>on</strong> we<br />

validate <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical results by comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e finite element soluti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

predicted by linear stability <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical scheme computes<br />

spatially inhomogeneous steady state soluti<strong>on</strong>s which coincides wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose predicted<br />

by linear stability <str<strong>on</strong>g>th</str<strong>on</strong>g>eory close to bifurcati<strong>on</strong> points [4].<br />

Far away from instability, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is able to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular<br />

actin dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting shapes and movements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane.<br />

In particular, by varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure coefficient and <str<strong>on</strong>g>th</str<strong>on</strong>g>e measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tractile<br />

t<strong>on</strong>icity parameter, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model behaviour gives uniform expansi<strong>on</strong>s, c<strong>on</strong>tracti<strong>on</strong>s<br />

and irregular deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell centre staying mostly<br />

unchanged in <str<strong>on</strong>g>th</str<strong>on</strong>g>e majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cases c<strong>on</strong>sidered. The model also allow us to<br />

compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e actin distributi<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity where large deformati<strong>on</strong>s occur and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e results we obtain are found to be c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose observed experimentally.<br />

References.<br />

[1] C. Franco, T. Tzvetkova-Chevolleau and A. Stéphanou, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Discrete Adhesive<br />

Patterns for Cell Shape and Motility: A Computati<strong>on</strong>al Approach Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Model. Nat. Phenom.<br />

(2010), 5(1):56-83.<br />

[2] Alex Mogilner, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> cell motility: have we got its number J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. (2009),<br />

58:105-134.<br />

107


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] Ville O. Paavilainen, Enni Bertling, Sandra Falck and Pekka Lappalainen, Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoskeletal<br />

dynamics by actin-m<strong>on</strong>omer-binding proteins Trends in Cell Biology (2004), 14(7):<br />

386-394.<br />

[4] Uduak George, Angélique Stéphanou and Anotida Madzvamuse, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling and<br />

Numerical Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Actin Dynamics in an Eukaryotic cell. In preparati<strong>on</strong>.<br />

12:35–12:55<br />

Robert Bauer<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois at Urbana-Champaign<br />

e-mail: rbauer13@illinois.edu<br />

A queueing <str<strong>on</strong>g>th</str<strong>on</strong>g>eory model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> microtubules<br />

and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments<br />

Dynamic features <str<strong>on</strong>g>of</str<strong>on</strong>g> microtubules and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments are essential to cell divisi<strong>on</strong>,<br />

cell motility, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cellular processes. ATP-bound m<strong>on</strong>omeric actin and GTPbound<br />

tubulin polymerize to actin filaments and microtubules, respectively. After<br />

assembly into polymers, nucleotide hydrolysis occurs, which can lead to a change<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>- and <str<strong>on</strong>g>of</str<strong>on</strong>g>f-rates at <str<strong>on</strong>g>th</str<strong>on</strong>g>e polymer ends. A simple stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> such a<br />

polymer from nucleati<strong>on</strong> until complete depolymerizati<strong>on</strong> is presented. The model<br />

assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a sharp boundary between <str<strong>on</strong>g>th</str<strong>on</strong>g>e “newer” part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polymer<br />

c<strong>on</strong>taining <strong>on</strong>ly ATP-bound actin—<str<strong>on</strong>g>th</str<strong>on</strong>g>e ATP cap (GTP cap in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> tubulin),<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e “older” part, where all nucleotides have underg<strong>on</strong>e hydrolysis. The ATP<br />

cap and GTP cap are modeled as a single-server queue wi<str<strong>on</strong>g>th</str<strong>on</strong>g> reneging, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

server rate (rate <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotide hydrolysis) plus <str<strong>on</strong>g>th</str<strong>on</strong>g>e reneging rate (<str<strong>on</strong>g>of</str<strong>on</strong>g>f-rate at plus<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> filament) exceeds <str<strong>on</strong>g>th</str<strong>on</strong>g>e arrival rate (<strong>on</strong>-rate at plus end <str<strong>on</strong>g>of</str<strong>on</strong>g> filament). Coupled<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>is queue is ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er single server queue <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire<br />

filament and whose arrival and reneging rate switch between two regimes depending<br />

<strong>on</strong> whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e ATP cap has disappeared (first server empty) or not. The model exhibits<br />

dynamic instability and treadmilling for proper choice <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrolysis rate and<br />

<strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f-rates at polymer ends. Analytic expressi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e life<br />

time and leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong>s are presented<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir fit to experimental data discussed.<br />

108


Cellular Systems Biology 1<br />

Tuesday, June 28, 14:30, Room: AM7<br />

Chaired by: Evgenii Volkov<br />

14:30–15:00<br />

Peter Buske<br />

Interdisciplinary Center for Bioinformatics, Leipzig University<br />

e-mail: buske@izbi.uni-leipzig.de<br />

Markus Loeffler<br />

Interdisciplinary Center for Bioinformatics, Leipzig University<br />

e-mail: markus.loeffler@imise..uni-leipzig.de<br />

Joerg Galle<br />

Interdisciplinary Center for Bioinformatics, Leipzig University<br />

e-mail: galle@izbi.uni-leipzig.de<br />

Modelling in vitro crypt formati<strong>on</strong><br />

In vitro cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> intestinal tissue have been tried for decades. Only recently<br />

Sato and co-workers succeeded in establishing organoid cultures from single cells [1].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cultures intestinal cells expressing <str<strong>on</strong>g>th</str<strong>on</strong>g>e stem cell marker Lgr5 form cryptlike<br />

structures similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose found in vivo. The mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at underlie <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese spatially-organised structures are currently a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> debate.<br />

We here present a 3D biophysical model <str<strong>on</strong>g>of</str<strong>on</strong>g> de novo crypt formati<strong>on</strong> in vitro. The<br />

model builds <strong>on</strong> an individual cell-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> crypt dynamics recently published<br />

by us [2]. We extended <str<strong>on</strong>g>th</str<strong>on</strong>g>is model by introducing a flexible basal membrane. This<br />

membrane can be reorganised by cells showing active matrix metabolism.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, shape changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal membrane result from a feedback<br />

loop between its curvature and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wnt-activity <str<strong>on</strong>g>of</str<strong>on</strong>g> adherent cells. Thereby, increased<br />

Wnt-activity increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong> streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>us, forces<br />

local shape changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal membrane. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crypt-like structures wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is model depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e elasticity and stiffness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basal membrane and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong> properties and matrix metabolisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

different cell types.<br />

We suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed mechanism to be a principal <strong>on</strong>e in epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial gland<br />

formati<strong>on</strong>.<br />

References.<br />

[1] T. Sato, Single Lgr5 stem cells build crypt-villus structures in vitro wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out a mesenchymal<br />

niche. Nature 459(7244):262-51–2.<br />

109


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] P. Buske, A comprehensive model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal stem cell and tissue organisati<strong>on</strong> in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal crypt. PLoS Comput Biol. 7(1): e1001045.<br />

15:05–15:25<br />

Maik Kschischo<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences Koblenz, RheinAhrCampus, Remagen,<br />

Germany, D-53424<br />

e-mail: kschischo@rheinahrcampus.de<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Kahm<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences Koblenz, RheinAhrCampus, Remagen,<br />

Germany, D-53424<br />

e-mail: kahm@rheinahrcampus.de<br />

Clara Navarrete<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enborg, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell- and Molecular Biology,<br />

Medicinaregatan 9C, Box 462 SE 405 30, Sweden<br />

e-mail: b92naroc@uco.es<br />

José Ramos<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cordoba, Avenida Menendes Pidal, 14071 Cordoba, Spain<br />

e-mail: mi1raruj@uco.es<br />

Actuators <str<strong>on</strong>g>of</str<strong>on</strong>g> yeast potassium homeostasis<br />

Potassium is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most abundant cati<strong>on</strong> in living cells and is involved in a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> essential cellular processes including translati<strong>on</strong>, endocytosis and even cell<br />

cycle regulati<strong>on</strong>. Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> external and internal K + c<strong>on</strong>centrati<strong>on</strong>s change <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

membrane potential required for <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules across <str<strong>on</strong>g>th</str<strong>on</strong>g>e plasma membrane,<br />

affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e pH and osmolarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosol and induce changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

volume [1]. Metabolic decarboxylati<strong>on</strong> processes release CO 2 , which affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pH, <str<strong>on</strong>g>th</str<strong>on</strong>g>e bicarb<strong>on</strong>ate c<strong>on</strong>centrati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e prot<strong>on</strong> buffer capacity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e potassium<br />

transport [2].<br />

To gain a deeper understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex interplay between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese variables<br />

we developed an ordinary differential equati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium c<strong>on</strong>trol in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e yeast Saccharomyces cerevisiae. The basic model covers <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamic<br />

c<strong>on</strong>straints <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major potassium transport systems and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

prot<strong>on</strong> ATPase Pma1. Regulati<strong>on</strong> mechanisms where <strong>on</strong>ly partly included as many<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em are ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er unknown or not sufficiently characterized. This basic model<br />

qualitatively reproduces known aspects such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e hyperpolarisati<strong>on</strong> in trk1,2∆<br />

mutants and potassium starved cells, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e potassium uptake energized by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Pma1 driven prot<strong>on</strong> extrusi<strong>on</strong>.<br />

To make quantitative predicti<strong>on</strong>s we calibrated <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to potassium starvati<strong>on</strong><br />

experiments given in [3]. For cells grown in a medium wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high K + and shifted<br />

to K + free medium, a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular K + c<strong>on</strong>tent and cell volume was<br />

measured. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e external potassium drop occurs in minutes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e internal K +<br />

is slowly reduced during several hours.<br />

110


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The regulatory c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various transport systems under potassium starvati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s is not well understood. To identify potential c<strong>on</strong>trol mechanisms<br />

and points <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s we regarded <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental time course K + data<br />

(t) as a<br />

signal which has to be tracked by <str<strong>on</strong>g>th</str<strong>on</strong>g>e model K + sim (t). More precisely, we determined<br />

a time dependent input functi<strong>on</strong> p(t) <str<strong>on</strong>g>th</str<strong>on</strong>g>at solves <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimizati<strong>on</strong> problem<br />

(1)<br />

|| K + sim (p(t), θ, t) − K+ data<br />

(t) || = Min .<br />

Each transport protein or any o<str<strong>on</strong>g>th</str<strong>on</strong>g>er comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model for which such an<br />

input functi<strong>on</strong> exists was regarded as a potential actuator for potassium c<strong>on</strong>trol.<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e prot<strong>on</strong> pump Pma1 and <str<strong>on</strong>g>th</str<strong>on</strong>g>e (ii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e CO 2 system are <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most likely actuators <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium homeostasis. In additi<strong>on</strong>, we found evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

yeast cells sense external potassium ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an internal potassium, what is also<br />

supported experimentally. To dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> our predicti<strong>on</strong>s we<br />

successfully designed a modified PI-c<strong>on</strong>troller which reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental<br />

time courses <str<strong>on</strong>g>of</str<strong>on</strong>g> internal potassium. This PI c<strong>on</strong>troller mimics <str<strong>on</strong>g>th</str<strong>on</strong>g>e unknown details <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

signalling and gene expressi<strong>on</strong> changes required for <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> homeostasis.<br />

In summary, we present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model which provides testable predicti<strong>on</strong>s<br />

about unknown regulatory mechanisms necessary for homeostatic c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potassium in S. cerevisiae. We also believe <str<strong>on</strong>g>th</str<strong>on</strong>g>at our tracking approach to ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling has general applicability. It is a versatile strategy to detect<br />

unmodeled dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir points <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>.<br />

References.<br />

[1] J. Ariño, J. Ramos, H. Sychrová, Alkali metal cati<strong>on</strong> transport and homeostasis in yeasts<br />

FEMS Yeast Research 74 95–120.<br />

[2] R. Lopéz, E. Enríquez, A. Peña, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> weak acids <strong>on</strong> cati<strong>on</strong> accumulati<strong>on</strong>, ∆pH and ∆ψ<br />

in yeast YEAST, 15 553–562.<br />

[3] C. Navarrete et al., Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> main K + uptake systems in Saccharomyces cerevisiae cells affects<br />

yeast performance in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> potassium-sufficient and potassium-limiting c<strong>on</strong>diti<strong>on</strong> FEMS Yeast<br />

Research 10 508–517.<br />

15:25–15:45<br />

Max Sajitz-Hermstein and Zoran Nikoloski<br />

Systems Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling Group<br />

Max-Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, 14476 Potsdam,<br />

Germany<br />

e-mail: sajitz@mpimp-golm.mpg.de<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Biochemical reacti<strong>on</strong> networks meet Coaliti<strong>on</strong>al Game<br />

Theory: The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> not being single<br />

A fundamental questi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> complex biological networks is how to<br />

determine which comp<strong>on</strong>ents (e.g. reacti<strong>on</strong>s) are most important regarding specific<br />

functi<strong>on</strong>. Virtually all existing approaches for establishing <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

reacti<strong>on</strong> in a biological network are based <strong>on</strong> vitality-like indices. The importance<br />

111


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a reacti<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>en specified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> its removal, emulating single knockout<br />

experiments in biology. However, such technique neglects topological features, like<br />

bypassing pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways, which are crucial for network robustness. Coaliti<strong>on</strong>al game<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory provides a framework for extending <str<strong>on</strong>g>th</str<strong>on</strong>g>e vitality-like indices by c<strong>on</strong>sidering<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single network elements wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to all <str<strong>on</strong>g>of</str<strong>on</strong>g> its interacti<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network, based purely <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network topology. Here we propose a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

combining cooperative game <str<strong>on</strong>g>th</str<strong>on</strong>g>eory wi<str<strong>on</strong>g>th</str<strong>on</strong>g> flux balance analysis, a standard technique<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks. We employ <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to rank reacti<strong>on</strong>s<br />

in metabolic networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to a biologic functi<strong>on</strong>, in particular biomass<br />

producti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> a novel approach for<br />

determining network robustness to changes imposed by gene knock-outs.<br />

15:45–16:05<br />

Robert Heise and Zoran Nikoloski<br />

Systems Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling group, Max-Planck Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, Postdam, Germany<br />

e-mail: heise@mpimp-golm.mpg.de<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Extensi<strong>on</strong>s to Kinetic Flux Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluxes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central carb<strong>on</strong> metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana<br />

Determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary and transient behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks is<br />

tightly coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> quantitative descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic states, characterized by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> fluxes and metabolite c<strong>on</strong>centrati<strong>on</strong>s. Despite recent<br />

progress in me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for estimating <str<strong>on</strong>g>th</str<strong>on</strong>g>e flux distributi<strong>on</strong>s in a metabolic network<br />

based <strong>on</strong> 13 C labeled metabolomics data, <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing approaches ultimately rely <strong>on</strong><br />

precise stoichiometry, atomic mappings, and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> data for all metabolites<br />

participating <str<strong>on</strong>g>th</str<strong>on</strong>g>e analyzed biochemical reacti<strong>on</strong>s. Kinetic Flux Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling (KPF) is<br />

a recently proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for determining reacti<strong>on</strong> fluxes based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e washout<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e unlabeled fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a metabolite pool and is described mass-acti<strong>on</strong>-like<br />

differential equati<strong>on</strong> model [1,2]. However, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out substantial assumpti<strong>on</strong>s, KPF<br />

is applicable <strong>on</strong>ly to linear pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

Here we propose an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> KPF based <strong>on</strong> simulated annealing <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> branched and circular pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Our approach does not rely <strong>on</strong> atomic<br />

maps, and can efficiently utilize <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-resolved distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> isotopomers to<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluxes in an experimentally studied metabolic network. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

proposed approach, we quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e flux distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e central carb<strong>on</strong> metabolism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-resolved isotopomoer data over<br />

60 minutes for 16 metabolites toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>eir subcellular<br />

localizati<strong>on</strong>. We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e findings due to partial data inclusi<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> metabolites and different time scales. In additi<strong>on</strong>,<br />

we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e employed data can be used to<br />

discriminate between different models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying metabolic network.<br />

112


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] J. Yuan, W.U. Fowler, E. Kimball, W. Lu, J.D. Rabinowitz (2006) Kinetic flux pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen assimilati<strong>on</strong> in Escherichia coli Nat. Chem. Biol. 2 529–530.<br />

[2] J. Yuan, B.D. Bennett, J.D. Rabinowitz (2008) Kinetic flux pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling for quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cellular metabolic fluxes Nat. Prot. 1 1328–1340.<br />

16:05–16:25<br />

Fabien Crauste<br />

Institut Camille Jordan UMR 5208, Université Claude Bernard Ly<strong>on</strong><br />

1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France;<br />

INRIA Team Dracula, INRIA Center Grenoble Rh<strong>on</strong>e-Alpes<br />

e-mail: crauste@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Multiscale Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Red Blood Cell Producti<strong>on</strong> using<br />

C<strong>on</strong>tinuous and Hybrid Models<br />

This presentati<strong>on</strong> will be devoted to multiscale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> and regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> red blood cells. It lies up<strong>on</strong><br />

works recently published [1, 2, 3, 4], in collaborati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> N. Bess<strong>on</strong><strong>on</strong>v (Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering Problems, St Petersburg, Russia), I. Demin (Novartis<br />

Pharma, Basel, Switzerland), O. Gandrill<strong>on</strong> (University Ly<strong>on</strong> 1, France), S. Genieys<br />

(INSA de Toulouse, France), P. Kurbatova (University Ly<strong>on</strong> 1), S. Fisher (INSA de<br />

Ly<strong>on</strong>, France), L. Pujo-Menjouet (University Ly<strong>on</strong> 1) and V. Volpert (University<br />

Ly<strong>on</strong> 1, France), wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e INRIA Team Dracula (Ly<strong>on</strong>, France).<br />

Ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis is a complex process, involving cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different maturities,<br />

from very immature stem cells to circulating mature red blood cells. It is regulated<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular level and at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell populati<strong>on</strong> scale. We propose<br />

two complementary approaches for a multiscale model <str<strong>on</strong>g>of</str<strong>on</strong>g> ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis [1, 2, 4],<br />

in which we describe toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er ery<str<strong>on</strong>g>th</str<strong>on</strong>g>roid progenitor (immature red cells) dynamics<br />

and intracellular regulatory network <str<strong>on</strong>g>th</str<strong>on</strong>g>at determines ery<str<strong>on</strong>g>th</str<strong>on</strong>g>roid cell fate. The intracellular<br />

regulati<strong>on</strong> model is based <strong>on</strong> several proteins inhibiting and activating<br />

<strong>on</strong>e an o<str<strong>on</strong>g>th</str<strong>on</strong>g>er, under external acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at influence <str<strong>on</strong>g>th</str<strong>on</strong>g>eir producti<strong>on</strong>.<br />

The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese proteins will decide <str<strong>on</strong>g>of</str<strong>on</strong>g> cell self-renewal, differentiati<strong>on</strong> or<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g> by apoptosis. Ery<str<strong>on</strong>g>th</str<strong>on</strong>g>roid progenitors dynamics are ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er described wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

individual-based model as discrete elements [1] or wi<str<strong>on</strong>g>th</str<strong>on</strong>g> structured models, ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

compartmental models (systems <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s) [2, 4] or partial<br />

differential equati<strong>on</strong>s [3]. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cases, n<strong>on</strong>linearities are c<strong>on</strong>sidered in <str<strong>on</strong>g>th</str<strong>on</strong>g>e models<br />

to account for cell fate regulati<strong>on</strong>.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous models is performed and simulati<strong>on</strong>s are carried out<br />

to c<strong>on</strong>fr<strong>on</strong>t <str<strong>on</strong>g>th</str<strong>on</strong>g>e models to experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g> anemia (blood loss). The IBM is<br />

also c<strong>on</strong>fr<strong>on</strong>ted to experimental data, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is allows c<strong>on</strong>cluding <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e roles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

different feedback c<strong>on</strong>trols and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> such models, in order to provide<br />

more insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis.<br />

References.<br />

113


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] N. Bess<strong>on</strong>ov, F. Crauste, S. Fisher, P. Kurbatova, V. Volpert (2010) Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hybrid<br />

Models to Blood Cell Producti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e B<strong>on</strong>e Marrow, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Model Nat Phenom 6 (7). DOI:<br />

10.1051/mmnp/20116701<br />

[2] F. Crauste, I. Demin, O. Gandrill<strong>on</strong>, V. Volpert (2010) Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical study <str<strong>on</strong>g>of</str<strong>on</strong>g> feedback c<strong>on</strong>trol<br />

roles and relevance in stress ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis, J Theo Biol 263 (3), 303–316.<br />

[3] F. Crauste, L. Pujo-Menjouet, S. Genieys, C. Molina, O. Gandrill<strong>on</strong> (2008) Adding Self-<br />

Renewal in Committed Ery<str<strong>on</strong>g>th</str<strong>on</strong>g>roid Progenitors Improves <str<strong>on</strong>g>th</str<strong>on</strong>g>e Biological Relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> a Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis, J Theo Biol 250, 322–338.<br />

[4] I. Demin, F. Crauste, O. Gandrill<strong>on</strong>, V. Volpert (2010) A multi-scale model <str<strong>on</strong>g>of</str<strong>on</strong>g> ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis,<br />

J Biol Dynamics 4 (1), 59–70.<br />

114


Cellular Systems Biology 2<br />

Tuesday, June 28, 17:00, Room: AM7<br />

Chaired by: Jörg Galle<br />

17:00–17:30<br />

Zoltan Neufeld<br />

UCD Dublin<br />

e-mail: zoltan.neufeld@ucd.ie<br />

Luca Cer<strong>on</strong>e<br />

UCD Dublin<br />

Javier Munoz-Garcia<br />

UCD Dublin<br />

Integrating multiple signals into cell decisi<strong>on</strong>s by a network<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protein modificati<strong>on</strong> cycles<br />

Cell resp<strong>on</strong>ses to internal and external stimuli are governed by protein interacti<strong>on</strong>s.<br />

The enzymatic activity and biological functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins is modulated<br />

by reversible post-translati<strong>on</strong>al modificati<strong>on</strong>s such as phosphorylati<strong>on</strong>, acetylati<strong>on</strong>,<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong>, ubiquitinati<strong>on</strong>, sumoylati<strong>on</strong>, etc. Here we present a general model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reversible protein modificati<strong>on</strong>s and show <str<strong>on</strong>g>th</str<strong>on</strong>g>at such system can integrate multiple<br />

input signals into digital-like resp<strong>on</strong>ses, representing robust cellular decisi<strong>on</strong>s. C<strong>on</strong>sequently,<br />

proteins modified by multiple enzymes can functi<strong>on</strong> as complex switches,<br />

playing a similar role in cellular informati<strong>on</strong> processing as neur<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain. We<br />

develop an analytical approach for c<strong>on</strong>structing <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> such systems<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein modificati<strong>on</strong> network, determining how switching<br />

between distinct resp<strong>on</strong>ses take place. This me<str<strong>on</strong>g>th</str<strong>on</strong>g>od can be applied to a broad class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protein modificati<strong>on</strong> systems and provides an alternative to numerical approaches<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at give limited insight when <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown parameters is large.<br />

17:35–17:55<br />

Daniel Damineli<br />

PhD Program in Computati<strong>on</strong>al Biology - Instituto Gulbenkian de<br />

Ciências; Instituto de Tecnologia Química e Biológica - Universidade<br />

Nova de Lisboa<br />

115


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

e-mail: damineli@itqb.unl.pt<br />

Andreas Bohn<br />

Instituto de Tecnologia Química e Biológica<br />

Minimal modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> two-oscillator circadian systems under<br />

c<strong>on</strong>flicting envir<strong>on</strong>mental cues<br />

Multiple coupled oscillators have been presumed to c<strong>on</strong>stitute <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many organisms. In some cases <str<strong>on</strong>g>th</str<strong>on</strong>g>e different oscillators are driven by<br />

diverse envir<strong>on</strong>mental cues (zeitgebers), as suggested by <str<strong>on</strong>g>th</str<strong>on</strong>g>e light- versus foodentrainable<br />

oscillators in mice and <str<strong>on</strong>g>th</str<strong>on</strong>g>e light- versus temperature-entrainable oscillators<br />

in Drosophila. In order to survey <str<strong>on</strong>g>th</str<strong>on</strong>g>e spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>th</str<strong>on</strong>g>at could emerge<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potentially c<strong>on</strong>flicting zeitgebers wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a multi-oscillator circadian<br />

system, we assume a minimal model c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> two mutually coupled<br />

oscillators, each being exclusively driven by a periodic envir<strong>on</strong>mental signal. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

we represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian system by 2 mutually coupled phase oscillators<br />

[1], A and B, each wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an arbitrary individual period. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e two envir<strong>on</strong>mental<br />

signals are assumed to have <str<strong>on</strong>g>th</str<strong>on</strong>g>e same period (24 h) and are <strong>on</strong>ly separated by a<br />

phase shift DELTA, <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment can be represent by a <str<strong>on</strong>g>th</str<strong>on</strong>g>ird phase oscillator,<br />

which is unidirecti<strong>on</strong>ally coupled to oscillators A and B, respectively, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

DELTA being reflected in a delayed coupling to oscillator B. Performing numerical<br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DELTA, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental<br />

and intra-oscillator coupling streng<str<strong>on</strong>g>th</str<strong>on</strong>g>, rich dynamic behavior like bistability and<br />

hysteresis, as well as loss <str<strong>on</strong>g>of</str<strong>on</strong>g> entrainment and quasi-periodicity is observable. Our<br />

study provides insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e putative coupling network required<br />

to maintain <str<strong>on</strong>g>th</str<strong>on</strong>g>e organism in a stable phase-relati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment, even<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e face <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tradictory signals. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, our results can indicate appropriate<br />

experimental strategies to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> inter-oscillator coupling<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative zeitgeber streng<str<strong>on</strong>g>th</str<strong>on</strong>g>, which have been performed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e past, but<br />

mostly lacked guidelines for correct design and interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results. We<br />

finally compare our minimal model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a more complex model, using limit-cycle<br />

oscillators [2], showing <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e principal dynamics are not altered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e inclusi<strong>on</strong><br />

or exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more details.<br />

References.<br />

[1] Kuramoto, Y. (1984) Chemical oscillati<strong>on</strong>s, waves and turbulence. Springer-Verlag, Berlin,<br />

DE.<br />

[2] Oda, G.A. and Friesen, W.O. (2002) A model for splitting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e running wheel activity in<br />

hamsters. J. Biol. Rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms 17(1): 76-88.<br />

17:55–18:15<br />

Tetsuya J. Kobayashi<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial Science, <str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo.<br />

e-mail: tetsuya@mail.crmind.net<br />

116


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Noise-Induced Symmetry-Breaking Underlies Reliable and<br />

Flexible Cellular Decisi<strong>on</strong>-Making<br />

All-or-n<strong>on</strong>e decisi<strong>on</strong>-making by a cell such as differentiati<strong>on</strong> and apoptosis is tightly<br />

linked to symmetry-breaking in intracellular networks. The underlying mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such symmetry-breaking has been c<strong>on</strong>sidered to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic bifurcati<strong>on</strong><br />

generated by positive feedback loops. By c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcated attractors by external inputs, it can also implement<br />

various cellular functi<strong>on</strong>s such as hysteresis, irreversibility, and historydependent<br />

memory. Waddingt<strong>on</strong> expressed its importance for development in a<br />

metaphor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e famous epigenetic landscape, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e fate <str<strong>on</strong>g>of</str<strong>on</strong>g> each cell is<br />

gradually determined in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape <str<strong>on</strong>g>of</str<strong>on</strong>g> potential whose complexity increases<br />

during development. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic bifurcati<strong>on</strong> has already been accepted<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally observed symmetry-breaking, it<br />

has rarely been proven experimentally because <str<strong>on</strong>g>th</str<strong>on</strong>g>e bistability is <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic<br />

c<strong>on</strong>cept and we cannot completely eliminate noise from biological systems. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e bistable attractor lacks <str<strong>on</strong>g>th</str<strong>on</strong>g>e property to flexibly produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e distinctive<br />

outputs according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e subtle external guidance signal. This indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bistable attractor is not <str<strong>on</strong>g>th</str<strong>on</strong>g>e best dynamical behavior to implement <str<strong>on</strong>g>th</str<strong>on</strong>g>e flexible<br />

decisi<strong>on</strong>-making while it is better to reinforce and memorize <str<strong>on</strong>g>th</str<strong>on</strong>g>e determined decisi<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, I reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>at a noise-induced symmetry-breaking, ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> symmetry-breaking in a noisy system, can also produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e distinctive outputs<br />

required for cellular decisi<strong>on</strong>-making. Such noise-induced property is shown<br />

to have <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> to flexibly resp<strong>on</strong>d to <str<strong>on</strong>g>th</str<strong>on</strong>g>e external guidance signal even wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

substantial noise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e signal. The underlying logic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is flexibility is revealed to<br />

be <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bayesian informati<strong>on</strong> decoding <str<strong>on</strong>g>th</str<strong>on</strong>g>at optimally extracts <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e noisy signal. The biological validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e noise-induced symmetry-breaking<br />

and Bayesian informati<strong>on</strong> decoding will be dem<strong>on</strong>strated by using various cellular<br />

phenomena such as signal transducti<strong>on</strong>, immune-resp<strong>on</strong>se and polarity formati<strong>on</strong>.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, I propose an experimental procedure to discriminate <str<strong>on</strong>g>th</str<strong>on</strong>g>e noiseinduced<br />

symmetry-breaking from <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic bifurcati<strong>on</strong> by using single-cell<br />

time-lapse measurement. This result will serve to experimentally investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

noise-induced symmetry-breaking and <str<strong>on</strong>g>th</str<strong>on</strong>g>e related Bayesian informati<strong>on</strong> processing<br />

by a cell.<br />

References.<br />

[1] T.J. Kobayashi, Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynamic Bayesian Decisi<strong>on</strong> Making by Intracellular Kinetics<br />

Physical Review Letters 104, 228104, 2010.<br />

[2] T.J. Kobayashi & A. Kamimura, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Intracellular Informati<strong>on</strong> Decoding submitted,<br />

2011.<br />

18:15–18:35<br />

Adam Makuchowski<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: adam.makuchowski@polsl.pl<br />

117


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

mgr Adam Makuchowski<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

dr inż. Pokrzywa Rafał<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr hab. inż. Polaski Andrzej<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Discovering motifs in DNA sequences<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e important aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular biology is to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex<br />

mechanisms regulating a gene expressi<strong>on</strong>. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e steps in <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> exploring<br />

regulatory mechanisms is discovering regulatory motifs <str<strong>on</strong>g>th</str<strong>on</strong>g>at influence gene<br />

expressi<strong>on</strong>. Gene expressi<strong>on</strong> is transformed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factors<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding binding sites. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> presented algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m is<br />

to detect <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>servative motifs in DNA sequences, in order to identify regulatory<br />

sites.<br />

New algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m is presented in <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> new motifs<br />

in a set <str<strong>on</strong>g>of</str<strong>on</strong>g> related regulatory DNA sequences and also in genome-wide search. This<br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m uses a heuristic approach based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> suffix trie. For representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> motif sequences, we used a positi<strong>on</strong> specific scoring matrices (PSSMs),<br />

which are widely used for <str<strong>on</strong>g>th</str<strong>on</strong>g>is purpose. In additi<strong>on</strong>, two approaches have been<br />

examined: c<strong>on</strong>sidering prior residue probability <str<strong>on</strong>g>of</str<strong>on</strong>g> background, and omitting real<br />

value probability. Taking into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e actual likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e background during<br />

discovering <str<strong>on</strong>g>of</str<strong>on</strong>g> motifs, improves <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality <str<strong>on</strong>g>of</str<strong>on</strong>g> found motifs. Proposed algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m<br />

was tested <strong>on</strong> reference genomes <str<strong>on</strong>g>of</str<strong>on</strong>g> human and mouse. The results obtained from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m were compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er known algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are performed based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e following comparis<strong>on</strong> measurements:<br />

nucleotide Performance Coefficien, Site Sensitivit, Site Positive Predicti<strong>on</strong>, and Site<br />

Average Performance. From experiments <strong>on</strong> real biological data sets, we observed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong>s such as genome-wide search can be identified, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m behaves better <str<strong>on</strong>g>th</str<strong>on</strong>g>an o<str<strong>on</strong>g>th</str<strong>on</strong>g>er existing tools to search for motifs. But in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller data sets, average values <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements were comparable to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

existing motif finding tools.<br />

18:35–18:55<br />

Tanny Lai<br />

Biophysics Team, Fluid Dynamics, A*STAR Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Performance<br />

Computing<br />

e-mail: laitl@ihpc.a-star.edu.sg<br />

Yukai Zeng<br />

Mechanical Engineering, Carnegie Mell<strong>on</strong> University<br />

Philip R. LeDuc<br />

Mechanical Engineering, Carnegie Mell<strong>on</strong> University<br />

K.-H. Chiam<br />

118


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Biophysics Team, Fluid Dynamics, A*STAR Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Performance<br />

Computing<br />

Combined experimental and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

circular dorsal ruffles<br />

Circular dorsal ruffles (CDRs) are transient actin-based structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at are observed<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal plasma membrane up<strong>on</strong> stimulati<strong>on</strong> by receptor-tyrosine-kinase<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e platelet-derived grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor (PDGF). While <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs has not been elucidated, it has been suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are involved<br />

in cell migrati<strong>on</strong> and macropinocytosis. Here, we combine experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling to attempt to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs. Experimentally,<br />

we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs can be modified by varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e substrate stiffness,<br />

whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sizes are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate stiffness. To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

results, we c<strong>on</strong>struct a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>th</str<strong>on</strong>g>at regulate<br />

CDRs. By coupling such reacti<strong>on</strong>s to protein diffusi<strong>on</strong>, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at our reacti<strong>on</strong>diffusi<strong>on</strong><br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s can reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e ring-like structure <str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs, and<br />

how substrate stiffness modifies <str<strong>on</strong>g>th</str<strong>on</strong>g>eir lifetime via <str<strong>on</strong>g>th</str<strong>on</strong>g>e focal adhesi<strong>on</strong> kinase (FAK).<br />

We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e low diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane bound proteins relative<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e high diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> cytosolic proteins is key to <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs. Finally, we reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to a coupled two-species model involving<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e proteins Rac (which has been shown to result in <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> actin filaments)<br />

and Rho (which has been shown to be involved in cell-substrate adhesi<strong>on</strong>),<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir antag<strong>on</strong>ism, and was able to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CDRs as an<br />

excitable system. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is reduced model, we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>is excitability<br />

to occur, and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore make predicti<strong>on</strong>s <strong>on</strong> when and where CDRs will<br />

appear.<br />

119


Cellular Systems Biology 3<br />

Thursday, June 30, 11:30, Room: AM7<br />

Chaired by: Anita T. Layt<strong>on</strong><br />

11:30–12:00<br />

Evgenii Volkov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Physics, Lebedev Physical Inst., Leninskii<br />

53, Moscow, Russia<br />

e-mail: volkov@td.lpi.ru<br />

Ilya Potapov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Signal Processing, Tampere University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Korkeakoulunkatu 10, Tampere, Finland and Biophysics Department,<br />

Lom<strong>on</strong>osov Moscow State University, GSP-1, Leninskie Gory, Moscow,<br />

Russia<br />

e-mail: ilya.potapov@tut.fi<br />

Alexey Kuznetsov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences and Center for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Biosciences, IUPUI, 402 N. Blackford St., Indianapolis, IN 46202, USA.<br />

e-mail: alexey@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.iupui.edu<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled repressilators: <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA<br />

kinetics and transcripti<strong>on</strong> cooperativity<br />

Regulatory molecular networks are collecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting molecules in a cell.<br />

One particular kind, oscillatory networks, has been discovered in many pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

Well-known examples are <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian clock [1] and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle [2], where <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

oscillatory nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process plays a central role.<br />

These natural regulatory networks are very complex and include many types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecules, from genes to small messengers. It is necessary to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory<br />

mechanisms by means <str<strong>on</strong>g>of</str<strong>on</strong>g> highly simplified models. These models are particularly<br />

valuable because artificial regulatory networks can be engineered experimentally<br />

[3, 4, 5]. Our computati<strong>on</strong>al study [6] suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory mechanisms<br />

implemented in regulatory oscillators are qualitatively different. Comparing various<br />

artificial networks helps revealing general principles <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular regulati<strong>on</strong>.<br />

We study an artificial oscillatory network called <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator [4], which<br />

borrows <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring oscillator coming from engineering. The oscillatory<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator is based <strong>on</strong> c<strong>on</strong>necting an odd number <str<strong>on</strong>g>of</str<strong>on</strong>g> inverters<br />

(negative c<strong>on</strong>trol elements) in a ring. Its genetic implementati<strong>on</strong> uses <str<strong>on</strong>g>th</str<strong>on</strong>g>ree proteins<br />

121


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at cyclically repress <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er by inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

mRNA producti<strong>on</strong>.<br />

A challenging area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e research is communicati<strong>on</strong> am<strong>on</strong>g cells in a populati<strong>on</strong><br />

or organism. It has been proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically to design artificial interacti<strong>on</strong><br />

am<strong>on</strong>g cellular oscillators using quorum sensing [7, 8]. A small molecule, autoinducer<br />

(AI), carries out <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling functi<strong>on</strong>. Synchr<strong>on</strong>izati<strong>on</strong> is <strong>on</strong>ly <strong>on</strong>e and<br />

simplest outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> such interacti<strong>on</strong>. It is suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome depends<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. A phase-attractive (synchr<strong>on</strong>izing) and phaserepulsive<br />

coupling structures were distinguished for regulatory oscillators. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

paper, we questi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is separati<strong>on</strong>.<br />

We study an example <str<strong>on</strong>g>of</str<strong>on</strong>g> two interacting repressilators. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at increasing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperativity <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> repressi<strong>on</strong> (Hill coefficient) and changing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reacti<strong>on</strong> time-scales dramatically alter synchr<strong>on</strong>izati<strong>on</strong> properties. The network<br />

dem<strong>on</strong>strates in- and anti-phase oscillatory regimes and can be birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mic, choosing<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>ose two types <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong>, in a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. In<br />

some regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parametric space <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are whole cascades <str<strong>on</strong>g>of</str<strong>on</strong>g> complex anti-phase<br />

oscillatory soluti<strong>on</strong>s, which coexist wi<str<strong>on</strong>g>th</str<strong>on</strong>g> in-phase regime. Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong><br />

is not characteristic for <str<strong>on</strong>g>th</str<strong>on</strong>g>e network structure. However, we c<strong>on</strong>clude<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e specific scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> emergence and stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>ous soluti<strong>on</strong>s<br />

is much more characteristic.<br />

In particular, anti-phase oscillati<strong>on</strong>s emerge at elevated cooperativity values.<br />

We choose <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximal syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mRNA as <str<strong>on</strong>g>th</str<strong>on</strong>g>e main c<strong>on</strong>trol parameter<br />

for our analysis. We calculate bifurcati<strong>on</strong> diagrams wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>is parameter<br />

and study how regimes found in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese diagrams depend <strong>on</strong> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er parameters. At<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e initial cooperativity value <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.0, <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-phase synchr<strong>on</strong>izati<strong>on</strong> remains stable<br />

and anti-phase remains unstable at any syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperativity is<br />

elevated <strong>on</strong>ly to 2.6, <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-phase soluti<strong>on</strong> becomes stable at a sufficiently high<br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate. In c<strong>on</strong>trast, <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-phase soluti<strong>on</strong> loses its stability at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese elevated<br />

cooperativity and high syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate.<br />

Additi<strong>on</strong>ally, fast mRNA kinetics provides birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>micity in a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate. Initially, <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-scales <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein and mRNA kinetics were<br />

identical. We make mRNA kinetics much faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an protein, which is a more<br />

natural case. The sequence in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory soluti<strong>on</strong>s emerge from Hopf<br />

bifurcati<strong>on</strong>s changes — <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-phase emerges first. As a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-phase<br />

soluti<strong>on</strong> emerges stable, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-phase emerges unstable. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mic<br />

parameter regime, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> soluti<strong>on</strong>s must be stable. Three bifurcati<strong>on</strong>s always precede<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mic parameter regime when <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate increases. The in-phase<br />

soluti<strong>on</strong> becomes stable as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> a repelling invariant torus emanating from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e limit cycle. The o<str<strong>on</strong>g>th</str<strong>on</strong>g>er two bifurcati<strong>on</strong>s are unexpected: The anti-phase limit<br />

cycle first loses its stability, and <str<strong>on</strong>g>th</str<strong>on</strong>g>en regains it. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> transiti<strong>on</strong>s are pitchfork<br />

bifurcati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> limit cycles. The sec<strong>on</strong>d bifurcati<strong>on</strong> cancels <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first<br />

<strong>on</strong>e <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-phase soluti<strong>on</strong>. Thus, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in-phase and anti-phase<br />

soluti<strong>on</strong>s are stable in a very wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate.<br />

Our work presents a novel scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>micity and switching<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e in- and anti-phase soluti<strong>on</strong>s in regulatory oscillators. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

synchr<strong>on</strong>izati<strong>on</strong> coexist in <strong>on</strong>e network, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are not characteristic for <str<strong>on</strong>g>th</str<strong>on</strong>g>e network<br />

structure. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong> scenario may be much more characteristic. This<br />

may help to address a central questi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> regulatory networks —<br />

122


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

how to c<strong>on</strong>nect structural characteristics to dynamical and functi<strong>on</strong>al properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a network.<br />

References.<br />

[1] J. Dunlap, Molecular bases for circadian clocks Cell 96 271–290.<br />

[2] P. Nurse, A l<strong>on</strong>g twentie<str<strong>on</strong>g>th</str<strong>on</strong>g> century <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle and bey<strong>on</strong>d Cell 100 71–78.<br />

[3] T.S. Gardner, C.R. Cantor and J.J. Collins, C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a genetic toggle switch in Escherichia<br />

coli Nature 403 339–342.<br />

[4] M. Elowitz and S. Leibler, A syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic oscillatory network <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al regulators Nature<br />

403 335–338.<br />

[5] M. Atkins<strong>on</strong>, M. Savageau, J. Myers and A. Ninfa, Development <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic circuitry exhibiting<br />

toggle switch or oscillatory behavior in Escherichia coli Cell 113 597–607.<br />

[6] D. Yang, Y. Li and A. Kuznetsov, Characterizati<strong>on</strong> and merger <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillatory mechanisms in<br />

an artificial genetic regulatory network Chaos 19 033115.<br />

[7] D. McMillen, N. Kopell, J. Hasty and J. Collins, Synchr<strong>on</strong>izing genetic relaxati<strong>on</strong> oscillators<br />

by intercell signalling Proc. Natl. Acad. Sci. U.S.A. 99 679–684.<br />

[8] J. García-Ojalvo, M. Elowitz and S. Strogatz, Modeling a syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic multicellular clock: Repressilators<br />

coupled by quorum sensing Proc. Natl. Acad. Sci. U.S.A. 101 10955–10960.<br />

12:05–12:25<br />

Marcus Tindall<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Reading<br />

e-mail: m.tindall@reading.ac.uk<br />

B.S. Bhattacharya<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Reading<br />

P.K. Sweby<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Reading<br />

A. Minihane<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> East Anglia<br />

K.G. Jacks<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Reading<br />

Genetic Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cholesterol Biosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

The regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol producti<strong>on</strong> is fundamental to maintaining good human<br />

heal<str<strong>on</strong>g>th</str<strong>on</strong>g>. Sterol regulatory element binding protein (SREBP) is a key regulatory<br />

transcripti<strong>on</strong> factor for lipid syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we present a n<strong>on</strong>linear ordinary<br />

differential equati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> SREBP transcripti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e HMGR<br />

cholesterol biosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way. SREBP transcripti<strong>on</strong> is regulated by forming an<br />

inactive complex wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its end product, cholesterol, to c<strong>on</strong>trol homeostatic c<strong>on</strong>centrati<strong>on</strong><br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s shows it admits <str<strong>on</strong>g>th</str<strong>on</strong>g>ree distinct types <str<strong>on</strong>g>of</str<strong>on</strong>g> behaviour: (i) oscillati<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mRNA, HMGR protein and cholesterol expressi<strong>on</strong> levels; (ii) oscillati<strong>on</strong>s in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mRNA, HMGR protein and cholesterol expressi<strong>on</strong> levels which decay in time;<br />

and (iii) n<strong>on</strong>-oscillatory soluti<strong>on</strong>s. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites between cholesterol<br />

and SREBP and SREBP and <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes are shown to be crucial factors in determining<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e system behaviour. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> our work and show how<br />

our results provide a receipe for syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic biology in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> homeostasis.<br />

123


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

12:25–12:45<br />

Elisenda Feliu, Carsten Wiuf<br />

Bioinformatics Research Centre<br />

e-mail: feliu.elisenda@gmail.com, wiuf@cs.au.dk<br />

Enzyme sharing as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in signaling<br />

systems<br />

Bistability, and more generally multistability, in biological systems is seen as a<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular decisi<strong>on</strong> making. Compared to systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a single steady<br />

state, <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple stable steady states provide a possible switch between<br />

different resp<strong>on</strong>ses and increased robustness wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to envir<strong>on</strong>mental<br />

noise. To understand cellular signaling, it is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental importance to<br />

know i) which systems can exhibit multistati<strong>on</strong>arity and ii) what are <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

c<strong>on</strong>diti<strong>on</strong>s enabling it.<br />

Here, we c<strong>on</strong>sider biological systems where a signal is transmitted by phosphorylati<strong>on</strong>.<br />

Kinases catalyze phosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (protein) substrates, and phosphatases<br />

catalyse dephosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same substrates. Biological systems are<br />

known in which several different kinases phosphorylate a single substrate and o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers<br />

where a single kinase phosphorylate several different substrates. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

phosphorylati<strong>on</strong> in more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e site can be carried out by a unique kinase or, as<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> priming kinases, different <strong>on</strong>es. The same phenomena are observed<br />

c<strong>on</strong>cerning phosphatases and dephosphorylati<strong>on</strong>.<br />

The interplay between kinases, phosphatases and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir substrates increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong> we determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in small motifs <str<strong>on</strong>g>th</str<strong>on</strong>g>at repeatedly occur in signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

Our simple modules are built <strong>on</strong> a <strong>on</strong>e-site modificati<strong>on</strong> cycle and c<strong>on</strong>tain <strong>on</strong>e or two<br />

cycles combined in all possible ways wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above features regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modificati<strong>on</strong> sites, and competiti<strong>on</strong> and n<strong>on</strong>-specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes, incorporated.<br />

We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

a) Multistati<strong>on</strong>arity arises whenever a single enzyme is resp<strong>on</strong>sible for catalyzing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two different but linked substrates.<br />

b) The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple steady states requires substrate saturati<strong>on</strong> and<br />

two opposing dynamics acting <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same substrate.<br />

c) Multistati<strong>on</strong>arity in some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems occurs independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong><br />

rates.<br />

The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling is based <strong>on</strong> mass-acti<strong>on</strong> kinetics. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

steady states are soluti<strong>on</strong>s to a system <str<strong>on</strong>g>of</str<strong>on</strong>g> polynomial equati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemical<br />

c<strong>on</strong>centrati<strong>on</strong>s and enables <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic arguments as previously proven<br />

successful, e.g. [1], [3]. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>clusi<strong>on</strong>s are derived in full generality<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out restoring to simulati<strong>on</strong>s or random generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. See [2].<br />

References.<br />

[1] E. Feliu, M. Knudsen, L. N. Andersen, and C. Wiuf. An algebraic approach to signaling<br />

cascades wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n layers. arXiv, q-bio.QM, Aug 2010.<br />

[2] E. Feliu, and C. Wiuf. Enzyme sharing as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in signaling systems.<br />

arXiv, q-bio.QM, Feb 2011.<br />

124


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] M. Thoms<strong>on</strong> and J. Gunawardena. Unlimited multistability in multisite phosphorylati<strong>on</strong> systems.<br />

Nature, 460:274–277, 2009.<br />

12:45–13:05<br />

Radek Erban<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: erban@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Stochastic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> processes in<br />

biology<br />

Many cellular and subcellular biological processes can be described in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusing<br />

and chemically reacting species. Several stochastic simulati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms<br />

(SSAs) suitable for <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> such reacti<strong>on</strong>-diffusi<strong>on</strong> processes have been<br />

recently proposed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, two comm<strong>on</strong>ly used SSAs will be<br />

studied. The first SSA is an <strong>on</strong>-lattice model described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong><br />

master equati<strong>on</strong>. The sec<strong>on</strong>d SSA is an <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Brownian moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual molecules and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir reactive collisi<strong>on</strong>s. The c<strong>on</strong>necti<strong>on</strong>s<br />

between SSAs and <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic models (based <strong>on</strong> reacti<strong>on</strong>-diffusi<strong>on</strong><br />

PDEs) will be presented. I will c<strong>on</strong>sider chemical reacti<strong>on</strong>s bo<str<strong>on</strong>g>th</str<strong>on</strong>g> at a surface and<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e bulk. I will show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e "microscopic" parameters should be chosen to<br />

achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>e correct "macroscopic" reacti<strong>on</strong> rate. This choice is found to depend <strong>on</strong><br />

which SSA is used. I will also present multiscale algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms which use models wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a different level <str<strong>on</strong>g>of</str<strong>on</strong>g> detail in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al domain.<br />

13:05–13:25<br />

Milan J.A. van Hoek<br />

Centrum Wiskunde & Informatica<br />

and Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology<br />

Science Park 123, 1098 XG, Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: Milan.van.Hoek@cwi.nl<br />

Roeland M.H. Merks<br />

Centrum Wiskunde & Informatica<br />

and Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology<br />

Science Park 123, 1098 XG, Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: Roeland.Merks@cwi.nl<br />

Protein Cost and Metabolic Network Structure Underlie<br />

Different Modes <str<strong>on</strong>g>of</str<strong>on</strong>g> Metabolic Efficiency<br />

When grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate increases, many unicellular organisms shift from an energetically<br />

efficient to an energetically inefficient metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way to break down<br />

125


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

glucose. An example is baker’s yeast Saccharomyces cerivisiae, which ferments glucose<br />

to e<str<strong>on</strong>g>th</str<strong>on</strong>g>anol if <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose c<strong>on</strong>centrati<strong>on</strong> is high, even in aerobic envir<strong>on</strong>ments<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at allow for more efficient catabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose [1]. Recently, a new explanati<strong>on</strong><br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>is paradoxical behaviour has been proposed: because cells can <strong>on</strong>ly pack a limited<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic enzymes, inefficient metabolism can maximise <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell, because efficient metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways require more enzymes <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

inefficient pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways [2,3]. Indeed, Vazquez et al. [2] explained <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>current use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e efficient and inefficient pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way by Escherichia coli in <str<strong>on</strong>g>th</str<strong>on</strong>g>is way. However, it is<br />

unknown why, at high grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates, some microbes <strong>on</strong>ly use efficient metabolism,<br />

while o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers <strong>on</strong>ly use inefficient metabolism and again o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers use bo<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>currently.<br />

Here we apply Vazquez’ me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <strong>on</strong> genome-scale metabolic models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree<br />

organisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at use different modes <str<strong>on</strong>g>of</str<strong>on</strong>g> inefficient metabolism, E. coli, S. cerevisiae<br />

and Lactococcus lactis: E. coli does not downregulate its efficient pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way at high<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates, while S. cerevisiae and L. lactis do. The Vazquez me<str<strong>on</strong>g>th</str<strong>on</strong>g>od incorporates<br />

a protein cost for each reacti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome-scale metabolic network. This<br />

cost is proporti<strong>on</strong>al to enzyme volume divided by enzyme turnover number (k cat ).<br />

Because <str<strong>on</strong>g>th</str<strong>on</strong>g>ese protein costs are not known for each reacti<strong>on</strong> individually, we created<br />

1000 networks, each wi<str<strong>on</strong>g>th</str<strong>on</strong>g> protein costs for each reacti<strong>on</strong> drawn randomly from an<br />

experimentally-obtained distributi<strong>on</strong>. For <strong>on</strong>ly a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese networks inefficient<br />

metabolism is <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal strategy. This allowed us to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein costs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is inefficient subset in more detail.<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at for cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low glycolytic protein cost, inefficient metabolism<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal strategy, in all <str<strong>on</strong>g>th</str<strong>on</strong>g>ese organisms. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, for S. cerevisiae and<br />

L. lactis optimal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> yield is bimodally distributed over <str<strong>on</strong>g>th</str<strong>on</strong>g>ese 1000 networks:<br />

metabolism is ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er efficient or inefficient. In c<strong>on</strong>trast, for E. coli we observed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at optimal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> yield varies c<strong>on</strong>tinuously over <str<strong>on</strong>g>th</str<strong>on</strong>g>ese 1000 networks. This could<br />

explain why S. cerevisiae and L. lactis truly switch <str<strong>on</strong>g>of</str<strong>on</strong>g>f efficient metabolism, while<br />

E. coli uses inefficient and efficient metabolism c<strong>on</strong>currently. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at differences<br />

in metabolic network structure underlie <str<strong>on</strong>g>th</str<strong>on</strong>g>is qualitative difference between<br />

E. coli <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e hand and S. cerevisiae and L. lactis <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand. C<strong>on</strong>cluding,<br />

protein costs determine whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er inefficient metabolism is optimal, while<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic network structure determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e mode <str<strong>on</strong>g>of</str<strong>on</strong>g> inefficient metabolism.<br />

References.<br />

[1] Hoek PV, Dijken JPV, Pr<strong>on</strong>k JT (1998). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> specific grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <strong>on</strong> fermentative capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> baker’s yeast. Appl Envir<strong>on</strong> Microbiol 64 4226–4233.<br />

[2] Vazquez A, Beg QK, Demenezes MA, Ernst J, Bar-Joseph Z, et al (2008). Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solvent<br />

capacity c<strong>on</strong>straint <strong>on</strong> E. coli metabolism. BMC Syst Biol 2: 7.<br />

[3] Molenaar D, van Berlo R, de Ridder D, Teusink B (2009). Shifts in grow<str<strong>on</strong>g>th</str<strong>on</strong>g> strategies reflect<br />

trade<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in cellular ec<strong>on</strong>omics. Mol Syst Biol5: 323.<br />

126


Cellular Systems Biology 4<br />

Saturday, July 2, 11:00, Room: AM7<br />

Chaired by: John Tys<strong>on</strong><br />

11:00–11:30<br />

Attila Csikasz-Nagy<br />

The Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Research University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento Centre for Computati<strong>on</strong>al<br />

and Systems Biology<br />

e-mail: csikasz@cosbi.eu<br />

Cell signaling network unit dynamics<br />

Cells use a dense network <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways to decide how to resp<strong>on</strong>d to various<br />

external stimuli. Several dynamic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> complex pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways have been<br />

already described. Here we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at simple generic motifs <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

(wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out any feedback) could show some interesting dynamics. We investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest dynamical elements in biochemical networks: we analyzed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a signaling protein when it enters <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pool in<br />

<strong>on</strong>e state (modified or unmodified) and exits in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese states. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

exit rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two states are comparable, a persistent stimulus results in step<br />

resp<strong>on</strong>ses and can produce ultrasensitivity, however, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e exit rates are imbalanced,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling protein gives transient resp<strong>on</strong>ses to persistent stimuli. Such<br />

adaptive behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways could be used by many organisms. We also<br />

investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical features <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorelays: phosphorelays are extended<br />

two-comp<strong>on</strong>ent signaling systems found in diverse bacteria, lower eukaryotes and<br />

plants. We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intermediate layers <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorelays can display ultrasensitivity<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at could result in tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way cross-talk. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, it<br />

leads to a high signal to noise ratio for <str<strong>on</strong>g>th</str<strong>on</strong>g>e relay output. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phosporelays might be employed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e sporulati<strong>on</strong> network <str<strong>on</strong>g>of</str<strong>on</strong>g> B. subtilis.<br />

11:35–11:55<br />

Mehrdad Jafari-Mamaghani<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences & Nutriti<strong>on</strong>, Karolinska Institutet<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Stockholm University<br />

127


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

e-mail: mjm@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Staffan Strömblad<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences & Nutriti<strong>on</strong>, Karolinska Institutet<br />

e-mail: Staffan.Stromblad@ki.se<br />

John Lock<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences & Nutriti<strong>on</strong>, Karolinska Institutet<br />

e-mail: John.Lock@ki.se<br />

Joanna Tyrcha<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Stockholm University<br />

e-mail: joanna@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Olivia Erikss<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Stockholm University<br />

e-mail: olivia@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Employing Statistics in Systems Microscopy<br />

As <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis is fundamental in <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> breast cancer, it is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> paramount significance to study cell adhesi<strong>on</strong> and cell migrati<strong>on</strong>, mechanisms<br />

tightly related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e machinery <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis, in closer details. Yet, cell adhesi<strong>on</strong><br />

and cell migrati<strong>on</strong> result from a series <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic procedures in space <strong>on</strong> a subcellular<br />

level, namely <str<strong>on</strong>g>th</str<strong>on</strong>g>e organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-matrix adhesi<strong>on</strong> complexes (CMACs)<br />

[1].<br />

Using techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput microscopy and post-acquisiti<strong>on</strong> image quantificati<strong>on</strong>,<br />

large sets <str<strong>on</strong>g>of</str<strong>on</strong>g> data representing cell and CMAC properties are made available<br />

for statistical analysis. Such analysis is an essential comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> what is<br />

now termed as Systems Microscopy: systems biology analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> living cells using<br />

a coaliti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> automated microscopy, image quantificati<strong>on</strong>, data mining and statistical<br />

analysis [2].<br />

The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical analysis in Systems Microscopy includes unsupervised<br />

as well as supervised statistical learning. The unsupervised learning approaches are<br />

employed for purposes such as visualizati<strong>on</strong> using dimensi<strong>on</strong> reducti<strong>on</strong>, and detecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sub-populti<strong>on</strong>s using mixture models. The focus <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e supervised learning<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>odologies is <strong>on</strong> between-populati<strong>on</strong> tests, spatial point pattern analysis, and<br />

predictive modeling using various techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong>. Naturally, given <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e self-organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> living cells is a spatio-temporal process, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aforementi<strong>on</strong>ed<br />

statistical procedures are intended to interrogate static as well as dynamic<br />

(time-series) data.<br />

Thus, by employing <str<strong>on</strong>g>th</str<strong>on</strong>g>e necessary data and various statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>odologies, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

processes <str<strong>on</strong>g>of</str<strong>on</strong>g> cell adhesi<strong>on</strong> and cell migrati<strong>on</strong> may receive fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er eluciati<strong>on</strong> and<br />

potentially advance our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying causes as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is to give a brief descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e employed me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical analysis.<br />

References.<br />

[1] John G. Lock, Bernhard Wehrle-Haller and Staffan Strömblad, Cell–matrix adhesi<strong>on</strong> complexes:<br />

Master c<strong>on</strong>trol machinery <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> Seminars in Cancer Biology, Volume 18,<br />

Issue 1, February 2008, Pages 65-76.<br />

[2] John G. Lock and Staffan Strömblad, Systems microscopy: An emerging strategy for <str<strong>on</strong>g>th</str<strong>on</strong>g>e life<br />

sciences Experimental Cell Research, Volume 316, Issue 8, 1 May 2010, Pages 1438-1444.<br />

128


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

11:55–12:15<br />

J. Krishnan<br />

Imperial College L<strong>on</strong>d<strong>on</strong><br />

e-mail: krishnan@icex.imperial.ac.uk<br />

Aiman Alam-Nazki<br />

Imperial College L<strong>on</strong>d<strong>on</strong><br />

Modelling and elucidating design principles underlying<br />

attractive and repulsive gradient sensing<br />

Many cells, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> prokaryote and eukaryote exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e feature <str<strong>on</strong>g>of</str<strong>on</strong>g> chemotaxis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

directed moti<strong>on</strong> in resp<strong>on</strong>se to gradients <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

cells exhibit bo<str<strong>on</strong>g>th</str<strong>on</strong>g> attractive and repulsive gradient sensing to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e same or<br />

different chemicals. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I will discuss two aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem.<br />

The first is <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanistic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> a network postulated to describe<br />

chemorepulsi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model system Dictyostelium. The signalling network is complex<br />

since it is str<strong>on</strong>gly n<strong>on</strong>-linear incorporating a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feedforward and<br />

feedback loops wi<str<strong>on</strong>g>th</str<strong>on</strong>g> spatial signalling. A systematic mechanistic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

work describes whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er and under which c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network can exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

desired behaviour and makes clearcut predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e important features in <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

regard, resulting in very n<strong>on</strong>-trivial c<strong>on</strong>clusi<strong>on</strong>s.<br />

The sec<strong>on</strong>d aspect which I will discuss is how <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell signalling networks may<br />

be organized to give rise to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> attractive and repulsive gradient sensing in a given<br />

cell, and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting behaviour depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> signal<br />

transducti<strong>on</strong> (eg. adaptati<strong>on</strong>, sp<strong>on</strong>taneous polarizati<strong>on</strong>). Here a framework using<br />

qualitatively simplified models will be used to distill transparent insights. The<br />

relevance to individual systems will also be discussed.<br />

12:15–12:35<br />

Ilya Potapov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Signal Processing, Tampere University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Korkeakoulunkatu 10, Tampere, Finland and Biophysics Department,<br />

Lom<strong>on</strong>osov Moscow State University, GSP-1, Leninskie Gory, Moscow,<br />

Russia<br />

e-mail: ilya.potapov@tut.fi<br />

Evgenii Volkov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Physics, Lebedev Physical Inst., Leninskii<br />

53, Moscow, Russia<br />

e-mail: volkov@td.lpi.ru<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic repressilators wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

phase-repulsive coupling<br />

129


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Oscillatory processes have been discovered in various biological c<strong>on</strong>texts. Circadian<br />

clock [1], biochemical oscillati<strong>on</strong>s [2] and cell cycle [3] are <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known<br />

examples.<br />

Recently, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere were c<strong>on</strong>structed genetic networks exhibiting a specific type<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical behavior [4, 5, 6]. A prominent example <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic circuit<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator c<strong>on</strong>structed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree transcripti<strong>on</strong> factors inhibiting each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

in cyclic way. The obvious output <str<strong>on</strong>g>of</str<strong>on</strong>g> such interacti<strong>on</strong> is oscillati<strong>on</strong>s in protein<br />

c<strong>on</strong>centrati<strong>on</strong>s [4].<br />

Syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic circuits are organized simpler <str<strong>on</strong>g>th</str<strong>on</strong>g>an natural <strong>on</strong>es and can<br />

evince important details <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter.<br />

Given <str<strong>on</strong>g>th</str<strong>on</strong>g>at cells interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er it would be <str<strong>on</strong>g>of</str<strong>on</strong>g> particular interest to<br />

investigate dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> such integrated populati<strong>on</strong>. Quorum sensing is <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling<br />

mechanism found in many bacteria and utilizes a small molecule, autoinducer, which<br />

diffuses <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cell membrane and activates some target gene [7].<br />

Two <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical schemes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e quorum sensing coupling<br />

mechanism were proposed earlier: phase-attractive [8] and phase-repulsive [9]. The<br />

latter <strong>on</strong>e utilizes a negative feedback loop in <str<strong>on</strong>g>th</str<strong>on</strong>g>e autoinducer producti<strong>on</strong> module<br />

in additi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e average negative feedback loop <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator core. The<br />

following system <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>less equati<strong>on</strong>s describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled repressilators<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> phase-repulsive coupling [9]:<br />

da i<br />

dt<br />

= −a i + α<br />

1+C<br />

;<br />

i<br />

n<br />

db i<br />

dt<br />

= −b i + α<br />

1+A<br />

; n<br />

i<br />

dc i<br />

dt<br />

= −c i + α<br />

1+B n i<br />

+ κ Si<br />

1+S i<br />

;<br />

dA i<br />

dt<br />

= −β(A i − a i )<br />

dB i<br />

dt<br />

= −β(B i − b i )<br />

dC i<br />

dt<br />

= −β(C i − c i )<br />

dS i<br />

dt<br />

= −k s0 S i + k s1 B i − η(S i − Q ¯S)<br />

The uppercase letters A i , B i and C i denote protein c<strong>on</strong>centrati<strong>on</strong>s, while lowercase<br />

a i , b i and c i are proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA corresp<strong>on</strong>ding to<br />

1 N∑<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ose proteins, S i denotes AI c<strong>on</strong>centrati<strong>on</strong>, where i is a cell index. ¯S = S i ,<br />

N i=1<br />

where N is <str<strong>on</strong>g>th</str<strong>on</strong>g>e total number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. α is a maximal transcripti<strong>on</strong> rate. n is Hill<br />

coefficient or cooperativity. Q is proporti<strong>on</strong>al to populati<strong>on</strong> density. β is <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio<br />

between mRNA and protein lifetimes.<br />

We have investigated dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic oscillators — repressilators<br />

— coupled <str<strong>on</strong>g>th</str<strong>on</strong>g>rough autoinducer diffusi<strong>on</strong> in phase-repulsive manner. We have<br />

examined emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic regimes, stable inhomogeneous steady states depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main systems’ parameters: coupling streng<str<strong>on</strong>g>th</str<strong>on</strong>g> and maximal transcripti<strong>on</strong><br />

rate. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese regimes were shown to exist in [9].<br />

It has been found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e autoinducer producti<strong>on</strong> module added to <str<strong>on</strong>g>th</str<strong>on</strong>g>e isolated<br />

repressilator causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit cycle to disappear <str<strong>on</strong>g>th</str<strong>on</strong>g>rough infinite period bifurcati<strong>on</strong><br />

for sufficiently large transcripti<strong>on</strong> rate (α). We have found hysteresis <str<strong>on</strong>g>of</str<strong>on</strong>g> limit cycle<br />

and stable steady state, <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> which is determined by ratio between mRNA<br />

and protein lifetimes.<br />

130


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Two coupled oscillators system dem<strong>on</strong>strates stable anti-phase oscillati<strong>on</strong>s which<br />

can become a chaotic regime <str<strong>on</strong>g>th</str<strong>on</strong>g>rough invariant torus emergence, <str<strong>on</strong>g>th</str<strong>on</strong>g>at was investigated<br />

in [10], or via Feigenbaum period doubling bifurcati<strong>on</strong> cascade [11], which is<br />

alternative way to chaos found by us in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

References.<br />

[1] J. Dunlap, Molecular bases for circadian clocks Cell 96 271–290.<br />

[2] A.K. Ghosh and B. Chance,Oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolytic intermediates in yeast cells Biochem.<br />

Biophys. Res. Commun. 16 174–181.<br />

[3] P. Nurse, A l<strong>on</strong>g twentie<str<strong>on</strong>g>th</str<strong>on</strong>g> century <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle and bey<strong>on</strong>d Cell 100 71–78.<br />

[4] M. Elowitz and S. Leibler, A syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic oscillatory network <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al regulators Nature<br />

403 335–338.<br />

[5] T.S. Gardner, C.R. Cantor and J.J. Collins, C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a genetic toggle switch in Escherichia<br />

coli Nature 403 339–342.<br />

[6] M. Atkins<strong>on</strong>, M. Savageau, J. Myers and A. Ninfa, Development <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic circuitry exhibiting<br />

toggle switch or oscillatory behavior in Escherichia coli Cell 113 597–607.<br />

[7] C.M. Waters and B.L. Bassler, Quorum sensing: cell-to-cell communicati<strong>on</strong> in bacteria Ann.<br />

Rev. Cell Dev. Biol. 21 319–346.<br />

[8] J. García-Ojalvo, M. Elowitz and S. Strogatz, Modeling a syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic multicellular clock: Repressilators<br />

coupled by quorum sensing Proc. Natl. Acad. Sci. U.S.A. 101 10955–10960.<br />

[9] E. Ullner, A. Zaikin, E. Volkov and J. García-Ojalvo, Multistability and clustering in a populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic oscillators via phase-repulsive cell-to-cell communicati<strong>on</strong> Phys.<br />

Rev. Lett. 99 148103.<br />

[10] E. Ullner, A. Koseska, J. Kur<str<strong>on</strong>g>th</str<strong>on</strong>g>s, E. Volkov, H. Kantz and J. García-Ojalvo, Multistability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> repressive cell-to-cell communicati<strong>on</strong> Phys. Rev. E. 78 031904.<br />

[11] M. Feigenbaum, Quantitative universality for a class <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear transformati<strong>on</strong>s J. Stat.<br />

Phys. 19 25–52.<br />

12:35–12:55<br />

Jaroslaw Smieja<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Jaroslaw.Smieja@polsl.pl<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Puszynski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Coupled sensitivity and frequency analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways has gained large popularity recently.<br />

The models <str<strong>on</strong>g>th</str<strong>on</strong>g>at have been developed describe dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> NFkB, JAK/STAT,<br />

p53/Mdm2 and many o<str<strong>on</strong>g>th</str<strong>on</strong>g>er pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important advantages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field is <str<strong>on</strong>g>th</str<strong>on</strong>g>eir flexibility and ability to<br />

check certain aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics if <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigated systems before committing<br />

large resources into experimental work.<br />

Complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <str<strong>on</strong>g>th</str<strong>on</strong>g>at are under development varies, depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

particular goals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> model complexity, <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e key issues is proper choice <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. As a result, in such work sensitivity<br />

analysis is a necessary stages in analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong> results.<br />

131


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Two main categories <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity analysis me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods can be distinguished: local<br />

and global. Local sensitivity analysis provides informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

small deviati<strong>on</strong> a single parameter from its nominal value <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system output.<br />

Global sensitivities, in turn, describe how <str<strong>on</strong>g>th</str<strong>on</strong>g>e system output changes when multiple<br />

parameters change in a relatively wide range.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work several sensitivity indices will be applied to find out which parameter<br />

subsets have <str<strong>on</strong>g>th</str<strong>on</strong>g>e greatest impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> several signaling<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. However, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> reference to steady states, which<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most frequent approaches, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey will be coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> frequency<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models dynamics. That way, it is possible to answer <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most important questi<strong>on</strong>s c<strong>on</strong>cerning some signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. There is an <strong>on</strong>going<br />

dispute about oscillati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir importance in cellular resp<strong>on</strong>ses to external<br />

inputs. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> main frequencies in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model outputs will push<br />

forward research in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field. If it is <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are crucial for proper cell<br />

behavior, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese frequencies should be relatively insensitive to parameter changes.<br />

Moreover, sensitivity analysis will indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most pr<strong>on</strong>e to disturbances, providing clues for experimental work.<br />

The work was partially supported by The Fundati<strong>on</strong> for Polish Science.<br />

132


Developmental Biology 1<br />

Wednesday, June 29, 17:00, Room: AM1<br />

Chaired by: Shar<strong>on</strong> Lubkin<br />

17:00–17:30<br />

Michael Wats<strong>on</strong><br />

Heriot-Watt University, Edinburgh<br />

e-mail: michael.wats<strong>on</strong>@pet.hw.ac.uk<br />

Dr Steven McDougall<br />

Heriot-Watt University, Edinburgh<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Murine Retinal Vasculature:<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling and Numerical Simulati<strong>on</strong><br />

Tumour-induced angiogenesis has been extensively explored by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

community. However, despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e availability <str<strong>on</strong>g>of</str<strong>on</strong>g> animal models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimentally<br />

accesible and highly ordered vascular topologies, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere have been few attempts to<br />

model angiogenesis during normal development. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing retinal vasculature, based <strong>on</strong> a coupled experimental<br />

program <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong> in ne<strong>on</strong>atal mice. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e superficial retinal<br />

vascular plexus (RVP) occurs in a spatio-temporally defined pattern. Prior to bir<str<strong>on</strong>g>th</str<strong>on</strong>g>,<br />

astrocytes migrate away from <str<strong>on</strong>g>th</str<strong>on</strong>g>e optic nerve over <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inner retina<br />

in resp<strong>on</strong>se to a chemotactic gradient. Astrocytes express fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er chemotactic, and<br />

haptotactic, signals which induce endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell sprouting and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RVP.<br />

Adopting a hybrid PDE-discrete approach, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model allows tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

astrocytes and endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells in resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese migratory cues. The simulati<strong>on</strong>s<br />

provide an excellent correlati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent and pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> astrocyte<br />

migrati<strong>on</strong> and vascular network formati<strong>on</strong> observed in vivo. The model is extended<br />

to include simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flow <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e nascent vessel networks, and oxygen<br />

delivery to <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissues. Dynamic remodelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vasculature is <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

performed, again producing excellent agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental observati<strong>on</strong>s.<br />

17:35–17:55<br />

Michael Kücken<br />

133


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Max-Planck-Institute for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems<br />

e-mail: kuecken@pks.mpg.de<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical stress and Merkel cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fingerprints<br />

In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e great importance <str<strong>on</strong>g>of</str<strong>on</strong>g> fingerpint patterns in forensics and biometrics<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere is still no generally accepted <str<strong>on</strong>g>th</str<strong>on</strong>g>eory how fingerprint patterns are formed in<br />

utero. Substantial evidence exists <str<strong>on</strong>g>th</str<strong>on</strong>g>at mechanical forces are decisive for determining<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ridges [1]. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, it is well-supported <str<strong>on</strong>g>th</str<strong>on</strong>g>at a certain skin<br />

cell, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Merkel cell, is <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary pattern forming agent [2]. However, until now<br />

no c<strong>on</strong>necti<strong>on</strong> has been established between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese findings.<br />

In my talk I will present a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at links stress distributi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing<br />

embry<strong>on</strong>al skin to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Merkel cell. This model is an agent-based model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Merkel cells as agents <str<strong>on</strong>g>th</str<strong>on</strong>g>at are interacting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. As an outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model I will explain what factors in fingerprint formati<strong>on</strong> are genetically c<strong>on</strong>trolled<br />

and why indeed every fingerprint — even <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> identical twins — is unique.<br />

References.<br />

[1] M. Kücken and A.C. Newell, A model for fingerprint formati<strong>on</strong>, Europhys Lett, 68, 141–146<br />

[2] D.-K. Kim and K.A. Holbrook, The appearance, density and sistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Merkel cells in<br />

human embry<strong>on</strong>ic and fetal skin: <str<strong>on</strong>g>th</str<strong>on</strong>g>eir relati<strong>on</strong> to sweat gland and hair follicle development,<br />

J Invest Dermat, 104, 411–416<br />

17:55–18:15<br />

Suruchi Bakshi<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: bakshi@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Paul C<strong>on</strong>duit<br />

Sir William Dunn School <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Omer Dushek<br />

Sir William Dunn School <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Ru<str<strong>on</strong>g>th</str<strong>on</strong>g> Baker<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Jordan Raff<br />

Sir William Dunn School <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Eam<strong>on</strong>n Gaffney<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Philip Maini<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Breaking <str<strong>on</strong>g>th</str<strong>on</strong>g>e symmetry: understanding Centrosomin<br />

incorporati<strong>on</strong> in Drosophila centrosomes in order to study<br />

asymmetric divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neural stem cells.<br />

A size asymmetry between <str<strong>on</strong>g>th</str<strong>on</strong>g>e centrosomes in certain Drosophila stem cells is important<br />

for proper asymmetric cell divisi<strong>on</strong>. How <str<strong>on</strong>g>th</str<strong>on</strong>g>is centrosome size asymmetry<br />

134


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

is c<strong>on</strong>trolled is a key questi<strong>on</strong> in stem cell biology. It has recently been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

differential rates <str<strong>on</strong>g>of</str<strong>on</strong>g> Centrosomin (Cnn) incorporati<strong>on</strong> into centrosomes may lead<br />

to centrosome size asymmetry in Drosophila neural stem cells. Cnn forms a gradient<br />

in pericentriolar matrix (PCM) and live imaging combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fluorescence<br />

recovery after photobleaching (FRAP) analysis has revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at Cnn molecules<br />

first incorporate into <str<strong>on</strong>g>th</str<strong>on</strong>g>e centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCM and <str<strong>on</strong>g>th</str<strong>on</strong>g>en spreads outwards <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCM. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we propose a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a coupled system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear reacti<strong>on</strong>-diffusi<strong>on</strong> type equati<strong>on</strong>s to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

observed Cnn behaviour. We hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esise <str<strong>on</strong>g>th</str<strong>on</strong>g>at Cnn binds to its receptors near <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCM and is c<strong>on</strong>verted into a ’heavy’ form which diffuses slowly as<br />

compared to cytoplasmic Cnn. Diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy Cnn <str<strong>on</strong>g>th</str<strong>on</strong>g>en creates a gradient<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCM. Steady state analysis shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at heavy Cnn forms an exp<strong>on</strong>entially<br />

decreasing gradient at steady state, which matches well wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally<br />

observed Cnn gradient. Numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model also predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e FRAP<br />

kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> Cnn. Once we understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> Cnn incorporati<strong>on</strong>, we may<br />

be able to predict how <str<strong>on</strong>g>th</str<strong>on</strong>g>is mechanism could be exploited to create centrosome size<br />

asymmetry in Drosophila neural stem cells.<br />

18:15–18:35<br />

Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>er Hardway<br />

Bost<strong>on</strong> University<br />

e-mail: hhardway@bu.edu<br />

Tasso Kaper<br />

Bost<strong>on</strong> University<br />

Cyn<str<strong>on</strong>g>th</str<strong>on</strong>g>ia Bradham<br />

Bost<strong>on</strong> University<br />

Dorsal-ventral patterning in sea urchin and Drosophila<br />

embryos<br />

The dorsal-ventral axis in Drosophila is specified by gradients <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e morphogenetic<br />

proteins (BMPs). While initially secreted in a broad regi<strong>on</strong>, later c<strong>on</strong>centrate<br />

into a narrow band, designating <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal-most 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo. Modeling<br />

papers have focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics seen in Drosophila, but <str<strong>on</strong>g>th</str<strong>on</strong>g>e same mechanism<br />

specifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e sea urchin axis. Yet in urchins, <str<strong>on</strong>g>th</str<strong>on</strong>g>e BMP secreti<strong>on</strong> and expressi<strong>on</strong><br />

domains are complementary. Reacti<strong>on</strong>-diffusi<strong>on</strong> models are c<strong>on</strong>sidered for <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterning<br />

seen in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> organisms, but are limited in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir capabilities to reproduce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sharp curvature seen in <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological data. While positive feedback is likely<br />

resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er c<strong>on</strong>centrating <str<strong>on</strong>g>th</str<strong>on</strong>g>e BMP gradient, we c<strong>on</strong>sider alternative<br />

types <str<strong>on</strong>g>th</str<strong>on</strong>g>at could account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterning seen in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> organisms.<br />

18:35–18:55<br />

135


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Anotida Madzvamuse<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, Bright<strong>on</strong>, BN1 9QH,<br />

UK<br />

e-mail: a.madzvamuse@sussex.ac.uk<br />

Raquel Barreira<br />

Escola Superior de Tecnologia do Barreiro/IPS, Rua Américo da Silva<br />

Marinho-Lavradio, 2839-001 Barreiro, Portugal<br />

e-mail: raquel.barreira@estbarreiro.ips.pt<br />

Charlie M. Elliott<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Institute and Centre for Scientific Computing, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Warwick, Coventry CV4 7AL, UK<br />

e-mail: C.M.Elliott@warwick.ac.uk<br />

The evolving surface finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (ESFEM) for<br />

pattern formati<strong>on</strong> <strong>on</strong> evolving biological surfaces<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we propose models and a numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for pattern formati<strong>on</strong> <strong>on</strong><br />

evolving curved surfaces. We formulate reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s [4] <strong>on</strong> evolving<br />

surfaces using <str<strong>on</strong>g>th</str<strong>on</strong>g>e material transport formula, surface gradients and diffusive<br />

c<strong>on</strong>servati<strong>on</strong> laws [1]. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface is defined by a material surface<br />

velocity. The numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evolving surface finite element<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (ESFEM) [2, 3]. The key idea is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ by a<br />

triangulated surface Γ h c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> vertices <strong>on</strong> Γ. A<br />

finite element space <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s is <str<strong>on</strong>g>th</str<strong>on</strong>g>en defined by taking <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous functi<strong>on</strong>s<br />

<strong>on</strong> Γ h which are linear affine <strong>on</strong> each simplex <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polyg<strong>on</strong>al surface. To dem<strong>on</strong>strate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e capability, flexibility, versatility and generality <str<strong>on</strong>g>of</str<strong>on</strong>g> our me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology we<br />

present results for uniform isotropic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> as well as anisotropic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

surfaces and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> system.<br />

The surface finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od provides a robust numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for solving<br />

partial differential systems <strong>on</strong> c<strong>on</strong>tinuously evolving domains and surfaces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> numerous<br />

applicati<strong>on</strong>s in developmental biology, tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and cell movement<br />

and deformati<strong>on</strong>.<br />

References.<br />

[1] Barreira, R. Elliott, C.M. & Madzvamuse, A. (2011). The surface finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

(SFEM) for pattern formati<strong>on</strong> <strong>on</strong> evolving biological surfaces. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., in press.<br />

[2] Dziuk, G. and Elliott, C.M. (2007) Finite elements <strong>on</strong> evolving surfaces. IMA J. Num. Anal.,<br />

27, 262-292.<br />

[3] Dziuk, G. and Elliott, C.M. (2007) Surface finite elements for parabolic equati<strong>on</strong>s. J. Comp.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>., 25, 430-439.<br />

[4] Madzvamuse, A. Maini, P. K. and Wa<str<strong>on</strong>g>th</str<strong>on</strong>g>en, A. J. (2003). A moving grid finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

applied to a model biological pattern generator. J. Comp. Phys. 190, 478-500.<br />

136


Developmental Biology 2<br />

Thursday, June 30, 11:30, Room: AM3<br />

Chaired by: Anotida Madzvamuse<br />

11:30–12:00<br />

Sascha Dalessi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lausanne, Lausanne,<br />

Switzerland<br />

Swiss Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics<br />

e-mail: sascha.dalessi@unil.ch<br />

Gerald Schwank<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Life Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zurich, Zurich,<br />

Switzerland<br />

Aitana Mort<strong>on</strong> de Lachapelle<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lausanne, Lausanne,<br />

Switzerland<br />

Swiss Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics<br />

K<strong>on</strong>rad Basler<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Life Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zurich, Zurich,<br />

Switzerland<br />

Sven Bergmann<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lausanne, Lausanne,<br />

Switzerland<br />

Swiss Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics<br />

Analytical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Dpp wt pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and tkv cl<strong>on</strong>es in<br />

Drosophila wing imaginal discs<br />

Morphogen c<strong>on</strong>centrati<strong>on</strong> gradients in developing organisms or tissues provide<br />

positi<strong>on</strong>al informati<strong>on</strong> which can induce patterning and space-dependent cell fates<br />

[1]. A well known example is Decapentaplegic (Dpp), involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Drosophila wing imaginal discs, which forms a c<strong>on</strong>centrati<strong>on</strong> gradient al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Anterior-Posterior axis [2].<br />

In a recent work [3], we developed and compared to experimental data a 1D analytical<br />

model describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dpp steady state gradient pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and tkv mutant<br />

cl<strong>on</strong>e effects. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, we identify <str<strong>on</strong>g>th</str<strong>on</strong>g>ree distinct Dpp comp<strong>on</strong>ents: external<br />

Dpp, Tkv-bound Dpp and internalized Dpp. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e external Dpp diffuses<br />

from a finite-size producti<strong>on</strong> regi<strong>on</strong> and can bind to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Tkv receptors. The<br />

bound Dpp can unbind or be internalized. The internalized Dpp can be degraded or<br />

137


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

transported cell by cell by transcytosis. We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>at transcytosis is receptormediated<br />

and we model it in a pure diffusive way. Assuming a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> free<br />

receptors allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding differential equati<strong>on</strong>s,<br />

from which we obtain simple analytical expressi<strong>on</strong>s for each Dpp comp<strong>on</strong>ent.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e tkv cl<strong>on</strong>al regi<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> receptors as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e receptor-mediated<br />

transcytosis are affected. We c<strong>on</strong>sider loss-<str<strong>on</strong>g>of</str<strong>on</strong>g>-functi<strong>on</strong> (LOF) experiments, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> no<br />

receptors inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>e, and gain-<str<strong>on</strong>g>of</str<strong>on</strong>g>-functi<strong>on</strong> (GOF) experiments, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n−fold<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> receptors.<br />

An extensive qualitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> LOF experiments and quantitative data extracti<strong>on</strong><br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e GOF images allows to (i) c<strong>on</strong>strain <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters space and<br />

find a set <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal parameters (ii) understand which <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e external diffusi<strong>on</strong> or<br />

transcytosis is <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominating mechanism in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dpp gradient formati<strong>on</strong> (iii) obtain<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> external, Tkv-bound and internalized Dpp. All <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

experimental data and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical results are reported in [3].<br />

References.<br />

[1] L. Wolpert L Positi<strong>on</strong>al informati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular differentiati<strong>on</strong> J. Theor.<br />

Biol. 25(1) 1–47<br />

[2] E. V. Entchev et al. Gradient formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e TGF-beta homolog Dpp Cell 103(6) 981–991<br />

[3] G. Schwank, S. Dalessi et al. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g range Dpp morphogen gradient Manuscript<br />

submitted<br />

12:05–12:25<br />

Hiroshi Yoshida<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Kyushu University, Itou, Motouoka 744, Nishiku,<br />

FUKUOKA 819-0395 Japan.<br />

e-mail: youshida.p@gmail.com<br />

A c<strong>on</strong>diti<strong>on</strong> for regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell chain based <strong>on</strong><br />

Dachsous:Fat heterodimer system<br />

Regenerati<strong>on</strong> phenomena have been studied <str<strong>on</strong>g>th</str<strong>on</strong>g>rough various models. Taking<br />

cockroach leg regenerati<strong>on</strong> for instance, it has been studied <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong>al<br />

informati<strong>on</strong> model [6], <str<strong>on</strong>g>th</str<strong>on</strong>g>e polar coordinate model [3], and <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary model [5].<br />

Bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models, recent studies have led to models at <str<strong>on</strong>g>th</str<strong>on</strong>g>e single<br />

cellular level [1]. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a cell, Dachsous (Ds) and Fat molecules, and between<br />

cells, Ds:Fat heterodimers, are c<strong>on</strong>sidered to facilitate regenerati<strong>on</strong>. The Ds:Fat<br />

signaling system looks like an entity to realize <str<strong>on</strong>g>th</str<strong>on</strong>g>e steepness hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis where <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

leg size and regenerati<strong>on</strong> are regulated <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a gradient across cells [4].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we modeled a cell chain based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ds:Fat system. It has been<br />

said <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterodimer is produced from free active Ds and Fat molecules wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

cells. Ds and Fat molecules are redistributed when a cell divides into two, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

Ds:Fat heterodimers become redistributed accordingly. Little is, however, known<br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are redistributed because <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ds:Fat signaling<br />

and heterodimers remains obscure [2]. We hence modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>is redistributi<strong>on</strong> and<br />

138


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

calculated a c<strong>on</strong>diti<strong>on</strong> for regenerati<strong>on</strong>. The derived equati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at some degenerated<br />

redistributi<strong>on</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> heterodimers provides a cell chain wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability<br />

to regenerate.<br />

References.<br />

[1] Agata, K. et al. (2003) Intercalary regenerati<strong>on</strong> in Planarians. Dev. Dyn., 226 308–316.<br />

[2] Bando, T. et al. (2009) Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leg size and shape by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dachsous/Fat signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

during regenerati<strong>on</strong>. Development, 136(13) 2235–2245.<br />

[3] French, V. et al. (1976) Pattern regulati<strong>on</strong> in epimorphic fields. Science, 193 969–981.<br />

[4] Lawrence, P. A. et al. (2008) Do <str<strong>on</strong>g>th</str<strong>on</strong>g>e protocadherins fat and dachsous link up to determine<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> planar cell polarity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organs Nat. Cell. Biol., 10(12) 1379–1382.<br />

[5] Meinhardt, H. (1983) A boundary model for pattern formati<strong>on</strong> in vertebrate limbs. J. Embryol.<br />

Exp. Morph., 76 115–137.<br />

[6] Wolpert, L. (1994) Positi<strong>on</strong>al informati<strong>on</strong> and pattern formati<strong>on</strong> in development. Dev. Genet.,<br />

15 485–490.<br />

12:25–12:45<br />

Chadha Chettaoui<br />

INRIA Rocquencourt / INRA Jouy en Josas<br />

e-mail: chadha.chettaoui@gmail.com<br />

Dirk Drasdo<br />

INRIA Rocquencourt<br />

Michel Guillomot<br />

INRA Jouy en Josas<br />

Isabelle Hue<br />

INRA Jouy en Josas<br />

Alain Trubuil<br />

INRA Jouy en Josas<br />

Juhui Wang<br />

INRA Jouy en Josas<br />

Towards a single-cell-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> early development in<br />

ruminants<br />

Embry<strong>on</strong>ic losses and, after bir<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic origins<br />

such as obesity, diabetes, arterial hypertensi<strong>on</strong>, have been observed as critical<br />

in early ruminant (sheep, cow) development.<br />

In order to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible mechanisms leading to such failures, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mechanisms c<strong>on</strong>trolling two developmental phases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blastocyst (a<br />

hollow sphere <str<strong>on</strong>g>of</str<strong>on</strong>g> cells) during late blastula formati<strong>on</strong> as well as early trophoblast<br />

development needs to be understood. The trophoblast is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

appears at <str<strong>on</strong>g>th</str<strong>on</strong>g>e beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> embryogenesis in mammals. It forms <str<strong>on</strong>g>th</str<strong>on</strong>g>e wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

blastocyst and helps for implantati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e uterine wall. During early development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trophoblast, a temporal window <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days from <str<strong>on</strong>g>th</str<strong>on</strong>g>e blastocyst stage, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

trophoblast floats in <str<strong>on</strong>g>th</str<strong>on</strong>g>e uterine liquid, and undergoes an extremely fast grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

el<strong>on</strong>gati<strong>on</strong>. This period <str<strong>on</strong>g>of</str<strong>on</strong>g> early morphogenesis is fundamental for a normal development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo. We established a process chain to quantitatively analyze<br />

139


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e two developmental phases by experiments, analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> images from <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryos<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different stages, and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling. We analyze c<strong>on</strong>focal images<br />

to infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular organizati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue sheet, and determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cell size and cell shapes prior and during <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo shape transiti<strong>on</strong>.<br />

Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis, we set up a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical single-cell-based<br />

model. Our model cells are parametrized by measurable biophysical and cell biological<br />

quantities. They can migrate, grow and divide, and interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells<br />

and extracellular matrix by forces. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first step we c<strong>on</strong>sidered a representative<br />

<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing embryo and studied different mechanisms to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

deformati<strong>on</strong>. The model permits predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> several manipulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and<br />

embryo <str<strong>on</strong>g>th</str<strong>on</strong>g>at are currently experimentally tested.<br />

12:45–13:05<br />

Shar<strong>on</strong> Lubkin<br />

Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State University<br />

e-mail: lubkin@eos.ncsu.edu<br />

Oswaldo Lozoya<br />

Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State University/University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina-Chapel<br />

Hill<br />

Mechanical c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> spheroid grow<str<strong>on</strong>g>th</str<strong>on</strong>g>: distinct<br />

morphogenetic regimes<br />

We develop a model <str<strong>on</strong>g>of</str<strong>on</strong>g> transport and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elio-mesenchymal interacti<strong>on</strong>s.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an avascular solid spheroid inside a passive mesenchyme<br />

or gel shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at sustained volumetric grow<str<strong>on</strong>g>th</str<strong>on</strong>g> requires four generic mechanisms:<br />

(1) grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor, (2) protease, (3) c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> cellularity, and (4) swelling. The<br />

model reveals a bifurcati<strong>on</strong> delineating two distinct morphogenetic regimes: (A)<br />

steady grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, (B) grow<str<strong>on</strong>g>th</str<strong>on</strong>g> arrested by capsule formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesenchyme. In<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> morphogenetic regimes, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> velocity is c<strong>on</strong>stant unless and until a complete<br />

capsule forms. Comprehensive explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e large parameter space reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong> is determined by just two ratios representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and proteolytic activity. Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> velocity is determined <strong>on</strong>ly by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ratio governing grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> proteolytic activity. There is a c<strong>on</strong>tinuum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interior versus surface grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fastest grow<str<strong>on</strong>g>th</str<strong>on</strong>g> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface. The model<br />

provides a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical basis for explaining observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> arrest despite<br />

proteolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> surrounding tissue, and gives a quantitative framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>e design<br />

and interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments involving spheroids, and tissues which are locally<br />

equivalent to spheroids.<br />

13:05–13:25<br />

Victoria Mir<strong>on</strong>ova<br />

140


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics, Novosibirsk, Russia<br />

e-mail: kviki@bi<strong>on</strong>et.nsc.ru<br />

Ekaterina Novoselova<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics, Novosibirsk, Russia<br />

Nadya Omelyanchuk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics, Novosibirsk, Russia<br />

Vitaly Likhoshvai<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics, Novosibirsk, Russia<br />

The combined mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse fountain and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reflected flow provide for self-organizati<strong>on</strong> and maintenance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root apical meristem<br />

The phytohorm<strong>on</strong>e auxin is critical for patterning and morphogenesis in plants.<br />

In plant roots, auxin maxima coincide wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root apical meristem<br />

(RAM) initiati<strong>on</strong> and functi<strong>on</strong>ing. By today, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two main mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

auxin distributi<strong>on</strong> formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root tip were proposed. The reverse fountain<br />

mechanism is based <strong>on</strong> a specific RAM structure in which each cell has a specified<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin efflux. A stable locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin maximum in silico<br />

is provided for by a reflux <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin from <str<strong>on</strong>g>th</str<strong>on</strong>g>e basipetal flow back to <str<strong>on</strong>g>th</str<strong>on</strong>g>e acropetal<br />

flow all al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem, which transports auxin in a loop. The reflected flow<br />

mechanism is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin-dependent regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin acropetal flow: low<br />

auxin c<strong>on</strong>centrati<strong>on</strong>s activate <str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PIN1 genes, whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e high<br />

c<strong>on</strong>centrati<strong>on</strong>s induce degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PIN1 proteins [2]. The mechanism explains<br />

self-organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin distributi<strong>on</strong> pattern in an array <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>ally identical<br />

cells acquiring cell type specializati<strong>on</strong> due to auxin regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> PIN1 proteins in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells. We suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse fountain and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reflected flow mechanisms are complementary in root development. In particular,<br />

<strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e reflected flow mechanism operates at <str<strong>on</strong>g>th</str<strong>on</strong>g>e very early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> root<br />

development. At later developmental stages, an anatomical structure forms and<br />

provides for <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse fountain mechanism <str<strong>on</strong>g>th</str<strong>on</strong>g>at serve for more<br />

robust maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin maximum in <str<strong>on</strong>g>th</str<strong>on</strong>g>e RAM. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e reflected<br />

flow mechanism does not disappear, revealing itself if RAM structure is disrupted<br />

or <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment changes. To test <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis we combined bo<str<strong>on</strong>g>th</str<strong>on</strong>g> mechanisms<br />

in 2D ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model. This model describes (1) auxin flow from <str<strong>on</strong>g>th</str<strong>on</strong>g>e shoot; (2)<br />

auxin syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at is positively regulated by auxin itself; (3) irreversible loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

auxin (degradati<strong>on</strong>); (4) auxin diffusi<strong>on</strong>, providing for an isotropic distributi<strong>on</strong> in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e root; syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis and degradati<strong>on</strong> depending <strong>on</strong> auxin c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (5) PIN1,<br />

(6) PIN2, (7) PIN3; (8) active auxin transport mediating by PINs proteins; (9)<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> root cells. Two cell types are c<strong>on</strong>sidered in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2D model:<br />

central cylinder and epidermis. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e central cylinder cells <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes (1-5,7-9)<br />

are c<strong>on</strong>sidered and described as in [2]. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidermal cells <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes (2-<br />

4,6-9) are c<strong>on</strong>sidered. As auxin transporters carry out different, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten redundant,<br />

functi<strong>on</strong>s in specialized tissues, we introduced to <str<strong>on</strong>g>th</str<strong>on</strong>g>e model some simplificati<strong>on</strong>s.<br />

Only <str<strong>on</strong>g>th</str<strong>on</strong>g>ree auxin carriers are c<strong>on</strong>sidered: PIN1 transports auxin acropetally, PIN2<br />

mediates basipetal auxin flow as well as lateral transport from basipetal back to<br />

acropetal flow, PIN3 regulates auxin redistributi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root cap. Thus, PIN proteins<br />

have <str<strong>on</strong>g>th</str<strong>on</strong>g>e following locati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells: PIN1 is localized at <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal side <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

141


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e central cylinder cells, PIN2 at <str<strong>on</strong>g>th</str<strong>on</strong>g>e lateral internal and apical sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidermal<br />

cells and PIN3 at all sides <str<strong>on</strong>g>of</str<strong>on</strong>g> potentially all cells. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes (1,3-5,8-9)<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter values were taken from [2]. O<str<strong>on</strong>g>th</str<strong>on</strong>g>er parameters were estimated so<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at: (1) PIN2 is expressed predominantly in epidermal cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low auxin level;<br />

(2) PIN3 expressi<strong>on</strong> domain is localized in <str<strong>on</strong>g>th</str<strong>on</strong>g>e z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> high auxin level; (3) auxin<br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rates are high in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high auxin level. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

and initial uniform auxin distributi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model provides steady-state auxin<br />

distributi<strong>on</strong> pattern <str<strong>on</strong>g>th</str<strong>on</strong>g>at agree well wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data. The mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> auxin distributi<strong>on</strong> self-organizati<strong>on</strong> found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting stati<strong>on</strong>ary soluti<strong>on</strong>s is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e following. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e first step, auxin maximum is generated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central cylinder<br />

cell array at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distance from <str<strong>on</strong>g>th</str<strong>on</strong>g>e root end under <str<strong>on</strong>g>th</str<strong>on</strong>g>e reflected flow mechanism. As<br />

a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> high auxin level in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root tip is organized where PIN3 and<br />

auxin syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate are high. Sec<strong>on</strong>d, <str<strong>on</strong>g>th</str<strong>on</strong>g>e PIN3-mediated auxin redistributi<strong>on</strong> is<br />

switched <strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root tip, and auxin moves to PIN2-mediated basipetal flow in<br />

epidermis. Third, As PIN2 is localized <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lateral internal cell sides in epidermis,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reflux <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin from <str<strong>on</strong>g>th</str<strong>on</strong>g>e basipetal flow back to <str<strong>on</strong>g>th</str<strong>on</strong>g>e acropetal flow starts to<br />

work. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin gradient associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum is formed under <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reverse fountain mechanism which finishes formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin distributi<strong>on</strong> pattern.<br />

In numerical experiments we showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2D model reveals bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e developmental processes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse fountain mechanism [1] and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e plasticity to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment changes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e reflected flow mechanism [2].<br />

Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese advantages <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2D model gave new predicti<strong>on</strong>s about <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong>al<br />

informati<strong>on</strong> in root patterning <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be checked in <str<strong>on</strong>g>th</str<strong>on</strong>g>e experiments. The 2D<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin distributi<strong>on</strong> in root can be a powerful tool for investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> root<br />

development in silico.<br />

The work was partially supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e RAS programs A.II.5.26, A.II.6.8,<br />

B.27.29, SB RAS 107, 119, and RFBR 10-01-00717-,11-04-01254-.<br />

1. Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B: Auxin transport<br />

is sufficient to generate a maximum and gradient guiding root grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Nature<br />

2007, 449(7165):1008-1013. 2. VV Mir<strong>on</strong>ova, NA Omelyanchuk, G Yosiph<strong>on</strong>, SI<br />

Fadeev, NA Kolchanov, E Mjolsness, VA Likhoshvai A plausible mechanism for<br />

auxin patterning al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing root. BMC Systems Biology 2010, 4:98<br />

142


Developmental Biology 3<br />

Friday, July 1, 14:30, Room: AM7<br />

Chaired by: Hiroshi Yoshida<br />

14:30–15:00<br />

Tilmann Glimm<br />

Western Washingt<strong>on</strong> University<br />

e-mail: glimmt@wwu.edu<br />

Pattern formati<strong>on</strong> in reacti<strong>on</strong>-diffusi<strong>on</strong> systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

external morphogen gradient<br />

Gradients <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling molecules are abundant in <str<strong>on</strong>g>th</str<strong>on</strong>g>e early embryo. They are central<br />

to early development. The Turing mechanism in reacti<strong>on</strong>-diffusi<strong>on</strong> systems<br />

is a paradigm for pattern formati<strong>on</strong> which has been proposed as an explanati<strong>on</strong><br />

for many developmental phenomena. We propose a generic model <str<strong>on</strong>g>of</str<strong>on</strong>g> a reacti<strong>on</strong>diffusi<strong>on</strong><br />

system c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> an activator and an inhibitor molecule in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a linear morphogen gradient. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is morphogen gradient is established<br />

independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> system. Hence it is referred to as<br />

an "external" morphogen. It acts by increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activator<br />

proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphogen c<strong>on</strong>centrati<strong>on</strong>. The model is motivated by several<br />

existing models in developmental biology in which a Turing patterning mechanism<br />

is proposed and various chemical gradients are known to be important for development.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically, <str<strong>on</strong>g>th</str<strong>on</strong>g>is leads to reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> explicit<br />

spatial dependence. We investigate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e Turing pattern is affected, if it exists.<br />

We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter range where a Turing pattern is not possible,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e system may never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless produce “Turing-like” patterns. We also apply our<br />

general findings to a model <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e pattern formati<strong>on</strong> in vertebrate limbs and show<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey may shed light <strong>on</strong> some experimental findings c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e protein S<strong>on</strong>ic Hedgehog.<br />

References.<br />

[1] T. Glimm, J. Zhang and Y.-Q. Shen Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing patterns wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an external linear<br />

morphogen gradient N<strong>on</strong>linearity 22 10, 2541-2560 (2009).<br />

[2] T. Glimm, J. Zhang, Y.-Q. Shen and S. A. Newman Reacti<strong>on</strong>-diffusi<strong>on</strong> systems and external<br />

morphogen gradients: The two-dimensi<strong>on</strong>al case, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an applicati<strong>on</strong> to skeletal pattern<br />

formati<strong>on</strong> submitted (2010).<br />

[3] M. Alber, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, Y.-T. Zhang, J. Zhu and S. A.<br />

Newman The morphostatic limit for a model <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal pattern formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vertebrate<br />

limb Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 70 460–483 (2008).<br />

143


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:05–15:25<br />

E.E. Deinum<br />

FOM Institute AMOLF, Amsterdam, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands; Laboratory for<br />

molecular biology, Wageningen University, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: deinum@amolf.nl<br />

R. Geurts<br />

Laboratory for molecular biology, Wageningen University, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

T. Bisseling<br />

Laboratory for molecular biology, Wageningen University, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

B.M. Mulder<br />

FOM Institute AMOLF, Amsterdam, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands; Laboratory for<br />

plant cell biology, Wageningen University, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

Manipulating auxin transport: different strategies leave<br />

different signatures<br />

Auxin is a key horm<strong>on</strong>e in plant development. Am<strong>on</strong>g its roles is <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong><br />

and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> root meristem identity. When a root forms a lateral organ,<br />

differentiated cells turn into a de novo meristem, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aid <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin.<br />

From a developmental perspective, Legume roots are a particularly interesting<br />

example: <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can sprout two different lateral organs: lateral roots and nitrogen<br />

fixing root nodules. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are formed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e same regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

differentiati<strong>on</strong> z<strong>on</strong>e. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cases auxin accumulati<strong>on</strong> is found at <str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e organ primordium. The primordia, however, originate from different cell layers<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e organs are induced in different ways. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism<br />

behind <str<strong>on</strong>g>th</str<strong>on</strong>g>e local auxin accumulati<strong>on</strong> most likely differs between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two cases.<br />

Inspired by <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we analyzed <str<strong>on</strong>g>th</str<strong>on</strong>g>e general characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree plausible<br />

generic strategies for increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e local auxin c<strong>on</strong>centrati<strong>on</strong>: increasing influx,<br />

decreasing efflux and local producti<strong>on</strong>.<br />

Each strategy results in a pattern wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its own characteristic signature. This<br />

holds in a simple 1D model, but also shows up in a more complex root-like envir<strong>on</strong>ment.<br />

Returning to <str<strong>on</strong>g>th</str<strong>on</strong>g>e legumes: are <str<strong>on</strong>g>th</str<strong>on</strong>g>e differences large enough to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

early differences between bo<str<strong>on</strong>g>th</str<strong>on</strong>g> lateral organ primordia<br />

15:25–15:45<br />

Torbjörn Lundh<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Chalmers and University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: torbjorn.lundh@chalmers.se<br />

Jun Udagawa<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Developmental Biology, Shimane University<br />

e-mail: jun@med.shimane-u.ac.jp<br />

Sven-Erik Hänel<br />

144


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

IFP Research AB, 431 22 Mölndal, Sweden<br />

e-mail: haenel@gotanet.com<br />

Hiroki Otani<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Developmental Biology, Shimane University<br />

e-mail: hotani@med.shimane-u.ac.jp<br />

Invariances <str<strong>on</strong>g>of</str<strong>on</strong>g> cross- and trippel-ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> human limbs<br />

Recall <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex plain, four points, p, q, r, s, can be mapped to four<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er points, ˜p, ˜q, ˜r, ˜s, by a Möbius transformati<strong>on</strong>, z ↦→ az+b<br />

cz+d<br />

, if and <strong>on</strong>ly if <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cross-ratio, (p−r)(q−s)<br />

(p−s)(q−r), equals <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜p, ˜q, ˜r, ˜s. In [1], a bold and highly<br />

inspiring statement was given <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>secutive joints <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

limbs, are invariant, not <strong>on</strong>ly over time, but also between different limbs, and even<br />

different pers<strong>on</strong>s! In order to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>is intriguing statement, but also to<br />

develop new morphometric tools for development studies, we geometrically analyze<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e morphological development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human body, and we examined <str<strong>on</strong>g>th</str<strong>on</strong>g>e crossratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree c<strong>on</strong>secutive body parts <str<strong>on</strong>g>th</str<strong>on</strong>g>at are segmented by four landmarks in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>figurati<strong>on</strong>. Moreover, we introduce an generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e triple-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> five landmarks <str<strong>on</strong>g>th</str<strong>on</strong>g>at segments four c<strong>on</strong>secutive parts (e.g. <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

shoulder, upper arm, forearm, and hand) and examined <str<strong>on</strong>g>th</str<strong>on</strong>g>eir grow<str<strong>on</strong>g>th</str<strong>on</strong>g> patterns. The<br />

triple-ratio was defined for five arbitrary points, p, q, r, s, and t as:<br />

κ(p, q, r, s, t) =<br />

|p − r||q − s||r − t|<br />

|q − r||r − s||p − t| .<br />

It is easy to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at also <str<strong>on</strong>g>th</str<strong>on</strong>g>e trippel-ratio is invariant under Möbius transformati<strong>on</strong>s.<br />

The cross- and triple-ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e upper limb and shoulder girdle in fetuses<br />

were c<strong>on</strong>stant when biomechanical landmarks were used al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e upper limb varied when <str<strong>on</strong>g>th</str<strong>on</strong>g>e anatomical landmarks were used. The cross-ratios<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lower limbs, trunk, and pelvic girdles <str<strong>on</strong>g>of</str<strong>on</strong>g> fetuses differed from <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding<br />

cross-ratios in adults. These results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e Möbius grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fetal upper limb and shoulder girdle, but not in <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er body parts we examined.<br />

However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree c<strong>on</strong>tiguous body parts was represented by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e developmental change in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross- and triple-ratios<br />

may be applicable for <str<strong>on</strong>g>th</str<strong>on</strong>g>e assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> balance or proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e body<br />

parts.<br />

References.<br />

[1] S.V. Petukhov N<strong>on</strong>-Euclidean geometries and algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms <str<strong>on</strong>g>of</str<strong>on</strong>g> living bodies Comput. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Appl.<br />

17:505–534.<br />

15:45–16:05<br />

Andrey A. Polezhaev<br />

Maria Yu. Borina<br />

P. N. Lebedev Physical Institute, Moscow, Russia<br />

e-mail: apol@lpi.ru<br />

145


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> pattern formati<strong>on</strong> in biological systems<br />

caused by diffusi<strong>on</strong> instability<br />

Pattern formati<strong>on</strong> in living systems including morphogenesis is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most<br />

challenging problems <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical biology. Starting from early seventies a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> models based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called Turing instability [1] were suggested (<strong>on</strong>e<br />

can find some examples in [2]). Turing instability is a type <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> instability<br />

when <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized problem becomes positive in a certain<br />

n<strong>on</strong>-zero range <str<strong>on</strong>g>of</str<strong>on</strong>g> wave vectors. This instability may be resp<strong>on</strong>sible for stati<strong>on</strong>ary<br />

n<strong>on</strong>homogeneous pattern formati<strong>on</strong>.<br />

Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er type <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> instability is <str<strong>on</strong>g>th</str<strong>on</strong>g>e wave instability when a pair <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complex c<strong>on</strong>jugate eigenvalues acquires a positive real part in a certain range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wave vectors. Wave instability may be resp<strong>on</strong>sible for a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial-temporal<br />

patterns observed bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in biological (for example, in bacterial col<strong>on</strong>ies) and in<br />

chemical systems (Belousov-Zhabotinsky reacti<strong>on</strong> in microemulsi<strong>on</strong> [3]). While<br />

Turing instability can arise in a two-variable reacti<strong>on</strong>-diffusi<strong>on</strong> model, not less <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree equati<strong>on</strong>s are necessary for <str<strong>on</strong>g>th</str<strong>on</strong>g>e wave instability.<br />

We obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> Turing and wave instabilities in a <str<strong>on</strong>g>th</str<strong>on</strong>g>reevariable<br />

reacti<strong>on</strong> diffusi<strong>on</strong> model which follow from linear analysis and formulate<br />

qualitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e instabilities to occur. While for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Turing bifurcati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system should possess an autocatalytic variable which has<br />

a sufficiently small diffusi<strong>on</strong> coefficient compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers (it coincides<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>is bifurcati<strong>on</strong> in a two-variable model), <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e wave bifurcati<strong>on</strong> are somewhat different. Autocatalysis is necessary but not<br />

sufficient. Namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e sum <str<strong>on</strong>g>of</str<strong>on</strong>g> two terms <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main diag<strong>on</strong>al <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearizati<strong>on</strong><br />

matrix should be positive and <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ird variable should<br />

be sufficiently large. It is essential <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two bifurcati<strong>on</strong>s do<br />

not c<strong>on</strong>tradict and bo<str<strong>on</strong>g>th</str<strong>on</strong>g> instabilities can take place simultaneously.<br />

Numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modified Brusselator model support analytic results<br />

and dem<strong>on</strong>strate a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial-temporal patterns for different regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parametric space. Finally we discuss biological systems in which pattern<br />

formati<strong>on</strong> may be caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e above mechanisms.<br />

This work was supported by grant No. 08-01-00131 from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Russian Foundati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Basic Research.<br />

References.<br />

[1] A.M. Turing, The chemical basis <str<strong>on</strong>g>of</str<strong>on</strong>g> morphogenesis Philos. Trans. R. Soc. L<strong>on</strong>d<strong>on</strong> B 237 37–2,<br />

1952.<br />

[2] J.D. Murray, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology: II. Spatial Models and Biomedical Applicati<strong>on</strong>s Springer-<br />

Verlag, 3rd ed., 2003.<br />

[3] V.K. Vanag, Waves and patterns in reacti<strong>on</strong>-diffusi<strong>on</strong> systems. Belousov-Zhabotinsky reacti<strong>on</strong><br />

in water-in-oil microemulsi<strong>on</strong>s Phys. Usp. 47 923–941, 2004.<br />

16:05–16:25<br />

Sergey Nikolaev<br />

146


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytology and Genetics The Siberian Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: nikolaev@bi<strong>on</strong>et.nsc.ru<br />

Spatial Distributed Genetic Mechanism for Stem Cell Niche<br />

Structure C<strong>on</strong>trol in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shoot Apical Meristem<br />

There is a qualitative hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> interplay between CLV and WUS genes as a<br />

mechanism for <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM compartmentalizati<strong>on</strong> into central z<strong>on</strong>e (CZ stem cells),<br />

organizing center (OC), and peripheral z<strong>on</strong>e (PZ). The following is an important<br />

moment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis: CLV3 expressi<strong>on</strong> occurs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central cells <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 upper<br />

layers (CZ), while WUS expressi<strong>on</strong> occurs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells <str<strong>on</strong>g>of</str<strong>on</strong>g> OC, just below CZ; and<br />

CLV3 by means <str<strong>on</strong>g>of</str<strong>on</strong>g> binding wi<str<strong>on</strong>g>th</str<strong>on</strong>g> putative receptor CLV1/CLV2 inhibits WUS expressi<strong>on</strong>,<br />

while WUS activates CLV3 expressi<strong>on</strong>. This interplay is believed to be<br />

able to regulate stem cell niche structure in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM.<br />

We developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributed molecular-genetic<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> such a compartmentalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM to test <str<strong>on</strong>g>th</str<strong>on</strong>g>e above hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis.<br />

We added a hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>etical gene expressing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e uppermost cells. And we supposed<br />

regulatory molecules propagate across <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM by diffusi<strong>on</strong>. A resulting system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s was numerically solved to obtain a stati<strong>on</strong>ary soluti<strong>on</strong> <strong>on</strong><br />

a 2D domain representing vertical cut <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM.<br />

Obtained model parameters supply a stati<strong>on</strong>ary soluti<strong>on</strong> for spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeled genes expressi<strong>on</strong> in qualitative accordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimentally<br />

observed data <strong>on</strong> vertical cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM.<br />

The hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esized mechanism for stem cell niche structure c<strong>on</strong>trol in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM<br />

grasps main features <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e compartments experimentally observed.<br />

147


Developmental Biology 4<br />

Saturday, July 2, 11:00, Room: AM1<br />

Chaired by: Tilmann Glimm<br />

11:00–11:30<br />

Yoshihiro Morishita<br />

Kyushu University<br />

e-mail: ymorishi@bio-ma<str<strong>on</strong>g>th</str<strong>on</strong>g>10.biology.kyushu-u.ac.jp<br />

Coding design <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>al informati<strong>on</strong> for robust<br />

morphogenesis<br />

Robust positi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in a tissue against unavoidable noises is important for<br />

achieving normal and reproducible morphogenesis. The positi<strong>on</strong> in a tissue is represented<br />

by morphogen c<strong>on</strong>centrati<strong>on</strong>s, and cells read out <str<strong>on</strong>g>th</str<strong>on</strong>g>em to recognize <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

spatial coordinates. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e engineering viewpoint, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese positi<strong>on</strong>ing processes<br />

can be regarded as an informati<strong>on</strong> coding. Organisms are c<strong>on</strong>jectured to adopt<br />

good coding designs wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high reliability for a given number <str<strong>on</strong>g>of</str<strong>on</strong>g> available morphogen<br />

species and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir chemical properties. To answer quantitatively <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong>s, how<br />

good coding is adopted and when, where, and to what extent does each morphogen<br />

c<strong>on</strong>tribute to positi<strong>on</strong>ing, we need a way to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> coding. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, by introducing basic c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> computer science, we ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

formulate coding processes in morphogen-dependent positi<strong>on</strong>ing, and define some<br />

key c<strong>on</strong>cepts such as encoding, decoding, and positi<strong>on</strong>al informati<strong>on</strong> and its precisi<strong>on</strong>.<br />

We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e best designs for pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> encoding and decoding rules.<br />

We also discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>th</str<strong>on</strong>g>eory to biological data.<br />

11:35–11:55<br />

Jörn Starruß<br />

Center for Infromati<strong>on</strong> Services and High Performance computing,<br />

TU-Dresden<br />

Fernando Peruani<br />

Max Planck Institute for Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems, Dresden<br />

Andreas Deutsch<br />

149


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Center for Infromati<strong>on</strong> Services and High Performance computing,<br />

TU-Dresden<br />

Collective migrati<strong>on</strong> in myxobacteria driven by adventurous<br />

motility and el<strong>on</strong>gated cell shape<br />

Myxococcus xan<str<strong>on</strong>g>th</str<strong>on</strong>g>us is a soil living bacterium <str<strong>on</strong>g>th</str<strong>on</strong>g>at is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> forming multicellular<br />

fruiting bodies. Thus, M. xan<str<strong>on</strong>g>th</str<strong>on</strong>g>us may serve as an attractive model system<br />

for studying organizati<strong>on</strong>al principles <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow individual cells to organize into<br />

and behave like a multicellular organism.<br />

I will present our latest experimental insights <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cluster formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adventurous<br />

myxobacteria wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main focus <strong>on</strong> statistical analysis [3]. Interestingly,<br />

initially unstructured col<strong>on</strong>ies restructure into collectively migrating clusters and<br />

finally c<strong>on</strong>verge into a characteristic distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster sizes.<br />

We envisage a simple mechanism for clustering based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic<br />

rod cell shape and cell motility. We made use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree modelling approaches,<br />

including a cellular Potts model, to elucidate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir implicati<strong>on</strong>s <strong>on</strong> multicellular<br />

organizati<strong>on</strong> [1,2]. Recently we have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at self-propelled rods interacting just<br />

by volume exclusi<strong>on</strong> exhibit a n<strong>on</strong>-equilibrium transiti<strong>on</strong> to clustering [1]. Using<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, statistical analysis and a mean field approach, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e models<br />

resemble <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental cluster size distributi<strong>on</strong>s, including<br />

a clustering transiti<strong>on</strong> at a critical cell density.<br />

References.<br />

[1] Peruani, F., Deutsch, A., & Bär, M. (2006) N<strong>on</strong>-equilibrium clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> self-propelled rods.<br />

Phys. Rev. E, 74(3), 030904.<br />

[2] Starruß, Jörn, Bley, Thomas, Søgaard-Andersen, Lotte and Deutsch, Andreas (2007) A new<br />

mechanism for collective migrati<strong>on</strong> in M. xan<str<strong>on</strong>g>th</str<strong>on</strong>g>us, in: J. Stat. Phys., 128, pp 269-286<br />

[3] Manuscript in preparati<strong>on</strong><br />

11:55–12:15<br />

Joanna Szymanowska-Pułka<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biophysics and Plant Morphogenesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Silesia, Katowice<br />

e-mail: jsp@us.edu.pl<br />

Jerzy Karczewski<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biophysics and Plant Morphogenesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Silesia, Katowice<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lateral Root Morphology wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Fast Fourier Transform<br />

During <str<strong>on</strong>g>th</str<strong>on</strong>g>e lateral root (LR) development bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e size and <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ<br />

change c<strong>on</strong>tinuously since <str<strong>on</strong>g>th</str<strong>on</strong>g>e moment <str<strong>on</strong>g>of</str<strong>on</strong>g> its initiati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pericycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

root until it reaches its mature form. Subsequent stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR formati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

typical changes <str<strong>on</strong>g>of</str<strong>on</strong>g> its form and cell pattern are known [1]. However, our observati<strong>on</strong>s<br />

[2] prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e early stages, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR promordia push <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

150


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er root, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey show a great diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir surface morphology.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e forms are repeatable, few occur as single cases. From mechanical point<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR formati<strong>on</strong> may be interpreted as a bucling and <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed changes<br />

in shape as local deflecti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root apex surface resulting from a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er root. This irregularity in form may suggest<br />

changeable mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR apex.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> our study is to analyze atypicaly formed LRs in comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

apices <str<strong>on</strong>g>of</str<strong>on</strong>g> typical morhology as well as to estimate mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR<br />

apex basing <strong>on</strong> deflecti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir structures. The LR primordia forming in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana roots were photographed in Nomarski c<strong>on</strong>trast microscopic<br />

technique in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir axial <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g>s. The outlines <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chosen LRs showing typical<br />

and atypical shapes were digitized. The coordinates were introduced as initial data<br />

to a program analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e apices. The basic assumti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our model<br />

were <str<strong>on</strong>g>th</str<strong>on</strong>g>e following: (i) a surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a typicaly shaped LR is a circular paraboloid<br />

[3]; (ii) trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> principal directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stress form a pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> paraboloids<br />

[3]; (iii) deflecti<strong>on</strong>s (irregularities) <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ surface are local and small in comparis<strong>on</strong><br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e apex size. The LR formati<strong>on</strong> was analyzed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical<br />

buckling. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model we applied <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fast Fourier Transform me<str<strong>on</strong>g>th</str<strong>on</strong>g>od a standard<br />

tool adopted to descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> buckling [4, 5]. This allowed determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e deflecti<strong>on</strong><br />

curves <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e trig<strong>on</strong>ometric series. Our results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e outline <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each LR apex <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e unchanged geometry (independently <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stage <str<strong>on</strong>g>of</str<strong>on</strong>g> development)<br />

may be described by <strong>on</strong>e parabolic curve, which in <str<strong>on</strong>g>th</str<strong>on</strong>g>e parabolic coordinates<br />

refers <str<strong>on</strong>g>th</str<strong>on</strong>g>e line 1.2. Thus <str<strong>on</strong>g>th</str<strong>on</strong>g>e curves representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e outlines <str<strong>on</strong>g>of</str<strong>on</strong>g> atypicaly formed<br />

LRs where in <str<strong>on</strong>g>th</str<strong>on</strong>g>e first step adjusted to <str<strong>on</strong>g>th</str<strong>on</strong>g>at line. For each studied curve <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourier<br />

spectrum (amplitude and phase) was calculated . On <str<strong>on</strong>g>th</str<strong>on</strong>g>is basis we were able to<br />

classify atypicaly shaped LR apices. Then applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e Euler formula to <str<strong>on</strong>g>th</str<strong>on</strong>g>e elastic<br />

buckling we estimated basic mechanical moduli for <str<strong>on</strong>g>th</str<strong>on</strong>g>e studied cases. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>th</str<strong>on</strong>g>e following c<strong>on</strong>nclusi<strong>on</strong>s can be drawn: (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourier Transform<br />

may be a useful tool to a shape annalisys <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e living structures; (ii) mechanical<br />

moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> a growing plant organ tissues can be estimated <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ<br />

shape and its deformati<strong>on</strong>s; (iii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> growing plant tissues<br />

may be regulated by biological factors like plant grow<str<strong>on</strong>g>th</str<strong>on</strong>g> horm<strong>on</strong>es as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell wall achitecture. The last needs additi<strong>on</strong>al studies.<br />

References.<br />

[1] J.E. Malamy, P.N. Benfey, 1997. Organizati<strong>on</strong> and cell differentiati<strong>on</strong> in lateral roots <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>aliana. Development, 124, 33-44.<br />

[2] J. Szymanowska-Pułka, I. Potocka, L. Feldman, J. Karczewski. Principal directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir manifestati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> a developing lateral root in Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana<br />

poster. The EMBO Meeting 2010, Barcel<strong>on</strong>a Sept 27, 2010.<br />

[3] Z. Hejnowicz, 1984. Trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> principal directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, natural coordinate system<br />

in growing plant organ. Acta Soc. Bot. Pol., 53(1), 29-42.<br />

[4] S.P.Timoshenko, J.M Gere, 1985. Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> elastic stability. McGraw-Hill Int. Book Com,<br />

1-45.<br />

[5] R. Vandiver , A. Goriely, 2009. Differential grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and residual stress in cylindrical elastic<br />

structures. Phil. Trans. R. Soc. A, 367, 3607-3630.<br />

12:15–12:35<br />

151


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia Tapani<br />

Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Statistics,<br />

Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg University<br />

e-mail: s<str<strong>on</strong>g>of</str<strong>on</strong>g>ia.tapani@chalmers.se<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<strong>on</strong>uclei migrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mammalian egg<br />

At <str<strong>on</strong>g>th</str<strong>on</strong>g>is time it remains unanswered how <str<strong>on</strong>g>th</str<strong>on</strong>g>e embry<strong>on</strong>ic-abembry<strong>on</strong>ic axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mouse blastocyst is first established. Cell-fate is flexible in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sense <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

development can recover from perturbati<strong>on</strong>s. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e early mouse embryo is<br />

not merely a uniform ball. The cells show some preferences for adopting certain<br />

positi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at will in turn govern <str<strong>on</strong>g>th</str<strong>on</strong>g>eir developmental decisi<strong>on</strong>s. Our main questi<strong>on</strong><br />

is: When are <str<strong>on</strong>g>th</str<strong>on</strong>g>ese preferences established Cell-fates could be decided completely<br />

at random but it is also possible <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese decisi<strong>on</strong>s are guided by even as early<br />

c<strong>on</strong>tributing factors as <str<strong>on</strong>g>th</str<strong>on</strong>g>e first cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e egg. The orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e opposing<br />

pr<strong>on</strong>uclei plays most likely a decisive role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e polarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing embryo.<br />

Earlier studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo development show deviating results <str<strong>on</strong>g>of</str<strong>on</strong>g> when<br />

patterning is initiated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e egg, [1]-[4], [6], [7]. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese studies <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>clude<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern formati<strong>on</strong> starts later in <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo have however been c<strong>on</strong>ducted<br />

in 2D. We <str<strong>on</strong>g>th</str<strong>on</strong>g>ink it is important to see <str<strong>on</strong>g>th</str<strong>on</strong>g>is as a <str<strong>on</strong>g>th</str<strong>on</strong>g>ree dimensi<strong>on</strong>al problem to reduce<br />

bias in <str<strong>on</strong>g>th</str<strong>on</strong>g>e results. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> introducing our model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> is to<br />

easier visualize <str<strong>on</strong>g>th</str<strong>on</strong>g>e fertilizati<strong>on</strong> process to answer <str<strong>on</strong>g>th</str<strong>on</strong>g>ese questi<strong>on</strong>s. The usefulness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> is not <strong>on</strong>ly a case for visualizati<strong>on</strong>, but<br />

could also be used to predict outcomes by simulating different scenarios, such as<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e point <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm entry. Also, values <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters can<br />

be used to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> standard treatment or measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilized<br />

eggs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lab. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e model we can make simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> process<br />

and plot <str<strong>on</strong>g>th</str<strong>on</strong>g>e meeting positi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e pr<strong>on</strong>uclei. As data we use stacks <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>focal<br />

microscopy time-lapse images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pr<strong>on</strong>uclei migrati<strong>on</strong>, and realistic parameters in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e models are identified by statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. Given different distances between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sperm entry and <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d polar body, <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimated models are<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en used to produce distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e meeting plane between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pr<strong>on</strong>uclei. Parameter values corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese forces are estimated<br />

from data <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> eggs treated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a microtubule inhibitor and untreated eggs.<br />

The centralizati<strong>on</strong> force is modelled by two mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> pushing and pulling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e microtubule exerted forces. The model is essentially based <strong>on</strong> two forces <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

attracti<strong>on</strong>, a general migrati<strong>on</strong> directed towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell, and a sec<strong>on</strong>d<br />

attracti<strong>on</strong> force towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er pr<strong>on</strong>ucleus. From <str<strong>on</strong>g>th</str<strong>on</strong>g>is we have for example an<br />

indicati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulling mechanism is more significant <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e pushing.<br />

References.<br />

[1] Hiiragi, T., Solter, D. , (2005). Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> first cleavage specificati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse egg. Is<br />

our body plan set at day 0 Cell Cycle 4 661–664.<br />

[2] Motosugi, N., Bauer, T., Polanski, Z., Solter, D., Hiiragi, T. (2005). Polarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse<br />

embryo is established at blastocyst and is not prepatterned Genes Dev. 19 1081–1092.<br />

[3] Plusa B, Hadjant<strong>on</strong>akis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE,<br />

Glover DM, Zernicka-Goetz M, (2005). The first cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse zygote predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

blastocyst axis. Nature 434 391–5.<br />

[4] Schatten G., D<strong>on</strong>ovan P., (2004). Embryology: Plane talk Nature 430 301–2.<br />

152


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[5] Tapani, S., Udagawa, J., Plusa, B., Zernicka-Goetz, M., Lundh, T., (2008). Three dimensi<strong>on</strong>al<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<strong>on</strong>uclei migrati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse. <str<strong>on</strong>g>European</str<strong>on</strong>g> C<strong>on</strong>gress <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stereology and Image Analysis, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> America.<br />

[6] Zernicka-Goetz M. (2006). The first cell-fate decisi<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo: destiny is a<br />

matter <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> chance and choice. Curr Opin Genet Dev. 16(4) 406–12.<br />

[7] Zernicka-Goetz M. (2005). Developmental cell biology: cleavage pattern and emerging asymmetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo. Nat Rev Mol Cell Biol. 6 919–28.<br />

12:35–12:55<br />

Lisa Willis<br />

CoMPLEX, University College L<strong>on</strong>d<strong>on</strong><br />

e-mail: l.willis@ucl.ac.uk<br />

Biosilica nanoscale pattern formati<strong>on</strong> in diatoms<br />

Over <str<strong>on</strong>g>th</str<strong>on</strong>g>e last 200 milli<strong>on</strong> years, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic unicellular eukaryotic organisms<br />

have evolved mechanisms to sequester and assemble biominerals into exogenous<br />

structures. The results seen today are high-fidelity, mineralized shells featuring patterned<br />

complex nanoscale ornamentati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at defy syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis in vitro. Am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

organisms, diatoms are topical owing to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir fundamental role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e carb<strong>on</strong> cycle,<br />

in food chains ascending to fish, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential uses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir biosilica shells in<br />

developing nanotechnologies. Their species-specific mineralized shells have diverse<br />

morphologies, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at span scales from 5 nm to 0.5 mm. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e finest<br />

scale are structures called pore occlusi<strong>on</strong>s, which in a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> minutes assemble<br />

and solidify under ambient physiological c<strong>on</strong>diti<strong>on</strong>s into roughly deterministic<br />

patterns <str<strong>on</strong>g>th</str<strong>on</strong>g>at are c<strong>on</strong>served wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in species, but which vary between species. Very<br />

little is known about <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical processes governing <str<strong>on</strong>g>th</str<strong>on</strong>g>is biosilica patterned assembly.<br />

In an attempt to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical processes governing pore occlusi<strong>on</strong><br />

formati<strong>on</strong>, we are investigating new pattern forming probabilistic (spin-like) lattice<br />

models in coordinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diatom culturing experiments, which have produced<br />

some promising results.<br />

153


Ecosystems Dynamics 1<br />

Tuesday, June 28, 11:00, Room: UA1<br />

Chaired by: Helen Kettle<br />

11:00–11:30<br />

Johannes Müller<br />

Technische Universität München„ Zentrum Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik, Boltzmannstr. 3,<br />

85758 Garching / Munich, Germany<br />

e-mail: johannes.mueller@mytum.de<br />

Annett Henkel<br />

Technische Universität München, Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologie der Waldbäume, Hans-<br />

Carl-v<strong>on</strong>-Carlowitz-Platz 2, 85354 Freising<br />

e-mail: annett_henkel@email.de<br />

Christian Pötzsche<br />

Technische Universität München„ Zentrum Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik, Boltzmannstr. 3,<br />

85758 Garching / Munich, Germany<br />

e-mail: poetzsch@ma.tum.de<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora<br />

The genus Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora de Bary is a well-known group <str<strong>on</strong>g>of</str<strong>on</strong>g> fungus-like pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> algal relatives which are <str<strong>on</strong>g>th</str<strong>on</strong>g>e causal agent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most devastating plant diseases.<br />

Herbaceous crops like potatoes as well as woody crops like citrus or even<br />

trees in natural forests fall prey to <str<strong>on</strong>g>th</str<strong>on</strong>g>em and cause tremendous pecuniary and ecological<br />

losses each year which attract a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

behaviour and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora.<br />

We c<strong>on</strong>sider a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphology and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora using <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

example <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora plurivora utilizing a correlated random walk describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> tips. This correlated random walk incorporates some n<strong>on</strong>-standard<br />

aspects, as grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and change <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong> are intertwined, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> newly<br />

split tips is delayed (apical dominance).<br />

First we investigate running fr<strong>on</strong>ts, especially questi<strong>on</strong>ing <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is delay,<br />

for uniform- as well as n<strong>on</strong>-uniform turning kernels. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is delay<br />

primarily influences <str<strong>on</strong>g>th</str<strong>on</strong>g>e slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t and <str<strong>on</strong>g>th</str<strong>on</strong>g>erewi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial appropriati<strong>on</strong>,<br />

and not its velocity. This <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong> is c<strong>on</strong>firmed by experimental<br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora growing in Petri dishes.<br />

The sec<strong>on</strong>d questi<strong>on</strong> we are dealing wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e manner<br />

tips are interacting, especially <str<strong>on</strong>g>th</str<strong>on</strong>g>e point why tips stop to grow “behind” <str<strong>on</strong>g>th</str<strong>on</strong>g>e interface<br />

155


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t, respectively in c<strong>on</strong>fr<strong>on</strong>tati<strong>on</strong> experiments at <str<strong>on</strong>g>th</str<strong>on</strong>g>e interface between<br />

two col<strong>on</strong>ies. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data about <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial structured<br />

time course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose c<strong>on</strong>centrati<strong>on</strong> and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a model taking into<br />

account bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, tips and glucose, reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at nutrient depleti<strong>on</strong> is most likely <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

central mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> tip interacti<strong>on</strong> and hyphal grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. We presume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e growing mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora in infected plant tissue and <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen will sap its hosts via energy depleti<strong>on</strong> and tissue destructi<strong>on</strong> in infected<br />

areas.<br />

11:35–12:00<br />

Baba Issa Camara<br />

UMR 077 Plant Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, French Nati<strong>on</strong>al Agricultural Institute,<br />

42, rue Georges Morel - BP 60057 49071 Beaucouzé, Angers, France.<br />

e-mail: bicamara@angers.inra.fr<br />

Natalia Sapoukhina<br />

UMR 077 Plant Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, French Nati<strong>on</strong>al Agricultural Institute,<br />

42, rue Georges Morel - BP 60057 49071 Beaucouzé, Angers, France.<br />

e-mail: natalia.sapoukhina@angers.inra.fr<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stratified dispersal rate<br />

The establishment and spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invading organisms have dramatic c<strong>on</strong>sequences<br />

for ecosystems. Many organisms expand <str<strong>on</strong>g>th</str<strong>on</strong>g>eir range by being transferred passively<br />

over short and l<strong>on</strong>g distances simultaneously, <str<strong>on</strong>g>th</str<strong>on</strong>g>us resulting in a stratified dispersal<br />

process [1, 2] . The stochastic events <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-distance dispersal complicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread rate <str<strong>on</strong>g>of</str<strong>on</strong>g> an invading populati<strong>on</strong>. Our goal is to measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

accelerating effect <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary foci created by l<strong>on</strong>g-distance dispersal <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong><br />

spread rate. We developed a spatially explicit host-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen model describing<br />

independently c<strong>on</strong>tinuous short- and stochastic l<strong>on</strong>g-distance dispersal processes.<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exact soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusive spread wi<str<strong>on</strong>g>th</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stratified dispersal allowed us to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-distance<br />

dispersal events <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread rate. Due to independent descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

modes <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal, <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed model can be parameterized easily and used in<br />

epidemiology. The explicit representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-dimensi<strong>on</strong>al habitat allows<br />

coupling our model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a landscape optimizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to design landscapes<br />

unfavorable to fast epidemics spread.<br />

References.<br />

[1] Hengeveld, R. 1989. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> biological invasi<strong>on</strong>s. Chapman and Hall, L<strong>on</strong>d<strong>on</strong>, UK.<br />

[2] Sapoukhina N., Tyutyunov Y., Sache I. and Arditi R. 2010. Spatially mixed crops to c<strong>on</strong>trol<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stratified dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> airborne fungal diseases. Ecological Modelling 221 2793–2800.<br />

156<br />

12:00–12:25


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Yoan Eynaud<br />

Laboratoire de Microbiologie, de Géochimie et d’Ecologie Marines,<br />

UMR CNRS 6117, Centre d’Océanologie de Marseille (OSU) Université<br />

de la Méditerranée - Campus de Luminy, case 901 13288 Marseille<br />

cedex 9<br />

e-mail: yoan.eynaud@univmed.fr<br />

Melika Baklouti<br />

Laboratoire d’Océanographie Physique et Biogéochimique, UMR CNRS<br />

6535, Centre d’Océanologie de Marseille (OSU) Université de la Méditerranée<br />

- Campus de Luminy, case 901 13288 Marseille cedex 9<br />

e-mail: melika.baklouti@univmed.fr<br />

Jean-Christophe Poggiale<br />

Laboratoire de Microbiologie, de Géochimie et d’Ecologie Marines,<br />

UMR CNRS 6117, Centre d’Océanologie de Marseille (OSU) Université<br />

de la Méditerranée - Campus de Luminy, case 901 13288 Marseille<br />

cedex 9<br />

e-mail: jean-christophe.poggiale@univmed.fr<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic ecosystem: how far details are<br />

important <br />

The role played by carb<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e global change led researchers to focus <strong>on</strong> its<br />

cycle wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e biosphere. Since 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ear<str<strong>on</strong>g>th</str<strong>on</strong>g> surface is covered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ocean,<br />

understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e remineralizati<strong>on</strong> processes occuring am<strong>on</strong>g oceanic realms is crucial.<br />

However our knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic layer is still poor and if logistical<br />

issues can partially explain <str<strong>on</strong>g>th</str<strong>on</strong>g>is lack, our limited capacity in modelling marine<br />

ecosystems are resp<strong>on</strong>sible as well. Thus we need to improve our way to model<br />

marine ecosystems and more precisely, how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey behave. An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e role<br />

played by details in ecological modelling is essential, and if some works have been<br />

d<strong>on</strong>e <strong>on</strong> simple model (Fussmann and Blazius, 2005; Poggiale et al., 2010), it appears<br />

interesting to study more complex systems, such as a mesopelagic model.<br />

A few models already exist (Anders<strong>on</strong> and Tang, 2010; Jacks<strong>on</strong> et al.,2001; Stemmann<br />

et al., 2004) but n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em have used <str<strong>on</strong>g>th</str<strong>on</strong>g>e DEB <str<strong>on</strong>g>th</str<strong>on</strong>g>eory in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>structi<strong>on</strong><br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses, which leads in a complexificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model at <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological scale.<br />

Since we aim to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e role played by details in modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic<br />

layer, we here work <strong>on</strong> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> different level <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological complexicity and trophic<br />

web organizati<strong>on</strong>. Thus, we have built 3 mesopelagic model <str<strong>on</strong>g>of</str<strong>on</strong>g> different trophic web<br />

complexicity, all using DEB <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and compare it to n<strong>on</strong>-mecanistic approaches.<br />

Our results shows <str<strong>on</strong>g>th</str<strong>on</strong>g>e details required in modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic ecosystem and<br />

enhance our knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic web modelling.<br />

References.<br />

[1] G.F. Fussmann and B. Blasius, “Community resp<strong>on</strong>se to enrichment is highly sensitive to<br />

model structure.,” Biology letters, vol. 1, Mar. 2005, pp. 9-12.<br />

157


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] J.-C. Poggiale, M. Baklouti, B. Queguiner, and S. a L.M. Kooijman, “How far details are<br />

important in ecosystem modelling: <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-limiting nutrients in phytoplankt<strong>on</strong>zooplankt<strong>on</strong><br />

interacti<strong>on</strong>s.,” Philosophical transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong>. Series<br />

B, Biological sciences, vol. 365, Nov. 2010, pp. 3495-507.<br />

[3] T.R. Anders<strong>on</strong> and K.W. Tang, “Carb<strong>on</strong> cycling and POC turnover in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic z<strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ocean: Insights from a simple model,” Deep Sea Research Part II: Topical Studies in<br />

Oceanography, vol. 57, Aug. 2010, pp. 1581-1592.<br />

[4] G. a Jacks<strong>on</strong> and A.B. Burd, “A model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle flux in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mid-water<br />

column c<strong>on</strong>trolled by subsurface biotic interacti<strong>on</strong>s,” Deep Sea Research Part II: Topical<br />

Studies in Oceanography, vol. 49, 2001, pp. 193-217.<br />

[5] L. Stemmann, G. a Jacks<strong>on</strong>, and D. Ians<strong>on</strong>, “A vertical model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle size distributi<strong>on</strong>s<br />

and fluxes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e midwater column <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes biological and physical processes—Part I:<br />

model formulati<strong>on</strong>,” Deep Sea Research Part I: Oceanographic Research Papers, vol. 51, Jul.<br />

2004, pp. 865-884.<br />

12:25–12:50<br />

W<strong>on</strong>ju Je<strong>on</strong><br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences<br />

e-mail: wje<strong>on</strong>@nims.re.kr<br />

Sang-Hee Lee<br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences<br />

Exploring Algal Blooms <str<strong>on</strong>g>th</str<strong>on</strong>g>rough Plankt<strong>on</strong>s Interacti<strong>on</strong>s<br />

Using Trophic Model<br />

We developed two-level trophic model to systematically understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e algal blooming<br />

in aquatic systems. The model combined two ecological processes: <strong>on</strong>e is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

predator (zooplankt<strong>on</strong>)-prey (phytoplankt<strong>on</strong>) interacti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er is <str<strong>on</strong>g>th</str<strong>on</strong>g>e advecti<strong>on</strong><br />

and diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid. By using <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, we computati<strong>on</strong>ally revealed<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological and envir<strong>on</strong>mental factors causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e algal bloom<br />

in relati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e turbulent mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plankt<strong>on</strong>s. We showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e turbulent<br />

mixing is likely to str<strong>on</strong>gly affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blooming <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface<br />

plankt<strong>on</strong>. In additi<strong>on</strong>, we briefly discussed <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> strategy between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

plankt<strong>on</strong>s to increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir survival in c<strong>on</strong>necti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blooming.<br />

158


Ecosystems Dynamics 2<br />

Tuesday, June 28, 14:30, Room: AM1<br />

Chaired by: Johannes Müller<br />

14:30–15:00<br />

Helen Kettle<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Scotland<br />

e-mail: helen@bioss.ac.uk<br />

Petra Louis<br />

Rowett Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nutriti<strong>on</strong> and Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Harry Flint<br />

Rowett Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nutriti<strong>on</strong> and Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Ruairi D<strong>on</strong>nelly<br />

Heriot Watt University<br />

Grietje Holtrop<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Scotland<br />

Glenn Mari<strong>on</strong><br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Scotland<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Emergent Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Microbial<br />

Communities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Human Col<strong>on</strong><br />

Modelling microbial ecosystem dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human col<strong>on</strong> is challenging due to<br />

large variati<strong>on</strong>s between individuals and limited amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> data. In an attempt to<br />

overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>ese issues we take a complex adaptive systems (CAS) approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

problem. Thus a model is developed in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant bacterial strains are not<br />

defined a priori but are allowed to ’emerge’ from a stochastically generated bacterial<br />

populati<strong>on</strong>. To do <str<strong>on</strong>g>th</str<strong>on</strong>g>is we begin by assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at every bacterial strain falls into<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> ten bacterial functi<strong>on</strong>al groups (BFGs) which are distinguished by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir preferred pH ranges. The metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways form<br />

a network which determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e dietary substrates each BFG grows <strong>on</strong> and which<br />

metabolites it may c<strong>on</strong>sume or produce. The parameters c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact rates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transfer al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>ese pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e preferred pH ranges are <str<strong>on</strong>g>th</str<strong>on</strong>g>en generated<br />

stochastically, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in appropriate limits, for a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 bacterial strains.<br />

The rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> each strain, resource and metabolite are computed<br />

by solving a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s. Due to competiti<strong>on</strong> for<br />

resources, and interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic network, some strains will flourish<br />

and some will disappear, such <str<strong>on</strong>g>th</str<strong>on</strong>g>at over time a viable community for <str<strong>on</strong>g>th</str<strong>on</strong>g>e given<br />

envir<strong>on</strong>ment emerges. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s governing <str<strong>on</strong>g>th</str<strong>on</strong>g>e model are described<br />

159


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e model results are compared to data from a fermentor study which examines<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> pH <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microbial community. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en dem<strong>on</strong>strate how <str<strong>on</strong>g>th</str<strong>on</strong>g>is CAS<br />

modelling approach allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e system to adapt to its envir<strong>on</strong>ment <str<strong>on</strong>g>th</str<strong>on</strong>g>rough species<br />

successi<strong>on</strong> and investigate different mechanisms for avoiding competitive exclusi<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e BFGs.<br />

15:05–15:25<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Greenman<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, UK<br />

e-mail: j.v.greenman@stir.ac.uk<br />

Virginia Pasour<br />

US Army Research Office<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen exclusi<strong>on</strong> in eco-epidemiological models<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at external forcing (whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er periodic or stochastic) can alter <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>diti<strong>on</strong>s under which a populati<strong>on</strong> is excluded from or can establish itself wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

an ecological system. This phenomen<strong>on</strong> is largely understood when <str<strong>on</strong>g>th</str<strong>on</strong>g>e forcing<br />

<strong>on</strong>ly has <strong>on</strong>e comp<strong>on</strong>ent but less so when <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are multiple comp<strong>on</strong>ents, especially<br />

when some are envir<strong>on</strong>mental while o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers are c<strong>on</strong>trols imposed by management to<br />

achieve its objectives. The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> how to exercise <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>trols is <str<strong>on</strong>g>of</str<strong>on</strong>g> importance<br />

in eco-epidemiological systems where <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen is to be excluded, particularly<br />

so in wildlife systems <str<strong>on</strong>g>th</str<strong>on</strong>g>at impinge <strong>on</strong> human heal<str<strong>on</strong>g>th</str<strong>on</strong>g> and livelihood. Much <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e work in <str<strong>on</strong>g>th</str<strong>on</strong>g>is area has focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying unforced<br />

and unmanaged system but progress has also been made <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> specific<br />

c<strong>on</strong>trols (e.g. culling, vaccinati<strong>on</strong>) in systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> periodic envir<strong>on</strong>mental forcing<br />

(e.g. <strong>on</strong> bir<str<strong>on</strong>g>th</str<strong>on</strong>g> rate, infecti<strong>on</strong> transmissi<strong>on</strong>). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we wish to add to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

literature by taking an algebraic approach based <strong>on</strong> a quadratic approximati<strong>on</strong> in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e forcing streng<str<strong>on</strong>g>th</str<strong>on</strong>g>, linking directly to <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen exclusi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rare invader approximati<strong>on</strong>. This approach generates explicit formulae for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distorti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold when <str<strong>on</strong>g>th</str<strong>on</strong>g>e forcing is <str<strong>on</strong>g>of</str<strong>on</strong>g> moderate streng<str<strong>on</strong>g>th</str<strong>on</strong>g>. We<br />

can <str<strong>on</strong>g>th</str<strong>on</strong>g>en efficiently explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> specific eco-epidemiological models<br />

and to make general statements about <str<strong>on</strong>g>th</str<strong>on</strong>g>eir behaviour. The algebraic analysis<br />

provides a sound basis to extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis to large streng<str<strong>on</strong>g>th</str<strong>on</strong>g> forcing by numerical<br />

simulati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> importance when <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold reflects res<strong>on</strong>ance in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

resident subsystem and <str<strong>on</strong>g>th</str<strong>on</strong>g>e subharm<strong>on</strong>ics and chaos <str<strong>on</strong>g>th</str<strong>on</strong>g>at increased forcing can<br />

create. Applicati<strong>on</strong>s include <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> added structure<br />

in epidemiological models and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> forcing <strong>on</strong> coexistence in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> apparent competiti<strong>on</strong> mediated by pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen or predator.<br />

15:25–15:45<br />

Toshiyuki Namba<br />

160


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Osaka Prefecture University<br />

e-mail: tnamba@b.s.osakafu-u.ac.jp<br />

Intraguild Predati<strong>on</strong> in a Source–Sink Metacommunity<br />

Dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms in a heterogeneous landscape str<strong>on</strong>gly influences <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> indirectly interacting populati<strong>on</strong>s. The source–sink habitat structure<br />

is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major mechanisms to promote coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> locally exclusive competitors.<br />

It is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at two populati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at interfere wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er (Takeuchi<br />

1989) or compete exploitatively (Namba and Hashimoto, 2004; Abrams and Wils<strong>on</strong>,<br />

2004) or apparently (Namba, 2007) in spatially heterogeneous metacommunities can<br />

coexist regi<strong>on</strong>ally even if <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em is locally inferior in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> patches.<br />

Here, I c<strong>on</strong>sider a Lotka-Volterra model <str<strong>on</strong>g>of</str<strong>on</strong>g> intraguild predati<strong>on</strong> in two patches<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at have different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s and are c<strong>on</strong>nected by dispersal:<br />

dR i<br />

dt<br />

dC i<br />

dt<br />

dP i<br />

dt<br />

= { r i − a RR R i − a RC C i − a RP P i} R i ,<br />

= (−m C + e RC a RC R i − a CP P i )C i − d C (C i − C j ),<br />

= (−m P + e RP a RP R i + e CP a CP C i )P i − d P (P i − P j ),<br />

(i, j) = (1.2) or (2, 1). r’s are intrinsic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates, m’s are mortalities, a’s are<br />

interacti<strong>on</strong> coefficients, e’s are c<strong>on</strong>versi<strong>on</strong> efficiencies, and m’s are diffusi<strong>on</strong> rates.<br />

The subscripts express species identity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e superscripts denote patch number.<br />

I study c<strong>on</strong>diti<strong>on</strong>s for coexistence and competitive exclusi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e following<br />

four cases; (1) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild prey is inferior in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> patches, (2) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

intraguild predator is inferior in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> patches, and (3) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e local interacti<strong>on</strong>s<br />

are bistable and ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild prey and predator can dominate each patch<br />

if it is initially abundant, (4) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild prey is inferior in <strong>on</strong>e patch (a<br />

sink) and superior in ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er patch (a source). I will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild prey<br />

and predator can coexist regi<strong>on</strong>ally in a habitat wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a source–sink structure even<br />

if <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em becomes competitively excluded in isolated patches in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e habitat is in a true source–sink structure and each species<br />

dominates <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two patches, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> patches may become sinks for <str<strong>on</strong>g>th</str<strong>on</strong>g>e intratuild<br />

prey when <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild predator is intermediate. I will<br />

also show <str<strong>on</strong>g>th</str<strong>on</strong>g>e stabilizing role <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> when <str<strong>on</strong>g>th</str<strong>on</strong>g>e local dynamics are oscillatory.<br />

In summary, dispersal between patches in different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s may<br />

ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er promote or demote coexistence depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e precise habitat c<strong>on</strong>diti<strong>on</strong>s<br />

and interacti<strong>on</strong> streng<str<strong>on</strong>g>th</str<strong>on</strong>g>s.<br />

References.<br />

[1] Abrams, P., and Wils<strong>on</strong>, W. G., 2004. Coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> competitors in metacommunities due<br />

to spatial variati<strong>on</strong> in resource grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates; does R ∗ predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong><br />

Ecology Letters 7 929–940.<br />

[2] Namba, T., 2007. Dispersal-mediated coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> indirect competitors in source–sink metacommunities.<br />

Japan Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics 24 39–55.<br />

[3] Namba, T., and Hashimoto, C., 2004. Dispersal-mediated coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> competing predators.<br />

Theoretical Populati<strong>on</strong> Biology 66 53–70.<br />

[4] Takeuchi, Y., 1989. Diffusi<strong>on</strong>–mediated persistence in two-species competiti<strong>on</strong> Lotka-Volterra<br />

model. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences 95 65–83.<br />

161


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:45–16:05<br />

Virginia Pasour<br />

US Army Research Office<br />

e-mail: virginia.pasour@us.army.mil<br />

Laura Miller<br />

UNC - Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Steve Ellner<br />

Cornell - EEB<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Macrophytes <strong>on</strong> Biological Residence Time in a<br />

Flow-Through System<br />

While plankt<strong>on</strong> have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been <str<strong>on</strong>g>th</str<strong>on</strong>g>ought to behave as passive tracers, completely at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mercy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hydrodynamic flow, <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong>ness <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong> patches, as well<br />

as field studies showing evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganism movement against <str<strong>on</strong>g>th</str<strong>on</strong>g>e bulk (or<br />

mean) flow, suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at individual plankt<strong>on</strong> behavior such as vertical/horiz<strong>on</strong>tal<br />

migrati<strong>on</strong> may dominate at smaller scales. In natural water bodies such as embayments<br />

and estuaries, macrophytes can have a significant and complex effect <strong>on</strong><br />

water flow and can greatly complicate physical/biological interacti<strong>on</strong>s. Using a<br />

two-dimensi<strong>on</strong>al hydrodynamic model to create flows in an idealized channel wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

macrophytes modeled as a porous layer, we first model <str<strong>on</strong>g>th</str<strong>on</strong>g>e channel under a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different macrophyte regimes, varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> patches and height and<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macrophytes. We next model plankt<strong>on</strong> behavior under <str<strong>on</strong>g>th</str<strong>on</strong>g>ese different<br />

flow regimes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an individual-based model and explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent to which<br />

vertical migrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophytes affects plankt<strong>on</strong> trajectories. In<br />

particular, we are interested in studying how <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong> migrati<strong>on</strong><br />

behaviors and macrophyte structures affect biological retenti<strong>on</strong> and whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er a set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong> regimes exists for a given hydrodynamic forcing <str<strong>on</strong>g>th</str<strong>on</strong>g>at will allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

plankt<strong>on</strong> to stay wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study system (avoid washout) ’forever.’<br />

16:05–16:25<br />

Joe Yuichiro Wakano<br />

Meiji University<br />

e-mail: joe@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.meiji.ac.jp<br />

Kota Ikeda<br />

Meiji University<br />

Takeshi Miki<br />

Nati<strong>on</strong>al Taiwan University<br />

Masayasu Mimura<br />

Meiji University<br />

162<br />

Reducti<strong>on</strong> from reacti<strong>on</strong>-diffusi<strong>on</strong> model to two-patch<br />

compartment model


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Two-patch compartment models have been explored to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial<br />

processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at promote species coexistence. However, a phenomenological definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inter-patch dispersal rate has limited <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative predictability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese models to community dynamics in spatially c<strong>on</strong>tinuous habitats. Here, we<br />

mechanistically rederived a two-patch Lotka-Volterra competiti<strong>on</strong> model for a spatially<br />

c<strong>on</strong>tinuous reacti<strong>on</strong>-diffusi<strong>on</strong> system where a narrow corridor c<strong>on</strong>nects two<br />

large habitats. We provide a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formula <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal rate appearing<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-patch compartment model as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat size, corridor shape<br />

(ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> its wid<str<strong>on</strong>g>th</str<strong>on</strong>g> to its leng<str<strong>on</strong>g>th</str<strong>on</strong>g>), and organism diffusi<strong>on</strong> coefficients. For most<br />

reas<strong>on</strong>able settings, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-patch compartment model successfully approximated<br />

not <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady states, but also <str<strong>on</strong>g>th</str<strong>on</strong>g>e transient dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong><br />

model. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er numerical simulati<strong>on</strong>s indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>e general applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> our formula<br />

to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er types <str<strong>on</strong>g>of</str<strong>on</strong>g> community dynamics, e.g. driven by resource-competiti<strong>on</strong>, in<br />

spatially homogeneous and heterogeneous envir<strong>on</strong>ments. Our results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats plays a central role in community dynamics<br />

in space. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, our new framework will help to improve experimental designs<br />

for quantitative test <str<strong>on</strong>g>of</str<strong>on</strong>g> metacommunity <str<strong>on</strong>g>th</str<strong>on</strong>g>eories and reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e gaps am<strong>on</strong>g<br />

modeling, empirical studies, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir applicati<strong>on</strong> to landscape management.<br />

163


Ecosystems Dynamics 3<br />

Tuesday, June 28, 17:00, Room: AM1<br />

Chaired by: Jacek Miękisz<br />

17:00–17:30<br />

Norio Yamamura<br />

Research Institute for Humanity and Nature<br />

e-mail: yamamura@chikyu.ac.jp<br />

Different Social-ecological Networks in Grassland and Forest<br />

SystemsImplicati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sustainable management<br />

Many ecosystems have been seriously degraded by human activities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e world.<br />

In order to c<strong>on</strong>sider management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose systems, we should grasp <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems as<br />

social-ecological networks as a whole. Remarking specially <str<strong>on</strong>g>th</str<strong>on</strong>g>e network structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> social-ecological systems, we are executing a project titled Collapse and Restorati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ecosystem Networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Human Activity (http//www.chikyu.ac.jp/rihn<br />

e/project/D-04.html) in Research Institute for Humanity and Nature (http//www.chikyu.ac.jp/index<br />

e.html).<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks have remarkable difference between grassland<br />

and forest systems, by analyzing data from grassland in M<strong>on</strong>golia and forests in<br />

Sarawak, Malaysia. In M<strong>on</strong>golia, <str<strong>on</strong>g>th</str<strong>on</strong>g>e vegetati<strong>on</strong> itself (grasses) has no direct value<br />

for humans <str<strong>on</strong>g>th</str<strong>on</strong>g>e value is stored in livestock <str<strong>on</strong>g>th</str<strong>on</strong>g>at feeds <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grasses. Therefore,<br />

global ec<strong>on</strong>omy affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> inhabitants, leading to overuse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vegetati<strong>on</strong><br />

and degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grassland. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective soluti<strong>on</strong> to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e problem should involve changing <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> inhabitants. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

hand, in Sarawak, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic value is stored in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vegetati<strong>on</strong> (trees). Therefore,<br />

enterprises and governments tend to severely develop <str<strong>on</strong>g>th</str<strong>on</strong>g>e forests, causing bo<str<strong>on</strong>g>th</str<strong>on</strong>g> reducti<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> forest available to inhabitants and biodiversity loss. The<br />

effective soluti<strong>on</strong> here should involve regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enterprises and governments.<br />

We here explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e model representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e difference <str<strong>on</strong>g>of</str<strong>on</strong>g> networks, and examine<br />

effective strategies for sustainable management <str<strong>on</strong>g>of</str<strong>on</strong>g> each type <str<strong>on</strong>g>of</str<strong>on</strong>g> systems, using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model. In M<strong>on</strong>golian social-ecological system, <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium is always stable<br />

even if price <str<strong>on</strong>g>of</str<strong>on</strong>g> livestock products increases because <str<strong>on</strong>g>of</str<strong>on</strong>g> negative feedback between<br />

grassland quality and livestock biomass. However, c<strong>on</strong>sidering climate fluctuati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grassland quality, <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> system collapse is lower for <str<strong>on</strong>g>th</str<strong>on</strong>g>e higher equilibrium<br />

value. In Sarawak social-ecological system, when logging rate reflecting global<br />

ec<strong>on</strong>omy exceeds a critical level, usable forests for habitants rapidly decreases to 0<br />

165


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> positive feedback between decreases <str<strong>on</strong>g>of</str<strong>on</strong>g> such forests and inhabitant utilizati<strong>on</strong><br />

activity for forests. The system has <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential nature <str<strong>on</strong>g>of</str<strong>on</strong>g> instability. We<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>at general social-ecological systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> envir<strong>on</strong>mental problems can be<br />

placed at some positi<strong>on</strong>s between two types <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>golia and Sarawak networks.<br />

17:35–17:55<br />

M. Vela-Pérez<br />

Departamento de Arquitectura, IE University, C/ Zúñiga 12, 40003<br />

Segovia, Spain<br />

e-mail: mvp_es@yahoo.es<br />

M. A. F<strong>on</strong>telos and J. J. L. Velázquez<br />

Instituto de Ciencias Matemáticas, (ICMAT, CSIC-UAM-UC3M-UCM),<br />

C/ Nicolás Cabrera 15, 28049 Madrid, Spain<br />

e-mail: marco.f<strong>on</strong>telos@icmat.es, jj_velazquez@icmat.es<br />

Geodesic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s in simple graphs for some social insects<br />

Social insects are an important example <str<strong>on</strong>g>of</str<strong>on</strong>g> complex collective behavior. In particular,<br />

ant col<strong>on</strong>ies develop different tasks as foraging, building and allocati<strong>on</strong> [1].<br />

While <str<strong>on</strong>g>th</str<strong>on</strong>g>ey search for food <str<strong>on</strong>g>th</str<strong>on</strong>g>ey deposit a pherom<strong>on</strong>e <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is c<strong>on</strong>sidered as a<br />

crucial element in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism for finding minimal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s. The experimental<br />

observati<strong>on</strong>s suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model should include <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> pherom<strong>on</strong>e and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence (tendency to follow straight pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er effects).<br />

In our study, we will c<strong>on</strong>sider ants as random walkers where <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability to<br />

move in <strong>on</strong>e or ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er directi<strong>on</strong> is influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pherom<strong>on</strong>e<br />

near <str<strong>on</strong>g>th</str<strong>on</strong>g>em (reinforced random walks). We are mainly interested not in an individual<br />

random walker but ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <strong>on</strong> a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> random walkers, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir collective<br />

behavior, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility for <str<strong>on</strong>g>th</str<strong>on</strong>g>em to aggregate forming geodesic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s between<br />

two points in some simple networks.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> ants in a two node network and in a <str<strong>on</strong>g>th</str<strong>on</strong>g>ree node<br />

network (wi<str<strong>on</strong>g>th</str<strong>on</strong>g> and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out directi<strong>on</strong>ality c<strong>on</strong>straint). Our analytical and computati<strong>on</strong>al<br />

results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in order for <str<strong>on</strong>g>th</str<strong>on</strong>g>e ants to follow shortest pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s between nest<br />

and food, it is necessary to superimpose to <str<strong>on</strong>g>th</str<strong>on</strong>g>e ants’ random walk <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemotactic<br />

reinforcement. It is also needed a certain degree <str<strong>on</strong>g>of</str<strong>on</strong>g> persistence so <str<strong>on</strong>g>th</str<strong>on</strong>g>at ants tend<br />

to move preferably wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out changing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir directi<strong>on</strong> much. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er important fact<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> ants, since we will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed for finding minimal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s<br />

increases very fast wi<str<strong>on</strong>g>th</str<strong>on</strong>g> it.<br />

References.<br />

[1] B. Hölldobler and K. Wils<strong>on</strong>, The ants, Berlin: Springer, 1990<br />

[2] M. Vela-Pérez, M. A. F<strong>on</strong>telos and J. J. L. Velázquez,Ant foraging and minimal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s in<br />

simple graphs, Submitted for publicati<strong>on</strong><br />

166<br />

17:55–18:15


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mats Gyllenberg<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: mats.gyllenberg@helsinki.fi<br />

Yi Wang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> China<br />

e-mail: wangyi@ustc.edu.cn<br />

Ping Yan<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: ping.yan@helsinki.fi<br />

Global asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>aut<strong>on</strong>omous<br />

master equati<strong>on</strong>s<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e master equati<strong>on</strong> dx<br />

dt<br />

= A(t)x, here A(t) is an nxn matrix whose<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f-diag<strong>on</strong>al entries are <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> rates a ij (t) and whose columns sum to zero.<br />

These c<strong>on</strong>diti<strong>on</strong>s ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e entries <str<strong>on</strong>g>of</str<strong>on</strong>g> a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e master<br />

equati<strong>on</strong> is c<strong>on</strong>served and <str<strong>on</strong>g>th</str<strong>on</strong>g>at n<strong>on</strong>negative soluti<strong>on</strong>s remain n<strong>on</strong>negative. Such<br />

matrices are called W-matrices by van Kampen. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we give some new<br />

results for <str<strong>on</strong>g>th</str<strong>on</strong>g>e master equati<strong>on</strong> c<strong>on</strong>cerning Earnshaw and Keener’s c<strong>on</strong>jecture.<br />

18:15–18:35<br />

Catalina Ciric<br />

EDF; Divisi<strong>on</strong> Recherche et Développement; Département Laboratoire<br />

Nati<strong>on</strong>al d’Hydraulique et Envir<strong>on</strong>nement; 6 quai Watier, 78401 Chatou,<br />

France<br />

e-mail: ciric.cata@gmail.com<br />

Sandrine Charles<br />

Université de Ly<strong>on</strong>, F-69000, Ly<strong>on</strong>; Université Ly<strong>on</strong> 1; CNRS, UMR5558,<br />

Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne,<br />

France<br />

Philippe Ciffroy<br />

EDF; Divisi<strong>on</strong> Recherche et Développement; Département Laboratoire<br />

Nati<strong>on</strong>al d’Hydraulique et Envir<strong>on</strong>nement; 6 quai Watier, 78401 Chatou,<br />

France<br />

Aquatic ecosystem modeling: use <str<strong>on</strong>g>of</str<strong>on</strong>g> screening sensitivity<br />

analysis me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e calibrati<strong>on</strong> process<br />

In ecological risk assessments, risks imputable to chemicals at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecosystem level<br />

are usually estimated by extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single-species toxicity test results. But<br />

such approaches fail to account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at inevitably exist am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

comp<strong>on</strong>ent species [1]. Alternately, modeling at <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole ecosystem level reveals<br />

to be a powerful tool by c<strong>on</strong>sidering species interacti<strong>on</strong>s, and by predicting toxic<br />

effects <strong>on</strong> n<strong>on</strong>-target species populati<strong>on</strong>s (indirect effects). The aims <str<strong>on</strong>g>of</str<strong>on</strong>g> our work<br />

167


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

are: (i) to develop a new ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model which comprehensively describes<br />

a whole aquatic ecosystem accounting for species interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a clear set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

equati<strong>on</strong>s including bo<str<strong>on</strong>g>th</str<strong>on</strong>g> abiotic and biotic factors; (ii) to incorporate perturbati<strong>on</strong><br />

functi<strong>on</strong>s <strong>on</strong> chosen processes wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in order to predict potential<br />

toxic effects at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecosystem level and to identify functi<strong>on</strong>al groups at risk; (iii) to<br />

perform a sensitivity analysis, i.e., to screen parameters having <str<strong>on</strong>g>th</str<strong>on</strong>g>e greatest influence<br />

<strong>on</strong> calculated target endpoints. An extensive literature review allowed us to<br />

c<strong>on</strong>ceptualize a whole n<strong>on</strong>-c<strong>on</strong>taminated aquatic ecosystem wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a compartmental<br />

ecological model [2]. Compartments include primary producers (macrophytes and<br />

algae from phytoplankt<strong>on</strong> and periphyt<strong>on</strong>), primary c<strong>on</strong>sumers (juvenile fish and<br />

invertebrate grazers, shredders and collectors) and sec<strong>on</strong>dary c<strong>on</strong>sumers (invertebrate<br />

predators and fish). All compartments are related wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a food web as well<br />

as to abiotic factors such as light, temperature and nutrients. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er literature<br />

review was carried <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most relevant perturbati<strong>on</strong> functi<strong>on</strong>s ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

describing how c<strong>on</strong>taminants impact populati<strong>on</strong> dynamics, trophic relati<strong>on</strong>ships<br />

and ecosystem functi<strong>on</strong>ning. These two literature reviews also provided for all parameters<br />

point estimates as well as some probability distributi<strong>on</strong>s. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 13 state<br />

variables (compartments), 23 interacti<strong>on</strong>s between species and 63 ecological processes,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters was necessarily very high ( 260), making<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e calibrati<strong>on</strong> process very complex and computati<strong>on</strong>ally expensive. To overcome<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese difficulties, sensitivity analyses (SA) seem particularly relevant [3]. They<br />

allow identifying n<strong>on</strong>-influential parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at can <str<strong>on</strong>g>th</str<strong>on</strong>g>en be fixed at a nominal<br />

value wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out significantly reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> outputs. Am<strong>on</strong>g SA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods,<br />

screening <strong>on</strong>es could be preferred as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are computati<strong>on</strong>ally cheap, compared to<br />

global <strong>on</strong>es. But screening SA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are <strong>on</strong>ly qualitative and do not compute<br />

an output variance decompositi<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e input uncertainties. Hence, we first<br />

tested and compared two screening SA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Morris [4] me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od developed by Klepper [4]. In order to check <str<strong>on</strong>g>th</str<strong>on</strong>g>e reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir results,<br />

we sec<strong>on</strong>d carried out a comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> results given by two global quantitative<br />

SA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Standardized Regressi<strong>on</strong> Coefficients (SRC) me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

FAST. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e last two me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are computati<strong>on</strong>ally expensive, we were <strong>on</strong>ly able<br />

to perform all our comparis<strong>on</strong>s <strong>on</strong> a reduced versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e "Periphyt<strong>on</strong>-<br />

Grazers" submodel, which c<strong>on</strong>tained a very small number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters ( 20). The<br />

Morris me<str<strong>on</strong>g>th</str<strong>on</strong>g>od was finally <str<strong>on</strong>g>th</str<strong>on</strong>g>e best compromise to screen n<strong>on</strong>-influential parameters.<br />

Applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole aquatic model, such a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od allows <strong>on</strong>e to reduce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying equati<strong>on</strong>s (some parameters are fixed, <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers<br />

have to be calibrated), and c<strong>on</strong>sequently to facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e calibrati<strong>on</strong> process from<br />

experimental data.<br />

References.<br />

[1] F.DeLaender; K.A.C.De Schamphelaere, P.A.Vanrolleghem, C.R.Janssen. 2008. Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an ecosystem modelling approach as a tool for ecological effect assessments. Chemosphere<br />

71:529-545.<br />

[2] S.M.Bartell, G.Lefebvre, G.Kaminski, M.Carreau, K.Rouse Campbell. 1999. An ecosystem<br />

model for assessing ecological risks in Québec rivers, lakes, and reservoirs. Ecological Modelling<br />

124:43-67.<br />

[3] A. Saltelli, K.Chan, E.M.Scott. 2008. Sensitivity analysis. Chicheter. UK: John Wiley & S<strong>on</strong>s<br />

Ltd. 475p.<br />

[4] Max D.Morris. 1991. Factorial sampling plans for preliminary computati<strong>on</strong>al experiments.<br />

Technometrics 33(2):161-174<br />

168


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[5] O. Klepper. 1997. Multivariate aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> model uncertainty analysis: tools for sensitivity<br />

analysis and calibrati<strong>on</strong>. Ecological Modelling 101:1-13<br />

18:35–18:55<br />

A. Ramanantoanina<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Stellenbosch University, Private<br />

Bag XI, Matieland 7602, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: ar@aims.ac.za<br />

A. Ouhinou<br />

African Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, 6 Melrose Road, Muizenberg<br />

7945, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: aziz@aims.ac.za<br />

C. Hui<br />

Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Invasi<strong>on</strong> Biology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany and Zoology, Private<br />

Bag XI, Matieland 7602, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: chui@sun.ac.za<br />

A density-dependent diffusi<strong>on</strong> model for a two-phase<br />

invasi<strong>on</strong><br />

A break <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e slope between <str<strong>on</strong>g>th</str<strong>on</strong>g>e range expansi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial years <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e later years has been observed for different species. We present an approach<br />

to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>is two-phase invasi<strong>on</strong> using a model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>-linear density-dependent<br />

diffusi<strong>on</strong>. We establish <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a travelling wave soluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. We investigate also <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e density-dependent diffusi<strong>on</strong> <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> species expansi<strong>on</strong> during <str<strong>on</strong>g>th</str<strong>on</strong>g>e two phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong>, and study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each phase.<br />

169


Epidemics 1<br />

Tuesday, June 28, 11:00, Room: AM6<br />

Chaired by: Hiroshi Nishiura<br />

11:00–11:30<br />

Andrea Pugliese<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento, Italy<br />

e-mail: pugliese@science.unitn.it<br />

Gianpaolo Scalia Tomba<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Roma Tor Vergata<br />

Ant<strong>on</strong>ella Lunelli<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento, Italy<br />

Approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> spread in multigroup SIR models<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough homogeneous models<br />

In recent years <str<strong>on</strong>g>th</str<strong>on</strong>g>ere has been a tremendous increase in <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemic<br />

models developed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> in humans; <str<strong>on</strong>g>of</str<strong>on</strong>g>ten models include<br />

households and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er types <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing groups, as well as heterogeneities due to age,<br />

behaviour, etc. In ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er directi<strong>on</strong>, a great number <str<strong>on</strong>g>of</str<strong>on</strong>g> data <strong>on</strong> infecti<strong>on</strong> spread<br />

have been analysed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models, which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten are based<br />

<strong>on</strong> homogeneous mixing, or simple variants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at. Aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is starting<br />

to understand why, while definitely mixing patterns and individual behaviour are<br />

complicated, simple homogeneous models may still reproduce adequately <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall<br />

epidemic spread. Our prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> complex models is relatively simple, namely<br />

a stochastic SIR model for a closed populati<strong>on</strong> divided in groups, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uniform<br />

global transmissi<strong>on</strong> and heterogeneous local transmissi<strong>on</strong>; simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is type <str<strong>on</strong>g>of</str<strong>on</strong>g> models can be approximated adequately by a homogeneous model, as<br />

l<strong>on</strong>g as <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> groups is sufficiently large. Heuristic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e homogeneous model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e original<br />

parameters. Extensi<strong>on</strong>s to models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> differential transmissi<strong>on</strong> routes are being<br />

examined.<br />

11:35–11:55<br />

Ellen Brooks-Pollock<br />

171


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: ellen.brooks.pollock@gmail.com<br />

Tuberculosis - <str<strong>on</strong>g>th</str<strong>on</strong>g>e family disease<br />

Tuberculosis (TB) cases have been l<strong>on</strong>g been noted to cluster wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in households.<br />

In 1820, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e famous English poet John Keats died <str<strong>on</strong>g>of</str<strong>on</strong>g> TB, he was <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ird<br />

in his family to do so: two years earlier, his bro<str<strong>on</strong>g>th</str<strong>on</strong>g>er died <str<strong>on</strong>g>of</str<strong>on</strong>g> TB, and eight years<br />

before <str<strong>on</strong>g>th</str<strong>on</strong>g>at, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er had also died <str<strong>on</strong>g>of</str<strong>on</strong>g> TB. Years later in 1841, a <str<strong>on</strong>g>th</str<strong>on</strong>g>ird bro<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

developed and died <str<strong>on</strong>g>of</str<strong>on</strong>g> TB.<br />

It is unclear whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> cases represents household transmissi<strong>on</strong> or<br />

shared household risk factors. TB is a chr<strong>on</strong>ic disease and <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g timescales between<br />

infecti<strong>on</strong> and disease mean <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> processes can be difficult to<br />

untangle. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong>, I examine cross-<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g>al TB data from households<br />

in Lima, Peru, to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> household transmissi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e average<br />

time between cases, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e immunity afforded by a previous TB infecti<strong>on</strong>. Using<br />

probabilistic and SIR-type models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> household structure, we investigate how<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cases changes during <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic. The framework<br />

lends itself for investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple reinfecti<strong>on</strong>s and immunity in<br />

transmissi<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is populati<strong>on</strong>, we estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>at protective immunity c<strong>on</strong>ferred<br />

up to 35% reducti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> disease. Like <str<strong>on</strong>g>th</str<strong>on</strong>g>e Keats family, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

household cases can occur decades apart, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e average time between cases<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in households is 3.8 years.<br />

References.<br />

[1] Brooks-Pollock, Becerra, Goldstein, Cohen and Murray (2011) Epidemiological inference from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis cases in households in Lima, Peru The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Infectious<br />

Diseases, in press.<br />

[2] L<strong>on</strong>gini and Koopman (1982) Household and community transmissi<strong>on</strong> parameters from final<br />

distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>s in households Biometrics 38 115–126.<br />

[3] Ball, Mollis<strong>on</strong> and Scalia-Tomba (1997) Epidemics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> applied<br />

probability 7 46–89.<br />

11:55–12:15<br />

Eleanor Harris<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: E.M.Harris<strong>on</strong>@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Ben Adams<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: B.Adams@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Epidemic Models for Leishmaniasis: Elucidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Key<br />

Processes and Parameters<br />

Leishmaniasis is a vector-borne Neglected Tropical Disease. It is caused by Leishmania<br />

protozoa transmitted between humans by infected female sandflies. Previously<br />

associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impoverished in Africa, Leishmaniasis is now c<strong>on</strong>sidered to be<br />

172


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

an emerging disease as it spreads across a range <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong>s from Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> America to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Mediterranean Basin. We present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Leishmaniasis. We use a range <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques including elasticity analysis to make<br />

a comprehensive assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> various processes and parameters<br />

in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e igniti<strong>on</strong> and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e vector<br />

populati<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e critical link when determining whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er an infecti<strong>on</strong> can become<br />

established in a naive populati<strong>on</strong>, but <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e host populati<strong>on</strong> is key in <str<strong>on</strong>g>th</str<strong>on</strong>g>e perpetuati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> endemic infecti<strong>on</strong>. We c<strong>on</strong>clude by discussing <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

analysis for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Leishmaniasis in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e world.<br />

12:15–12:35<br />

Ludovic Mailleret<br />

INRA, Sophia Antipolis, France<br />

e-mail: ludovic.mailleret@sophia.inra.fr<br />

Magda Castel<br />

INRA, Agrocampus Ouest, Rennes, France<br />

e-mail: castel@agrocampus-ouest.fr<br />

Frédéric Hamelin<br />

INRA, Agrocampus Ouest, Rennes, France<br />

e-mail: Frederic.hamelin@agrocampus-ouest.fr<br />

From elaborate to compact seas<strong>on</strong>al plant epidemic models<br />

Seas<strong>on</strong>ality, or periodic host absence, is a central feature in Plant Epidemiology.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is respect, seas<strong>on</strong>al plant epidemic models take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

parasite overwinters and generate new infecti<strong>on</strong>s. The former are termed primary<br />

infecti<strong>on</strong>s while <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter are sec<strong>on</strong>dary infecti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, <strong>on</strong>e finds two<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> models: elaborate models, where primary infecti<strong>on</strong> dynamics are explicit<br />

[1, 2], and lower-dimensi<strong>on</strong>al, compact, models, where primary infecti<strong>on</strong> dynamics<br />

are implicit [3, 4]. The way compact models may derive from elaborate models has<br />

not been made explicit yet.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>tributi<strong>on</strong>, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at approximating primary infecti<strong>on</strong> dynamics<br />

as a fast process compared to sec<strong>on</strong>dary infecti<strong>on</strong>s in two elaborate models translate<br />

into two compact forms. Yet, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are less linear <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e compact models<br />

usually found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. It is <strong>on</strong>ly in some particular instances <str<strong>on</strong>g>th</str<strong>on</strong>g>at we find<br />

back <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter models. In particular, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at density dependence in primary<br />

infecti<strong>on</strong> dynamics has a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound influence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e compact form. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

models seems to produce fairly similar dynamics, we highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a structural<br />

difference between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e co-existence, or competitive<br />

exclusi<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> different parasite strains.<br />

References.<br />

[1] Truscott JE, Webb CR, Gilligan CA (1997) Asymptotic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

primary and sec<strong>on</strong>dary infecti<strong>on</strong>. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology 59(6):1101–1123.<br />

173


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] Madden LV, van den Bosch F (2002) A populati<strong>on</strong>-dynamics approach to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reat <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens as biological weap<strong>on</strong>s against annual crops. BioScience 52(1):65–74.<br />

[3] Madden LV, van den Bosch F (2007) The study <str<strong>on</strong>g>of</str<strong>on</strong>g> plant diseases epidemics. A.P.S. Press,<br />

Saint Paul.<br />

[4] van den Berg F, Bacaer N, Metz JAJ, Lannou C, van den Bosch F (2011) Periodic host<br />

absence can select for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> higher or lower parasite transmissi<strong>on</strong> rates. Evoluti<strong>on</strong>ary Ecology.<br />

25(1):121-137.<br />

12:35–12:55<br />

Mateusz M. Pluciński<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science, Policy and Management, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> California, Berkeley. Berkeley, CA, 94720<br />

e-mail: mateusz@berkeley.edu<br />

Human social network structure is reflected in sequence data<br />

for commensal bacteria<br />

DNA sequence data has traditi<strong>on</strong>ally been used to infer transmissi<strong>on</strong> networks <strong>on</strong>ly<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics and outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens, but it can analogously<br />

be applied to cases <str<strong>on</strong>g>of</str<strong>on</strong>g> ubiquitous commensal bacteria in order to infer informati<strong>on</strong><br />

about host c<strong>on</strong>tact networks. Here, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at multilocus DNA sequence data,<br />

based <strong>on</strong> multilocus sequence typing schemes (MLST), from isolates <str<strong>on</strong>g>of</str<strong>on</strong>g> commensal<br />

bacteria circulating in an endemic equilibrium can be used to infer bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

local and global properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact networks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>s being sampled.<br />

Indeed, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at MLST data obtained from simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <strong>on</strong> a<br />

small-world network can be used to robustly estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e small world parameter<br />

c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> structure in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact network. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e pairwise<br />

distances in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network — degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> — correlate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> genetic distances<br />

between isolates meaning <str<strong>on</strong>g>th</str<strong>on</strong>g>at how far apart two individuals in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network are can<br />

be inferred from MLST analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir commensal bacteria. This result has important<br />

c<strong>on</strong>sequences, and we show an example from epidemiology — how <str<strong>on</strong>g>th</str<strong>on</strong>g>is result<br />

could be used to test for infectious origins <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown etiology. We also<br />

extend our previous work to include <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> commensal bacteria<br />

<strong>on</strong> scale-free networks; in particular, we examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> highly c<strong>on</strong>nected<br />

individuals in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sequence types.<br />

174


Epidemics 2<br />

Tuesday, June 28, 14:30, Room: AM6<br />

Chaired by: Andrea Pugliese<br />

14:30–15:00<br />

Jesus R. Artalejo<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Complutense University 28040 Madrid Spain<br />

e-mail: jesus_artalejo@mat.ucm.es<br />

The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> expectati<strong>on</strong>s distributi<strong>on</strong> as an alternative to<br />

quasi-stati<strong>on</strong>arity in stochastic biological models<br />

Many stochastic systems, including biological applicati<strong>on</strong>s, use Markov chains in<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> absorbing states. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>en needed to c<strong>on</strong>sider analogues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an irreducible chain. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>text, quasi-stati<strong>on</strong>ary<br />

distributi<strong>on</strong>s play a fundamental role to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g-term behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

system. The rati<strong>on</strong>ale for using quasi-stati<strong>on</strong>ary distributi<strong>on</strong> is well established in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e abundant existing literature. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study is to reformulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

means approach which provides a simple alternative. We have a two-fold objective<br />

i) to view <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasi-stati<strong>on</strong>arity and ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> expectati<strong>on</strong>s as two different approaches<br />

for understanding he dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system before absorpti<strong>on</strong>, and<br />

ii) to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> expectati<strong>on</strong>s distributi<strong>on</strong><br />

as an approximati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasi-stati<strong>on</strong>ary distributi<strong>on</strong>.<br />

Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong>s are compared for some selected scenarios, which are mainly<br />

inspired in stochastic epidemic models. Previously, <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vergence to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

quasi-stati<strong>on</strong>ary regime is taking into account in order to make meaningful <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

comparis<strong>on</strong>.<br />

15:05–15:25<br />

M. J. Lopez-Herrero<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, Complutense University <str<strong>on</strong>g>of</str<strong>on</strong>g> Madrid, 28040 Madrid,<br />

Spain<br />

e-mail: lherrero@estad.ucm.es<br />

175


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The SIS and SIR stochastic epidemic models Leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

outbreak and time to infecti<strong>on</strong><br />

We deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIS and SIR stochastic epidemic models. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is to<br />

present <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> some c<strong>on</strong>tinuous characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is sense,<br />

we first extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an outbreak by investigating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e whole probability distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extincti<strong>on</strong> time via Laplace transforms.<br />

Moreover, we also study <str<strong>on</strong>g>th</str<strong>on</strong>g>e time until a n<strong>on</strong>-infected individual becomes infected.<br />

The obtained results are illustrated by numerical examples including an applicati<strong>on</strong><br />

to head lice infecti<strong>on</strong>s.<br />

15:25–15:45<br />

Rosalyn Porter<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling<br />

e-mail: rbp@cs.stir.ac.uk<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> acaricide in preventing tick borne<br />

disease in a wild game bird.<br />

The incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> tick borne diseases is increasing which has <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential to impact<br />

<strong>on</strong> humans, live stock and wildlife. Ticks feed <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different host species<br />

which can play different roles in disease transmissi<strong>on</strong> acting i) as a disease host<br />

which cannot sustain <str<strong>on</strong>g>th</str<strong>on</strong>g>e ticks, ii)a tick and disease host, iii) a tick host which does<br />

not transmit <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease but does increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e tick populati<strong>on</strong>. Here we will use<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>th</str<strong>on</strong>g>at acaricide can play in reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tick populati<strong>on</strong>, preventing tick bites and reducing disease incidence.<br />

We c<strong>on</strong>sider in particular <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> louping ill virus (LIV) a potentially<br />

fatal tick borne disease affecting red grouse, an important ec<strong>on</strong>omic game bird<br />

in upland Britain. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case sheep and red deer bo<str<strong>on</strong>g>th</str<strong>on</strong>g> play a crucial role in<br />

maintaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e tick populati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>eory any efforts made to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e tick<br />

populati<strong>on</strong> should reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e opportunity for ticks to bite grouse and hence lower<br />

virus incidence. Here we discuss SIR type models c<strong>on</strong>sidering multiple hosts and<br />

including management strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at use acaricide to achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> in virus<br />

incidence. We also discuss whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> individual grouse broods can<br />

provide protecti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grouse populati<strong>on</strong>.<br />

15:45–16:05<br />

Mick Roberts<br />

Massey University, Albany, New Zealand<br />

e-mail: m.g.roberts@massey.ac.nz<br />

176<br />

Epidemic models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uncertainty


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first quantities to be estimated at <str<strong>on</strong>g>th</str<strong>on</strong>g>e start <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic<br />

reproducti<strong>on</strong> number, R 0 . The progress <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic is sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R 0 , hence we need me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for exploring <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty in <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimate.<br />

I will analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kermack-McKendrick model, and its special case <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIR<br />

model, by expanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e state variable in or<str<strong>on</strong>g>th</str<strong>on</strong>g>og<strong>on</strong>al polynomials in uncertainty<br />

space. The resulting dynamical systems need <strong>on</strong>ly be solved <strong>on</strong>ce to produce a deterministic<br />

stochastic soluti<strong>on</strong>. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od will be applied to data from <str<strong>on</strong>g>th</str<strong>on</strong>g>e New<br />

Zealand epidemic <str<strong>on</strong>g>of</str<strong>on</strong>g> H1N1 influenza in 2009, to dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty<br />

when making projecti<strong>on</strong>s based <strong>on</strong> a limited amount <str<strong>on</strong>g>of</str<strong>on</strong>g> data.<br />

16:05–16:25<br />

Jamie Prentice<br />

SAC<br />

e-mail: jamie@bioss.ac.uk<br />

The Perturbati<strong>on</strong> Effect in wildlife diseases: An emergent<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> simple models<br />

Populati<strong>on</strong> reducti<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used as a disease c<strong>on</strong>trol strategy when dealing wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

wildlife hosts; however, in some systems it has been associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an increase<br />

in disease (including bovine tuberculosis in badgers and classical swine fever virus<br />

in wild boar). This increase in disease following populati<strong>on</strong> reducti<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

referred to as <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect. Several possible reas<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong><br />

effect have been suggested, including increased movement and c<strong>on</strong>tact rates, and<br />

compensatory reproducti<strong>on</strong> following populati<strong>on</strong> reducti<strong>on</strong>.<br />

We use ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical epidemiological SI models c<strong>on</strong>taining key processes, to<br />

investigate properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect and study how it arises as an emergent<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying populati<strong>on</strong> and disease dynamic.<br />

In a n<strong>on</strong>-spatial c<strong>on</strong>text, we investigate how a change in host behaviour (as a<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> reducti<strong>on</strong>) leading to an increase in horiz<strong>on</strong>tal disease<br />

transmissi<strong>on</strong>, can give rise to <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect. We also investigate how<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> demography and disease affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is increase.<br />

In a stochastic spatial c<strong>on</strong>text, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> density dependent<br />

movement between multiple sub populati<strong>on</strong>s, and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e horiz<strong>on</strong>tal disease transmissi<strong>on</strong><br />

between groups can affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase. Finally we investigate how different<br />

populati<strong>on</strong> reducti<strong>on</strong> strategies can maximise <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect.<br />

We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect is most likely to occur in disease systems<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low disease prevalence, where populati<strong>on</strong>s are close to <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is spatially heterogeneous in nature.<br />

177


Epidemics 3<br />

Tuesday, June 28, 17:00, Room: AM6<br />

Chaired by: Suzanne Touzeau<br />

17:00–17:30<br />

Hiroshi Nishiura<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>g K<strong>on</strong>g and Japan Science and Technology Agency<br />

e-mail: nishiura@hku.hk<br />

Gerardo Chowell<br />

Ariz<strong>on</strong>a State University<br />

e-mail: gchowell@asu.edu<br />

Carlos Castillo-Chavez<br />

Ariz<strong>on</strong>a State University<br />

e-mail: ccchavez@asu.edu<br />

Validating early estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pandemic influenza (H1N1-2009): Sample size estimati<strong>on</strong> for<br />

post-epidemic seroepidemiological studies<br />

Seroepidemiological studies before and after <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic wave <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza (H1N1-<br />

2009) are useful for estimating final size wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a potential to validate early estimates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number, R, in modeling studies. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, a glance at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e literature shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at various seroepidemiological studies published so far have<br />

adopted a binomial sampling process to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> infected individuals. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e present study, <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> an asymptotic distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e final epidemic size <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> approximate 95% c<strong>on</strong>fidence<br />

intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals in a populati<strong>on</strong> infected during<br />

an epidemic, is proposed since infecti<strong>on</strong> events are not independent. Let ˆρ be an<br />

observed final size, v be <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> time distributi<strong>on</strong>,<br />

and q be <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> initially immune individuals. Assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at v<br />

and q are known, we propose <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wald approximati<strong>on</strong> by which <str<strong>on</strong>g>th</str<strong>on</strong>g>e 100(1 − 2α)%<br />

c<strong>on</strong>fidence interval for ρ is calculated as<br />

√<br />

ˆρ<br />

(1) ˆρ ± z 3 (1 − ˆρ) + v 2 ˆρ(1 − ˆρ) 2 ln 2 (1 − ˆρ/(1 − q))<br />

α<br />

n [ˆρ + (1 − ˆρ) ln(1 − ˆρ/(1 − q))]<br />

where n is <str<strong>on</strong>g>th</str<strong>on</strong>g>e sample size and z α denotes 1 − α quantile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard normal<br />

distributi<strong>on</strong>. This approach allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed final sizes against<br />

179


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

model studies based predicti<strong>on</strong>s (R = 1.15, 1.40 and 1.90) while yielding simple formulae<br />

for determining acceptable sample sizes for future seroepidemiological studies.<br />

Eleven published seroepidemiological studies <str<strong>on</strong>g>of</str<strong>on</strong>g> H1N1-2009, which took place<br />

after observing <str<strong>on</strong>g>th</str<strong>on</strong>g>e peak incidence in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> countries, are used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e testing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology. Observed seropositive proporti<strong>on</strong>s in six studies appear to be<br />

significantly smaller <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose predicted from R = 1.40; four <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e six studies<br />

sampled serum less <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g> after <str<strong>on</strong>g>th</str<strong>on</strong>g>e reported peak incidence. Comparis<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observed final sizes against R = 1.15 provide evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at all eleven studies<br />

do not significantly deviate from <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> R = 1.15 while comparis<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> R = 1.90 suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e final sizes in nine studies would be overestimated.<br />

Sample sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> published seroepidemiological studies were too small to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

validity <str<strong>on</strong>g>of</str<strong>on</strong>g> model predicti<strong>on</strong>s except when R = 1.90 was used. We recommend<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed approach in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e sample size <str<strong>on</strong>g>of</str<strong>on</strong>g> post-epidemic<br />

seroepidemiological studies, calculating <str<strong>on</strong>g>th</str<strong>on</strong>g>e 95% c<strong>on</strong>fidence interval <str<strong>on</strong>g>of</str<strong>on</strong>g> observed final<br />

size, and c<strong>on</strong>ducting relevant hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis testing instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at rely <strong>on</strong> a binomial proporti<strong>on</strong>,<br />

17:35–17:55<br />

Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>fry N. Mercer<br />

Nati<strong>on</strong>al Centre for Epidemiology and PPopulati<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Australian<br />

Nati<strong>on</strong>al University, Canberra, ACT, AUSTRALIA<br />

e-mail: Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>f.Mercer@anu.edu.au<br />

Hea<str<strong>on</strong>g>th</str<strong>on</strong>g> Kelly<br />

Victorian Infectious Disease Reference Laboratory, Melbourne, Victoria,<br />

AUSTRALIA<br />

e-mail: Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>.Kelly@mh.org.au<br />

Did seas<strong>on</strong>al influenza vaccinati<strong>on</strong> increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pandemic influenza infecti<strong>on</strong><br />

Recent studies have suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at vaccinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> seas<strong>on</strong>al influenza vaccine<br />

resulted in an apparent higher risk <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pandemic influenza H1N1 2009.<br />

A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model incorporating strain competiti<strong>on</strong> and a hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esised<br />

temporary strain-transcending immunity is c<strong>on</strong>structed to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>is observati<strong>on</strong>.<br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model over a range <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> numbers and effective vaccinati<strong>on</strong><br />

coverage c<strong>on</strong>firm <str<strong>on</strong>g>th</str<strong>on</strong>g>is apparent increased risk in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern, but not <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern, hemisphere. This is due to unvaccinated individuals being more likely to<br />

be infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> seas<strong>on</strong>al influenza (if it is circulating) and developing hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esised<br />

temporary immunity to <str<strong>on</strong>g>th</str<strong>on</strong>g>e pandemic strain. Because vaccinated individuals are<br />

less likely to have been infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> seas<strong>on</strong>al influenza, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are less likely to have<br />

developed <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esised temporary immunity and are <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore more likely to<br />

be infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pandemic influenza. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number for pandemic influenza<br />

is increased, as it is for children, an increase in <str<strong>on</strong>g>th</str<strong>on</strong>g>e apparent risk <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al<br />

180


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

vaccinati<strong>on</strong> is observed. The maximum apparent risk effect is found when seas<strong>on</strong>al<br />

vaccinati<strong>on</strong> coverage is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e range 20-40%<br />

Only when pandemic influenza is recently preceded by seas<strong>on</strong>al influenza circulati<strong>on</strong><br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>ere a modelled increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> pandemic influenza infecti<strong>on</strong> associated<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> prior receipt <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al vaccine.<br />

17:55–18:15<br />

Luděk Berec<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Ecology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Entomology, Biology<br />

Centre ASCR, Branišovská 31, 37005 České Budějovice, Czech<br />

Republic<br />

e-mail: berec@entu.cas.cz<br />

Daniel Maxin<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, Valparaiso University,<br />

1900 Chapel Drive, Valparaiso, IN 46383, USA<br />

e-mail: daniel.maxin@valpo.edu<br />

Double impact <str<strong>on</strong>g>of</str<strong>on</strong>g> sterilizing pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens: added value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increased life expectancy <strong>on</strong> pest c<strong>on</strong>trol effectiveness<br />

Sterilizing pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens are comm<strong>on</strong>ly assumed not to affect l<strong>on</strong>gevity <str<strong>on</strong>g>of</str<strong>on</strong>g> infected<br />

individuals, and if <str<strong>on</strong>g>th</str<strong>on</strong>g>ey do <str<strong>on</strong>g>th</str<strong>on</strong>g>en negatively. Examples abound, however, <str<strong>on</strong>g>of</str<strong>on</strong>g> species<br />

in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> actually increases life expectancy. This happens<br />

because by decreasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy outlay <strong>on</strong> reproducti<strong>on</strong> individuals wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

lowered reproducti<strong>on</strong> can live l<strong>on</strong>ger. Alternatively, fertile individuals are more<br />

susceptible to predators or parasitoids if <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter can capitalize <strong>on</strong> mating signals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e former. Here we develop and analyze an SI epidemiological model to explore<br />

whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er and to what extent does such a life expectancy prol<strong>on</strong>gati<strong>on</strong> due to sterilizing<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens affect host dynamics. In particular, we are interested in an added<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> increased life expectancy <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> successful pest c<strong>on</strong>trol, <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increased lifespan and hence increased potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected individuals<br />

to spread <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease <strong>on</strong> pest c<strong>on</strong>trol effectiveness. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter range in which we observe an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increased lifespan <str<strong>on</strong>g>of</str<strong>on</strong>g> infectives<br />

is not large, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect itself can be significant. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase in pest<br />

c<strong>on</strong>trol effectiveness can be very dramatic when disease transmissi<strong>on</strong> efficiency is<br />

close to bir<str<strong>on</strong>g>th</str<strong>on</strong>g> rate, mortality rate <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptibles is relatively high (i.e., <str<strong>on</strong>g>th</str<strong>on</strong>g>e species is<br />

relatively short-lived), and sterilizati<strong>on</strong> efficiency is relatively high. Our results <str<strong>on</strong>g>th</str<strong>on</strong>g>us<br />

characterize pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens <str<strong>on</strong>g>th</str<strong>on</strong>g>at are promising candidates for an effective pest c<strong>on</strong>trol<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>at might possibly be engineered if not occurring naturally.<br />

18:15–18:35<br />

R.I. Hicks<strong>on</strong><br />

181


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Nati<strong>on</strong>al Centre for Epidemiology and Populati<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Australian<br />

Nati<strong>on</strong>al University, Canberra, ACT 0200, AUSTRALIA<br />

e-mail: Roslyn.Hicks<strong>on</strong>@anu.edu.au<br />

G.N. Mercer<br />

Nati<strong>on</strong>al Centre for Epidemiology and Populati<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Australian<br />

Nati<strong>on</strong>al University, Canberra, ACT 0200, AUSTRALIA<br />

e-mail: Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>f.Mercer@anu.edu.au<br />

K.M. Lokuge<br />

Nati<strong>on</strong>al Centre for Epidemiology and Populati<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Australian<br />

Nati<strong>on</strong>al University, Canberra, ACT 0200, AUSTRALIA<br />

e-mail: Kamalini.Lokuge@anu.edu.au<br />

H. Nguyen<br />

Crawford School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omics & Government, Australian Nati<strong>on</strong>al<br />

University, Canberra, ACT 0200, AUSTRALIA<br />

e-mail: Hoa.Nguyen@anu.edu.au<br />

Evaluating c<strong>on</strong>trol strategies for TB in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Torres Strait<br />

Island regi<strong>on</strong><br />

There is a high prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis (TB) in Papua New Guinea (PNG),<br />

which is exacerbated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> drug-resistant TB strains and HIV infecti<strong>on</strong>.<br />

This is an important public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> issue not <strong>on</strong>ly locally wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in PNG, but also in<br />

Australia due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e high cross-border traffic in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Torres Strait Island–Western<br />

Province (PNG) treaty regi<strong>on</strong>. We use a metapopulati<strong>on</strong> model to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> varying c<strong>on</strong>trol strategies in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regi<strong>on</strong>, and perform a sensitivity analysis<br />

to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important parameters.<br />

18:35–18:55<br />

O.A. Melnichenko<br />

moscow state university, faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and<br />

cybernetics<br />

e-mail: olesya.melnichenko@gmail.com<br />

Tuberculosis in Russia: comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TB c<strong>on</strong>trol<br />

programmes<br />

Tuberculosis is recognized as a major global public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> problem, so development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> TB c<strong>on</strong>trol strategies and estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir efficiency are important tasks.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling can be a tool for solving <str<strong>on</strong>g>th</str<strong>on</strong>g>ese problems.<br />

We compared c<strong>on</strong>trol programmes for 14 regi<strong>on</strong>s related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Central Federal<br />

District <str<strong>on</strong>g>of</str<strong>on</strong>g> Russia. The initial values <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators for m<strong>on</strong>itoring TB c<strong>on</strong>trol<br />

programmes were obtained from data analysis [1]. Average smear-positive case<br />

detecti<strong>on</strong> rate equals 74%, average treatment success rate equals 78%, average<br />

smear-negative case detecti<strong>on</strong> rate equals 34%.<br />

182


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

We c<strong>on</strong>sidered two TB c<strong>on</strong>trol programmes. The programme 1 is recommended<br />

by WHO, <str<strong>on</strong>g>th</str<strong>on</strong>g>e targets <str<strong>on</strong>g>of</str<strong>on</strong>g> programme are detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> new smear-positive cases<br />

and cure <str<strong>on</strong>g>of</str<strong>on</strong>g> 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> such cases. Russian heal<str<strong>on</strong>g>th</str<strong>on</strong>g> system c<strong>on</strong>siders two c<strong>on</strong>secutive<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis: smear-negative and smear-positive. Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> smearnegative<br />

cases is an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Russian TB c<strong>on</strong>trol programme and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erefore we c<strong>on</strong>sidered programme 2 focused <strong>on</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> smear-negative<br />

case detecti<strong>on</strong>. The target <str<strong>on</strong>g>of</str<strong>on</strong>g> programme 2 is detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 40% <str<strong>on</strong>g>of</str<strong>on</strong>g> new smearnegative<br />

cases.<br />

To compare c<strong>on</strong>trol programmes we used a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> TB in populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Russia, <str<strong>on</strong>g>th</str<strong>on</strong>g>e values <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters were<br />

obtained from model fitting [1]. To analyze sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> model soluti<strong>on</strong> to changes<br />

in model parameters we used a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> adjoint equati<strong>on</strong>s, also we obtained<br />

formulas for calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in basic epidemiological indicators [2].<br />

The changes in TB mortality rate, TB incidence and number <str<strong>on</strong>g>of</str<strong>on</strong>g> people who<br />

infected by mycobacteria per year were calculated for each programme. Programme<br />

1 is more effective <str<strong>on</strong>g>th</str<strong>on</strong>g>an programme 2 in 9 regi<strong>on</strong>s and less effective in 3 regi<strong>on</strong>s.<br />

They are approximately equal in 2 regi<strong>on</strong>s. The results obtained show <str<strong>on</strong>g>th</str<strong>on</strong>g>at type<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol programme should be chosen separately for each regi<strong>on</strong> after analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epidemic situati<strong>on</strong>.<br />

The technique developed can be used to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er TB<br />

c<strong>on</strong>trol programmes <str<strong>on</strong>g>th</str<strong>on</strong>g>at were not c<strong>on</strong>sidered in <str<strong>on</strong>g>th</str<strong>on</strong>g>is study. It can be a usefull tool<br />

to choose <str<strong>on</strong>g>th</str<strong>on</strong>g>e most effective programme.<br />

References.<br />

[1] O.A. Melnichenko, A.A. Romanyukha A model <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis epidemiology: estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameters and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> factors influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic process Russ. J.<br />

Numer. Anal. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Modelling, 2008, vol. 23, No. 1, pp. 63-75.<br />

[2] O.A. Melnichenko Model <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis epidemiology: sensitivity analysis Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> 4<str<strong>on</strong>g>th</str<strong>on</strong>g> Internati<strong>on</strong>al<br />

<str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> C<strong>on</strong>trol Problems, Moscow, 2009, pp. 857–863. (in Russian)<br />

183


Epidemics 4<br />

Wednesday, June 29, 08:30, Room: AM6<br />

Chaired by: Mick Roberts<br />

08:30–09:00<br />

Roberto Saenz<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: ras93@cam.ac.uk<br />

Steve C. Essen<br />

Veterinary Laboratories Agency<br />

Bryan T. Grenfell<br />

Princet<strong>on</strong> University<br />

John W. McCauley<br />

MRC Nati<strong>on</strong>al Institute for Medical Research<br />

Ian H. Brown<br />

Veterinary Laboratories Agency<br />

Julia R. Gog<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

Quantifying transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high- and low-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenicity<br />

H7N1 avian influenza in turkeys<br />

Outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian influenza in poultry can be devastating, and yet many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basic parameters have not been accurately characterised. In 1999-2000 in Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern<br />

Italy, outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> H7N1 low-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenicity avian influenza virus (LPAI) preceded<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> H7N1 high-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenicity avian influenza virus (HPAI). This study<br />

investigates <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> dynamics in turkeys <str<strong>on</strong>g>of</str<strong>on</strong>g> representative HPAI and LPAI<br />

H7N1 virus strains from <str<strong>on</strong>g>th</str<strong>on</strong>g>is outbreak in an experimental setting, allowing direct<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two strains. The fi<br />

tted transmissi<strong>on</strong> rates for <str<strong>on</strong>g>th</str<strong>on</strong>g>e two strains are similar: 2.04 (1.5-2.7) for HPAI,<br />

2.01 (1.6-2.5) for LPAI. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean infecti<strong>on</strong>s period is far shorter for HPAI,<br />

due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapid dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> infected turkeys: 1.48 (1.3-1.7) days for HPAI, 7.65 (7.0-<br />

8.4) days for LPAI. Hence <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive ratio, R0 is significantly lower for<br />

HPAI <str<strong>on</strong>g>th</str<strong>on</strong>g>an for LPAI: 3.01 (2.2-4.0) for HPAI, 15.37 (11.8-19.8) for LPAI. To be able<br />

to extrapolate experimental results from relatively small numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> birds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

commercial poultry flock size, two competing hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses for how transmissi<strong>on</strong> rates<br />

vary wi<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong> size were investigated. Frequency-dependent transmissi<strong>on</strong> was<br />

determined to give a better<br />

fit to data from experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g> varying number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds.<br />

185


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

09:05–09:25<br />

Ross Davids<strong>on</strong><br />

SAC<br />

e-mail: ross.davids<strong>on</strong>@sac.ac.uk<br />

Leo Zijerveld<br />

SAC<br />

Glenn Mari<strong>on</strong><br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Scotland<br />

Mike Hutchings<br />

SAC<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> social structure <strong>on</strong> spatially explicit<br />

epidemiological models<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>th</str<strong>on</strong>g>at social structure plays in influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong><br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in spatial and n<strong>on</strong>-spatial epidemiological models. Social hierarchy is<br />

introduced into such models <str<strong>on</strong>g>th</str<strong>on</strong>g>rough covariates which affect individuals fecundity,<br />

giving rise to realistic populati<strong>on</strong> distributi<strong>on</strong>s. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong>s between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese covariates and <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease prevalence is examined <str<strong>on</strong>g>th</str<strong>on</strong>g>rough analytical and<br />

numerical approaches. Heterogeneous distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various subpopulati<strong>on</strong>s,<br />

arising from <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-uniform fecundity, tend to increase disease prevalence<br />

compared to homogeneous models, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ese differences are larger when spatial<br />

structure is taken into account. These findings have implicati<strong>on</strong>s for epidemiological<br />

models, and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e deployment <str<strong>on</strong>g>of</str<strong>on</strong>g> disease c<strong>on</strong>trol strategies.<br />

09:25–09:45<br />

Thanate Dhirasakdan<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>anate.dhirasakdan<strong>on</strong>@helsinki.fi<br />

Stanley H. Fae<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina at Greensboro<br />

Karl P. Hadeler<br />

Ariz<strong>on</strong>a State University<br />

Horst R. Thieme<br />

Ariz<strong>on</strong>a State University<br />

Coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> vertically and horiz<strong>on</strong>tally transmitted<br />

parasite strains in a simple SI type model<br />

We study an SI type endemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e host and two parasite strains wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

complete cross protecti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e strains. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e strain is exclusively<br />

vertically transmitted and <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er strain is horiz<strong>on</strong>tally (and possibly<br />

also vertically) transmitted. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at each strain reduces fertility and/or<br />

increases mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> infected hosts. Our model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> just <str<strong>on</strong>g>th</str<strong>on</strong>g>ree ordinary<br />

186


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

differential equati<strong>on</strong>s. We use <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> persistence to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e (exclusively) vertically transmitted strain <str<strong>on</strong>g>th</str<strong>on</strong>g>at would go extinct by itself can<br />

persist by protecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e host against <str<strong>on</strong>g>th</str<strong>on</strong>g>e more virulent horiz<strong>on</strong>tally transmitted<br />

strain [2]. There are two more interesting properties <str<strong>on</strong>g>of</str<strong>on</strong>g> our model. First, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>tal to vertical transmissi<strong>on</strong> decreases if <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>tal<br />

transmissi<strong>on</strong> increases, c<strong>on</strong>trary to what <strong>on</strong>e might expects [1]. Sec<strong>on</strong>d, <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium<br />

where bo<str<strong>on</strong>g>th</str<strong>on</strong>g> parasite strains coexist is always locally asymptotically stable<br />

if <str<strong>on</strong>g>th</str<strong>on</strong>g>e horiz<strong>on</strong>tal transmissi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> density-dependent (mass-acti<strong>on</strong>) type, but can<br />

loses its stability and gives rise to a limit cycle if <str<strong>on</strong>g>th</str<strong>on</strong>g>e horiz<strong>on</strong>tal transmissi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

frequency-dependent (standard) type [3].<br />

References.<br />

[1] Stanley H. Fae<str<strong>on</strong>g>th</str<strong>on</strong>g>, Karl P. Hadeler, and Horst R. Thieme. An apparent paradox <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>tal<br />

and vertical disease transmissi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Dynamics, 1(1):45-62, 2007.<br />

[2] Thanate Dhirasakdan<strong>on</strong> and Horst R. Thieme. Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> vertically transmitted parasite<br />

strains which protect against more virulent horiz<strong>on</strong>tally transmitted strains. In Z. Ma, Y. Zhou,<br />

and J. Wu, editors, Modeling and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Infectious Diseases, 187-215, World Scientific,<br />

2009.<br />

[3] Thanate Dhirasakdan<strong>on</strong> and Horst R. Thieme. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic coexistence equilibrium<br />

for <strong>on</strong>e host and two parasites. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Phenomena, 5(6):109-138,<br />

2010.<br />

09:45–10:05<br />

Ekaterina A. Nosova<br />

Russian Federal Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

e-mail: cnosova@gmail.com<br />

Alexei A. Romanyukha<br />

Russian Academy od Sciences Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Equilibrium in model <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> transiti<strong>on</strong>s<br />

between risk group<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at features <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> for human immunodeficiency virus<br />

allow c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> process by behavior change. Populati<strong>on</strong> heterogeneity in<br />

propensity to risky behavior leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> separating <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase transiti<strong>on</strong>s<br />

in epidemic dynamics. These phase transiti<strong>on</strong>s distinguish between low-level,<br />

c<strong>on</strong>centrated and generalized epidemics. Data analysis[1] shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at an important<br />

role in spreading HIV <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e territory <str<strong>on</strong>g>of</str<strong>on</strong>g> Russia is played by processes <str<strong>on</strong>g>of</str<strong>on</strong>g> social<br />

maladjustment: drug abuse, alcoholism and <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

substance abuse pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e models have been applied before to explain<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e situati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e territory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e former Soviet Uni<strong>on</strong>, including Russia,<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese risk-groups and its influence <strong>on</strong> HIV<br />

epidemics is more complicated <str<strong>on</strong>g>th</str<strong>on</strong>g>an it was represented[2,3]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we formulated<br />

a deterministic model <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV spread in a heterogeneous populati<strong>on</strong>, where<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> risk groups is presented as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> social maladjustment. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is model an individual from general populati<strong>on</strong> can increase or decrease <str<strong>on</strong>g>th</str<strong>on</strong>g>e level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> his/her social maladjustment being susceptible to <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus. In each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

187


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

states, <strong>on</strong>e has a certain risk <str<strong>on</strong>g>of</str<strong>on</strong>g> being infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HIV. The proposed model in<br />

part is similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> STIs in heterogeneous populati<strong>on</strong>,<br />

as proposed by Cooke and Yorke[4]. Unlike <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al approach <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> transfer individuals between risk groups was taken to account. Thus<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e formulated model bel<strong>on</strong>gs to a broader class <str<strong>on</strong>g>of</str<strong>on</strong>g> deterministic SI models. This<br />

generalizati<strong>on</strong> allows obtain new results about <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

system and c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> existence and transiti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>em. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model we investigate in <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper.<br />

This work is supported by Russian Foundati<strong>on</strong> for Basic Research: RFBR 09-<br />

01-00098a. Data analysis was provided via financial support <str<strong>on</strong>g>of</str<strong>on</strong>g> UNDP: UNDP/212/2007.<br />

References.<br />

[1] E. A. Nosova, A. A. Romanyukha Regi<strong>on</strong>al index <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV infecti<strong>on</strong> risk based <strong>on</strong> factors <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

social disadaptati<strong>on</strong>. RJNAMM Vol 24 No 4 pp 325-340, 2009<br />

[2] Alistar S., Owens D., Brandeau M. Effectiveness and cost effectivenes <str<strong>on</strong>g>of</str<strong>on</strong>g> expanding drug<br />

treatment programs and HIV antiretroviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in a mixed HIV epidemic: an Analysis for<br />

Ukraine. Russian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AIDS, Cancer and Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Vol. 14 No 1(29) p.44, 2010<br />

[3] Kupryashkina-McGill S. V. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Fund grants <strong>on</strong> HIV/AIDS policy in Ukraine.<br />

Russian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AIDS, Cancer and Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Vol. 14 No 1(29) p.27, 2010<br />

[4] Cooke K. L., Yorke J. A. Some equati<strong>on</strong>s modelling grow<str<strong>on</strong>g>th</str<strong>on</strong>g> processes and g<strong>on</strong>orrhea epidemics.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci., 16, pp. 75-101, 1973<br />

10:05–10:25<br />

E.Ait Dads<br />

Université Cadi Ayyad, Département de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques, Faculté des<br />

Sciences, B.P. 2390 Marrakech, Morocco<br />

e-mail: aitdads@ucam.ac.ma<br />

P. Cieutat<br />

Laboratoire de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques de Versailles, Université de Versailles<br />

Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles<br />

Cedex, France<br />

e-mail: Philippe.Cieutat@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.uvsq.fr<br />

L. Lhachimi<br />

Université Cadi Ayyad, Département de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques, Faculté des<br />

Sciences, B.P. 2390 Marrakech, Morocco<br />

e-mail: lhachimi@voila.fr<br />

Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> Positive Almost Periodic or Ergodic Soluti<strong>on</strong>s<br />

for Some Neutral N<strong>on</strong>linear Integral Equati<strong>on</strong>s<br />

As we all know, <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al differential<br />

equati<strong>on</strong>s (FDE) has great <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical and practical significance and is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

problems <str<strong>on</strong>g>of</str<strong>on</strong>g> great interest to scholars in <str<strong>on</strong>g>th</str<strong>on</strong>g>e field. Since Yoshizawa [2] presented an<br />

excellent result for <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong>s to FDE wi<str<strong>on</strong>g>th</str<strong>on</strong>g> bounded delay,<br />

Cooke and Huang [3], Burt<strong>on</strong> and Hatvani [1] generalized Yoshizawa’s result to<br />

FDE wi<str<strong>on</strong>g>th</str<strong>on</strong>g> infinite delay. We remark <str<strong>on</strong>g>th</str<strong>on</strong>g>at, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no phenomen<strong>on</strong><br />

which is purely periodic, <str<strong>on</strong>g>th</str<strong>on</strong>g>is gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e almost periodic situati<strong>on</strong>.<br />

188


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e following neutral n<strong>on</strong>linear integral equati<strong>on</strong><br />

(1) x(t) = γx(t − σ) + (1 − γ)<br />

∫ t<br />

t−σ<br />

f(s, x(s)) ds,<br />

where 0 ≤ γ < 1, σ > 0 and f : R × R + → R + is a c<strong>on</strong>tinuous map.<br />

We give sufficient c<strong>on</strong>diti<strong>on</strong>s which guarantee <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> almost periodic<br />

soluti<strong>on</strong>s for Equati<strong>on</strong> (1). We also treat <str<strong>on</strong>g>th</str<strong>on</strong>g>e ergodic soluti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at means <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

asymptotically almost periodic, <str<strong>on</strong>g>th</str<strong>on</strong>g>e weakly almost periodic and pseudo almost periodic<br />

soluti<strong>on</strong>s. Hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses <str<strong>on</strong>g>of</str<strong>on</strong>g> our results do not impose <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> f(t, .)<br />

is m<strong>on</strong>ot<strong>on</strong>e. To state our results, we use a variant <str<strong>on</strong>g>of</str<strong>on</strong>g> Hilbert’s projective metric<br />

<strong>on</strong> a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> a space <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous and bounded functi<strong>on</strong>s.<br />

References.<br />

[1] T. A. Burt<strong>on</strong> and L. Hatvani, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some n<strong>on</strong>linear<br />

functi<strong>on</strong>al-differential equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unbounded delay, N<strong>on</strong>linear Anal. TMA 16, 389-396,<br />

(1991).<br />

[2] T. Yoshizawa, Stability <str<strong>on</strong>g>th</str<strong>on</strong>g>eory by Liapunov’s sec<strong>on</strong>d me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, Publicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, No. 9 The Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, Tokio, 1966.<br />

[3] K. L. Cooke and W. Z. Huang, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem for linearizati<strong>on</strong> for state-dependent delay<br />

differential equati<strong>on</strong>s, Proc. Amer. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Soc. 124, 1417-1426, (1996).<br />

[4] E. Ait Dads, O. Arino, K. Ezzinbi, Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong> for some neutral n<strong>on</strong>linear<br />

integral equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delay time dependent, Facta Univ. Ser. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Inform. 11 (1996), 79-92.<br />

[5] E. Ait Dads, K. Ezzinbi, Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> positive pseudo-almost periodic soluti<strong>on</strong> for a class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al equati<strong>on</strong>s arising in epidemic problems, Cybernet. Systems Anal. 30 (1994),<br />

900-910.<br />

[6] E. Ait Dads, K. Ezzinbi, Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> positive pseudo-almost-periodic soluti<strong>on</strong> for some n<strong>on</strong>linear<br />

infinite delay integral equati<strong>on</strong>s arising in epidemic problems, N<strong>on</strong>linear Anal. 41<br />

(2000), 1-13.<br />

[7] S. Busenberg, K. Cooke, Periodic soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> delay differential equati<strong>on</strong>s arising in some<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics, Applied N<strong>on</strong>linear Analysis (Proc. Third Internat. C<strong>on</strong>f., Univ. Texas,<br />

Arlingt<strong>on</strong>, Tex., 1978), pp. 67-78, Academic Press, New York, 1979.<br />

[8] K. Cooke, J. Kaplan, A periodicity <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold <str<strong>on</strong>g>th</str<strong>on</strong>g>eorem for epidemics and populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>,<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. 31 (1976), 87-104.<br />

[9] K. Ezzinbi, M. Hachimi, Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> positive almost periodic soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al equati<strong>on</strong>s<br />

via Hilbert’s projective metric, N<strong>on</strong>linear Anal. 26 (1996), 1169-1176.<br />

[10] D. Guo, V. Lakshmikan<str<strong>on</strong>g>th</str<strong>on</strong>g>am, Positive soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear integral equati<strong>on</strong>s arising in<br />

infectious diseases, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. Appl. 134 (1988), 1-8.<br />

189


Epidemics 5<br />

Wednesday, June 29, 11:00, Room: AM6<br />

Chaired by: Ludek Berec<br />

11:00–11:30<br />

Max v<strong>on</strong> Kleist<br />

Freie Universität Berlin, Germany<br />

e-mail: vkleist@zedat.fu-berlin.de<br />

M<strong>on</strong>ika Frank<br />

Martin-Lu<str<strong>on</strong>g>th</str<strong>on</strong>g>er Universität Halle-Wittenberg, Germany<br />

Charlotte Kl<str<strong>on</strong>g>of</str<strong>on</strong>g>t<br />

Martin-Lu<str<strong>on</strong>g>th</str<strong>on</strong>g>er Universität Halle-Wittenberg, Germany<br />

Christ<str<strong>on</strong>g>of</str<strong>on</strong>g> Schütte<br />

Freie Universität Berlin, Germany<br />

A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling Framework to Assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e Impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Antiviral Strategies <strong>on</strong> HIV Transmissi<strong>on</strong><br />

Stopping <str<strong>on</strong>g>th</str<strong>on</strong>g>e AIDS epidemic c<strong>on</strong>stitutes a major challenge to mankind. Up to now,<br />

HIV infected individuals cannot be cured. However, <strong>on</strong>e possible way <str<strong>on</strong>g>of</str<strong>on</strong>g> stopping<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic is to disrupt its transmissi<strong>on</strong>. In 2009, approximately 370,000 infants<br />

became infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HIV during pregnancy, delivery and breastfeeding [1]. A single<br />

dose <str<strong>on</strong>g>of</str<strong>on</strong>g> nevirapine (NVP) can reduce HIV transmissi<strong>on</strong> by half, when administered<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g>ers before bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir newborns shortly after bir<str<strong>on</strong>g>th</str<strong>on</strong>g>. This simple<br />

and cost-efficient me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is widely applied in resource-c<strong>on</strong>strained settings.<br />

Based <strong>on</strong> a ugandan program for <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er-to-child transmissi<strong>on</strong>,<br />

we assessed <str<strong>on</strong>g>th</str<strong>on</strong>g>e pharmacokinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> NVP in HIV infected pregnant women<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir newborns. The derived pharmacokinetic parameters were used in a stochastic<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV dynamics and -transmissi<strong>on</strong>. Subsequently, we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

to predict HIV transmissi<strong>on</strong> rates during <str<strong>on</strong>g>th</str<strong>on</strong>g>e first two years after bir<str<strong>on</strong>g>th</str<strong>on</strong>g> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different<br />

alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic NVP scheme. The model predicti<strong>on</strong>s were in excellent<br />

agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data from seven independent HIV preventi<strong>on</strong> trials. We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e maternal NVP c<strong>on</strong>stitutes a major risk for resistance development and subsequent<br />

treatment success in <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV infected mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er [2]. However, maternal NVP<br />

decreases HIV transmissi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e newborn substantially. Our model revealed a<br />

perplexing mechanism: Maternal NVP does not reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> viral particles<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at come into c<strong>on</strong>tact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e child during bir<str<strong>on</strong>g>th</str<strong>on</strong>g>. Instead, maternal NVP<br />

reduces HIV transmissi<strong>on</strong> by providing NVP trans-placental to <str<strong>on</strong>g>th</str<strong>on</strong>g>e child, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

protective NVP levels are available at <str<strong>on</strong>g>th</str<strong>on</strong>g>e moment <str<strong>on</strong>g>of</str<strong>on</strong>g> viral c<strong>on</strong>tact during delivery.<br />

191


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Our model also revealed, <str<strong>on</strong>g>th</str<strong>on</strong>g>at extended newborn NVP administrati<strong>on</strong> can protect<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e infant from acquiring HIV during <str<strong>on</strong>g>th</str<strong>on</strong>g>e breastfeeding period wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er risk<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resistance selecti<strong>on</strong>.<br />

Extended newborn NVP, as well as single-dose maternal NVP protect <str<strong>on</strong>g>th</str<strong>on</strong>g>e newborn<br />

from HIV acquisiti<strong>on</strong> by a mechanism, which could best be termed ’preexposure<br />

prophylaxis’ (PrEP). In view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predictive power <str<strong>on</strong>g>of</str<strong>on</strong>g> our model, we<br />

are encouraged <str<strong>on</strong>g>th</str<strong>on</strong>g>at a very similar modeling framework may be useful to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> PrEP <strong>on</strong> sexual transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV, which could become a central tool<br />

to curb <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV epidemic in <str<strong>on</strong>g>th</str<strong>on</strong>g>e near future [3].<br />

References.<br />

[1] UNAIDS. Report <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e global aids epidemic. http://www.unaids.org/globalreport/ (2010).<br />

[2] Jourdain, G. et al. Intrapartum exposure to nevirapine and subsequent maternal resp<strong>on</strong>ses to<br />

nevirapine-based antiretroviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. N Engl J Med 351, 229–240 (2004).<br />

[3] Grant, R. M. et al. Preexposure chemoprophylaxis for HIV preventi<strong>on</strong> in men who have sex<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> men. N Engl J Med 363, 2587–2599 (2010).<br />

11:35–11:55<br />

Artem S. Novozhilov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics–1, Moscow State University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Railway Engineering, Obraztsova 9, Moscow 127994, Russia<br />

e-mail: anovozhilov@gmail.com<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics in a closed heterogeneous<br />

populati<strong>on</strong>: Stochastic aspects<br />

In [1,2] we presented an attempt to formulate a general deterministic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an infectious disease in a closed heterogeneous populati<strong>on</strong>. Specifically,<br />

we looked into heterogeneity in disease parameters (such as susceptibility to a disease);<br />

disease parameters were c<strong>on</strong>sidered as an inherent and invariant property <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individuals, whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter values could vary between individuals. The two<br />

major findings for a heterogeneous SIR model were: 1) we derived <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong> for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e final size <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic for an arbitrary initial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptibility,<br />

which shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial susceptibility distributi<strong>on</strong> is crucial in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at escapes infecti<strong>on</strong>; 2) <str<strong>on</strong>g>th</str<strong>on</strong>g>e widely used power transmissi<strong>on</strong><br />

functi<strong>on</strong> was deduced from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> distributed susceptibility and infectivity<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial gamma-distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease parameters, <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore, a mechanistic<br />

derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomenological model, which is believed to mimic reality<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high accuracy, was provided.<br />

Here we additi<strong>on</strong>ally discuss stochastic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, which are impossible<br />

to study wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> deterministic models, namely:<br />

192<br />

• In which way <str<strong>on</strong>g>th</str<strong>on</strong>g>e parametric heterogeneity changes <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

major outbreak;<br />

• What are <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parametric heterogeneity <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic;


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

• What are <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean and variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e final epidemic<br />

size for different initial susceptibility distributi<strong>on</strong>s.<br />

References.<br />

[1] A. S. Novozhilov. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics in a closed heterogeneous populati<strong>on</strong>. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Biosciences, 215(2):177–185, 2008.<br />

[2] A. S. Novozhilov. Heterogeneous susceptibles–infectives model: Mechanistic derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

power law transmissi<strong>on</strong> functi<strong>on</strong>. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tinuous, Discrete and Impulsive Systems<br />

(Series A, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Analysis), 16(S1):136–140, 2009.<br />

11:55–12:15<br />

Megan Selbach-Allen<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool<br />

e-mail: mesa@liv.ac.uk<br />

Dr. Kieran Sharkey<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool<br />

An investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold phenomen<strong>on</strong> in<br />

complex networks<br />

Classic mean-field models <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics are well known to exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold phenomena<br />

which are typically characterised by <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive ratio R0. A<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical results can be obtained for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese simple systems regarding<br />

aspects such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e final epidemic size and <str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics occurring.<br />

Here we make an investigati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>ese quantities for more complex epidemic<br />

systems. In particular, we c<strong>on</strong>sider epidemics propagated <strong>on</strong> c<strong>on</strong>tact networks. By<br />

using stochastic simulati<strong>on</strong>, we make an investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold phenomen<strong>on</strong><br />

and generate some novel insights wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some potential significance in real, heterogeneous<br />

systems. Additi<strong>on</strong>ally, by relating <str<strong>on</strong>g>th</str<strong>on</strong>g>ese quantities to steady state systems,<br />

we potentially gain a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical handle <strong>on</strong> analysing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese systems.<br />

12:15–12:35<br />

Asher Uziel<br />

Tel-Aviv University, BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Unit<br />

e-mail: asher.uziel@gmail.com<br />

Lewi St<strong>on</strong>e<br />

Tel-Aviv University, BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Unit<br />

Predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e period in seas<strong>on</strong>ally driven epidemics<br />

Seas<strong>on</strong>ality str<strong>on</strong>gly affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> and spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

infectious diseases, and is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten an important cause for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir recurrence. However,<br />

193


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere are many open questi<strong>on</strong>s regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e intricate relati<strong>on</strong>ship between seas<strong>on</strong>ality<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases it gives rise to. For example, in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term time-series <str<strong>on</strong>g>of</str<strong>on</strong>g> childhood diseases, it is not clear why <str<strong>on</strong>g>th</str<strong>on</strong>g>ere<br />

are transiti<strong>on</strong>s from regimes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regular annual dynamics, to regimes in which<br />

epidemics occur every two or more years, and vice-versa. The classical seas<strong>on</strong>allyforced<br />

SIR epidemic model gives insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomena but due to its intrinsic<br />

n<strong>on</strong>linearity and complex dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is rarely amenable to detailed<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis. Making sensible approximati<strong>on</strong>s we analytically study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold (bifurcati<strong>on</strong>) point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e forced SIR model where <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a switch from<br />

annual to biennial epidemics. We derive, for <str<strong>on</strong>g>th</str<strong>on</strong>g>e first time, a simple equati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between key epidemiological parameters near <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong><br />

point. The relati<strong>on</strong>ship makes clear <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic period will decrease if<br />

ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-rate () or basic reproductive ratio (R0) is increased sufficiently, or if<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>ality () is reduced sufficiently. These effects are c<strong>on</strong>firmed in<br />

simulati<strong>on</strong> studies and are also in accord wi<str<strong>on</strong>g>th</str<strong>on</strong>g> empirical observati<strong>on</strong>s. For example,<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pre-vaccinati<strong>on</strong> era, <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase in bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-rate in <str<strong>on</strong>g>th</str<strong>on</strong>g>e United States and in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e United Kingdom was <str<strong>on</strong>g>th</str<strong>on</strong>g>e factor resp<strong>on</strong>sible for driving measles dynamics from<br />

biennial to annual oscillati<strong>on</strong>s. Moreover, it is argued <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e str<strong>on</strong>g seas<strong>on</strong>ality in<br />

India (high ) may be resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e erratic polio outbreaks. Corresp<strong>on</strong>dingly,<br />

our equati<strong>on</strong> identifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e first bifurcati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected period-doubling route<br />

to chaos <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tinues as seas<strong>on</strong>ality increases.<br />

12:35–12:55<br />

Sarunas Repsys<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics, 24 Naugarduko, LT-03225<br />

Vilnius<br />

e-mail: sarunas.repsys1@mif.vu.lt<br />

Vladas Skakauskas<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics, 24 Naugarduko, LT-03225<br />

Vilnius<br />

e-mail: vladas.skakauskas@maf.vu.lt<br />

A brood-parasites dynamics model<br />

We c<strong>on</strong>sider a Comm<strong>on</strong> Cuckoo dynamics deterministic model. It is a broodparasite<br />

which lays its egg in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nest <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er bird species and use host individuals<br />

to raise its young. We present a Comm<strong>on</strong> Cuckoo and a host species dynamics<br />

deterministic model taking into account a discrete set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir care.<br />

All individuals have pre-reproductive, reproductive, and post-reproductive age intervals.<br />

Individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive age are divided into single and <str<strong>on</strong>g>th</str<strong>on</strong>g>ose who care<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> young <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings. All individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-reproductive age are divided into young<br />

(under maternal care) and juvenile classes. Juveniles can live wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out maternal care<br />

but cannot produce <str<strong>on</strong>g>th</str<strong>on</strong>g>eir <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at after <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er all<br />

her young <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings die. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> integro-partial differential equati<strong>on</strong>s<br />

subject to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e integral type. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equati<strong>on</strong>s depends<br />

194


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<strong>on</strong> a biologically possible maximal number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs laid by a hen <str<strong>on</strong>g>of</str<strong>on</strong>g> host species in<br />

a nest. Separable soluti<strong>on</strong>s and numerical results will be discussed.<br />

References.<br />

[1] V. Skakauskas, A <strong>on</strong>e-sex populati<strong>on</strong> dynamics model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings band child<br />

care, N<strong>on</strong>linear analysis: modelling and c<strong>on</strong>trol, 13(4) 525–552, 2008.<br />

[2] S. Repsys and V. Skakauskas, Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>e-sex age-structured populati<strong>on</strong> dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

child care, N<strong>on</strong>linear analysis: modelling and c<strong>on</strong>trol, 12(1) 77–94, 2007.<br />

195


Epidemics 6 / Populati<strong>on</strong> Dynamics 7<br />

Wednesday, June 29, 17:00, Room: AM2<br />

Chaired by: Wils<strong>on</strong> C. Ferreira Jr.<br />

17:00–17:30<br />

Suzanne Touzeau<br />

UR341 MIA, INRA, F-78350 Jouy-en-Josas, France<br />

e-mail: Suzanne.Touzeau@jouy.inra.fr<br />

Caroline Bidot<br />

UR341 MIA, INRA, F-78350 Jouy-en-Josas, France<br />

e-mail: Caroline.Bidot@jouy.inra.fr<br />

Estimating scrapie epidemiological parameters: comparis<strong>on</strong><br />

between a populati<strong>on</strong> dynamic model and an<br />

individual-based model<br />

Classical scrapie is a transmissible sp<strong>on</strong>giform encephalopa<str<strong>on</strong>g>th</str<strong>on</strong>g>y <str<strong>on</strong>g>th</str<strong>on</strong>g>at affects small<br />

ruminants (pri<strong>on</strong> disease) and is submitted to eradicati<strong>on</strong> measures. Transmissi<strong>on</strong><br />

mechanisms are still incompletely understood and difficult to quantify. Scrapie is<br />

characterised in sheep by a genetic susceptibility factor. Its l<strong>on</strong>g infectious and undetectable<br />

incubati<strong>on</strong> period makes direct data analyses difficult, hence <str<strong>on</strong>g>th</str<strong>on</strong>g>e interest<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a modelling approach to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological parameters.<br />

Two models were developed to represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a<br />

sheep flock: a realistic structured populati<strong>on</strong> model (PDE) and an individual-based<br />

model. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e same epidemiological processes, based <strong>on</strong> similar<br />

assumpti<strong>on</strong>s, including seas<strong>on</strong>ality in transmissi<strong>on</strong>, genetic and age-dependent<br />

susceptibilities, l<strong>on</strong>g and variable incubati<strong>on</strong> periods. To focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological parameters, demographic processes c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al lambings,<br />

routine culling and reform, directly derive from <str<strong>on</strong>g>th</str<strong>on</strong>g>e flock data. The data used<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is study originate from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Langlade experimental sheep flock (SAGA, INRA,<br />

Toulouse, France), in which a natural scrapie outbreak occured.<br />

The criteri<strong>on</strong> implemented to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological parameters is based<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e scrapie incidence observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Langlade data and simulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

models. As <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are quite many parameters to estimate (23, <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be reduced<br />

to 11 wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simplifying assumpti<strong>on</strong>s), an optimisati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od based <strong>on</strong> a randomsearch<br />

minimisati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m was chosen.<br />

The parameter values obtained for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> models are comparable and realistic,<br />

i.e. c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> what is known from <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease and expert opini<strong>on</strong>. The<br />

197


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results was tested by a sensitivity analysis, which showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

some parameters are highly sensitive and need to be identified wi<str<strong>on</strong>g>th</str<strong>on</strong>g> care.<br />

17:35–17:55<br />

Anan<str<strong>on</strong>g>th</str<strong>on</strong>g>i Anandanadesan<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: anan<str<strong>on</strong>g>th</str<strong>on</strong>g>i@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Alis<strong>on</strong> Karley<br />

Scottish Crop Research Institute<br />

e-mail: Alis<strong>on</strong>.Karley@scri.ac.uk<br />

Steven Hubbard<br />

Scottish Crop Research Institute<br />

e-mail: s.f.hubbard@dundee.ac.uk<br />

Pietá Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Sciences, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: p.sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield@dundee.ac.uk<br />

Mark Chaplain<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: chaplain@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aphid-paraistoid-plant-virus interacti<strong>on</strong>s<br />

Aphids cause c<strong>on</strong>siderable damage to agricultural crops, mainly due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

ability to transmit a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> plant viruses. Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying processes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute to plant disease dynamics and how to c<strong>on</strong>tain <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease requires a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical study. The <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

undertaking requires not <strong>on</strong>ly an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system,<br />

which has been <str<strong>on</strong>g>th</str<strong>on</strong>g>e focus <str<strong>on</strong>g>of</str<strong>on</strong>g> previous work, but also an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial dynamics.<br />

Envir<strong>on</strong>mental stochasticity operates bo<str<strong>on</strong>g>th</str<strong>on</strong>g> spatially and temporally and<br />

is likely to influence aphid populati<strong>on</strong> processes. As a result, disease transmissi<strong>on</strong><br />

by aphids might be influenced by factors acting in additi<strong>on</strong> to density-dependent<br />

processes.<br />

To c<strong>on</strong>struct a realistic model <str<strong>on</strong>g>of</str<strong>on</strong>g> an aphid-natural enemy-plant-virus system,<br />

we are developing a spatial individual-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aphid Macrosiphum euphorbiae<br />

<strong>on</strong> potato plants. Focus is <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e summer asexual aphid<br />

populati<strong>on</strong>s since aphid outbreaks occur when plant material becomes abundant.<br />

Individuals move randomly and/or via chemotaxis <strong>on</strong> a 2-dimensi<strong>on</strong>al domain representing<br />

<strong>on</strong>e or more plants. We take into account bo<str<strong>on</strong>g>th</str<strong>on</strong>g> parasitoid wasp (e.g.<br />

Aphidius ervi) and predator (e.g. syrphid larvae, coccinellids) natural enemies. Envir<strong>on</strong>mental<br />

stochasticity is incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model by changing variables such<br />

as patch quality, temperature and light intensity. Parameter estimates for <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

are obtained from experimental quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> processes in aphids <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

harbour particular sec<strong>on</strong>dary bacteria or <str<strong>on</strong>g>th</str<strong>on</strong>g>at are free <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary symbi<strong>on</strong>ts. A<br />

198


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> aphid cl<strong>on</strong>es have been established in culture and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sec<strong>on</strong>dary bacteria<br />

status c<strong>on</strong>firmed using diagnostic PCR. The individual-based model is used to<br />

assess how sec<strong>on</strong>dary endosymbi<strong>on</strong>ts affect aphid populati<strong>on</strong> dynamics, vector capacity<br />

and trophic interacti<strong>on</strong>s. Previous work <strong>on</strong> host-parasitoid models (Preedy<br />

et al. 2007; Pearce et al. 2006; Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield et al. 2005) suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at a broad-range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dynamics including spatio-temporal heterogeneity and chaos can emerge from <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

systems and similar results are observed in our model.<br />

References.<br />

[1] I.G. Pearce, M.A.J. Chaplain, P.G. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, S.F. Hubbard, Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> multi-species host-parasitoid interacti<strong>on</strong>s: heterogeneous patterns and ecological implicati<strong>on</strong>s<br />

J. Theoretical Biology 241 876–886.<br />

[2] K. Preedy, P.G. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, M.A.J. Chaplain, S.F. Hubbard, Disease induced dynamics in hostparasitoid<br />

systems: chaos and coexistence Roy. Soc. Interface 4 463–471.<br />

[3] P.G. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, M.A.J. Chaplain, S.F. Hubbard, Dynamic heterogeneous spatio-temporal pattern<br />

formati<strong>on</strong> in host-parasitoid systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> synchr<strong>on</strong>ized generati<strong>on</strong>s. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biology 50<br />

559-583.<br />

17:55–18:15<br />

Benjamin Franz<br />

Oxford University (OCCAM)<br />

e-mail: franz@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Hybrid modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong>: coupling<br />

individual-based models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> partial differential equati<strong>on</strong>s<br />

Two approaches to ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

literature: (i) individual-based (agent-based) models, which describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each cell, and (ii) macroscopic partial differential equati<strong>on</strong>s (PDEs), which are<br />

written for cell c<strong>on</strong>centrati<strong>on</strong>s. A widely studied example <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> is chemotaxis,<br />

where cells move according to extracellular chemicals <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be altered by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, systems <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled PDEs are used to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and external chemicals. A more detailed descripti<strong>on</strong> is given<br />

by hybrid models <str<strong>on</strong>g>th</str<strong>on</strong>g>at couple an individual-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> PDEs for<br />

extracellular chemicals. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we will give an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid models used<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. Examples will include chemotaxis <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria and eukaryotic cells.<br />

We will analyse similarities and differences between hybrid models and macroscopic<br />

PDEs.<br />

18:15–18:35<br />

Masahiro Anazawa<br />

Tohoku Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: anazawa@tohtech.ac.jp<br />

199


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Interspecific competiti<strong>on</strong> models derived from competiti<strong>on</strong><br />

between individuals<br />

Populati<strong>on</strong> dynamics, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting populati<strong>on</strong>s, result from<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals comprising populati<strong>on</strong>s and interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>em. It<br />

is important to reveal relati<strong>on</strong>ship between populati<strong>on</strong> dynamics and local interacti<strong>on</strong>s<br />

between individuals, and an effective way to do so is deriving populati<strong>on</strong><br />

models from first principles. In a previous study, I derived various discrete-time<br />

populati<strong>on</strong> models for a single species from first principles, and provided a unified<br />

view to understand how various populati<strong>on</strong> models interrelate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er.<br />

Extending <str<strong>on</strong>g>th</str<strong>on</strong>g>e study above, <str<strong>on</strong>g>th</str<strong>on</strong>g>is study aims at deriving discrete-time interspecific<br />

competiti<strong>on</strong> models, which describe dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> competing two populati<strong>on</strong>s, by<br />

c<strong>on</strong>sidering competiti<strong>on</strong> for resource between individuals and spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Competiti<strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> each species is assumed to be scramble, c<strong>on</strong>test<br />

or an intermediate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two types. Interspecific competiti<strong>on</strong> models are<br />

derived for various combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species and<br />

several types <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, a general interspecific<br />

competiti<strong>on</strong> model <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes various competiti<strong>on</strong> models as special cases<br />

is derived for each distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Finally, I discuss coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

species, based <strong>on</strong> competiti<strong>on</strong> models derived for c<strong>on</strong>test vs. scramble case, and<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ease <str<strong>on</strong>g>of</str<strong>on</strong>g> coexistence depends greatly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individuals.<br />

18:35–18:55<br />

Sebastian Weitz<br />

Richard Fournier<br />

Stéphane Blanco<br />

Laboratoire Plasma et C<strong>on</strong>versi<strong>on</strong> d’Energie, UMR-CNRS 5213, Université<br />

Paul Sabatier, Bât 3R1, 118 Route de Narb<strong>on</strong>ne, F-31062 Toulouse<br />

cedex 9, France<br />

e-mail: weitz@laplace.univ-tlse.fr<br />

Jacques Gautrais<br />

Christian Jost<br />

Guy Theraulaz<br />

Centre de Recherches sur la Cogniti<strong>on</strong> Animale, UMR-CNRS 5169,<br />

Université Paul Sabatier, Bât 4R3, 118 Route de Narb<strong>on</strong>ne, F-31062<br />

Toulouse cedex 9, France<br />

A model <str<strong>on</strong>g>of</str<strong>on</strong>g> self-induced <str<strong>on</strong>g>th</str<strong>on</strong>g>igmotactism in ants<br />

Ants display <str<strong>on</strong>g>th</str<strong>on</strong>g>igmotactic behaviour which is a tendency to align wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a border<br />

and move al<strong>on</strong>g it for some time. In many cases, ants’ activity results in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental heterogeneities <str<strong>on</strong>g>th</str<strong>on</strong>g>at in turn modify <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ants<br />

and trigger a <str<strong>on</strong>g>th</str<strong>on</strong>g>igmotactic behaviour as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey reach a critical size. We have analyzed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> during object clustering experiments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ant Messor Sanctus.<br />

The experimental investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ants in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> objects (Casellas<br />

200


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

et al. [1] and subsequent experimental work) leads to a new <str<strong>on</strong>g>th</str<strong>on</strong>g>igmotactic random<br />

walk model, in which ants tend to walk around <str<strong>on</strong>g>th</str<strong>on</strong>g>e emerging piles ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

crossing <str<strong>on</strong>g>th</str<strong>on</strong>g>em. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>tributi<strong>on</strong> we analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model and show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at its predicti<strong>on</strong>s are in quantitive agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental observati<strong>on</strong>s.<br />

We <str<strong>on</strong>g>th</str<strong>on</strong>g>en show <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential role played by <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling between <str<strong>on</strong>g>th</str<strong>on</strong>g>e clustering<br />

dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ants in <str<strong>on</strong>g>th</str<strong>on</strong>g>e object clustering experiments. We<br />

finally discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nest building<br />

process in ants, and for understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape transiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e clustered items<br />

observed when ants are facing low-speed air currents.<br />

References.<br />

[1] E. Casellas, J. Gautrais, R. Fournier, S. Blanco, M. Combe, V. Fourcassié, G. Theraulaz, and<br />

C. Jost, From individual to collective displacements in heterogeneous envir<strong>on</strong>ments Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 250 424–434.<br />

201


Epidemics 7<br />

Thursday, June 30, 11:30, Room: AM6<br />

Chaired by: Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>fry Mercer<br />

11:30–12:00<br />

Ryosuke Nishi<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Aer<strong>on</strong>autics and Astr<strong>on</strong>autics, The Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

Japan Society for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

e-mail: tt097086@mail.ecc.u-tokyo.ac.jp<br />

Atsushi Kamimura<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial Science, The Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

Katsuhiro Nishinari<br />

Research Center for Advanced Science and Technology, The Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tokyo<br />

PRESTO, Japan Science and Technology Agency<br />

Toru Ohira<br />

S<strong>on</strong>y Computer Science Laboratories, Inc.<br />

e-mail: ohira@csl.s<strong>on</strong>y.co.jp<br />

Chase and Escape in Groups: Vampire Problem<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important issues in our society is how to understand and<br />

deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases. This is important not <strong>on</strong>ly in physical<br />

space but in cyberspace as well. There have been numerical and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

models used to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious spreads. SIR models such<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kermack-McKendrick model are based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> “susceptible,”<br />

“infected,” and “recovered” populati<strong>on</strong>s. The c<strong>on</strong>tact process is ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

representative <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model.<br />

The main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper is to introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e element <str<strong>on</strong>g>of</str<strong>on</strong>g> “chase and escape”<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e above phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious spreads. The problems <str<strong>on</strong>g>of</str<strong>on</strong>g> “chase and<br />

escape,” also referred to as “pursuit and evasi<strong>on</strong>,” have a l<strong>on</strong>g history in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

literature [1]. They produce ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er complex and elegant trajectories out<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> simple problem settings. Traditi<strong>on</strong>ally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e main interest has been <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems<br />

in which a single chaser try to catch a single evader. Recently, we introduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

paradigm “group chase and escape,” in which <strong>on</strong>e group chases ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er group [2]. It<br />

was motivated by recent research interests in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> groups, or swarms, such<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> humans, animals, insects, and cars [3]. We have found <str<strong>on</strong>g>th</str<strong>on</strong>g>at a ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

complex behavior arises from <str<strong>on</strong>g>th</str<strong>on</strong>g>e models for “group chase and escape.”<br />

203


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Here, we will modify our original models for “group chase and escape” to better<br />

fit <str<strong>on</strong>g>th</str<strong>on</strong>g>e models for infectious spread. Previously, when a chaser caught an evader, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evader perished. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> evaders decreased m<strong>on</strong>ot<strong>on</strong>ically as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

process c<strong>on</strong>tinued. We will modify <str<strong>on</strong>g>th</str<strong>on</strong>g>e process so <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e evaders do not become<br />

extinct as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are caught but are instead c<strong>on</strong>verted or infected to become chasers.<br />

Heuristically, <str<strong>on</strong>g>th</str<strong>on</strong>g>is is like vampires trying to increase <str<strong>on</strong>g>th</str<strong>on</strong>g>eir numbers by attacking<br />

people. In reality, a similar situati<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong><br />

is transmitted <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e bites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected.There are studies <str<strong>on</strong>g>of</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies. We will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e element <str<strong>on</strong>g>of</str<strong>on</strong>g> “chase and escape” will<br />

bring in a new phase to <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models.<br />

References.<br />

[1] P. J. Nahin, Chase and Escape: The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> pursuit and evasi<strong>on</strong> (Princet<strong>on</strong> Univ.<br />

Press, 2007).<br />

[2] A. Kamimura and T. Ohira, Group Chase and Escape New Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics 12 053013<br />

(2010).<br />

[3] T. Vicsek and A. Zafiris, Collective Moti<strong>on</strong> arXiv:c<strong>on</strong>d-mat:1010.5017 (2010).<br />

12:05–12:25<br />

K.K. Avilov<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> RAS, Moscow, Russia<br />

e-mail: avilov@mail.inm.ras.ru<br />

Case detecti<strong>on</strong> rate: what can be estimated wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

prevalence surveys<br />

Case detecti<strong>on</strong> rate (CDR) defined as <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> incident cases <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

disease <str<strong>on</strong>g>th</str<strong>on</strong>g>at are detected (i.e. diagnosed and notified) is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

for m<strong>on</strong>itoring <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological situati<strong>on</strong> and for forecasting and operati<strong>on</strong>al<br />

research. Moreover, case detecti<strong>on</strong> rates are used as target indicators in political<br />

documents (for example, target 70% CDR for smear-positive tuberculosis had been<br />

set by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Millennium Development Goals [1]).<br />

It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten stated <str<strong>on</strong>g>th</str<strong>on</strong>g>at CDR is hard to estimate because it is calculated as<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e routinely notified incidence to an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> full (unobserved)<br />

incidence, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter being very unreliable. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e field <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e usual<br />

recommendati<strong>on</strong> is performing regular prevalence surveys to calculate incidence<br />

ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er directly or indirectly. But representative prevalence surveys are ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er costly<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten logistically complicated. The workarounds for <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem include using<br />

expert estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> CDR [2] and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term trends and interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

HIV [3].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk, presented will be a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at regards case detecti<strong>on</strong> and disease<br />

progressi<strong>on</strong> as competing processes, <str<strong>on</strong>g>th</str<strong>on</strong>g>us deriving a relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> case detecti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e severity (or age) <str<strong>on</strong>g>of</str<strong>on</strong>g> disease at <str<strong>on</strong>g>th</str<strong>on</strong>g>e moment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

detecti<strong>on</strong> [4]. In many settings some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> disease severity measure is available<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e routine notificati<strong>on</strong> data, and so it is possible to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e CDR. For<br />

204


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

tuberculosis, such a measure may use data <strong>on</strong> smear microscopy, bacteriological<br />

tests, chest X-ray, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e physician’s diagnosis.<br />

This approach may be extended to incorporate individual socio-ec<strong>on</strong>omical<br />

properties and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effect <strong>on</strong> individual case detecti<strong>on</strong> intensity [5]. The analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cases substantially differ in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir availability for<br />

detecti<strong>on</strong>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> “social involvement” and sex being <str<strong>on</strong>g>th</str<strong>on</strong>g>e most significant factors.<br />

This result erects <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> how much <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e models based <strong>on</strong> homogeneity assumpti<strong>on</strong>s – in <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, <strong>on</strong> evenly<br />

effective detecti<strong>on</strong> system. In fact, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model estimates CDR for <str<strong>on</strong>g>th</str<strong>on</strong>g>e social strata<br />

readily available for case detecti<strong>on</strong>. This estimate al<strong>on</strong>e may be a useful point<br />

indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> practical efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e case detecti<strong>on</strong> system. But wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some support<br />

form prevalence studies (especially targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e “ill-detectable” strata) it is possible<br />

to estimate CDR and incidence accurately for <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole populati<strong>on</strong>.<br />

References.<br />

[1] Resoluti<strong>on</strong> A/55/2. United Nati<strong>on</strong>s Millennium Declarati<strong>on</strong>. 32. Fifty-fif<str<strong>on</strong>g>th</str<strong>on</strong>g> United Nati<strong>on</strong>s<br />

General Assembly, New York, 18 September 2000 (Document A/RES/53/202).<br />

[2] Dye C, Scheele S, Dolin P, Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ania V, Ravigli<strong>on</strong>e MC. C<strong>on</strong>sensus statement. Global burden<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global<br />

Surveillance and M<strong>on</strong>itoring Project. JAMA. 1999;282(7):677-86.<br />

[3] Mansoer J, Scheele S, Floyd K, Dye C, Sitienei J, Williams B. New me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for estimating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tuberculosis case detecti<strong>on</strong> rate in high-HIV prevalence countries: <str<strong>on</strong>g>th</str<strong>on</strong>g>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> Kenya.<br />

Bull. World. Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>. Organ. 2009;87(3):186-92, 192A-192B.<br />

[4] Avilov KK, Romanyukha AA. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis propagati<strong>on</strong> and patient<br />

detecti<strong>on</strong>. Automati<strong>on</strong> and Remote C<strong>on</strong>trol. 2007; 68(9):1604-1617.<br />

[5] Avilov KK. Statistical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> factors determining detected tuberculosis incidence. Russian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Analysis and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling. 2009; 24(4):309-324.<br />

12:25–12:45<br />

Luis F. Lopez<br />

Eduardo Massad<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sao Paulo Medical School<br />

e-mail: lopez@usp.br<br />

Time-dependent discret, Ising-like model for SIS epidemic<br />

systems<br />

Standard SIS (Susceptible-Infected-Susceptible), SIR and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er similar epidemic<br />

systems are comm<strong>on</strong>ly modeled as mean field dynamic systems or simulated<br />

as different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular automata. We model a SIS system as an asymmetric<br />

Ising model. In its simplest versi<strong>on</strong>, each individual is c<strong>on</strong>sidered fixed to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nodes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a square lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> linear size L and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir nearest neighbors<br />

<strong>on</strong>ly. Then each individual is represented by a vector which may assume <str<strong>on</strong>g>th</str<strong>on</strong>g>e values<br />

1 (susceptible) or −1 (infected) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> a susceptible to become<br />

infected and an infected to recover depend respectively <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> infected<br />

neighbors and a c<strong>on</strong>stant field H. Here we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIS model is c<strong>on</strong>sistent<br />

205


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time dependent probabilities in a Glauber fashi<strong>on</strong>, derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e classic meanfield<br />

equati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>rough extensive M<strong>on</strong>te Carlo simulati<strong>on</strong>s, we show how spatial<br />

heterogeneities arise naturally from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

12:45–13:05<br />

Toshikazu Kuniya<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

e-mail: tkuniya@ms.u-tokyo.ac.jp<br />

Global stability analysis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a discretizati<strong>on</strong> approach for<br />

an age-structured SIR epidemic model<br />

The global stability analysis for each equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g> an age-structured SIR epidemic<br />

model is carried out. After discretizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>at is a system <str<strong>on</strong>g>of</str<strong>on</strong>g> PDE wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e age variable, we obtain a multigroup epidemic model <str<strong>on</strong>g>th</str<strong>on</strong>g>at is a system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ODE and can apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> Lyapunov, a recently developed<br />

graph-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic approach and a m<strong>on</strong>ot<strong>on</strong>e iterative me<str<strong>on</strong>g>th</str<strong>on</strong>g>od in order to show <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

global asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease-free equilibrium for R 0 ≤ 1, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

global attractivity <str<strong>on</strong>g>of</str<strong>on</strong>g> an endemic equilibrium for R 0 > 1, where R 0 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic<br />

reproducti<strong>on</strong> number. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough for <str<strong>on</strong>g>th</str<strong>on</strong>g>e original PDE model <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> local<br />

instability <str<strong>on</strong>g>of</str<strong>on</strong>g> an endemic equilibrium was shown even for R 0 > 1, for <str<strong>on</strong>g>th</str<strong>on</strong>g>e discretized<br />

versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it we can obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e aforementi<strong>on</strong>ed global attractivity result, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong>s might be ruled out from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model,<br />

which has been discussed as an open questi<strong>on</strong> for more <str<strong>on</strong>g>th</str<strong>on</strong>g>an two decades. Numerical<br />

simulati<strong>on</strong> provides an example indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

PDE and ODE systems become closer to each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er as <str<strong>on</strong>g>th</str<strong>on</strong>g>e step size <str<strong>on</strong>g>of</str<strong>on</strong>g> discretizati<strong>on</strong><br />

decreases.<br />

References.<br />

[1] S.N. Busenberg, M. Iannelli, H.R. Thieme, Global behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> an age-structured epidemic<br />

model SIAM J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. 22 1065–1080.<br />

[2] H.R. Thieme, Stability change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic equilibrium in age-structured models for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S-I-R type infectious diseases in; S. Busenberg and M. Martelli (Eds.), Differential<br />

Equati<strong>on</strong>s Models in Biology, Epidemiology and Ecology, Springer-Verkag, Berlin, 1991, pp.<br />

139–158.<br />

13:05–13:25<br />

Valeriy Perminov<br />

"BioTeckFarm, Ltd"<br />

e-mail: vdperm@yandex.ru<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number in different infectious diseases<br />

models<br />

206


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The classical Kermack-McKendrick homogeneous SIR (susceptible, infected and<br />

removed) model is well known. Its general soluti<strong>on</strong> is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e unique<br />

parameter (<str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number) <str<strong>on</strong>g>th</str<strong>on</strong>g>at is equal to a mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

cases produced by a typical infected individual in a completely susceptible populati<strong>on</strong>.<br />

If <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number is more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e (<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold value) its value<br />

describes an epidemic level larger values corresp<strong>on</strong>d to str<strong>on</strong>ger epidemics. This<br />

model bases <strong>on</strong> two assumpti<strong>on</strong>s 1) all members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> have <str<strong>on</strong>g>th</str<strong>on</strong>g>e equal<br />

probability to get infected and 2) mixing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> is uniform. It is clear<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese assumpti<strong>on</strong>s are n<strong>on</strong>realistic for any large human populati<strong>on</strong>. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e more complex compartment SIR models <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> is divided into several<br />

n<strong>on</strong>-overlapping groups. It allows us to partly remove assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical<br />

model. Twenty years ago Diekmann et al 1 showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at for <str<strong>on</strong>g>th</str<strong>on</strong>g>is kind <str<strong>on</strong>g>of</str<strong>on</strong>g> models, just<br />

as for <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical model <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold parameter R0. Usually it is called<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e same name <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number <str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

parameter has changed. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is new parameter is a not unique measure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an epidemic severity (it will be proven during my talk). In particular it means <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

for such models comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e severity <str<strong>on</strong>g>of</str<strong>on</strong>g> two epidemics by simple comparing<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir reproducti<strong>on</strong> numbers is incorrect. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e more realistic model<br />

has to c<strong>on</strong>tain much more parameters for more detailed descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

and epidemic itself, we can be sure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e last c<strong>on</strong>clusi<strong>on</strong> is valid for <str<strong>on</strong>g>th</str<strong>on</strong>g>e real<br />

epidemics too. Individual-based models (IBMs) are more complex in comparis<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e compartment <strong>on</strong>es since <str<strong>on</strong>g>th</str<strong>on</strong>g>ey use overlapping groups (school children are<br />

members <str<strong>on</strong>g>of</str<strong>on</strong>g> a family also, for example). This peculiarity <str<strong>on</strong>g>of</str<strong>on</strong>g> IBMs makes Diekmanns<br />

calculati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number inapplicable. Moreover <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no<br />

usual ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formulati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e IBMs (by differential equati<strong>on</strong>s, for example).<br />

It means <str<strong>on</strong>g>th</str<strong>on</strong>g>at we may not use analytic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> research and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore,<br />

an existence <str<strong>on</strong>g>of</str<strong>on</strong>g> any similarity parameter in <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> (for example, a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold<br />

c<strong>on</strong>diti<strong>on</strong> or some analog <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number) has to be proved numerically.<br />

Unfortunately, papers wi<str<strong>on</strong>g>th</str<strong>on</strong>g> misunderstandings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e IBMs peculiarities c<strong>on</strong>tinue<br />

to appear.<br />

References.<br />

[1] Diekmann, O., J. A. P. Heesterbeek, J. A. J. Metz, 1990. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> and computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproducti<strong>on</strong> ratio R0 in models for infectious diseases in heterogeneous populati<strong>on</strong>s.<br />

J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., 28, pp.365-382.<br />

207


Epidemics 8<br />

Saturday, July 2, 08:30, Room: AM2<br />

Chaired by: Roberto Saenz<br />

08:30–08:50<br />

Aziz Ouhinou<br />

African Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, 6 Melrose Road, Muizenberg,<br />

7945, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: aziz@aims.ac.za<br />

Semu Mitiku Kassa<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Addis Ababa University,<br />

P.O.Box 1176 Addis Ababa, E<str<strong>on</strong>g>th</str<strong>on</strong>g>iopia<br />

e-mail: smtk@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.aau.edu.et<br />

Epidemiological Models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Prevalence Dependent<br />

Endogenous Self-Protecti<strong>on</strong> Measure<br />

A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for human disease epidemics <str<strong>on</strong>g>th</str<strong>on</strong>g>at takes <str<strong>on</strong>g>th</str<strong>on</strong>g>e human<br />

learning behaviour and self-protective measures into account is proposed. We<br />

analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous self-protective measures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease and c<strong>on</strong>versely. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model it is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at people<br />

start reacting against c<strong>on</strong>tracting a disease wi<str<strong>on</strong>g>th</str<strong>on</strong>g> self protective measures whenever<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ey are informed about <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease and when <str<strong>on</strong>g>th</str<strong>on</strong>g>e burden <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is in a<br />

recognizable stage. We show how suppressing <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is more<br />

sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e average effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> self-protective measures <str<strong>on</strong>g>th</str<strong>on</strong>g>an increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals in a populati<strong>on</strong> into which awareness is created.<br />

References.<br />

[1] Z. Mukandavire, W. Garira, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> educati<strong>on</strong>al campaigns and <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> sex<br />

workers <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV/AIDS am<strong>on</strong>g heterosexuals, Theoretical Populati<strong>on</strong> Biology, 72<br />

(2007) 346-365.<br />

[2] Z. Mukandavire, W. Garira, J.M. Tchuenche, Modelling effects <str<strong>on</strong>g>of</str<strong>on</strong>g> public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> educati<strong>on</strong>al<br />

campaigns <strong>on</strong> HIV/AIDS transmissi<strong>on</strong> dynamics, Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling, 33 (2009)<br />

2084–2095.<br />

[3] H. Ying-Hen, K. Cooke, Behaviour change and treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> core groups: its effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spread <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV/AIDS, IMA Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Applied in Medicine and Biology, 17<br />

(2000) 213-241.<br />

[4] F. Baryarama, J. Y. T. Mugisha, L. S. Luboobi, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> HIV/AIDS wi<str<strong>on</strong>g>th</str<strong>on</strong>g> gradual behaviour change, Computati<strong>on</strong>al and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in<br />

Medicine, 7 (2006) 15-26.<br />

[5] A. Galata, N. Johns<strong>on</strong>, D. Hogg, Learning behaviour models <str<strong>on</strong>g>of</str<strong>on</strong>g> human activities, In Proc.<br />

British Machine Visi<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>, BMVC’99, Sept. 1999.<br />

209


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

08:55–09:15<br />

S.Naser Hashemi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer<br />

Science, Amirkabir University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,Tehran, Iran<br />

e-mail: nhashemi@aut.ac.ir<br />

Fazeleh S.M.Salehi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer<br />

Science, Amirkabir University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,Tehran, Iran<br />

"Modeling C<strong>on</strong>trol Strategies for Influenza Epidemic wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Emergence and Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Drug Resistance"<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important problems in preventing influenza outbreak is <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistance during disease infecti<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we model an influenza<br />

epidemic c<strong>on</strong>sidering emergence and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistance. Since antiviral<br />

treatment is not effective <strong>on</strong> resistant infecteds, we implement <str<strong>on</strong>g>th</str<strong>on</strong>g>e quarantine c<strong>on</strong>trol<br />

strategy to mitigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e final size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic. In additi<strong>on</strong>, prophylaxis and<br />

treatment strategies are c<strong>on</strong>sidered in our model. A system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential<br />

equati<strong>on</strong> is formulated for a SIQR influenza epidemic model. The influences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>ree main c<strong>on</strong>trol strategies are investigated <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e final size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic.<br />

Numerical simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal quarantine and treatment<br />

toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er leads to outbreak c<strong>on</strong>tainment. The basic reproducti<strong>on</strong> numbers and<br />

c<strong>on</strong>trol reproducti<strong>on</strong> numbers are calculated for sensitive and resistant strains.<br />

09:15–09:35<br />

Jing-an Cui, Guohua S<strong>on</strong>g<br />

Beijing University <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering & Architecture, Beijing 100044,<br />

China<br />

e-mail: cuijingan@bucea.edu.cn<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious disease c<strong>on</strong>trol wi<str<strong>on</strong>g>th</str<strong>on</strong>g> limit treatment<br />

resource<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> patients need to be treated may exceed <str<strong>on</strong>g>th</str<strong>on</strong>g>e carry capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> local<br />

hospitals during <str<strong>on</strong>g>th</str<strong>on</strong>g>e spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> a severe infectious disease. We propose an epidemic<br />

model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> saturati<strong>on</strong> recovery from infective individuals to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> limited resources for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> infectives <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergency disease c<strong>on</strong>trol.<br />

It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at saturati<strong>on</strong> recovery from infective individuals leads to vital<br />

dynamics, such as bistability and periodicity, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproducti<strong>on</strong> number<br />

R 0 is less <str<strong>on</strong>g>th</str<strong>on</strong>g>an unity.<br />

References.<br />

[1] J.Cui, X.Mu, H.Wan,Saturati<strong>on</strong> Recovery Leads to Multiple Endemic Equilibria and Backward<br />

Bifurcati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 254 275–283.<br />

[2] W. Wang, S. Ruan, Bifurcati<strong>on</strong>s in an epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>stant removal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

infectives. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. Appl. 291 775–793.<br />

210


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] W. Wang, Backward bifurcati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> treatment. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. 201<br />

58–71.<br />

09:35–09:55<br />

H.C. Johns<strong>on</strong>*<br />

L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Tropical Medicine<br />

e-mail: Helen.Johns<strong>on</strong>@lshtm.ac.uk<br />

W.J. Edmunds<br />

L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Tropical Medicine<br />

e-mail: John.Edmunds@lshtm.ac.uk<br />

R.G. White<br />

L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Tropical Medicine<br />

e-mail: Richard.White@lshtm.ac.uk<br />

Novel ABC - Bayesian Emulati<strong>on</strong> Hybrid Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m For<br />

Complex Model Calibrati<strong>on</strong>: The First Waves<br />

Introducti<strong>on</strong>. The complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical systems underlying epidemics<br />

has led to <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale stochastic models for predicti<strong>on</strong> purposes. However,<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for robustly calibrating and analysing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese simulators can be prohibitively<br />

inefficient. We propose an algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for fitting complex models <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> Approximate Bayesian Computati<strong>on</strong> (ABC) and Bayesian Emulati<strong>on</strong>.<br />

ABC enables inference about model parameters wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e need for calculating<br />

a likelihood functi<strong>on</strong>, by generating approximati<strong>on</strong>s from repeated model<br />

runs. However, each complex model run might take hours. Emulati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are<br />

being developed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e fields <str<strong>on</strong>g>of</str<strong>on</strong>g> cosmology, oceanography and meteorological modelling.<br />

The complex model functi<strong>on</strong> is summarised as an ‘emulator’: a stochastic<br />

functi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e global behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex model functi<strong>on</strong> as a<br />

linear regressi<strong>on</strong> model and local deviati<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>is behaviour as Gaussian processes.<br />

The emulator <str<strong>on</strong>g>th</str<strong>on</strong>g>en becomes a cheap proxy for <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex model, allowing<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> calibrati<strong>on</strong> and probabilistic sensitivity analysis to be c<strong>on</strong>ducted in a fracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al time.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. We report <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an emulati<strong>on</strong>-based calibrati<strong>on</strong><br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m to an individual-based stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> STI transmissi<strong>on</strong> in Uganda.<br />

Starting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uninformative priors for 19 behavioural and biological input parameters,<br />

we ‘trained’ an emulator wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 200 sampled parameter sets and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding<br />

complex model output (point estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV prevalence). Sampling a<br />

fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er 10,000 parameter sets from <str<strong>on</strong>g>th</str<strong>on</strong>g>e priors, we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e emulator to make output<br />

predicti<strong>on</strong>s over a large area <str<strong>on</strong>g>of</str<strong>on</strong>g> input parameter space. Weighting each parameter<br />

set according to goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit to observed data, we identified promising areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter space to evaluate using <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex model. A more accurate emulator<br />

was <str<strong>on</strong>g>th</str<strong>on</strong>g>en trained, incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>is additi<strong>on</strong>al complex model output. This process<br />

was repeated in ‘waves’ as per sequential ABC me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods.<br />

211


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Results. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> emulators allowed an evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter<br />

space due to increased computati<strong>on</strong>al efficiency. Processing time for <strong>on</strong>e<br />

prevalence point estimate was reduced from over 15 minutes <strong>on</strong> an HPC cluster to<br />

less <str<strong>on</strong>g>th</str<strong>on</strong>g>an 0.1 sec<strong>on</strong>d <strong>on</strong> a PC. Even <str<strong>on</strong>g>th</str<strong>on</strong>g>e first two waves <str<strong>on</strong>g>of</str<strong>on</strong>g> such an algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m provided<br />

helpful insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e most influential parameters and identified promising<br />

regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter space.<br />

C<strong>on</strong>clusi<strong>on</strong>s. The development <str<strong>on</strong>g>of</str<strong>on</strong>g> an ABC - Bayesian Emulati<strong>on</strong> hybrid approach<br />

to complex model calibrati<strong>on</strong> is promising, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> emulators <str<strong>on</strong>g>of</str<strong>on</strong>g>fering large<br />

advantages in computati<strong>on</strong>al efficiency. However, fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er research is needed regarding<br />

weighting, tolerance levels and covariance.<br />

09:55–10:15<br />

Amjad Khan<br />

Nati<strong>on</strong>al University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences and Technology (NUST), School <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Civil and envir<strong>on</strong>mental Engineering (SCEE), NUST Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil<br />

Engineering (NICE), Sector H-12, Islamabad, Pakistan.<br />

e-mail: za ¯ amjad@yahoo.com<br />

Rahmat Ali Khan<br />

Centre for Advanced Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Physics, Nati<strong>on</strong>al University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences and Technology(NUST), Sector H-12, Islamabad, Pakistan<br />

e-mail: rahmat ¯ alipk@yahoo.com<br />

Takenori Takada<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Ear<str<strong>on</strong>g>th</str<strong>on</strong>g> Science, Hokkaido University,<br />

Kita-ku, Sapporo 060-0810, Japan.<br />

e-mail: takada@ees.hokudai.ac.jp<br />

Homotopy perturbati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for traveling wave soluti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> system <str<strong>on</strong>g>of</str<strong>on</strong>g> biological reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we apply a technique which is called homotopy perturbati<strong>on</strong><br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (HPM) for obtaining analytical approximate traveling wave soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> biological reacti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type<br />

(1)<br />

S t = εS xx − νS x − f(S)P,<br />

P t = P xx − νP x + [f(S) − K]P.<br />

Biological reacti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s are used as ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for several<br />

problems in biology and chemistry. For example (1) was used as a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model for microbial grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and competiti<strong>on</strong> in a flow reactor. The <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reacti<strong>on</strong>-diffusi<strong>on</strong> waves started in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 1930s, initial works was carried out in populati<strong>on</strong><br />

dynamics, combusti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and chemical kinetics. Nowadays, it is a well<br />

developed area <str<strong>on</strong>g>of</str<strong>on</strong>g> research. This includes qualitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> traveling waves<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalar reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong> and for system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s, complex n<strong>on</strong>linear<br />

dynamics, numerous applicati<strong>on</strong>s in physics, chemistry, biology and medicine.<br />

Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> traveling waves reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e important phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> wave propagati<strong>on</strong><br />

and has extensively studied by many au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors. The homotopy perturbati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

212


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

(HPM) proposed by Ji-Huan He in 1998 is a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for finding approximate soluti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-linear differential and integral equati<strong>on</strong>s. This me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is popular<br />

am<strong>on</strong>gst n<strong>on</strong>-ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematician and engineers because HPM decomposes a complex<br />

problem under study to a series <str<strong>on</strong>g>of</str<strong>on</strong>g> simple problems <str<strong>on</strong>g>th</str<strong>on</strong>g>at are easy to be solved. The<br />

results obtained reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e homotopy perturbati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is effective and<br />

simple. Some plots are presented to c<strong>on</strong>firm <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical results.<br />

10:15–10:35<br />

A. M. Elaiw<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, King Abdulaziz University,<br />

P.O. Box 80203, Jeddah 21589, Saudi Arabia.<br />

e-mail: a_m_elaiw@yahoo.com<br />

Global properties <str<strong>on</strong>g>of</str<strong>on</strong>g> virus dynamics models wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

multi-target cells and delays<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we propose a class <str<strong>on</strong>g>of</str<strong>on</strong>g> virus dynamics models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multi-target cells<br />

and intracellular delays and study <str<strong>on</strong>g>th</str<strong>on</strong>g>eir global properties. We first study <str<strong>on</strong>g>th</str<strong>on</strong>g>e global<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a virus dynamics model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two target cells and delays. Then we<br />

introduce two new virus dynamics models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multi-target cells and delays. The<br />

first model is a (2n + 1)-dimensi<strong>on</strong>al n<strong>on</strong>linear delay ODEs <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus, n class <str<strong>on</strong>g>of</str<strong>on</strong>g> target cells (uninfected cells) and n class <str<strong>on</strong>g>of</str<strong>on</strong>g> infected<br />

target cells. The sec<strong>on</strong>d model generalizes <str<strong>on</strong>g>th</str<strong>on</strong>g>e first <strong>on</strong>e by assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong><br />

rate is given by saturati<strong>on</strong> functi<strong>on</strong>al resp<strong>on</strong>se. Two classes <str<strong>on</strong>g>of</str<strong>on</strong>g> time delays<br />

are incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models, (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e times needed for newly infected cells<br />

to start to produce viruses, (ii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e time for newly produced virus to become infectious<br />

(matures). Lyapunov functi<strong>on</strong>als are c<strong>on</strong>structed to establish <str<strong>on</strong>g>th</str<strong>on</strong>g>e global<br />

asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e uninfected and infected steady states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models.<br />

We have proven <str<strong>on</strong>g>th</str<strong>on</strong>g>at if <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproducti<strong>on</strong> number R 0 is less <str<strong>on</strong>g>th</str<strong>on</strong>g>an unity <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e uninfected steady state is globally asymptotically stable, and if R 0 > 1 (or if<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e infected steady state exists) <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected steady state is globally asymptotically<br />

stable.<br />

Keywords: Global stability; viral infecti<strong>on</strong>; intracellular delays; direct Lyapunov<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od.<br />

213


Evoluti<strong>on</strong>ary Ecology 1<br />

Wednesday, June 29, 08:30, Room: AM1<br />

Chaired by: Kalle Parvinen<br />

08:30–09:00<br />

Alex Best<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sheffield<br />

e-mail: a.best@shef.ac.uk<br />

Steve Webb<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stra<str<strong>on</strong>g>th</str<strong>on</strong>g>clyde<br />

e-mail: steven.webb@stra<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Andy White<br />

Heriot-Watt University<br />

e-mail: a.r.white@hw.ac.uk<br />

Mike Boots<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sheffield<br />

e-mail: m.boots@shef.ac.uk<br />

Host resistance and coevoluti<strong>on</strong> in spatially structured<br />

populati<strong>on</strong>s<br />

Most natural, agricultural and human populati<strong>on</strong>s are structured, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s occurring locally or wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in social groups ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an at<br />

random. This wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-populati<strong>on</strong> spatial and social structure is important to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites (e.g. [1]) but little attenti<strong>on</strong> has been paid to how spatial<br />

structure affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host resistance, and as a c<strong>on</strong>sequence <str<strong>on</strong>g>th</str<strong>on</strong>g>e coevoluti<strong>on</strong>ary<br />

outcome. We examined <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance across a range <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing<br />

patterns using an approximate ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model (pair approximati<strong>on</strong>) and stochastic<br />

simulati<strong>on</strong>s. We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at as reproducti<strong>on</strong> becomes increasingly local,<br />

hosts are always selected to increase resistance. More localised transmissi<strong>on</strong> also<br />

selects for higher resistance, but <strong>on</strong>ly if reproducti<strong>on</strong> is also predominantly local.<br />

If <str<strong>on</strong>g>th</str<strong>on</strong>g>e hosts disperse, lower resistance evolves as transmissi<strong>on</strong> becomes more local.<br />

These effects can be understood as a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic (kin) and ecological<br />

structuring <strong>on</strong> individual fitness. When hosts and parasites coevolve, local interacti<strong>on</strong>s<br />

select for hosts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high defence and parasites wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low transmissibility<br />

and virulence. Crucially, <str<strong>on</strong>g>th</str<strong>on</strong>g>is means <str<strong>on</strong>g>th</str<strong>on</strong>g>at more populati<strong>on</strong> mixing may lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> fast-transmitting highly virulent parasites and reduced resistance<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e host [2].<br />

215


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] Boots, M. and Sasaki, A., ’Small worlds’ and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> virulence: infecti<strong>on</strong> occurs<br />

locally and at a distance Proc. Roy. Soc. B, 266: 1933-1938.<br />

[2] Best, A., Webb, S., White A. and Boots, M., Host resistance and coevoluti<strong>on</strong> in spatially structured<br />

populati<strong>on</strong>s Proc. Roy. Soc. B, In Press (published <strong>on</strong>line, doi:10.1098/rspb.2010.1978).<br />

09:05–09:25<br />

Alexander S. Bratus<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Cybernetics, Moscow State<br />

University, Moscow, 119992, Russia<br />

e-mail: alexander.bratus@yandex.ru<br />

Vladimir P. Posvyanskii<br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics–1, Moscow State University <str<strong>on</strong>g>of</str<strong>on</strong>g> Railway Engineering,<br />

Moscow<br />

Artem S. Novozhilov<br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics–1, Moscow State University <str<strong>on</strong>g>of</str<strong>on</strong>g> Railway Engineering,<br />

Moscow<br />

e-mail: anovozhilov@gmail.com<br />

Stability and limit behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a distributed replicator<br />

system<br />

The replicator equati<strong>on</strong> is known to provide a general modeling framework for several<br />

distinct areas in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology. In particular, it arises as a selecti<strong>on</strong><br />

equati<strong>on</strong> in populati<strong>on</strong> genetics, as a dynamic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary game<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory, and as a model for putative chemical reacti<strong>on</strong>s describing prebiotic evoluti<strong>on</strong>.<br />

In its simplest form, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e species is a linear functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relative abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er species, <str<strong>on</strong>g>th</str<strong>on</strong>g>e replicator equati<strong>on</strong> takes <str<strong>on</strong>g>th</str<strong>on</strong>g>e form<br />

(1) ˙v i = v i<br />

[<br />

(Av)i − f loc (t) ] , i = 1, . . . , n,<br />

where v = v(t) = (v 1 , . . . , v n ), A is an n × n matrix wi<str<strong>on</strong>g>th</str<strong>on</strong>g> elements a ij describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

∑<br />

c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e j-<str<strong>on</strong>g>th</str<strong>on</strong>g> species to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e i-<str<strong>on</strong>g>th</str<strong>on</strong>g> species, (Av) i =<br />

n<br />

j=1 a ijv j , and <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean fitness f loc (t) = 〈Av, v〉 = ∑ n<br />

i=1 (Av) iv i is chosen such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at v ∈ S n = {v : ∑ n<br />

i=1 v i = 1}.<br />

There are several different approaches to add space to (1). We suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e global regulati<strong>on</strong> represents a natural and c<strong>on</strong>venient approach to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

replicator equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an explicit spatial structure. To be exact, as a counterpart<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local model (1) we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

(2)<br />

∂u i<br />

∂t = u i [(Au) i − f sp (t)] + d i ∆u i , i = 1, . . . , n,<br />

where now u = u(x, t), x ∈ Ω ⊂ R k , k = 1, 2, 3, d i > 0 are diffusi<strong>on</strong> coefficients,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean integral fitness is given, assuming Niemann’s boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

by f sp (t) = ∫ 〈Au, u〉 dx. This approach allows analytical investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2):<br />

Ω<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tool which was mainly missing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> replicator equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

explicit space. In particular, it is possible to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for asymptotically<br />

216


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

stable rest points <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) to be asymptotically stable homogeneous equilibria <str<strong>on</strong>g>of</str<strong>on</strong>g> (2).<br />

In our work, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at for some values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> coefficients spatially<br />

heterogeneous soluti<strong>on</strong>s appear. Using a definiti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean<br />

integral sense we prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese heterogeneous soluti<strong>on</strong>s can be attracting; in<br />

particular <str<strong>on</strong>g>th</str<strong>on</strong>g>is is <str<strong>on</strong>g>th</str<strong>on</strong>g>e case for Eigen’s hypercycle. Defining in some natural way<br />

evoluti<strong>on</strong>ary stable states for <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributed system (2), we provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>is distributed state to be an asymptotically stable stati<strong>on</strong>ary soluti<strong>on</strong> to (2).<br />

References.<br />

[1] A. S. Bratus, V. P. Posvyanskii. Stati<strong>on</strong>ary soluti<strong>on</strong>s in a closed distributed Eigen–Schuster<br />

evoluti<strong>on</strong> system. Differential equati<strong>on</strong>s, 42:1762–1774, 2006.<br />

[2] A. S. Bratus, V. P. Posvyanskii, and A. S. Novozhilov. Existence and stability <str<strong>on</strong>g>of</str<strong>on</strong>g> stati<strong>on</strong>ary<br />

soluti<strong>on</strong>s to spatially extended autocatalytic and hypercyclic systems under global regulati<strong>on</strong><br />

and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>linear grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates. N<strong>on</strong>linear Analysis: Real World Applicati<strong>on</strong>s, 11:1897–1917,<br />

2010.<br />

[3] A. S. Bratus, V. P. Posvyanskii, and A. S. Novozhilov. A note <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e replicator equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

explicit space and global regulati<strong>on</strong>. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences and Engineering, in press, 2011.<br />

09:25–09:45<br />

Arseny S. Karkach<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: arseny@mail.ru<br />

Alexei A. Romanyukha<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: eburg@inm.ras.ru<br />

Adaptive trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between reproducti<strong>on</strong> and survival in<br />

Mediterranean fruit flies induced by changing dietary<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

The c<strong>on</strong>cepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> provides an important insight <strong>on</strong><br />

c<strong>on</strong>necti<strong>on</strong> between fertility and life span in living organisms. Despite substantial<br />

progress in understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>necti<strong>on</strong> many important features <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilityl<strong>on</strong>gevity<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f are masked by c<strong>on</strong>founding factors, and remain poorly understood.<br />

We performed reanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> data from experimental study <str<strong>on</strong>g>of</str<strong>on</strong>g> fertility and<br />

l<strong>on</strong>gevity resp<strong>on</strong>se to different diets in females <str<strong>on</strong>g>of</str<strong>on</strong>g> Mediterranean fruit fly C. capitata<br />

[1, 2]. A negative dependence between average fertility and l<strong>on</strong>gevity was observed<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g lived part <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental cohorts as <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diet<br />

changed. In order to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed phenomen<strong>on</strong> we suggest a mechanistic<br />

resource allocati<strong>on</strong> model. The model is fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resource allocati<strong>on</strong><br />

model proposed in [3]. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a fertility-l<strong>on</strong>gevity trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f suggests<br />

a possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> some resource used bo<str<strong>on</strong>g>th</str<strong>on</strong>g> by reproducti<strong>on</strong> and somatic<br />

maintenance in a fly. The trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f may be a manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic machinery,<br />

processes and genetically determined laws <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol which define balance between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e processes <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> and regenerati<strong>on</strong>. We propose and discuss a principle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic resource allocati<strong>on</strong> which explains fertility-l<strong>on</strong>gevity data for <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g-,<br />

217


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

intermediate- and short-lived flies. Adaptive allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er resources<br />

allows flies to tailor <str<strong>on</strong>g>th</str<strong>on</strong>g>eir life history parameters to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. Due to<br />

limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological adaptati<strong>on</strong> a significant share <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> may<br />

be genetically “preadapted” to different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>us c<strong>on</strong>tributing<br />

to populati<strong>on</strong> stability and heterogeneity. This may be observed even in relatively<br />

homogeneous populati<strong>on</strong>s, such as experimental fly cohorts.<br />

References.<br />

[1] J.R.Carey, P.Liedo, L.Harshman, X.Liu, H.-G.Muller, L.Partridge, J.-L.Wang. Food pulses<br />

increase l<strong>on</strong>gevity and induce cyclical egg producti<strong>on</strong> in Mediterranean fruit flies, Functi<strong>on</strong>al<br />

Ecology 16 313–325 2002.<br />

[2] J.R.Carey, P.Liedo, H.-G.Muller, J.-L.Wang, J.W.Vaupel. Dual Modes <str<strong>on</strong>g>of</str<strong>on</strong>g> Aging in Mediterranean<br />

Fruit Fly Females, Science, 281 996–998 1998.<br />

[3] A.A.Romanyukha, J.R.Carey, A.S.Karkach, A.I.Yashin. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> diet switching <strong>on</strong> resource<br />

allocati<strong>on</strong> to reproducti<strong>on</strong> and l<strong>on</strong>gevity in Mediterranean fruitflies, Proc. R. Soc. L<strong>on</strong>d.<br />

B. 271 1319–1324 2004.<br />

09:45–10:05<br />

Akiko Satake<br />

Hokkaido University, Japan<br />

e-mail: satake@ees.hokudai.ac.jp<br />

A computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> plant life cycle: genetic<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> local adaptati<strong>on</strong> in flowering time<br />

The timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> from vegetative to reproductive development is a critical<br />

adaptive trait as it is essential for plants to complete seed producti<strong>on</strong> in favorable<br />

c<strong>on</strong>diti<strong>on</strong>s. Proposed in A. <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana, <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene regulatory model <str<strong>on</strong>g>of</str<strong>on</strong>g> floral transiti<strong>on</strong><br />

describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex interacti<strong>on</strong>s between envir<strong>on</strong>mental signals (e.g., photoperiod<br />

and temperature) and endogenous cues (e.g., size, leaf number, or age). I<br />

modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between photoperiod and vernalizati<strong>on</strong> (low-temperature)<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways, and combined <str<strong>on</strong>g>th</str<strong>on</strong>g>is gene regulati<strong>on</strong> dynamics and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics in<br />

a genetic-physiological model to explore local adaptati<strong>on</strong> to two different envir<strong>on</strong>ments<br />

(Hyogo; <str<strong>on</strong>g>th</str<strong>on</strong>g>e western part <str<strong>on</strong>g>of</str<strong>on</strong>g> central H<strong>on</strong>shu, and Hakodate; <str<strong>on</strong>g>th</str<strong>on</strong>g>e sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nor<str<strong>on</strong>g>th</str<strong>on</strong>g> island in Japan). Temperature is warmer and seas<strong>on</strong>al variati<strong>on</strong>s<br />

in dayleng<str<strong>on</strong>g>th</str<strong>on</strong>g> are smaller in Hyogo <str<strong>on</strong>g>th</str<strong>on</strong>g>an Hakodate. For simplicity, I assumed<br />

l<strong>on</strong>g-day plants <str<strong>on</strong>g>th</str<strong>on</strong>g>at are self-compatible and evergreen. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a clear difference in sensitivity to dayleng<str<strong>on</strong>g>th</str<strong>on</strong>g> between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e two plant populati<strong>on</strong>s. It was predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>at a Hakodate populati<strong>on</strong> resp<strong>on</strong>ds<br />

to more extreme critical dayleng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e in Hyogo, which enables <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant<br />

flower in appropriate seas<strong>on</strong> in mid spring in Hakodate. I discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e validity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong> using <str<strong>on</strong>g>th</str<strong>on</strong>g>e data <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis halleri.<br />

218<br />

10:05–10:25


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Tanya Kostova Vassilevska<br />

Nati<strong>on</strong>al Science Foundati<strong>on</strong><br />

e-mail: tvassile@nsf.gov<br />

A model <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular virus replicati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> implicati<strong>on</strong>s<br />

for virus evoluti<strong>on</strong><br />

Viruses are <str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest living organisms. In order to survive, a virus has to successfully<br />

invade a host cell, overcome cellular degradati<strong>on</strong> mechanisms, produce progeny<br />

and export it to infect o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells; eventually evade immune resp<strong>on</strong>se and jump to<br />

a new host to start <str<strong>on</strong>g>th</str<strong>on</strong>g>e cycle again. The first challenge to virus survival is successful<br />

reproducti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e host cell. For RNA viruses, such reproducti<strong>on</strong> includes<br />

a balance between several competing processes: producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RNA-derived RNA<br />

polymerase (RdRp), producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viral protein, RNA replicati<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e RdRp,<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viri<strong>on</strong>s by combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genomic RNA and structural viral protein<br />

and degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese products. Here we design a model representing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes<br />

for positive-sense single stranded viruses (such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e family <str<strong>on</strong>g>of</str<strong>on</strong>g> Picorna or<br />

Flavi viruses) as a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs derived from stoichiometric enzyme-substrate<br />

reacti<strong>on</strong>s and explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. The possible regimes<br />

are (1) virus extincti<strong>on</strong>, (2) stable steady state and (3) a regime where RNA and<br />

RdRp are produced in excess (tend to infinity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model) while <str<strong>on</strong>g>th</str<strong>on</strong>g>e structural<br />

protein is fully utilized (c<strong>on</strong>verges to 0). If <str<strong>on</strong>g>th</str<strong>on</strong>g>e net producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viri<strong>on</strong>s is a measure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> virus fitness (such a claim is supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e view <str<strong>on</strong>g>th</str<strong>on</strong>g>at larger virus populati<strong>on</strong>s<br />

can maintain higher diversity and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore be more adaptable), <str<strong>on</strong>g>th</str<strong>on</strong>g>en we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

viruses <str<strong>on</strong>g>th</str<strong>on</strong>g>at have evolved to utilize scenario (3) have higher fitness <str<strong>on</strong>g>th</str<strong>on</strong>g>an viruses<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at establish equilibrium progeny producti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell.<br />

219


Evoluti<strong>on</strong>ary Ecology 2<br />

Wednesday, June 29, 11:00, Room: AM1<br />

Chaired by: Roger Bowers<br />

11:00–11:30<br />

Stephen Cornell<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds, Leeds LS2 9JT,<br />

UK<br />

e-mail: s.j.cornell@leeds.ac.uk<br />

Space, coexistence, and mutual invasibility<br />

Two possible c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at will lead to two species coexisting are: (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a<br />

stable equilibrium point where bo<str<strong>on</strong>g>th</str<strong>on</strong>g> densities are n<strong>on</strong>zero; and (ii) ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er species<br />

can invade <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er when rare. For many simple models <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two c<strong>on</strong>diti<strong>on</strong>s<br />

are equivalent, but <str<strong>on</strong>g>th</str<strong>on</strong>g>is need not be <str<strong>on</strong>g>th</str<strong>on</strong>g>e case. Unfortunately, a dear<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> exact<br />

analytical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods hampers <str<strong>on</strong>g>th</str<strong>on</strong>g>e explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is questi<strong>on</strong> for spatial, stochastic<br />

systems. However, asymptotically exact results can be computed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit where<br />

interacti<strong>on</strong>s take place <strong>on</strong> a large but finite leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scale [1]. Here, I study a spatial,<br />

stochastic Lotka-Volterra competiti<strong>on</strong> model, which is selectively neutral except<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial kernels <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in- and between-species interacti<strong>on</strong>s [2].<br />

The equilibrium stability eigenvalue gives a weal<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (asymptotically exact) results<br />

for when coexistence is to be expected. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasibility eigenvalues give<br />

different prediti<strong>on</strong>s. I argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is is because exp<strong>on</strong>ential grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is not an<br />

appropriate descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> successful invasi<strong>on</strong> in spatial systems. This means <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

approximati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for computing invasi<strong>on</strong> eigenvalues can give misleading<br />

results in evoluti<strong>on</strong>ary studies <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial systems.<br />

References.<br />

[1] O. Ovaskainen and S. J. Cornell Space and Stochasticity in populati<strong>on</strong> dynamics Proc. Natl.<br />

Acad. Sci. USA 103 12781–12786 (2006).<br />

[2] D. J. Murrell and R. Law Heteromyopia and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> similar competitors<br />

Ecology Letters 6 48–19 (2003).<br />

11:35–11:55<br />

Tea Ammunét<br />

221


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku,<br />

FI-20014 Turku, Finland<br />

e-mail: tea.ammunet@utu.fi<br />

Tero Klemola<br />

Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku,<br />

FI-20014 Turku, Finland<br />

Kalle Parvinen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, FI-20014 Turku,<br />

Finland<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change driven invasi<strong>on</strong>:<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> apparent competiti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident and invasive<br />

forest herbivore populati<strong>on</strong> dynamics.<br />

Invasive species can have pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident community via indirect<br />

interacti<strong>on</strong>s. Particularly, forest insect herbivores are known to be able to affect<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e invaded ecosystems by trophic interacti<strong>on</strong>s. Of <str<strong>on</strong>g>th</str<strong>on</strong>g>e indirect mechanisms, apparent<br />

competiti<strong>on</strong> is a highly plausible but less frequently studied structuring<br />

phenomen<strong>on</strong> in terrestrial herbivore communities. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, surprisingly few<br />

studies have been made <str<strong>on</strong>g>of</str<strong>on</strong>g> apparent competiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive insect<br />

species. The tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g periodic cycles in herbivore populati<strong>on</strong> dynamics can<br />

make <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e indirect effects difficult using experimental setups.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, dynamic m<strong>on</strong>ophagy in established communities may prevent <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> apparent competiti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e community. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<strong>on</strong>going invasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native species into new envir<strong>on</strong>ments create a stage to observe<br />

apparent competiti<strong>on</strong> before adaptati<strong>on</strong> obscures <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s. Modelling<br />

invasi<strong>on</strong>s based <strong>on</strong> real invader-resident communities can <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore be <str<strong>on</strong>g>of</str<strong>on</strong>g> particular<br />

help when determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e undetectable and l<strong>on</strong>g term effects <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species.<br />

The winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g>, a cyclic foliage feeding geometrid mo<str<strong>on</strong>g>th</str<strong>on</strong>g>, has expanded its<br />

outbreak range during recent years due to warming winter temperatures. The<br />

mountain birches in <str<strong>on</strong>g>th</str<strong>on</strong>g>e new invaded areas (<str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant green leafed tree in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

areas) have previously been defoliated <strong>on</strong> a 9 to 10 year basis by <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident<br />

autumnal mo<str<strong>on</strong>g>th</str<strong>on</strong>g>. The autumnal mo<str<strong>on</strong>g>th</str<strong>on</strong>g> itself is able to cause drastic foliage loss in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mountain birch forests occasi<strong>on</strong>ally resulting in vast tree dea<str<strong>on</strong>g>th</str<strong>on</strong>g>s. The new invader,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g>, has already been observed to be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> total forest defoliati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> similar magnitude. The two species share, in additi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e host tree, generalist<br />

predators and parasitoids in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese Fennoscandian areas. Asymmetric preference<br />

at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> parasitism and predati<strong>on</strong> rates has been recently observed. In order to<br />

fully see <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> asymmetric effects <str<strong>on</strong>g>of</str<strong>on</strong>g> natural enemies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 9 to<br />

11-year populati<strong>on</strong> cycles, a modelling approach was called for. We were especially<br />

interested in, are <str<strong>on</strong>g>th</str<strong>on</strong>g>ese asymmetries able to cause asynchr<strong>on</strong>ous populati<strong>on</strong> cycles<br />

as seen in <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>of</str<strong>on</strong>g> sympatric occurrence. In additi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g term effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

invasi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident community are <str<strong>on</strong>g>of</str<strong>on</strong>g> particular interest, since recent evidence<br />

shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g>s are interacting in several ways wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local community<br />

and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er range expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is forest pest does not seem to be restricted by<br />

nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er abiotic nor biotic interacti<strong>on</strong>s.<br />

We used empirical data from <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cyclic winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g>s in<br />

nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Fennoscandia as a starting point and modelled <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> observed<br />

short term asymmetric effects via generalist predators and parasitoids <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g<br />

222


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

term populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive winter and resident autumnal mo<str<strong>on</strong>g>th</str<strong>on</strong>g>s.<br />

Adaptive dynamics <str<strong>on</strong>g>th</str<strong>on</strong>g>eory was used and invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident<br />

community was modelled. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results, apparent competiti<strong>on</strong> and<br />

asymmetries in <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> generalist predators are able to produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed<br />

asynchr<strong>on</strong>ous cycles. However, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary branching resulting in evoluti<strong>on</strong>ary<br />

stable coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system experiences cycles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evoluti<strong>on</strong>ary branching and extincti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelled<br />

dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive species was observed have <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential to inflict drastic<br />

changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mountain birch community.<br />

11:55–12:15<br />

Magda Castel<br />

Agrocampus Ouest, UMR1099 BiO3P, 35042 Rennes, France<br />

e-mail: castel@agrocampus-ouest.fr<br />

Frederic M. Hamelin<br />

Agrocampus Ouest, UMR1099 BiO3P, 35042 Rennes, France<br />

Sylvain Poggi<br />

INRA, UMR1099 BiO3P, 35653 Le Rheu, France.<br />

Didier Andriv<strong>on</strong><br />

INRA, UMR1099 BiO3P, 35653 Le Rheu, France.<br />

Ludovic Mailleret<br />

INRA, UR880 URIH, 06903 Sophia Antipolis, France.<br />

Evoluti<strong>on</strong>ary insights from semi-discrete plant epidemic<br />

models.<br />

The coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> closely related plant parasitic species is ubiquitous in agriculture.<br />

However, understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecological determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary divergence in<br />

parasites still represents an issue, in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> evoluti<strong>on</strong>ary biology and agricultural sciences.<br />

To our knowledge, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly ecological mechanism which has been generically<br />

shown to promote phenotypic divergence in plant parasitic species is spatial host<br />

heterogeneity. However, spaceis not <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly source <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological heterogeneity. Interestingly,<br />

crop plant parasites face abrupt, periodic changes in host density due to<br />

planting and harvesting. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we investigate whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er such heterogeneity<br />

in time can promote evoluti<strong>on</strong>ary divergence as well. We make use <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic<br />

model <str<strong>on</strong>g>th</str<strong>on</strong>g>at combines c<strong>on</strong>tinuous and discrete dynamics, to capture sharp seas<strong>on</strong>al<br />

events. Performing an evoluti<strong>on</strong>ary invasi<strong>on</strong> analysis, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at evoluti<strong>on</strong>ary<br />

branching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasite phenotype can occur, assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between<br />

intra- and inter-seas<strong>on</strong> transmissi<strong>on</strong> abilities. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are experimental<br />

evidence for such a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <str<strong>on</strong>g>th</str<strong>on</strong>g>is study provides fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er ecological bases for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> closely related plant parasite species. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>is study provides<br />

original insights regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>o- and poly-cyclic sibling plant<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens.<br />

223


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

12:15–12:35<br />

Ilmari Kar<strong>on</strong>en<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: ilmari.kar<strong>on</strong>en@helsinki.fi<br />

Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymorphism <strong>on</strong> a heterogeneous landscape<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial heterogeneity and habitat boundaries <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multiple competing strains has been <str<strong>on</strong>g>of</str<strong>on</strong>g> recent interest as a novel mechanism for<br />

maintaining diversity above <str<strong>on</strong>g>th</str<strong>on</strong>g>e level predicted by <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitive exclusi<strong>on</strong> principle.<br />

Given <str<strong>on</strong>g>th</str<strong>on</strong>g>at limited dispersal in heterogeneous landscapes can indeed enable<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stable coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> more competitors <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are resources, a natural next<br />

step is to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence and stability <str<strong>on</strong>g>of</str<strong>on</strong>g> such diversity under evoluti<strong>on</strong>.<br />

I present some results from individual-based simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> evolving populati<strong>on</strong>s<br />

<strong>on</strong> a heterogeneous lattice landscape, and c<strong>on</strong>trast <str<strong>on</strong>g>th</str<strong>on</strong>g>ese wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some semi-analytical<br />

approximati<strong>on</strong>s, showing <str<strong>on</strong>g>th</str<strong>on</strong>g>at evoluti<strong>on</strong> in such systems can indeed lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> polymorphism and stabilize it against local extincti<strong>on</strong> due to demographic<br />

stochasticity.<br />

12:35–12:55<br />

Anne Seppänen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, FI-20014 University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

e-mail: anne.seppanen@utu.fi<br />

Kalle Parvinen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, FI-20014 University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

e-mail: kalparvi@utu.fi<br />

John Nagy<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Sciences, Scottsdale Community College, Scottsdale,<br />

AZ 85256-2626, USA<br />

e-mail: john.nagy@sccmail.maricopa.edu<br />

Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dispersal and Global Climate Change<br />

Global climate change (GCC) can challenge species’ survival by shifting and<br />

(or) shrinking suitable habitats, leading to habitat fragmentati<strong>on</strong>. American pikas<br />

(Ochot<strong>on</strong>a princeps)—small, talus-dwelling, m<strong>on</strong>tane lagomorphs physiologically<br />

adapted to cold climates—are <str<strong>on</strong>g>th</str<strong>on</strong>g>ought to face precisely <str<strong>on</strong>g>th</str<strong>on</strong>g>is sort to <str<strong>on</strong>g>th</str<strong>on</strong>g>reat from<br />

GCC. Recent climate changes appear to have decreased suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> pika habitat<br />

in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Great Basin and adjacent Sierra Nevada[1,2]. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand,<br />

pika populati<strong>on</strong>s in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese regi<strong>on</strong>s appear robust[3]. One hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis explaining<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>tradictory observati<strong>on</strong>s suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at pikas may adapt to climate change by<br />

evolving compensatory dispersal strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at blunt <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong>.<br />

224


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Here we address <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis using adaptive dynamics[4] to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal strategies in pikas. Inspired by <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <str<strong>on</strong>g>of</str<strong>on</strong>g> Metz and Gyllenberg[5]<br />

and Parvinen[6], we c<strong>on</strong>struct a novel model <str<strong>on</strong>g>of</str<strong>on</strong>g> pika metapopulati<strong>on</strong><br />

dynamics and derive a fitness measure <str<strong>on</strong>g>of</str<strong>on</strong>g> a rare mutant in an envir<strong>on</strong>ment set by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e resident. We use a semi-discrete time approach wi<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete phases defined<br />

by sequential breeding seas<strong>on</strong>s and c<strong>on</strong>tinuous wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-phase processes (e.g. emigrati<strong>on</strong>,<br />

immigrati<strong>on</strong>). Local catastrophes occur wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a rate which can depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

patch populati<strong>on</strong> size. We c<strong>on</strong>sider climate change as shifts in model parameters,<br />

including fecundity, survival and catastrophe rates al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g> dispersal cost, and<br />

analyze how such changes affect evoluti<strong>on</strong>arily stable dispersal strategies.<br />

References.<br />

[1] D. K. Grays<strong>on</strong>, A brief history <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Basin pikas, J. Biogeogr. 32 2103–2111, 2005<br />

[2] C. Moritz and J. L. Patt<strong>on</strong> and C. J. C<strong>on</strong>roy and J. L. Parra and G. C. White and S. R.<br />

Beissinger, Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a century <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> small-mammal communities in Yosemite<br />

Nati<strong>on</strong>al Park, USA, Science, 322 261–264, 2008<br />

[3] C. I. Millar and R. D. Westfall, Distributi<strong>on</strong> and climatic relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e American pika<br />

(Ochot<strong>on</strong>a princeps) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sierra Nevada and western Great Basin, U.S.A.; periglacial landforms<br />

as refugia in warming climates, Arctic, Antarctic Alpine Res. 42 76–88, 2010<br />

[4] S. A. H. Geritz and É. Kisdi and G. Meszéna and J. A. J. Metz, Evoluti<strong>on</strong>arily singular<br />

strategies and <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and branching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary tree, Evol. Ecol. 12<br />

35–57, 1998<br />

[5] J. A. J. Metz and M. Gyllenberg, How should we define fitness in structured metapopulati<strong>on</strong><br />

models Including an applicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ES dispersal strategies, Proc. Royal<br />

Soc. L<strong>on</strong>d<strong>on</strong> B, 268 499–508, 2001<br />

[6] K. Parvinen, Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal in a structured metapopulati<strong>on</strong> model in discrete time,<br />

Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 68 655–678, 2006<br />

225


Evoluti<strong>on</strong>ary Ecology 3<br />

Wednesday, June 29, 14:30, Room: AM1<br />

Chaired by: Eva Kisdi<br />

14:30–15:00<br />

Atsushi Yamauchi<br />

Center for Ecological Research, Kyoto University<br />

e-mail: a-yama@ecology.kyoto-u.ac.jp<br />

Yutaka Kobayashi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

Joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sex ratio and reproductive group size<br />

under local mate competiti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> inbreeding depressi<strong>on</strong><br />

Local mate competiti<strong>on</strong> (LMC) may involve some amount <str<strong>on</strong>g>of</str<strong>on</strong>g> inbreeding between<br />

siblings. Because sib-mating is generally accompanied by inbreeding depressi<strong>on</strong>,<br />

natural selecti<strong>on</strong> may favor a reduced rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sib-mating, possibly affecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sex ratio and reproductive group size. The present study <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically<br />

investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese traits under LMC in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> inbreeding<br />

depressi<strong>on</strong>. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproductive group size evolves, <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sex ratio is important because <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sex ratio resp<strong>on</strong>se to<br />

reproductive group size can affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary process. We c<strong>on</strong>sider a spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sex ratio determinati<strong>on</strong> mechanisms from purely unc<strong>on</strong>diti<strong>on</strong>al to purely<br />

c<strong>on</strong>diti<strong>on</strong>al, including intermediate modes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> various relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> unc<strong>on</strong>diti<strong>on</strong>al<br />

and c<strong>on</strong>diti<strong>on</strong>al effects. This analysis revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>arily<br />

stable reproductive group size and ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> males increase wi<str<strong>on</strong>g>th</str<strong>on</strong>g> higher inbreeding<br />

depressi<strong>on</strong> and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a larger relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an unc<strong>on</strong>diti<strong>on</strong>al effect in sex ratio<br />

determinati<strong>on</strong>. Unexpectedly, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e sex ratio is c<strong>on</strong>trolled purely c<strong>on</strong>diti<strong>on</strong>ally,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reproductive group size cannot exceed <str<strong>on</strong>g>th</str<strong>on</strong>g>ree even under <str<strong>on</strong>g>th</str<strong>on</strong>g>e severest level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inbreeding depressi<strong>on</strong> (i.e., le<str<strong>on</strong>g>th</str<strong>on</strong>g>al effect). The present study reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s<br />

for LMC to evolve <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive group<br />

size and sex ratio.<br />

15:05–15:25<br />

Fátima Drubi<br />

227


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Leiden University<br />

e-mail: drubi@cml.leidenuniv.nl<br />

Patsy Haccou<br />

Leiden University<br />

e-mail: haccou@cml.leidenuniv.nl<br />

Do bacteria form spores as a bet-hedging strategy in<br />

stochastic envir<strong>on</strong>ments<br />

Many bacteria form spores to survive extreme c<strong>on</strong>diti<strong>on</strong>s, such as lack <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients,<br />

periods <str<strong>on</strong>g>of</str<strong>on</strong>g> drought, or extraordinary high or low temperatures. Detailed observati<strong>on</strong>s<br />

by microbiologists have revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at even in isogenic populati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>ere<br />

is substantial intra-individual variati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e timing <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> initiati<strong>on</strong>. This<br />

has led to <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at sporulati<strong>on</strong> is a ‘bet hedging strategy’, which has<br />

evolved to cope wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unpredictably varying envir<strong>on</strong>ments. The idea behind <str<strong>on</strong>g>th</str<strong>on</strong>g>is is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at early sporulators have an advantage if <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment gets worse, whereas late<br />

sporulators can pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it more quickly from improving envir<strong>on</strong>ments. Genotypes <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

produce individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore ‘spread <str<strong>on</strong>g>th</str<strong>on</strong>g>eir risks’. We will present<br />

a model for studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> strategies in envir<strong>on</strong>ments where<br />

new resources arrive at stochastic times. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model we make predicti<strong>on</strong>s<br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s under which bet hedging sporulati<strong>on</strong> strategies might indeed<br />

evolve. The problem is complicated, since it involves density dependent processes<br />

(due to resource depleti<strong>on</strong>) as well as envir<strong>on</strong>mental fluctuati<strong>on</strong>.<br />

Keywords: Evoluti<strong>on</strong>ary modeling; Bed-hedging strategy; Stochastic envir<strong>on</strong>ments;<br />

Sporulati<strong>on</strong>.<br />

References.<br />

[1] T. G. Bent<strong>on</strong> and A. Grant, Optimal reproductive effort in stochastic, density-dependent envir<strong>on</strong>ments.<br />

Evoluti<strong>on</strong> 53(3) 677–688. (1999)<br />

[2] BetNet Project, The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastis heterogeneous networks as bet-hedging adaptati<strong>on</strong>s<br />

to fluctuating envir<strong>on</strong>ments. Financed by The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands Organisati<strong>on</strong> for Scientific Reseach<br />

(NWO). (2009-2011)<br />

[3] A. Grant, Selecti<strong>on</strong> pressures <strong>on</strong> vital rates in density-dependent populati<strong>on</strong>s. Proc. R. Soc.<br />

L<strong>on</strong>d. B 264 303–306. (1997)<br />

[4] P. Haccou and J. McNamara, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> parental survival <strong>on</strong> clutch size decisi<strong>on</strong>s in fluctuating<br />

envir<strong>on</strong>ments. Evoluti<strong>on</strong>ary ecology 12 459–475. (1998)<br />

[5] E. Kussell, R. Kish<strong>on</strong>y, N. Q. Balaban and S. Leibler, Bacterial persistence: A model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

survival in changing envir<strong>on</strong>ments. Genetics 168 1807–1814. (2005)<br />

[6] J. Seger and H. J. Brockmann, What is bet-hedging Oxford Surveys in Evoluti<strong>on</strong>ary Biology<br />

4 182–211. (1988)<br />

[7] W. M. Schaffer, Optimal effort in fluctuating envir<strong>on</strong>ments. Am. Nat. 108 783–790. (1974)<br />

15:25–15:45<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Bartoszek<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Sweden<br />

e-mail: krzbar@chalmers.se<br />

Jas<strong>on</strong> Pienaar<br />

228


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pretoria, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa 0002<br />

e-mail: jas<strong>on</strong>.pienaar@up.ac.za<br />

Thomas Hansen<br />

CEES Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oslo, Oslo Norway<br />

e-mail: t.f.hansen@bio.uio.no<br />

Petter Mostad<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Sweden<br />

e-mail: mostad@chalmers.se<br />

Multivariate comparative analysis<br />

The need for taking into account phylogenetic dependencies between trait measurements<br />

in comparative analysis is some<str<strong>on</strong>g>th</str<strong>on</strong>g>ing which has become obvious. One<br />

approach to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>is dependency is to assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait(s) evolve as a time<br />

dependent branching stochastic differential equati<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e phylogenentic tree.<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is branch <str<strong>on</strong>g>of</str<strong>on</strong>g> comparative analysis started wi<str<strong>on</strong>g>th</str<strong>on</strong>g> [1] and was<br />

c<strong>on</strong>tinued in [2],[3],[4],[5]. However all <str<strong>on</strong>g>th</str<strong>on</strong>g>ese proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods lacked a fully multivariate<br />

implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed models. We have developed a generalizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models into <str<strong>on</strong>g>th</str<strong>on</strong>g>e fully multivariate setting and implemented an estimati<strong>on</strong><br />

package in R to analyze comparative data under <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models. The multivariate<br />

setting gives us much more flexibility and allows to e.g. model codevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

allometry, indicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f and gain understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> trait coevoluti<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk we will discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e multivariate model, possible hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis (allometry,<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f) <strong>on</strong>e can study wi<str<strong>on</strong>g>th</str<strong>on</strong>g> it and go <str<strong>on</strong>g>th</str<strong>on</strong>g>rough an example study <str<strong>on</strong>g>of</str<strong>on</strong>g> how sexual<br />

selecti<strong>on</strong> acts <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> male canine and body sizes in Primates.<br />

References.<br />

[1] J. Felsenstein Phylogenies and <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparative me<str<strong>on</strong>g>th</str<strong>on</strong>g>od The American Naturalist 1 1–15.<br />

[2] T. Hansen Stabilizing selecti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> Evoluti<strong>on</strong> 51 1341–<br />

1351.<br />

[3] M. Butler and A. King Phylogenetic comparative analysis: a modelling approach for adaptive<br />

evoluti<strong>on</strong> The American Naturalist 164 683–695.<br />

[4] T. Hansen and J. Pienaar and S. Orzack A comparative me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for studying adaptati<strong>on</strong> to<br />

randomly evolving envir<strong>on</strong>ment Evoluti<strong>on</strong> 62 1965–1977.<br />

[5] J. Pienaar and K. Bartoszek and T. Hansen and K. Voje Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> comparative me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

for studying adaptati<strong>on</strong> <strong>on</strong> adaptive landscapes in prep.<br />

15:45–16:05<br />

Elizabe<str<strong>on</strong>g>th</str<strong>on</strong>g> Elliott<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds<br />

e-mail: jhs5ece@leeds.ac.uk<br />

Stephen Cornell<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds<br />

Dispersal polymorphism and species’ invasi<strong>on</strong>s<br />

229


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The speed at which species range expansi<strong>on</strong>s occur has important c<strong>on</strong>sequences<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>servati<strong>on</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> species experiencing climate change and for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic organisms. Dispersal and populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate are known<br />

to affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>, however, little is known about what <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

having a community <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal phenotypes is <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> range expansi<strong>on</strong>.<br />

We use reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a species wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two<br />

dispersal phenotypes into a previously unoccupied landscape. These phenotypes<br />

differ in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir dispersal rate and populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> phenotypes can result in faster range expansi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>an if <strong>on</strong>ly a<br />

single phenotype is present in <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at typically <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong><br />

can occur up to twice as fast as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is polymorphism. This has implicati<strong>on</strong>s<br />

for predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species, suggesting <str<strong>on</strong>g>th</str<strong>on</strong>g>at speeds cannot just be<br />

predicted from looking at a single phenotype and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a community<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypes needs to be taken into c<strong>on</strong>siderati<strong>on</strong>.<br />

16:05–16:25<br />

Jaakko Toiv<strong>on</strong>en<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: jaakko.toiv<strong>on</strong>en@helsinki.fi<br />

An adaptive trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between seed size and germinati<strong>on</strong><br />

time<br />

I c<strong>on</strong>sider a model <str<strong>on</strong>g>of</str<strong>on</strong>g> an annual plant where seedlings compete for patches <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

are just big enough to support <strong>on</strong>e plant each. The seeds are characterized by two<br />

qualities, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir size and <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir germinati<strong>on</strong>. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> qualities affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitive<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e seedlings: big seeds produce more competitive seedlings and<br />

early seedlings are more competitive <str<strong>on</strong>g>th</str<strong>on</strong>g>an seedlings <str<strong>on</strong>g>th</str<strong>on</strong>g>at emerge later. I do not assume<br />

any physiological trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between seed size and germinati<strong>on</strong> time. However,<br />

I show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a Nash equilibrium strategy such <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere emerges never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless<br />

a correlati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two. If we assume a large resident populati<strong>on</strong> and<br />

an initially rare mutant populati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nash equilibrium is also an Evoluti<strong>on</strong>arily<br />

Stable Strategy (ESS).<br />

References.<br />

[1] Bishop, T.D. and Cannings, C. (1978) A generalized war <str<strong>on</strong>g>of</str<strong>on</strong>g> attriti<strong>on</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical<br />

Biology 70 85–124.<br />

[2] Geritz, S. A. H. (1995) Evoluti<strong>on</strong>ary stable seed polymorphism and small-scale spatial variati<strong>on</strong><br />

in seedling density The American Naturalist 146 685–707.<br />

[3] Maynard-Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, J. (1974) The <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> games and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animal c<strong>on</strong>flicts Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 47 209–221.<br />

[4] Norden, N., Daws, M.I., Antoine, C., G<strong>on</strong>zalez, M.A., Garwood, N.C. and Chave, J. (2009)<br />

The relati<strong>on</strong>ship between seed mass and mean time to germinati<strong>on</strong> for 1037 tree species across<br />

five tropical forests Functi<strong>on</strong>al Ecology 23 203–210.<br />

[5] Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, C. C. and Fretwell, S. D. (1974) The optimal balance between size and number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fspring American Naturalist 108 499–506.<br />

230


Evoluti<strong>on</strong>ary Ecology 4<br />

Thursday, June 30, 11:30, Room: AM1<br />

Chaired by: Atsushi Yamauchi<br />

11:30–12:00<br />

Kalle Parvinen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

e-mail: kalle.parvinen@utu.fi<br />

Joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal and cooperati<strong>on</strong> in a locally<br />

stochastic metapopulati<strong>on</strong> model<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will investigate a structured metapopulati<strong>on</strong> model [2], c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> small local populati<strong>on</strong>s. Local populati<strong>on</strong> dynamics (bir<str<strong>on</strong>g>th</str<strong>on</strong>g>, dea<str<strong>on</strong>g>th</str<strong>on</strong>g>, emigrati<strong>on</strong><br />

and immigrati<strong>on</strong>) is <str<strong>on</strong>g>th</str<strong>on</strong>g>us stochastic. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal in <str<strong>on</strong>g>th</str<strong>on</strong>g>is model has<br />

been earlier studied [3]: <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal rate evolves, because catastrophes and demographic<br />

stochasticity result in sparsely populated patches, into which immigrati<strong>on</strong><br />

is beneficial. In additi<strong>on</strong>, dispersal reduces kin competiti<strong>on</strong>.<br />

Recently, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> public goods cooperati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>is model has also been<br />

studied [4]. In each habitat patch, individuals can c<strong>on</strong>tribute to a comm<strong>on</strong> resource,<br />

which benefits <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patch. C<strong>on</strong>tributi<strong>on</strong> is<br />

costly, and increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributor. I assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at cooperati<strong>on</strong><br />

is altruistic, <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>e direct benefits from <str<strong>on</strong>g>th</str<strong>on</strong>g>e own acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a focal individual will<br />

never exceed <str<strong>on</strong>g>th</str<strong>on</strong>g>eir direct costs. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless cooperati<strong>on</strong> can evolve, because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

benefits to own kin.<br />

It is obvious <str<strong>on</strong>g>th</str<strong>on</strong>g>at dispersal affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperati<strong>on</strong>: for low dispersal<br />

rates relatedness is high, and cooperati<strong>on</strong> can evolve. Increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal rate<br />

is expected to decrease relatedness, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us make cooperati<strong>on</strong> less favorable. This<br />

is, however, not always <str<strong>on</strong>g>th</str<strong>on</strong>g>e case, and even evoluti<strong>on</strong>ary suicide can be observed<br />

[4]. Cooperati<strong>on</strong> will also affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal: a highly cooperating<br />

individual is expected to disperse less <str<strong>on</strong>g>th</str<strong>on</strong>g>an an individual, which cooperates <strong>on</strong>ly<br />

little or not at all. These effects give motivati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal and cooperati<strong>on</strong> using <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive dynamics [1]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

talk I will present various evoluti<strong>on</strong>ary outcomes possible in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, including<br />

evoluti<strong>on</strong>ary branching and evoluti<strong>on</strong>ary suicide. I will also discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

essential parameters.<br />

References.<br />

[1] Geritz, S. A. H., É. Kisdi, G. Meszéna, and J. A. J. Metz. Evoluti<strong>on</strong>arily singular strategies<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and branching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary tree. Evol. Ecol. 12, 35–57, 1998.<br />

231


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] J. A. J. Metz and M. Gyllenberg. How should we define fitness in structured metapopulati<strong>on</strong><br />

models Including an applicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ES dispersal strategies. Proc. Royal<br />

Soc. L<strong>on</strong>d<strong>on</strong> B, 268:499–508, 2001.<br />

[3] K. Parvinen, U. Dieckmann, M. Gyllenberg, and J. A. J. Metz. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal in<br />

metapopulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> local density dependence and demographic stochasticity. J. Evol. Biol,<br />

16:143–153, 2003.<br />

[4] K. Parvinen. Adaptive dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> altruistic cooperati<strong>on</strong> in a metapopulati<strong>on</strong>: Evoluti<strong>on</strong>ary<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperators and defectors or evoluti<strong>on</strong>ary suicide Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., in press<br />

DOI: 10.1007/s11538-011-9638-4<br />

12:05–12:25<br />

Roger Bowers<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool,<br />

Liverpool, L69 7ZL, U.K.<br />

e-mail: sx04@liv.ac.uk<br />

Andy Hoyle<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing Science and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stirling, Stirling, FK9 4LA, U.K.<br />

Andy White<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Maxwell Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Sciences, Heriot Watt University, Edinburgh, EH14 4AS, U.K.<br />

Evoluti<strong>on</strong>ary behaviour in single-species discrete-time<br />

models: <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs, <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

populati<strong>on</strong> dynamics and density dependence<br />

We study a class <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete-time single-species models typified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e logistic, Hassell<br />

and Ricker forms. These have been used to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ecological systems as, despite <str<strong>on</strong>g>th</str<strong>on</strong>g>eir relative simplicity, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can produce a wide<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics from stable equilibria and cycles to chaos. Here, we investigate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models which has received much less attenti<strong>on</strong>.<br />

We use adaptive dynamics (supported by simulati<strong>on</strong>s) and assume <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are two<br />

evolving parameters linked by a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, for equilibrium underlying<br />

populati<strong>on</strong> dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary behaviour is restricted to an evoluti<strong>on</strong>ary attractor<br />

or an evoluti<strong>on</strong>ary repellor depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f; branching<br />

cannot be exhibited. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, in c<strong>on</strong>trast to recent studies, <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

restricti<strong>on</strong> in evoluti<strong>on</strong>ary behaviour is maintained in <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard Hassell model,<br />

and models which have a similar separable form, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying populati<strong>on</strong><br />

dynamics are cyclic. To gain a broader range <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary behaviour requires<br />

c<strong>on</strong>sidering models in which density-dependence operates differently <strong>on</strong> reproducti<strong>on</strong><br />

and survival. Such models can additi<strong>on</strong>ally for some trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f shapes exhibit<br />

evoluti<strong>on</strong>ary branching or Garden <str<strong>on</strong>g>of</str<strong>on</strong>g> Eden evoluti<strong>on</strong>ary behaviour when <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

populati<strong>on</strong> dynamics are n<strong>on</strong>-equilibrium. Fundamental to such outcomes are<br />

disc<strong>on</strong>tinuous changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary for c<strong>on</strong>vergence stability (wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to<br />

a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f shape) across transiti<strong>on</strong>s (induced by parameter variati<strong>on</strong>)<br />

232


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

between different types <str<strong>on</strong>g>of</str<strong>on</strong>g> underlying populati<strong>on</strong> dynamics. Trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f shape and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying populati<strong>on</strong> dynamics can bo<str<strong>on</strong>g>th</str<strong>on</strong>g> have a marked effect<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological systems<br />

12:25–12:45<br />

Tuomas Nurmi<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

e-mail: tuomas.nurmi@utu.fi<br />

Joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> and dispersal in structured<br />

metapopulati<strong>on</strong>s<br />

I propose a metapopulati<strong>on</strong> model [1] <str<strong>on</strong>g>th</str<strong>on</strong>g>at is mechanistically based <strong>on</strong> individual<br />

level processes and <str<strong>on</strong>g>th</str<strong>on</strong>g>us suitable for evoluti<strong>on</strong>ary analysis. I use adaptive dynamics<br />

[2] to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal and specializati<strong>on</strong> in resource utilizati<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>sumers facing a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between abilities to c<strong>on</strong>sume two<br />

different but nutriti<strong>on</strong>ally equivalent resources. I illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary scenarios<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are possible in <str<strong>on</strong>g>th</str<strong>on</strong>g>is model. Moreover, I illustrate how different ecological<br />

parameters affect evoluti<strong>on</strong>ary dynamics. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e main result [3], I show <str<strong>on</strong>g>th</str<strong>on</strong>g>at joint<br />

evoluti<strong>on</strong> may result in evoluti<strong>on</strong>arily stable coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree phenotypes, two<br />

specialists and a generalist, in a metapopulati<strong>on</strong> comprising several patch types.<br />

References.<br />

[1] Nurmi and Parvinen, 2008, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a mechanistic underpinning<br />

in metapopulati<strong>on</strong>s Theor. Pop. Biol. 73 222–243.<br />

[2] Geritz et al, 1998, Evoluti<strong>on</strong>ary Singular Strategies and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Adaptive Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Branching<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Evoluti<strong>on</strong>ary Tree Evol. Ecol. 12 35–57.<br />

[3] Nurmi and Parvinen. Joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> and dispersal in structured metapopulati<strong>on</strong>s.<br />

J. Theor. Biol. In press.<br />

12:45–13:05<br />

Margarete Utz<br />

Ludwig-Maximilians-University Munich, Department Biology II, Evoluti<strong>on</strong>ary<br />

Ecology<br />

e-mail: utz@bio.lmu.de<br />

Eva Kisdi, Mats Gyllenberg<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics<br />

e-mail: eva.kisdi@helsinki.fi, mats.gyllenberg@helsinki.fi<br />

Body C<strong>on</strong>diti<strong>on</strong> Dependent Dispersal in a Heterogeneous<br />

Envir<strong>on</strong>ment<br />

233


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Body c<strong>on</strong>diti<strong>on</strong> dependent dispersal is a widely evident but barely understood<br />

phenomen<strong>on</strong>. Empirical data display diverse relati<strong>on</strong>ships between individual body<br />

c<strong>on</strong>diti<strong>on</strong> and dispersal between as well as wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in species.<br />

I develop models <str<strong>on</strong>g>th</str<strong>on</strong>g>at study <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at depend<br />

<strong>on</strong> individual body c<strong>on</strong>diti<strong>on</strong>. In a patchy envir<strong>on</strong>ment where patches differ in<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, individuals born in rich (e.g. nutritious) patches are <strong>on</strong><br />

average str<strong>on</strong>ger <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>specifics <str<strong>on</strong>g>th</str<strong>on</strong>g>at are born in poorer patches. Body c<strong>on</strong>diti<strong>on</strong><br />

(streng<str<strong>on</strong>g>th</str<strong>on</strong>g>) determines competitive ability such <str<strong>on</strong>g>th</str<strong>on</strong>g>at str<strong>on</strong>ger individuals win<br />

competiti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> higher probability <str<strong>on</strong>g>th</str<strong>on</strong>g>an weak individuals. Individuals compete for<br />

patches such <str<strong>on</strong>g>th</str<strong>on</strong>g>at kin competiti<strong>on</strong> selects for dispersal. Survival probability during<br />

dispersal may depend <strong>on</strong> body c<strong>on</strong>diti<strong>on</strong>.<br />

I determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>arily stable strategy (ESS) for different ecological<br />

scenarios. In a fixed envir<strong>on</strong>ment, patches are aband<strong>on</strong>ed <str<strong>on</strong>g>th</str<strong>on</strong>g>at are too unsafe or <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

would not produce enough successful dispersers in <str<strong>on</strong>g>th</str<strong>on</strong>g>e future so <str<strong>on</strong>g>th</str<strong>on</strong>g>at all <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring<br />

disperse from <str<strong>on</strong>g>th</str<strong>on</strong>g>ese patches. In a fluctuating envir<strong>on</strong>ment where patch qualities<br />

change randomly from year to year, all patches are equally wor<str<strong>on</strong>g>th</str<strong>on</strong>g> keeping so <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

all families keep <str<strong>on</strong>g>th</str<strong>on</strong>g>e same competitive weight in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natal patch and disperse <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

rest.<br />

From families <str<strong>on</strong>g>th</str<strong>on</strong>g>at invest in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> retaining <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natal patch and gaining o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

patches <str<strong>on</strong>g>th</str<strong>on</strong>g>rough successful dispersers, <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e highest survival probability<br />

during dispersal disperse whereas individuals <str<strong>on</strong>g>th</str<strong>on</strong>g>at are less suitable for dispersal<br />

defend <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natal patch. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is clear wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-family pattern is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten not<br />

reflected in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>-wide body c<strong>on</strong>diti<strong>on</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersers or n<strong>on</strong>dispersers.<br />

This may be an explanati<strong>on</strong> why empirical data do not show any general<br />

relati<strong>on</strong>ship between body c<strong>on</strong>diti<strong>on</strong> and dispersal.<br />

When all individuals are equally good dispersers, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exist equivalence<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at are defined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitive weight <str<strong>on</strong>g>th</str<strong>on</strong>g>at remains<br />

in a patch. An equivalence class c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> infinitely many dispersal strategies<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are selectively neutral. This provides an explanati<strong>on</strong> why very diverse<br />

patterns found in body c<strong>on</strong>diti<strong>on</strong> dependent dispersal data can all be equally evoluti<strong>on</strong>arily<br />

stable.<br />

References.<br />

[1] M. Gyllenberg, E. Kisdi, M. Utz, Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>-dependent dispersal under kin competiti<strong>on</strong><br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology 57 258–307.<br />

[2] M. Gyllenberg, E. Kisdi, M. Utz, Variability wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in families and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> body c<strong>on</strong>diti<strong>on</strong><br />

dependent dispersal Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Dynamics (in press).<br />

[3] M. Gyllenberg, E. Kisdi, M. Utz, Body c<strong>on</strong>diti<strong>on</strong> dependent dispersal in a heterogeneous envir<strong>on</strong>ment<br />

(submitted).<br />

13:05–13:25<br />

Chelsea Liddell<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College, USA<br />

e-mail: Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y.Wallace@Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g>.edu<br />

Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y Wallace<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

234


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Nicci Owusu-Brackett<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Kristen Klepac<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sickle Cell Genome in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Malaria<br />

It is believed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sickle cell gene has persisted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human populati<strong>on</strong> due<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e partial resistance it c<strong>on</strong>fers <strong>on</strong> victims <str<strong>on</strong>g>of</str<strong>on</strong>g> malaria. We use a system <str<strong>on</strong>g>of</str<strong>on</strong>g> six<br />

equati<strong>on</strong>s tracking populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree genotypes and two age brackets to study<br />

what relative dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates for malaria and sickle cell are required in order for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

gene to persist, and what resulting proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> are expected to<br />

carry <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene under different assumpti<strong>on</strong>s about malarial dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates. The results<br />

can be compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> current data to infer historical dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates for malaria. The<br />

model also allows estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> time it takes such a gene to reach<br />

equilibrium in a populati<strong>on</strong>, and how <str<strong>on</strong>g>th</str<strong>on</strong>g>is depends <strong>on</strong> assumed dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates.<br />

235


Evoluti<strong>on</strong>ary Ecology 5<br />

Friday, July 1, 14:30, Room: AM1<br />

Chaired by: Tanya Kostova Vassilevska<br />

14:30–15:00<br />

Bernt Wennberg<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, Chalmers university <str<strong>on</strong>g>of</str<strong>on</strong>g> technolgy<br />

and<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: wennberg@chalmers.se<br />

Philip Gerlee<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, Chalmers university <str<strong>on</strong>g>of</str<strong>on</strong>g> technolgy<br />

and<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: gerlee@chalmers.se<br />

Johan Henrikss<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences at Novum, Karolinska Institutet<br />

e-mail: johan.henrikss<strong>on</strong>@ki.se<br />

Torbjörn Lundh<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, Chalmers university <str<strong>on</strong>g>of</str<strong>on</strong>g> technolgy<br />

and<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: torbjorn.lundh@chalmers.se<br />

Sympatric speciati<strong>on</strong> and its dependence <strong>on</strong> competiti<strong>on</strong> and<br />

streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> reinforcement<br />

Sympatric speciati<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary split <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e species into two or more<br />

species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e same envir<strong>on</strong>ment. We c<strong>on</strong>sider a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong>,<br />

in which reinforcement plays an important role. By reinforcement we<br />

mean a phenotypic trait <str<strong>on</strong>g>th</str<strong>on</strong>g>at influences <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> mating partner, but has no<br />

impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. The model is individual based,<br />

implemented as a discrete time Markov process in a space Z N , where Z is <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual and N is <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Reproducti<strong>on</strong> is<br />

modelled as <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals, but does not involve<br />

different genders, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parents’s adaptati<strong>on</strong><br />

237


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. The basic model is presented in [1], where simulati<strong>on</strong>s simulati<strong>on</strong><br />

results are presented <str<strong>on</strong>g>th</str<strong>on</strong>g>at show <str<strong>on</strong>g>th</str<strong>on</strong>g>at reinforcement is essential for speciati<strong>on</strong><br />

to take place. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er developed, and in particular we<br />

investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> speciati<strong>on</strong><br />

events, and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g term survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e decendants <str<strong>on</strong>g>of</str<strong>on</strong>g> a species.<br />

References.<br />

[1] J. Henrikss<strong>on</strong>, T. Lundh and B. Wennberg, A model <str<strong>on</strong>g>of</str<strong>on</strong>g> sympatric speciati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough reinforcement,<br />

Kinetic and related models 3 no 1, 143–163.<br />

15:05–15:25<br />

Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y Wallace<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College, USA<br />

e-mail: doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y.wallace@dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g>.edu<br />

Erin Daus<strong>on</strong><br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>erine Pini<strong>on</strong><br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Sexually differentiated dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

efficient mating strategy<br />

Darwin noted <str<strong>on</strong>g>th</str<strong>on</strong>g>at some sexually differentiated genetic traits, such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e bright<br />

plumage <str<strong>on</strong>g>of</str<strong>on</strong>g> male birds <str<strong>on</strong>g>th</str<strong>on</strong>g>at seems to make <str<strong>on</strong>g>th</str<strong>on</strong>g>em more visible to predators, appear<br />

to c<strong>on</strong>tradict <str<strong>on</strong>g>th</str<strong>on</strong>g>e main assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural selecti<strong>on</strong>. Darwin proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>e noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sexual selecti<strong>on</strong> to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong>, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er explanati<strong>on</strong>s have<br />

been <str<strong>on</strong>g>of</str<strong>on</strong>g>fered. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we use a system <str<strong>on</strong>g>of</str<strong>on</strong>g> four n<strong>on</strong>linear ordinary differential<br />

equati<strong>on</strong>s to model male and female populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two species <str<strong>on</strong>g>th</str<strong>on</strong>g>at have identical,<br />

efficient mating strategies but do not interbreed. One species has a higher dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate for males <str<strong>on</strong>g>th</str<strong>on</strong>g>an for females. These o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise identical species are placed in competiti<strong>on</strong>,<br />

resulting in a system wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple fixed points and str<strong>on</strong>g dependence <strong>on</strong><br />

initial c<strong>on</strong>diti<strong>on</strong>s. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some choices <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e male in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species enlarges <str<strong>on</strong>g>th</str<strong>on</strong>g>e basin <str<strong>on</strong>g>of</str<strong>on</strong>g> attracti<strong>on</strong> in<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>at species survives and <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitor is driven to extincti<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us is<br />

an adaptive resp<strong>on</strong>se. We also <str<strong>on</strong>g>of</str<strong>on</strong>g>fer a heuristic argument as to why <str<strong>on</strong>g>th</str<strong>on</strong>g>is should be<br />

so.<br />

15:25–15:45<br />

Wojciech Borkowski<br />

Center for Complex Systems, Institute for Social Studies, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: wborkowski@uw.edu.pl<br />

238


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular automat<strong>on</strong> eco-systems <str<strong>on</strong>g>th</str<strong>on</strong>g>e simple way to simulate<br />

macroevoluti<strong>on</strong><br />

Keywords: Macroevoluti<strong>on</strong>; Coevoluti<strong>on</strong>; Individual-based models; Predator-Prey;<br />

Cellular automata; Artificial life; Phylogenetic Trees; Food Networks;<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is short talk I will present a simple lattice, cellular automat<strong>on</strong> like model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a multi-species ecosystem suitable for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent properties <str<strong>on</strong>g>of</str<strong>on</strong>g> macroevoluti<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is model <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> species is not fixednew species c<strong>on</strong>tinuously<br />

emerge by mutati<strong>on</strong> from existing species, <str<strong>on</strong>g>th</str<strong>on</strong>g>en survive or extinct depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

energetic balance between local ecological interacti<strong>on</strong>s. The M<strong>on</strong>te-Carlo numerical<br />

simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is able to qualitatively reproduce phenomena <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

have been empirically observed, like <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence between size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e isolated<br />

area and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> species inhabiting <str<strong>on</strong>g>th</str<strong>on</strong>g>ere or between primary producti<strong>on</strong> and<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> food network. The model allows also studying formati<strong>on</strong> and transformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> food-networks, influence <str<strong>on</strong>g>of</str<strong>on</strong>g> general factors (like intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> primary<br />

producti<strong>on</strong>s) and possible causes <str<strong>on</strong>g>of</str<strong>on</strong>g> mass extincti<strong>on</strong>s, and more generally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ecological rules and pure chance in macroevoluti<strong>on</strong>. Some results were published<br />

jet (see below), some new will be presented.<br />

HOMEPAGE: www.iss.uw.edu.pl/borkowski/<br />

References.<br />

[1] Borkowski, W., 2009. Simple Lattice Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Macroevoluti<strong>on</strong>. Planet. Space Sci. Vol. 57. No.<br />

4, pp.: 498-507, doi:10.1016/j.pss.2008.10.001<br />

[2] Borkowski W., 2008. Cellular automata model <str<strong>on</strong>g>of</str<strong>on</strong>g> macroevoluti<strong>on</strong>. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourteen<str<strong>on</strong>g>th</str<strong>on</strong>g> Nati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics in Biology and<br />

Medicine (pp. 18-25), Uniwersytet Warszawski, QPrint Warszawa 2008, ISBN: 83-903893-4-7<br />

(arXiv:0902.3919v1)<br />

[3] Borkowski W., Nowak A., 2009. Zastosowanie modelu samoorganizacji ekosystemów do wyjaśniania<br />

zróżnicowania kulturowego zachowa społecznych. In Układy Złoż<strong>on</strong>e w Naukach<br />

Społecznych - wybrane zagadnienia, pp.: 233-274, Wydawnictwo Naukowe Scholar, Warszawa.<br />

ISBN: 978-83-7383-371-4 (in Polish)<br />

[4] Borkowski W., 2008. Powtarzalność ewolucji w naturze, kulturze i... informatyce. (Repeatability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> in nature, culture and computer science) TEKSTY z ULICY nr 12 (pp. 7-28),<br />

Uniwersytet Śląski, OFFMAX, Katowice 2008, ISBN: 978-83-87248-16-1 (in Polish)<br />

[5] Borkowski W., 2006. Ewolucyjna droga do złoż<strong>on</strong>ości. (Evoluti<strong>on</strong>ary way to complexity) TEK-<br />

STY z ULICY nr 10 (pp. 7-24), Uniwersytet Śląski, OFFMAX, Katowice 2006, ISBN: 83-<br />

87248-13-4 (http://www.memetyka.pl/dokumenty/pliki/zm10_1.pdf) (in Polish)<br />

15:45–16:05<br />

Judi<str<strong>on</strong>g>th</str<strong>on</strong>g> Miller<br />

Georgetown University<br />

e-mail: jrm32@georgetown.edu<br />

Bey<strong>on</strong>d mutati<strong>on</strong> surfing: adaptati<strong>on</strong> during invasi<strong>on</strong>s<br />

We use stochastic simulati<strong>on</strong>s to model invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new territory by a populati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at evolves by natural selecti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e novel envir<strong>on</strong>ment, as well as by drift.<br />

Previous studies have resulted in competing claims to <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> may ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er promote or inhibit adaptati<strong>on</strong>. By comparing adaptati<strong>on</strong> in<br />

239


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

invading and established populati<strong>on</strong>s, we identify c<strong>on</strong>diti<strong>on</strong>s under which invasi<strong>on</strong><br />

facilitates adaptati<strong>on</strong> (when compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> evoluti<strong>on</strong> in an established populati<strong>on</strong>),<br />

as well as regimes in which invasi<strong>on</strong> impedes adaptati<strong>on</strong>. We also discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent<br />

to which analytical models can provide insight <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem.<br />

16:05–16:25<br />

Jacob Scott<br />

Integrative Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, H. Lee M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center<br />

e-mail: jacob.g.scott@gmail.com<br />

David Basanta<br />

Integrative Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, H. Lee M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center<br />

Alexander Anders<strong>on</strong><br />

Integrative Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, H. Lee M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center<br />

Choose your neighbourhood wisely: <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

neighbourhood geometry in spatial agent based models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biological systems<br />

Agent based spatial models are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e best known ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical tools to model<br />

biological systems. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models is a lattice which <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

agents inhabit and where <str<strong>on</strong>g>th</str<strong>on</strong>g>ey behave depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

agents in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir neighbourhood. Despite its importance, <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> nearestneighbor<br />

geometry is usually arbitrarily made wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out regard to <str<strong>on</strong>g>th</str<strong>on</strong>g>e bias <str<strong>on</strong>g>th</str<strong>on</strong>g>at it<br />

might introduce into <str<strong>on</strong>g>th</str<strong>on</strong>g>e results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is abstract we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nearest neighbor geometry <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary strategies wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> a cellular automat<strong>on</strong> in<br />

which cells play <str<strong>on</strong>g>th</str<strong>on</strong>g>e pris<strong>on</strong>er’s dilemma game. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is CA we compare several<br />

2-dimensi<strong>on</strong>al architectures (v<strong>on</strong> Neumann and Moore neighbourhoods as well as a<br />

regular hexag<strong>on</strong>al lattice). We also explore how <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcomes change as we move<br />

from 2 to 3 dimensi<strong>on</strong>s.<br />

Our research highlights <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbourhood architecture in agent<br />

based spatial ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models and suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at some models will have to<br />

c<strong>on</strong>sider different neighbourhood geometries as <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological system being modeled<br />

evolves. This work has implicati<strong>on</strong>s in many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> biological modeling where<br />

tissue architecture changes <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout development, but is most germane to cancer,<br />

microbiology and developmental biology.<br />

240


Genetics and Genomics 1<br />

Wednesday, June 29, 08:30, Room: AM7<br />

Chaired by: Stanisław Cebrat<br />

08:30–08:50<br />

Veit Schwämmle<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Molecular Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Denmark, Campusvej 55, DK-5230 Odense M, Denmark<br />

e-mail: veits@bmb.sdu.dk<br />

Kim Sneppen<br />

Center for Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Life, Niels Bohr Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen,<br />

Blegdamsvej 17, 2100 Copenhagen Ø, Denmark<br />

Ole Nørregaard Jensen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Molecular Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Denmark, Campusvej 55, DK-5230 Odense M, Denmark<br />

The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e modificati<strong>on</strong> domains<br />

Hist<strong>on</strong>es proteins are key players in <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eukaryotes. Many <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir wi<str<strong>on</strong>g>th</str<strong>on</strong>g> post-translati<strong>on</strong>al modificati<strong>on</strong>s decorated is<str<strong>on</strong>g>of</str<strong>on</strong>g>orms are organized in spatial<br />

domains al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA string <str<strong>on</strong>g>of</str<strong>on</strong>g> a chromosome. For instance, a large part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong>ally inactive genome is densely packed and forms large domains.<br />

This heterochromatin has its hist<strong>on</strong>es modified by me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nin<str<strong>on</strong>g>th</str<strong>on</strong>g> amino<br />

acid (a lysine) <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e type H3 (H3K9me). We propose a simple computer model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at simulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heterochromatin over <str<strong>on</strong>g>th</str<strong>on</strong>g>e human chromosomes<br />

by assuming a competiti<strong>on</strong> between H3K9 me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong> and H3K4 me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

latter being an abundant activating modificati<strong>on</strong>. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> marks are related to nucleati<strong>on</strong><br />

sites <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome and spread from <str<strong>on</strong>g>th</str<strong>on</strong>g>ese sites due to simple mechanisms.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> marks are mutually exclusive [2] and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore compete against<br />

each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, we are able to explain why heterochromatin does<br />

not occupy <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire chromosomes and could reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> measured<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ChIP-seq experiments from [1]. The fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to a<br />

large number <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e modificati<strong>on</strong>s allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complex switch-like<br />

behavior.<br />

References.<br />

[1] A. Barski et al., High-resoluti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human genome. Cell,<br />

129 823–837 2007.<br />

241


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] K. Nishioka et al., Set9, a novel hist<strong>on</strong>e H3 me<str<strong>on</strong>g>th</str<strong>on</strong>g>yltransferase <str<strong>on</strong>g>th</str<strong>on</strong>g>at facilitates transcripti<strong>on</strong> by<br />

precluding hist<strong>on</strong>e tail modificati<strong>on</strong>s required for heterochromatin formati<strong>on</strong>. Genes Dev. 16<br />

479–489 2002.<br />

08:55–09:15<br />

Richard Kollár<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

Physics and Informatics, Comenius University, Bratislava, Slovakia<br />

e-mail: kollar@fmph.uniba.sk<br />

Ľubomír Tomáška<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, Comenius University,<br />

Bratislava, Slovakia<br />

Jozef Nosek<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, Comenius<br />

University, Bratislava, Slovakia<br />

Katarína Boová<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Comenius University,<br />

Bratislava, Slovakia<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> biophysical mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> telomere<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> maintenance in mitoch<strong>on</strong>drial DNA <str<strong>on</strong>g>of</str<strong>on</strong>g> C. parapsilosis<br />

The terminal structures <str<strong>on</strong>g>of</str<strong>on</strong>g> linear mitoch<strong>on</strong>drial DNA (mitoch<strong>on</strong>drial telomeres)<br />

in C. parapsilosis c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> repetitive l<strong>on</strong>g tandem units. Besides <str<strong>on</strong>g>th</str<strong>on</strong>g>ese linear<br />

telomeres o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cyclic c<strong>on</strong>figurati<strong>on</strong>s as telomeric circles and telomeric loops were<br />

experimentally observed and are suspected to play an important role in telomere<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> maintenance. We c<strong>on</strong>struct a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at captures biophysical<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various telomeric structures <strong>on</strong> a short time scale and <str<strong>on</strong>g>th</str<strong>on</strong>g>at is able<br />

to reproduce experimental measurements in C. parapsilosis. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

opens up a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> interesting open ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical problems in quasi-steady state<br />

approximati<strong>on</strong> and discrete coagulati<strong>on</strong>-fragmentati<strong>on</strong> dynamical systems. This is<br />

a joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> . Tomáška, J. Nosek and K. Boová.<br />

09:15–09:35<br />

Paweł Błażej<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland<br />

e-mail: blazej.pawel@gmail.com<br />

Paweł Mackiewicz<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland<br />

242


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stanisław Cebrat<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> prokaryotic genome evoluti<strong>on</strong> using coding<br />

signal as selecti<strong>on</strong> pressure<br />

Protein coding genes in prokaryotic chromosomes are subjected to two different<br />

asymmetric mutati<strong>on</strong>al pressures associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> various replicati<strong>on</strong> mechanisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DNA strands (leading and lagging). To simulate evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prokaryotic protein<br />

coding sequences under <str<strong>on</strong>g>th</str<strong>on</strong>g>is asymmetric mutati<strong>on</strong>al pressure, we elaborated<br />

a simulati<strong>on</strong> model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Borrelia burgdorferi genome. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong>al<br />

pressure we applied nucleotide substituti<strong>on</strong> matrices empirically found for <str<strong>on</strong>g>th</str<strong>on</strong>g>e leading<br />

and lagging DNA strands <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome. The selecti<strong>on</strong> pressure was based <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modified algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for protein coding gene finding, trained <strong>on</strong> annotated B.<br />

burgdorferi protein coding genes. We simulated <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes from differently<br />

replicating strand under <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stant, opposite and changing mutati<strong>on</strong>al<br />

c<strong>on</strong>diti<strong>on</strong>s, mimicking sequence inversi<strong>on</strong>s.<br />

09:35–09:55<br />

Katarína Boďová<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

Physics and Informatics, Comenius University, Bratislava, Slovakia<br />

e-mail: bodova@fmph.uniba.sk<br />

Ľubomír Tomáška<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, Comenius University,<br />

Bratislava, Slovakia<br />

Jozef Nosek<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, Comenius<br />

University, Bratislava, Slovakia<br />

Richard Kollár<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Comenius University,<br />

Bratislava, Slovakia<br />

Factors determining leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> telomeric<br />

structures in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> telomerase<br />

Absence <str<strong>on</strong>g>of</str<strong>on</strong>g> telomerase in cellular structures requires an alternative telomeraseindependent<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way for telomeric sequence leng<str<strong>on</strong>g>th</str<strong>on</strong>g> regulati<strong>on</strong>. Telomeric circles<br />

possibly play an important role in a universal mechanism for stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ends <str<strong>on</strong>g>of</str<strong>on</strong>g> linear DNA <str<strong>on</strong>g>th</str<strong>on</strong>g>at possibly dates back to pre-telomerase ages. It was observed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>eir leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> varies significantly in various types <str<strong>on</strong>g>of</str<strong>on</strong>g> organelles and<br />

organisms. How to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>ese different outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work<br />

we try to identify and estimate key factors influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

243


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

telomeric circles, loops and strand invasi<strong>on</strong>s using numerical simulati<strong>on</strong>s for a model<br />

we have c<strong>on</strong>structed for C. parapsilosis.<br />

09:55–10:15<br />

Agnieszka Danek<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science,<br />

Poland<br />

e-mail: agnieszka.danek@polsl.pl<br />

Rafał Pokrzywa<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science,<br />

Poland<br />

e-mail: rafal.pokrzywa@polsl.pl<br />

Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for Searching for Approximate Tandem Repeats<br />

based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Burrows-Wheeler transform<br />

Genomic sequences tend to c<strong>on</strong>tain many types <str<strong>on</strong>g>of</str<strong>on</strong>g> repetitive structures <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g>, ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er interspersed or tandem. Tandem repeats play an important role<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene expressi<strong>on</strong> and transcripti<strong>on</strong> regulati<strong>on</strong>s. They can be used as markers<br />

for DNA mapping and DNA fingerprinting. Some, when occurring in increased,<br />

abnormal number, are known to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e cause <str<strong>on</strong>g>of</str<strong>on</strong>g> inherited diseases. All functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tandem repeats in genomic sequences are still not well defined and understood.<br />

However, growing biological databases toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> tools for efficient identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese repeats may lead to discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir specific role or correlati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

particular symptoms or diseases.<br />

Perfect tandem repeat c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> successive duplicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some motif. Typically<br />

tandem copies are approximate due to mutati<strong>on</strong>s. Hence approximate tandem<br />

repeat (ATR) can be defined as a c<strong>on</strong>secutive, inexact copies <str<strong>on</strong>g>of</str<strong>on</strong>g> some motif. In our<br />

c<strong>on</strong>siderati<strong>on</strong>s we are assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at two such successive repeats must be <str<strong>on</strong>g>of</str<strong>on</strong>g> equal<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s and can differ <strong>on</strong>ly by an established number <str<strong>on</strong>g>of</str<strong>on</strong>g> mismatches. Dissimilarity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two approximate copies is measured using Hamming distance between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em. We are interested in finding approximate tandem repeat when each repeated<br />

motif is similar enough to <str<strong>on</strong>g>th</str<strong>on</strong>g>e adjacent duplicate.<br />

Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m presented is an enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for finding perfect tandem<br />

repeats in DNA sequences based <strong>on</strong> Burrows-Wheeler transform (BWT). It uses its<br />

intermediate results, groups <str<strong>on</strong>g>of</str<strong>on</strong>g> particular sequences repeated wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole input<br />

string, to find candidates for double ATR — <str<strong>on</strong>g>th</str<strong>on</strong>g>at is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first stage <str<strong>on</strong>g>of</str<strong>on</strong>g> searching. The<br />

sec<strong>on</strong>d stage c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> investigating found candidates and accepting or rejecting<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em as a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> ATRs. Finally, in last stage, located double ATRs are extended<br />

to c<strong>on</strong>tain as much successive, similar copies, as possible.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first stage <str<strong>on</strong>g>th</str<strong>on</strong>g>e input string is c<strong>on</strong>verted according to BWT. This, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some auxiliary arrays, allows to make use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alphabetically sorted array <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

input string suffixes, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e need <str<strong>on</strong>g>of</str<strong>on</strong>g> storing <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole suffix array structure.<br />

The algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m finds <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e repeated pattern in <str<strong>on</strong>g>th</str<strong>on</strong>g>e suffix<br />

array. It starts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e empty pattern P and recursively appends, in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> P ,<br />

244


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

characters from <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sidered alphabet. This approach uses <str<strong>on</strong>g>th</str<strong>on</strong>g>e results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

previous iterati<strong>on</strong> to calculate a range <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>s for a l<strong>on</strong>ger pattern and it is<br />

d<strong>on</strong>e in a c<strong>on</strong>stant time, according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> Ferragina and Manzini. Two<br />

sequences from <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated patterns are c<strong>on</strong>sidered a candidate for a<br />

double approximate tandem repeat if <str<strong>on</strong>g>th</str<strong>on</strong>g>ey lay close enough to each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e input string, in particular, if it is possible <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey will form an approximate<br />

tandem repeat wi<str<strong>on</strong>g>th</str<strong>on</strong>g> established, maximum dissimilarity. To limit <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

redundant candidates <str<strong>on</strong>g>th</str<strong>on</strong>g>e algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e property <str<strong>on</strong>g>of</str<strong>on</strong>g> two strings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> n and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Hamming distance h between <str<strong>on</strong>g>th</str<strong>on</strong>g>em, which states <str<strong>on</strong>g>th</str<strong>on</strong>g>at two such<br />

strings have always a comm<strong>on</strong>, matching substring at corresp<strong>on</strong>ding positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> ⌊ n<br />

h+1⌋ at least. Hence, repeated patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> leng<str<strong>on</strong>g>th</str<strong>on</strong>g> d are used to search<br />

<strong>on</strong>ly for ATRs <str<strong>on</strong>g>of</str<strong>on</strong>g> leng<str<strong>on</strong>g>th</str<strong>on</strong>g> n <str<strong>on</strong>g>th</str<strong>on</strong>g>at satisfies <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong> d = ⌊ n<br />

h+1⌋ for all acceptable<br />

h. Additi<strong>on</strong>ally, as positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> previously found ATRs are known, qualifying as a<br />

candidate <str<strong>on</strong>g>th</str<strong>on</strong>g>e ATR discovered before is avoided.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e next stage Hamming distance between found pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> candidates is measured<br />

(checking all possible alignments <str<strong>on</strong>g>of</str<strong>on</strong>g> found candidates) and if it satisfies <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

assumpti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e double approximate tandem repeat is reported. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ird, final<br />

stage, Hamming distance is measured between marginal motif <str<strong>on</strong>g>of</str<strong>on</strong>g> found ATR and<br />

a neighboring string. As l<strong>on</strong>g as it is not greater <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumed maximum, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ATR is extended in <str<strong>on</strong>g>th</str<strong>on</strong>g>at directi<strong>on</strong>.<br />

The developed algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m exploits <str<strong>on</strong>g>th</str<strong>on</strong>g>e advantages <str<strong>on</strong>g>of</str<strong>on</strong>g>fered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e BWT algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e suffix array data structure to return ATRs from <str<strong>on</strong>g>th</str<strong>on</strong>g>e input string, assuming<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at any two c<strong>on</strong>secutive copies wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in ATR differ at most by a provided Hamming<br />

distance.<br />

Acknowledgement: This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Uni<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> Social Fund.<br />

References.<br />

[1] R. Pokrzywa, Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Burrows-Wheeler Transform for searching for tandem repeats<br />

in DNA sequences Int. J. Bioinform. Res. Appl. vol. 5 (4) (2009) 432–446.<br />

[2] R. Pokrzywa and A. Polański, BWtrs: A tool for searching for tandem repeats in DNA sequences<br />

based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Burrows-Wheeler transform Genomics 96 (2010) 316–321.<br />

[3] M. Burrows and D.J. Wheeler, A block-sorting lossless data compressi<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m SRC Research<br />

Report 124, Digital Equipment Corporati<strong>on</strong>, Palo Alto, California, May 10 1994.<br />

[4] P. Ferragina and G. Manzini, Opportunistic data structures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong>s Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e 41st Annual Symposium <strong>on</strong> Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, 2000, pp. 390–398.<br />

10:15–10:35<br />

Łukasz Olczak<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Lukasz.Olczak@polsl.pl<br />

Rafał Pokrzywa<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Andrzej Polaski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

245


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tandem repeat evoluti<strong>on</strong> based <strong>on</strong><br />

comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Homo sapiens and Homo neander<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis<br />

genomes<br />

Tandem repeats are genomic markers well suited for studying evoluti<strong>on</strong>ary scenarios<br />

for closely related species, due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir high mutati<strong>on</strong> rates. There are many studies<br />

c<strong>on</strong>cerned wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fitting evoluti<strong>on</strong>ary models to data <strong>on</strong> short tandem repeats wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

c<strong>on</strong>clusi<strong>on</strong>s leading to estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> tandem repeats mutati<strong>on</strong> process,<br />

evoluti<strong>on</strong>ary and demographic scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> different species and populati<strong>on</strong>s etc.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we present coalescence based ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tandem repeats based <strong>on</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genomes <str<strong>on</strong>g>of</str<strong>on</strong>g> homo sapiens and Homo neander<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e coalescence model we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic moment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

speciati<strong>on</strong> event leading to Homo sapiens and Homo neander<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis species. The<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coalescence model <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> are probability distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> differences<br />

between numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> repeats in two species. These probability distributi<strong>on</strong>s<br />

depend <strong>on</strong> parameters, mutati<strong>on</strong> intensities, different for models for evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loci wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different motif leng<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

The obtained models are <str<strong>on</strong>g>th</str<strong>on</strong>g>en fitted to data <strong>on</strong> locati<strong>on</strong>s and structures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tandem repeat loci <str<strong>on</strong>g>of</str<strong>on</strong>g> homo sapiens and Homo neander<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis genomes obtained<br />

by using <str<strong>on</strong>g>th</str<strong>on</strong>g>e recently developed genome browsing tool BWtrs and <str<strong>on</strong>g>th</str<strong>on</strong>g>e appropriately<br />

designed alignment algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m. Due to imperfecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assembly process for<br />

Homo neader<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis genome <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> censored observati<strong>on</strong>s is applied and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e appropriate EM procedure is designed.<br />

Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong>s rates for different sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> repeat motifs are compared<br />

to results <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er populati<strong>on</strong> dynamics studies. Possible sources <str<strong>on</strong>g>of</str<strong>on</strong>g> biases in different<br />

approaches are highlighted and possible future improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed<br />

model are presented.<br />

246


Immunology 1<br />

Wednesday, June 29, 14:30, Room: AM6<br />

Chaired by: Urszula Foryś<br />

14:30–15:00<br />

Julia Kzhyshkowska<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg<br />

e-mail: julia.kzhyshkowska@umm.de<br />

Perspectives <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling for understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

intracellular signalling and vesicular trafficking in<br />

macrophages<br />

Perspectives <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling for understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular signalling<br />

and vesicular trafficking in macrophages<br />

Julia Kzhyshkowska, Anna Marciniak-Czochra, Alexei Gratchev University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Heidelberg, Germany.<br />

Macrophages are essential elements <str<strong>on</strong>g>of</str<strong>on</strong>g> immune system <str<strong>on</strong>g>th</str<strong>on</strong>g>at orchestrate activati<strong>on</strong><br />

and downregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inflammatory reacti<strong>on</strong>s, tissue remodelling, healing<br />

processes and tissue homeostasis. Macrophages have to resp<strong>on</strong>d to complex signals<br />

specific for homeostatic or pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologic c<strong>on</strong>diti<strong>on</strong>s. To retain sufficient accuracy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> macrophages make use <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperative acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple extracellular<br />

factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at may amplify required activities and suppress undesired <strong>on</strong>es. This cooperativity<br />

is based <strong>on</strong> complex branching signalling networks coupled to positive<br />

and negative feedback loops; ligand uptake by scavenger receptors; intracellular<br />

sorting and multiple secretory pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Deregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperativity leads to<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological situati<strong>on</strong>s such as chr<strong>on</strong>ic inflammati<strong>on</strong>, allergy, tumour initiati<strong>on</strong> and<br />

progressi<strong>on</strong>. The complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system makes it impossible to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> every particular molecular event using classical molecular biological me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling and membrane trafficking pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

using frameworks <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s will allow qualitative and quantitative<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophage behaviour in c<strong>on</strong>diti<strong>on</strong>s simulating physiological situati<strong>on</strong>.<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e model c<strong>on</strong>structi<strong>on</strong> requires large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative<br />

experimental data, <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods enables<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e elements critical for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. Established models may<br />

be used to simulate behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophages under different c<strong>on</strong>diti<strong>on</strong>s and to<br />

predict <str<strong>on</strong>g>th</str<strong>on</strong>g>eir reacti<strong>on</strong>s in vivo. Identified critical elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system will facilitate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predictive/diagnostic markers as well as potential <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

targets.<br />

247


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:05–15:25<br />

Edgar Delgado-Eckert<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosystems Science and Engineering, ETH Zürich, Mattenstrasse<br />

26, 4058 Basel, Switzerland.<br />

e-mail: edgar.delgado-eckert@bsse.e<str<strong>on</strong>g>th</str<strong>on</strong>g>z.ch<br />

Michael Shapiro<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology Department, Tufts University, 150 Harris<strong>on</strong> Ave., Bost<strong>on</strong>,<br />

MA 02111, U.S.A.<br />

e-mail: Michael.Shapiro@tufts.edu<br />

A model <str<strong>on</strong>g>of</str<strong>on</strong>g> host resp<strong>on</strong>se to a multi-stage pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens <str<strong>on</strong>g>th</str<strong>on</strong>g>at traverse different stages during <str<strong>on</strong>g>th</str<strong>on</strong>g>eir life cycle or during an<br />

infecti<strong>on</strong> process have been studied since <str<strong>on</strong>g>th</str<strong>on</strong>g>e late nineteen<str<strong>on</strong>g>th</str<strong>on</strong>g> century. The most<br />

prominent genus is Plasmodium, causer <str<strong>on</strong>g>of</str<strong>on</strong>g> Malaria. O<str<strong>on</strong>g>th</str<strong>on</strong>g>er important examples are<br />

Trypanosoma and <str<strong>on</strong>g>th</str<strong>on</strong>g>e family <str<strong>on</strong>g>of</str<strong>on</strong>g> herpes viruses. Our focus is <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e herpes virus<br />

Epstein-Barr (EBV), which is known to cycle <str<strong>on</strong>g>th</str<strong>on</strong>g>rough at least four different stages<br />

during infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human body. One remarkable characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> such pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens is life-l<strong>on</strong>g persistent infecti<strong>on</strong>.<br />

The main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se<br />

to such a pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling. In particular, we are interested<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> steady-state behavior corresp<strong>on</strong>ding to life-l<strong>on</strong>g<br />

persistent infecti<strong>on</strong>. Our ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical approach is based <strong>on</strong> standard ODE models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> viral infecti<strong>on</strong>. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e postulated system <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs, we were able to characterize<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibria in full generality regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e number n <str<strong>on</strong>g>of</str<strong>on</strong>g> stages <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen<br />

cycles <str<strong>on</strong>g>th</str<strong>on</strong>g>rough. To establish <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models’ equilibria, we<br />

successfully applied techniques from modern c<strong>on</strong>trol engineering.<br />

If <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen is able to establish infecti<strong>on</strong>, (i.e., <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive number<br />

R 0 satisfies R 0 > 1), <str<strong>on</strong>g>th</str<strong>on</strong>g>e model’s parameters induce a partial order <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen’s stages. This binary relati<strong>on</strong> j ≻ k is based <strong>on</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate<br />

at which stage j produces stage k wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate at which stage k is lost to dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and transformati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e next stage k + 1. We say stage j starves stage k if<br />

immune regulati<strong>on</strong> at stage j deprives stage k <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient populati<strong>on</strong> to support<br />

immune regulati<strong>on</strong>. A stage k is called starvable if <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er stage j such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at j ≻ k. If no such j exists, k is called unstarvable. One <str<strong>on</strong>g>of</str<strong>on</strong>g> our main results<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at, generically, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system has a unique (local) asymptotically stable<br />

fixed point, namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e at which all unstarvable stages are regulated and all<br />

starvable stages are unregulated. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is sense, <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unstarvable<br />

stages is sufficient to immunologically c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>e starvable stages. At steady<br />

state, immune regulati<strong>on</strong> is <strong>on</strong>ly required against <str<strong>on</strong>g>th</str<strong>on</strong>g>ose stages <str<strong>on</strong>g>th</str<strong>on</strong>g>at are produced<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> relatively higher yield.<br />

This puts wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in reach a principled quantitative explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic infecti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens such as EBV, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> (which is known to<br />

vary from pers<strong>on</strong> to pers<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> EBV), <str<strong>on</strong>g>th</str<strong>on</strong>g>e sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected populati<strong>on</strong>s<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e host resp<strong>on</strong>se.<br />

248<br />

References.


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] E. Delgado-Eckert and M. Shapiro, A model <str<strong>on</strong>g>of</str<strong>on</strong>g> host resp<strong>on</strong>se to a multi-stage pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology. 2010 Oct. 2. [Epub ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> print]. DOI 10.1007/s11538-010-9596-2.<br />

15:25–15:45<br />

Marina Dolfin<br />

Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics - University <str<strong>on</strong>g>of</str<strong>on</strong>g> Messina<br />

e-mail: mdolfin@unime.it<br />

A phenomenological approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al<br />

expansi<strong>on</strong> and immune competiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells<br />

This presentati<strong>on</strong> deals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al expansi<strong>on</strong> and<br />

immune competiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells [1] based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e approach <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuum mechanics.<br />

Field equati<strong>on</strong>s are ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically c<strong>on</strong>structed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic framework <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> reacting fluid mixtures [2, 3], adapted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e case<br />

in which proliferative events occur [4, 5]. The introduced ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model is<br />

inspired by <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental observati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at during <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> type I hypersensitivity<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Specific ImmunoTherapy, <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> allergen<br />

specific Th1 cells increases [6] and its principal scope is to individuate key parameters<br />

and to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effect up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Th1 cell populati<strong>on</strong> over<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Th2 <strong>on</strong>e and viceversa.<br />

References.<br />

[1] N. Bellomo, G. Forni, Complex multicellular systems and immune competiti<strong>on</strong>: New paradigms<br />

looking for a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory Current Topics in Developmental Biology 81 (2008) 485–<br />

502.<br />

[2] I. Muller, Thermodynamics, Pitman Advanced Publishing Program (1985).<br />

[3] I. Muller, T. Ruggeri, Rati<strong>on</strong>al Extended Thermodynamics, Springer Tracts in Natural Philosophy,<br />

37 (1998) 84–92.<br />

[4] J.D. Humphrey, K.R. Rajagopal, A c<strong>on</strong>strained mixture model for grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and remodeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissues Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models and Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Applied Sciences 12 (2002) 407-430.<br />

[5] N. Bellomo, N.K. Li, P.K. Maini, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer modelling: selected topics,<br />

speculati<strong>on</strong>s and perspectives Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models and Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Applied Sciences 18 (2008)<br />

593–646.<br />

[6] Pers<strong>on</strong>al communicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. S. Gangemi <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Policlinico Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Messina to <str<strong>on</strong>g>th</str<strong>on</strong>g>e au<str<strong>on</strong>g>th</str<strong>on</strong>g>or.<br />

15:45–16:05<br />

Sebastian Gerdes<br />

Institute for Medical Informatics and Biometry, Medical Faculty Carl<br />

Gustav Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: sebastian.gerdes@tu-dresden.de<br />

Ingmar Glauche<br />

249


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Institute for Medical Informatics and Biometry, Medical Faculty Carl<br />

Gustav Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: ingmar.glauche@tu-dresden.de<br />

Ingo Roeder<br />

Institute for Medical Informatics and Biometry, Medical Faculty Carl<br />

Gustav Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: ingo.roeder@tu-dresden.de<br />

Can polycl<strong>on</strong>ality prevent <str<strong>on</strong>g>th</str<strong>on</strong>g>e outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> leukemia<br />

T cell receptor (TCR) polycl<strong>on</strong>al mature T cells are surprisingly resistant to<br />

<strong>on</strong>cogenic transformati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough retroviral inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell <strong>on</strong>cogenes. It has<br />

been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at leukemia/lymphoma did not occur up<strong>on</strong> transplantati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polycl<strong>on</strong>al<br />

T cells into RAG1-1-deficient recipients, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e T-cells were transduced<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high copy numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> gammaretroviral vectors encoding potent T cell <strong>on</strong>cogenes<br />

[1]. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er studies dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e transplantati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells from<br />

TCR m<strong>on</strong>ocl<strong>on</strong>al OT1 mice <str<strong>on</strong>g>th</str<strong>on</strong>g>at were transduced wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same protocol resulted<br />

in leukemia/lymphoma. The underlying mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at prevent <strong>on</strong>cogenesis in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e polycl<strong>on</strong>al situati<strong>on</strong> and endorse <str<strong>on</strong>g>th</str<strong>on</strong>g>e outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> leukemia in <str<strong>on</strong>g>th</str<strong>on</strong>g>e m<strong>on</strong>ocl<strong>on</strong>al<br />

situati<strong>on</strong> are currently unclear.<br />

Using a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling approach, we challenge <str<strong>on</strong>g>th</str<strong>on</strong>g>e arising hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at polycl<strong>on</strong>ality induces competiti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell repertoire, which in turn<br />

suppresses <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> a leukemic cl<strong>on</strong>e. As a starting point, we developed a<br />

simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell homeostasis emphasizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell homeostasis<br />

to species coexisting in ecological niches. The key assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

T cell survival is critically dependent <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>e-specific TCR<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> self-peptide-MHC-complexes (corresp<strong>on</strong>ding to envir<strong>on</strong>mental niches).<br />

Based <strong>on</strong> our modelling results, we speculate about <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

leukemic cl<strong>on</strong>e. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in our model framework, we are able to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed<br />

phenomena under <str<strong>on</strong>g>th</str<strong>on</strong>g>e following two assumpti<strong>on</strong>s about <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

leukemic cl<strong>on</strong>e: (i) The leukemic cl<strong>on</strong>e is less competent <str<strong>on</strong>g>th</str<strong>on</strong>g>an o<str<strong>on</strong>g>th</str<strong>on</strong>g>er T cell cl<strong>on</strong>es in<br />

acquiring survival stimuli from niches. (ii) Proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leukemic cl<strong>on</strong>e is less<br />

dependent <strong>on</strong> niche interacti<strong>on</strong>. This is a plausible assumpti<strong>on</strong> as <str<strong>on</strong>g>th</str<strong>on</strong>g>e transgenes<br />

are potent <strong>on</strong>cogenes capable <str<strong>on</strong>g>of</str<strong>on</strong>g> activating mitotic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

From our results we c<strong>on</strong>clude, <str<strong>on</strong>g>th</str<strong>on</strong>g>at cl<strong>on</strong>al competiti<strong>on</strong> is a possible mechanism<br />

to counterbalance cl<strong>on</strong>al dominance. Our modeling results allow us to foster <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

design <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er biological experiments. A future goal is to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimum<br />

cl<strong>on</strong>al complexity <str<strong>on</strong>g>th</str<strong>on</strong>g>at is needed in order to c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>e leukemic cl<strong>on</strong>e under <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

given circumstances.<br />

References.<br />

[1] Newrzela S, Cornils K et al. Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> mature T cells to <strong>on</strong>cogene transformati<strong>on</strong>. Blood.<br />

2008;112(6):2278–2286.<br />

250<br />

16:05–16:25


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Shingo Iwami<br />

Japan Science and Technology Agency<br />

e-mail: siwami@ms.u-tokyo.ac.jp<br />

Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>erine Beauchemin<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Ryers<strong>on</strong> University<br />

Tetsuko Tada<br />

Institute for Virus Research, Kyoto University<br />

Tatsuhiko Igarashi<br />

Institute for Virus Research, Kyoto University<br />

Tomoyuki Miura<br />

Institute for Virus Research, Kyoto University<br />

Quantificati<strong>on</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> viral dynamics in vitro - <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> SHIV <strong>on</strong> HSC-F -<br />

What we want to obtain and analyze are quantitative time-course experimental<br />

data but not qualitative snap-shot experimental data for <str<strong>on</strong>g>th</str<strong>on</strong>g>e purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> getting<br />

dynamical informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viral infecti<strong>on</strong> such as half-life <str<strong>on</strong>g>of</str<strong>on</strong>g> infected cells, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viri<strong>on</strong>s, burst-size <str<strong>on</strong>g>of</str<strong>on</strong>g> virus, basic reproductive number <str<strong>on</strong>g>of</str<strong>on</strong>g> infected cell and so <strong>on</strong>.<br />

Today, I am going to show our recent studies about "Quantificati<strong>on</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> viral<br />

dynamics in vitro", in which we can quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e above dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> SHIV <strong>on</strong> HSC-F<br />

cell line.<br />

251


Immunology 2<br />

Wednesday, June 29, 17:00, Room: AM6<br />

Chaired by: Julia Kzhyshkowska<br />

17:00–17:30<br />

Jessica C<strong>on</strong>way<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

e-mail: c<strong>on</strong>way@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ubc.ca<br />

Dr. Daniel Coombs<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

C<strong>on</strong>tinuous-time branching processes to model viral load in<br />

treated HIV+ individuals<br />

We will discuss a c<strong>on</strong>tinuous-time, multi-type branching model <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV viral dynamics<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood stream. We are motivated by observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> viral load in<br />

HIV+ patients <strong>on</strong> anti-retroviral treatment (ART). ARTs very effectively limit viral<br />

replicati<strong>on</strong>. However, while <strong>on</strong> ARTs, an HIV+ individual’s viral load remains<br />

n<strong>on</strong>-zero, and blood tests show occasi<strong>on</strong>al viral blips: short periods <str<strong>on</strong>g>of</str<strong>on</strong>g> increased<br />

viral load. We hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esize <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is low viral load can be attributed to activati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cells latently infected by HIV before treatment initiati<strong>on</strong>. Blips <str<strong>on</strong>g>th</str<strong>on</strong>g>en represent<br />

small-probability deviati<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean. Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>is system as a branching<br />

process, we derive equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability generating functi<strong>on</strong>. Using a novel<br />

numerical approach we extract probability distributi<strong>on</strong>s for viral load yielding blip<br />

amplitudes c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> patient data. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en compute distributi<strong>on</strong>s <strong>on</strong> durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese blips <str<strong>on</strong>g>th</str<strong>on</strong>g>rough direct numerical simulati<strong>on</strong>. Our stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

latent cell activati<strong>on</strong> reproduces features <str<strong>on</strong>g>of</str<strong>on</strong>g> treated HIV infecti<strong>on</strong>. It can be used<br />

to provide insight into variability <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment outcomes for HIV+ individuals not<br />

available in deterministic models.<br />

17:35–17:55<br />

Yin Cai<br />

Research Group Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, German Cancer Research<br />

Center, Heidelberg, Germany<br />

e-mail: yin.cai@bioquant.uni-heidelberg.de<br />

253


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Thomas Höfer<br />

Research Group Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, German Cancer Research<br />

Center, Heidelberg, Germany<br />

Spatially-resolved ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell antigen<br />

recogniti<strong>on</strong><br />

T cells play a crucial role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive immune resp<strong>on</strong>se. Interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

specific antigens initiate T cell signaling but also ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e majority <str<strong>on</strong>g>of</str<strong>on</strong>g> selfreactive<br />

cells are selectively deleted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus during its maturati<strong>on</strong>. However,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying mechanisms remain unclear as to why T cells can reliably distinguish<br />

cognate antigens from o<str<strong>on</strong>g>th</str<strong>on</strong>g>er peptides <str<strong>on</strong>g>th</str<strong>on</strong>g>at have <strong>on</strong>ly slightly weaker affinity<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell receptor (TCR). Recent data indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> TCRs at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e interface <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell and antigen-presenting cell could be <str<strong>on</strong>g>th</str<strong>on</strong>g>e key to <str<strong>on</strong>g>th</str<strong>on</strong>g>e exquisite<br />

ligand recogniti<strong>on</strong> specificity. We develop a spatially-resolved ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> individual TCRs. We use stochastic<br />

M<strong>on</strong>te Carlo simulati<strong>on</strong>s to analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and its ability to exhibit TCR clustering.<br />

The model aims at rati<strong>on</strong>alizing experiments <str<strong>on</strong>g>th</str<strong>on</strong>g>at have dem<strong>on</strong>strated a<br />

sharp affinity <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold for <str<strong>on</strong>g>th</str<strong>on</strong>g>ymic selecti<strong>on</strong>. It will help us to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TCR clustering and <str<strong>on</strong>g>th</str<strong>on</strong>g>e core elements initializing T cell signaling during antigen<br />

recogniti<strong>on</strong> and will inform new experimental work.<br />

17:55–18:15<br />

José A. García<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Preventive and Social Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Otago,<br />

PO Box 913, Dunedin 9054, New Zealand<br />

e-mail: jose.garcia@otago.ac.nz<br />

Aidin Jalilzadeh<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Otago, Dunedin<br />

9054, New Zealand<br />

e-mail: aidin_jalilzadeh@yahoo.com<br />

Boris Baeumer<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Otago, PO<br />

Box 913, Dunedin 9054, New Zealand<br />

e-mail: bbaeumer@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.otago.ac.nz<br />

A reinforced random walk model for studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e acute<br />

inflammatory resp<strong>on</strong>se<br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> reinforced random walks (RRWs) provides a natural framework<br />

for modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. RRWs are in particular suitable for<br />

modelling cell motility in resp<strong>on</strong>se to <strong>on</strong>e or more c<strong>on</strong>trol substances [1]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

past RRWs have been used to model angiogenesis and solid tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

metastasis [2, 3].<br />

254


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we have developed a spatio-temporal ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong>-advecti<strong>on</strong>-reacti<strong>on</strong> equati<strong>on</strong>s, to capture some aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tissue inflammatory resp<strong>on</strong>se. Two sorts <str<strong>on</strong>g>of</str<strong>on</strong>g> cell movement mechanisms are c<strong>on</strong>sidered:<br />

1. Chemotactic as <str<strong>on</strong>g>th</str<strong>on</strong>g>e major physiological effect <str<strong>on</strong>g>th</str<strong>on</strong>g>at leads <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> leukocytes towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e site <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>/inflammati<strong>on</strong>, 2. Leukocytes’ random<br />

motility described via diffusi<strong>on</strong> process. The proposed model accounts for (1) antigen<br />

recogniti<strong>on</strong>, (2) <str<strong>on</strong>g>th</str<strong>on</strong>g>e effector functi<strong>on</strong> (activati<strong>on</strong>/inhibiti<strong>on</strong>), (3) innate immune<br />

resp<strong>on</strong>se, (4) eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antigen and resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> and (5) returning<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e immune cells back to a steady state. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> a persistent source <str<strong>on</strong>g>of</str<strong>on</strong>g> antigen,<br />

i.e. chr<strong>on</strong>ic infecti<strong>on</strong>, it is observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se reaches an equilibrium<br />

level. 2-D Matlab simulati<strong>on</strong>s have enabled us to visualise <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e immune cells and chemicals.<br />

Our simulati<strong>on</strong>s could provide insights for better understanding complex diseases<br />

associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> chr<strong>on</strong>ic inflammati<strong>on</strong> like cancer and autoimmunity.<br />

References.<br />

[1] EA Codling, et al, Random walk models in biology J R Soc Interface (2008) 5 813–834.<br />

[2] MJ Plank and BD Sleeman, A reinforced random walk model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour angiogenesis and<br />

anti-angiogenic strategies Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Med Biol (2003) 20 135–181.<br />

[3] ARA Anders<strong>on</strong>, et al, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour invasi<strong>on</strong> and metastasis Comp Ma<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g> Med (2000) 2 129–154.<br />

18:15–18:35<br />

Koichi Saeki<br />

Kyushu University<br />

e-mail: saekikou@bio-ma<str<strong>on</strong>g>th</str<strong>on</strong>g>10.biology.kyushu-u.ac.jp<br />

Yoh Iwasa<br />

Kyushu University<br />

T cell anergy as a strategy to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autoimmunity<br />

Some self-reactive immature T cells escape negative selecti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus and<br />

may cause autoimmune diseases later. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e periphery, if T cells are stimulated<br />

insufficiently by peptide-major histocompatibility complex, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey become inactive<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytokines changes, a phenomen<strong>on</strong> called "T cell anergy".<br />

We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at T cell anergy may functi<strong>on</strong> to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autoimmunity. The underlying logic is as follows: Since <str<strong>on</strong>g>th</str<strong>on</strong>g>ose self-reactive T cells<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at receive str<strong>on</strong>g stimuli from self-antigens are eliminated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus, T cells<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at receive str<strong>on</strong>g stimuli in <str<strong>on</strong>g>th</str<strong>on</strong>g>e periphery are likely to be n<strong>on</strong>-self-reactive. As a<br />

c<strong>on</strong>sequence, when a T cell receives a weak stimulus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell is<br />

self-reactive is higher <str<strong>on</strong>g>th</str<strong>on</strong>g>an in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>th</str<strong>on</strong>g>at it receives a str<strong>on</strong>g stimulus. Therefore,<br />

inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell may reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e danger <str<strong>on</strong>g>of</str<strong>on</strong>g> autoimmunity. We c<strong>on</strong>sider<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e formalism in which each T cell chooses its resp<strong>on</strong>se depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stimuli in order to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> autoimmune diseases while maintaining its<br />

ability to attack n<strong>on</strong>-self-antigens effectively. The numerical calculati<strong>on</strong> reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

255


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

T cell anergy is <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal resp<strong>on</strong>se when a T cell meets wi<str<strong>on</strong>g>th</str<strong>on</strong>g> antigen-presenting<br />

cells many times in its lifetime, and when <str<strong>on</strong>g>th</str<strong>on</strong>g>e product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e autoimmunity risk<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> self-reactive T cells has an intermediate value.<br />

18:35–18:55<br />

Vladas Skakauskas<br />

Naugarduko 24, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics, Vilnius University,<br />

Vilnius, Li<str<strong>on</strong>g>th</str<strong>on</strong>g>uania<br />

e-mail: vladas.skakauskas@maf.vu.lt<br />

Pranas Katauskis<br />

Naugarduko 24, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics, Vilnius University,<br />

Vilnius, Li<str<strong>on</strong>g>th</str<strong>on</strong>g>uania<br />

e-mail: pranas.katauskis@mif.vu.lt<br />

Alex Skvortsov<br />

DSTO, Fishermans Bend, Vic 3207, Australia<br />

e-mail: alex.skvortsov@dsto.defence.gov.au<br />

Numerical study <str<strong>on</strong>g>of</str<strong>on</strong>g> Receptor-Toxin-Antibody Interacti<strong>on</strong><br />

Problem<br />

The successful bio-medical applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies is well-documented and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere is increasing interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies for mitigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

toxins associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various biological <str<strong>on</strong>g>th</str<strong>on</strong>g>reats. Such toxins are an important<br />

potential target for designing <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies against <str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>reats and a brood range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

approaches has been taken to develop inhibitors <str<strong>on</strong>g>th</str<strong>on</strong>g>at may be <str<strong>on</strong>g>of</str<strong>on</strong>g> prophylactic or<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic use. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e progress in bio-engineering many antibodies have been<br />

generated for <str<strong>on</strong>g>th</str<strong>on</strong>g>is purpose wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different affinity parameters and, as a result, different<br />

properties. However affinity, by itself, is a poor predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> protective or<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic potential which is determined by a new c<strong>on</strong>solidated kinetic parameter<br />

Receptor-Toxin-Antibody (RTA) kinetics and relative c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species.<br />

Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any new antibody necessitates development <str<strong>on</strong>g>of</str<strong>on</strong>g> a high fidelity model<br />

for RTA interacti<strong>on</strong>.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e important step in improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> species. Incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin,<br />

antibody, and associated complex into <str<strong>on</strong>g>th</str<strong>on</strong>g>e RTA model leads to a PDEs model.<br />

Numerical study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protective efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> antibody against a given toxin<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> cells placed into a toxin-antibody soluti<strong>on</strong> will be discussed.<br />

References.<br />

[1] A. Skvortsov, P. Gray, Modelling and simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> receptor-toxin-antibody interacti<strong>on</strong>, in:<br />

18<str<strong>on</strong>g>th</str<strong>on</strong>g> World IMACS/MODSIM C<strong>on</strong>gress, Australia, 2009, 185-191.<br />

[2] B. Goldstein, M. Dembo, Approximating <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> reversible reacti<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell surface: Ligand-receptor kinetics, Biophys. J. 68 (1995) 1222-1230.<br />

[3] M. Coppey, A.M. Berezhkovskii, S.C. Sealf<strong>on</strong>, S.Y. Shvartsman, Time and lenght scales <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autocrine signals in <str<strong>on</strong>g>th</str<strong>on</strong>g>ree dimensi<strong>on</strong>s, Biophys. J. 93 (2007) 1917-1922.<br />

256


Immunology 3 / Medical Physiology 2<br />

Saturday, July 2, 08:30, Room: CP2<br />

Chaired by: John Ward<br />

08:30–09:00<br />

Gabriel Dimitriu<br />

“Gr. T. Popa” University <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine and Pharmacy,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics,<br />

16 Universitatii street, 700115, Iaşi, Romania<br />

e-mail: dimitriu.gabriel@gmail.com<br />

Optimal c<strong>on</strong>trols for enhancing natural resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

immune system in obesity-related chr<strong>on</strong>ic inflammati<strong>on</strong><br />

Recent researches shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> obesity has increased by 70 percent<br />

over <str<strong>on</strong>g>th</str<strong>on</strong>g>e past decade [2]. According to World Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Organizati<strong>on</strong> estimates,<br />

over 300 milli<strong>on</strong> adults are obese [4]. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem c<strong>on</strong>tinues to<br />

grow worldwide, many scientific experts c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e obesity crisis a pandemic [3].<br />

Chr<strong>on</strong>ic inflammati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in fat tissue is now recognized as a c<strong>on</strong>tributor to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

many ill heal<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>th</str<strong>on</strong>g>at come wi<str<strong>on</strong>g>th</str<strong>on</strong>g> obesity, from diabetes to cardiovascular<br />

disease. The new discovery may <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore point to a targeted <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy designed<br />

to limit <str<strong>on</strong>g>th</str<strong>on</strong>g>e heal<str<strong>on</strong>g>th</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e obesity epidemic, <str<strong>on</strong>g>th</str<strong>on</strong>g>e researchers say. Unlike<br />

acute inflammati<strong>on</strong>, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural resp<strong>on</strong>se to injury or infecti<strong>on</strong>, chr<strong>on</strong>ic<br />

inflammati<strong>on</strong> results from a defective immune resp<strong>on</strong>se. The excessive activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pro-inflammatory cells and proteins can result in additi<strong>on</strong>al defects for surrounding<br />

tissues. These effects <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic inflammati<strong>on</strong> can lead to diseases such as cancer,<br />

kidney failure, a<str<strong>on</strong>g>th</str<strong>on</strong>g>erosclerosis, and type 2 diabetes mellitus.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>eory is applied to an extended versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model introduced by P. Díaz et al. in [1]. The model is defined by a<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s and reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular and cellular<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macrophages, T cells, chemokines, and cytokines <str<strong>on</strong>g>th</str<strong>on</strong>g>at cause<br />

chr<strong>on</strong>ic inflammati<strong>on</strong>, after <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> adipocyte hypertrophy. The model does<br />

not account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e time period in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e subject becomes obese. In comparis<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in [1], here a linear model for pharmacokinetics has been added.<br />

Seeking to maximize <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> drug treatments to <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, we use a c<strong>on</strong>trol<br />

representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment. The optimal c<strong>on</strong>trol is characterized in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

optimality system, which is solved numerically for several scenarios.<br />

References.<br />

257


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] P. Díaz, M. Gillespie, J. Krueger, J. Pérez, A. Radebaughe, T. Shearman, G. Vo, and C.<br />

Wheatley, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system’s role in obesity-related chr<strong>on</strong>ic inflammati<strong>on</strong><br />

ICAM, Virginia Bioinformatics Institute, 2(2) (2009), 26–45.<br />

[2] A. Mokdad, B. Bowman, E. Ford, F. Vinikor, J. Marks, and J. Koplan, The c<strong>on</strong>tinuing<br />

epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g> obesity and diabetes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e United States, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e American Medical<br />

Associati<strong>on</strong>, 286 (2001), 1195–1200.<br />

[3] B. Popkin and C. Doak, The obesity epidemic is a worldwide phenomen<strong>on</strong>, Nutriti<strong>on</strong> Review,<br />

56 (1998), 106–114.<br />

[4] P. Puska, C. Nishida, and D. Porter, World Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Organizati<strong>on</strong> strategy <strong>on</strong> diet, physical<br />

activity, and heal<str<strong>on</strong>g>th</str<strong>on</strong>g>: obesity and overweight, Data and statistics. WHO, 2007.<br />

09:05–09:25<br />

Fernão Vistulo de Abreu<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aveiro<br />

e-mail: fva@ua.pt<br />

Patricia Mostardinha<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aveiro<br />

Self-N<strong>on</strong>self discriminati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> Costimulati<strong>on</strong><br />

and Anergy<br />

The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> self-n<strong>on</strong>self discriminati<strong>on</strong> is a l<strong>on</strong>g standing problem in immunology.<br />

So far, it has been unclear whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er T cells can perform perfect and efficient<br />

self-n<strong>on</strong>self discriminati<strong>on</strong>, in populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> arbitrary diversity. I will discuss a<br />

mechanism <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows performing perfect self-n<strong>on</strong>self discriminati<strong>on</strong> if bo<str<strong>on</strong>g>th</str<strong>on</strong>g> positive<br />

and negative repertoire educati<strong>on</strong> processes are used, and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore if costimulati<strong>on</strong><br />

and anergy mechanisms are afterwards c<strong>on</strong>sidered during cellular activati<strong>on</strong>.<br />

These results provide compiling evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e main driving force shaping <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

adaptive immune could be <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to perform prompt and accurate self-n<strong>on</strong>self<br />

discriminati<strong>on</strong>. They also provide insights <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible role <str<strong>on</strong>g>of</str<strong>on</strong>g> positive selecti<strong>on</strong>,<br />

costimulati<strong>on</strong> and anergy in <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive immune system.<br />

09:25–09:45<br />

Galina Gramotnev<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Queensland, St.<br />

Lucia, QLD 4072, Australia<br />

e-mail: d.gramotnev@centre-pst.com<br />

Dmitri K. Gramotnev<br />

Centre for Psychosomatic Treatment, GPO Box 1272, Aspley, QLD<br />

4034, Australia<br />

Generalised Stress: A unifying model for psychological stress<br />

and psychosomatic treatment<br />

258


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological stress and psychosomatic<br />

treatment <strong>on</strong> patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> serious immune-related diseases and c<strong>on</strong>diti<strong>on</strong>s is bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

challenging and important for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> new quantifiable and effective<br />

treatment approaches for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases and c<strong>on</strong>diti<strong>on</strong>s, including cancers [1],<br />

myeloproliferative blood diseases [2], etc. The development <str<strong>on</strong>g>of</str<strong>on</strong>g> such quantitative<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models is impeded by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e characterisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological<br />

stress and psychosomatic treatment is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten based up<strong>on</strong> subjective percepti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e involved human subjects (including preservative cogniti<strong>on</strong>). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

paper, we introduce and justify a new model based <strong>on</strong> a c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> generalised<br />

stress <str<strong>on</strong>g>th</str<strong>on</strong>g>at ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically unifies psychological stress and psychosomatic (hypnotic)<br />

treatment. This model correlates <str<strong>on</strong>g>th</str<strong>on</strong>g>e two independently and subjectively<br />

reported levels <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological stress and psychosomatic treatment <strong>on</strong> two different<br />

arbitrary scales to an objectively measured physiological parameter platelet<br />

count. As a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two subjectively reported quantities are reduced to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

same unit scale and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically unified into <strong>on</strong>e new quantity called generalised<br />

stress. Excellent applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is dem<strong>on</strong>strated <strong>on</strong> an example<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a 3.5 years l<strong>on</strong>gitudinal study <str<strong>on</strong>g>of</str<strong>on</strong>g> blood parameters in a patient wi<str<strong>on</strong>g>th</str<strong>on</strong>g> myel<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrosis,<br />

who was subjected to severe work-related psychological stress and psychosomatic<br />

(hypnotic) treatment. The stress and treatment were statistically shown to have a<br />

major (dominant) impact <strong>on</strong> blood platelet counts well described by an exp<strong>on</strong>ential<br />

dependence <strong>on</strong> cumulative levels <str<strong>on</strong>g>of</str<strong>on</strong>g> generalized stress. Only 12 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e total<br />

variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> platelet counts could be attributed to factors o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an psychological<br />

stress and psychosomatic treatment. The developed model will be instrumental for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e quantified analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological stress and psychosomatic<br />

treatment for patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> immune and blood disorders. It also dem<strong>on</strong>strates a<br />

unique role <str<strong>on</strong>g>of</str<strong>on</strong>g> platelets for neuroimmunological pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways for psychological stress<br />

and psychosomatic treatment.<br />

References.<br />

[1] B. L. Andersen, et al, Biobehavioral, immune, and heal<str<strong>on</strong>g>th</str<strong>on</strong>g> benefits following recurrence for<br />

psychological interventi<strong>on</strong> participants, Clinical Cancer Res, 16, 270-278, 2010.<br />

[2] D. K. Gramotnev, G. Gramotnev, Psychological stress and psychosomatic treatment: Major<br />

impact <strong>on</strong> serious blood disorders, NeuroImmunoModulati<strong>on</strong>, 18, 171-183, 2011.<br />

09:45–10:05<br />

Masoomeh Taghipoor 1<br />

e-mail: masoomeh.taghipoor@lmpt.univ-tours.fr<br />

Philippe Lescoat 2<br />

e-mail: Philippe.Lescoat@tours.inra.fr<br />

Jean-René Licois 1<br />

e-mail: licois@lmpt.univ-tours.fr<br />

Christine Georgelin 1<br />

e-mail: Christine.Georgelin@lmpt.univ-tours.fr<br />

Guy Barles 1<br />

e-mail: barles@lmpt.univ-tours.fr<br />

259


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

1 Laboratoire de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques et Physique Théorique (CNRS UMR-<br />

6083), Denis Poiss<strong>on</strong> Federati<strong>on</strong> (CNRS FR-2964), François Rabelais<br />

University, Parc de Grandm<strong>on</strong>t, 37200 Tours, France<br />

2 INRA, UR83 Recherches Avicoles, 37380 Nouzilly, France,<br />

A New Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model for combining Transport and<br />

Degradati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Small Intestine<br />

The small intestine is resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e major part <str<strong>on</strong>g>of</str<strong>on</strong>g> feedstuffs digesti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

gastrointestinal tract. Several models have been developed for representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a bolus in <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine ([1], [2], [3]). This work tries to go fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

in modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>ese phenomena by representing a simultaneous model for degradati<strong>on</strong><br />

and absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feedstuffs and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir transport in <str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal lumen. Specifically,<br />

we determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bolus and <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stituents at<br />

each time. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we present four successive models which<br />

reflect <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling process at its different stages wi<str<strong>on</strong>g>th</str<strong>on</strong>g> our attempts to make it more<br />

realistic by inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more relevant biological phenomena. The small intestine is<br />

assumed to be a <strong>on</strong>e-dimensi<strong>on</strong>al interval and <str<strong>on</strong>g>th</str<strong>on</strong>g>e bolus moves <str<strong>on</strong>g>th</str<strong>on</strong>g>rough its lumen due<br />

to migrating myoelectric complex. The bolus is treated as a homogeneous cylinder<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fixed leng<str<strong>on</strong>g>th</str<strong>on</strong>g> l and variable radius R(t). The degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feedstuffs is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> volumic and surfacic transformati<strong>on</strong>s. This model is based <strong>on</strong> a system <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coupled ordinary differential equati<strong>on</strong>s. These equati<strong>on</strong>s are solved by a classical<br />

numerical integrati<strong>on</strong> using Runge-Kutta me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong> are<br />

c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental works in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature (e.g. in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> purified<br />

starch [5]), al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough more analysis and experimentati<strong>on</strong>s are needed to represent<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reality more closely.<br />

The sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work c<strong>on</strong>sists in using <str<strong>on</strong>g>th</str<strong>on</strong>g>e homogenizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to<br />

simplify <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport equati<strong>on</strong> and justify <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> by<br />

intestinal wall [4].<br />

The transport <str<strong>on</strong>g>of</str<strong>on</strong>g> bolus inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine is induced by high frequency<br />

pulses. These pulses cause rapid variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bolus’ velocity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine.<br />

We show ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulses can be averaged out in an appropriate<br />

way <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapidly varying velocity can be replaced by a slowly varying <strong>on</strong>e.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine<br />

wall, <str<strong>on</strong>g>th</str<strong>on</strong>g>e local absorpti<strong>on</strong> rate is not precisely defined. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough, an effective or<br />

averaged rate <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> is determined by help <str<strong>on</strong>g>of</str<strong>on</strong>g> homogenizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [6].<br />

To <str<strong>on</strong>g>th</str<strong>on</strong>g>is aim, a 3-D transport-diffusi<strong>on</strong> PDE in <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain Ω ɛ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a Neumann<br />

boundary c<strong>on</strong>diti<strong>on</strong> (reflecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourier’s law) is defined. The domain Ω ɛ describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine. It is a 3-D domain wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a small radius r ɛ and a highly<br />

oscillating boundary. The oscillati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its boundary is justified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fingerlike villi which cover <str<strong>on</strong>g>th</str<strong>on</strong>g>e inner surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine. The unknown<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem being <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e absorbable nutrients, <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary c<strong>on</strong>diti<strong>on</strong><br />

represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e absorpti<strong>on</strong> rate by intestinal wall. To justify <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>stant<br />

absorpti<strong>on</strong> rate, our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od c<strong>on</strong>sists in a passage to <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit from <str<strong>on</strong>g>th</str<strong>on</strong>g>is equati<strong>on</strong><br />

to obtain a 1-D transport equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a c<strong>on</strong>stant averaged rate <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> .<br />

References.<br />

[1] J.D. Logan, A. Joern, W. Wolesensky , Locati<strong>on</strong>, Time, and Temperature Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Digesti<strong>on</strong> in Simple Animal Tracts, J. Theoretical Biology, (2002), Issue 1, 216 5–18.<br />

260


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] D. Bastianelli, D. Sauvant, A. Rerat, A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> digesti<strong>on</strong> and nutrient<br />

absorpti<strong>on</strong> in pigs, J. Anim. Sci. (1996) Issue 8, 74 1873–1887.<br />

[3] R. Miftah<str<strong>on</strong>g>of</str<strong>on</strong>g>, N. Akhmadeev, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> intestinal propulsi<strong>on</strong>, J. Theoretical Biology, (2007),<br />

Issue 2, 246 377–393.<br />

[4] Piccinini, Livio C. Homogenizati<strong>on</strong> problems for ordinary differential equati<strong>on</strong>s, Rend. Circ.<br />

Mat. Palermo (2), (1978),27 no. 1, 95–112.<br />

[5] B. Darcy, J.P. Laplace, P.A. Villiers, Digesti<strong>on</strong> dans l’intestin grele chez le porc, Ann.zootech,<br />

(1981), 30 31–62.<br />

[6] G. Barles, F.Da Lio, P-L Li<strong>on</strong>s, P. E. SouganidisErgodic problems and periodic homogenizati<strong>on</strong><br />

for fully n<strong>on</strong>linear equati<strong>on</strong>s in half-space type domains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Neumann boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

Indiana University Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Journal, (2008), 57 5 2355–2376<br />

261


Medical Physiology 1<br />

Tuesday, June 28, 11:00, Room: UA3<br />

Chaired by: Jerry Batzel<br />

11:00–11:30<br />

John Ward<br />

Loughborough University<br />

e-mail: john.ward@lboro.ac.uk<br />

Najida Begum<br />

Loughborough University<br />

e-mail: nbegum@pharmerit.com<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> wound healing and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic wounds<br />

Epidermal wound healing is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten described in broad terms as a 3 stage process,<br />

1) inflammati<strong>on</strong> (initial resp<strong>on</strong>ses to <str<strong>on</strong>g>th</str<strong>on</strong>g>e trauma), 2) granulati<strong>on</strong> and reepi<str<strong>on</strong>g>th</str<strong>on</strong>g>eliasati<strong>on</strong><br />

(leading to wound closure) and 3) remodelling (streng<str<strong>on</strong>g>th</str<strong>on</strong>g>ening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

new skin at <str<strong>on</strong>g>th</str<strong>on</strong>g>e wound site). Progressi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e granulati<strong>on</strong> phase is crucial<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e wound healing process and it is <str<strong>on</strong>g>th</str<strong>on</strong>g>is stage <str<strong>on</strong>g>th</str<strong>on</strong>g>at is typically arrested in chr<strong>on</strong>ic<br />

wounds. Factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at can lead to such an arrest include locally poor circulati<strong>on</strong><br />

(particularly for ulcers and pressure sores in <str<strong>on</strong>g>th</str<strong>on</strong>g>e elderly and diabetic patients) and<br />

bacterial infecti<strong>on</strong>. The costs involved in patient care is a significant burden to<br />

heal<str<strong>on</strong>g>th</str<strong>on</strong>g> services <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>e world.<br />

Presented in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is a spatio-temporal model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e healing processes during<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e granulati<strong>on</strong> phase, <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates tissue grow<str<strong>on</strong>g>th</str<strong>on</strong>g> (granular and epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial)<br />

and migrati<strong>on</strong>, immune resp<strong>on</strong>se, fibroblast activity and angiogenesis, all <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

dependent <strong>on</strong> nutrients and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor levels. Simulati<strong>on</strong>s highlighting <str<strong>on</strong>g>th</str<strong>on</strong>g>e key<br />

factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at influence normal and abnormal healing will be presented. For larger<br />

wounds, normal healing is characterised by <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> travelling wave soluti<strong>on</strong>s<br />

towards wound closure. Results assessing <str<strong>on</strong>g>th</str<strong>on</strong>g>e effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> bolus<br />

and topical <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies will also be discussed.<br />

11:35–12:00<br />

263


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Martina Gallenberger ∗<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Biometry, Helmholtz Zentrum München,<br />

Germany<br />

e-mail: martina.gallenberger@helmholtz-muenchen.de<br />

Burkhard A. Hense<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Biometry, Helmholtz Zentrum München,<br />

Germany<br />

Christina Kuttler<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University Munich, Germany<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for glucose and insulin dynamics<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> direct c<strong>on</strong>necti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle<br />

The term diabetes mellitus describes a group <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic diseases wi<str<strong>on</strong>g>th</str<strong>on</strong>g> persisting<br />

hyperglycemia as <str<strong>on</strong>g>th</str<strong>on</strong>g>e main symptom. Interest is increasingly focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e understanding<br />

and treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease because <str<strong>on</strong>g>of</str<strong>on</strong>g> its rising prevalence and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> severe complicati<strong>on</strong>s. Recent experimental results indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes mellitus.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, insulin and <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s. The basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

system is built by <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different models. To analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

work <str<strong>on</strong>g>of</str<strong>on</strong>g> Grodsky [1] introducing a packet hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis for insulin storage has been<br />

modified. This has been c<strong>on</strong>nected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose (Topp et al. [2])<br />

and a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle based <strong>on</strong> Daukste et al. [3]. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

system c<strong>on</strong>sists in its explicit incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle wi<str<strong>on</strong>g>th</str<strong>on</strong>g> insulin directly<br />

enhancing <str<strong>on</strong>g>th</str<strong>on</strong>g>e replicati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and its development will be introduced as well as its<br />

capability <str<strong>on</strong>g>of</str<strong>on</strong>g> accounting for metabolic failures in <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> to diabetes.<br />

References.<br />

[1] Grodsky, G.M., A <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold distributi<strong>on</strong> hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis for packet storage <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin and its ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling, The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Investigati<strong>on</strong> 51 (1972), 2047-2059<br />

[2] Topp, B., Promislow, K., De Vries, G., Miura, R.M., Finegood, D.T., A model <str<strong>on</strong>g>of</str<strong>on</strong>g> β-cell mass,<br />

insulin and glucose kinetics: pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways to diabetes, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 206 (2000),<br />

605-619<br />

[3] Daukste, L., Basse, B., Bagueley, B.C., Wall, D.J.N., Using a stem cell and progeny model to<br />

illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between cell cycle times <str<strong>on</strong>g>of</str<strong>on</strong>g> in vivo human tumour cell tissue populati<strong>on</strong>s,<br />

in vitro primary cultures and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell lines derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>em, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical<br />

Biology (2009), 1-9<br />

12:00–12:25<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an E. Hiorns<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: pmxjh1@nottingham.ac.uk<br />

B.S. Brook, I. Hall, O.E. Jensen<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

264


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

A biomechanical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e as<str<strong>on</strong>g>th</str<strong>on</strong>g>matic airway<br />

When as<str<strong>on</strong>g>th</str<strong>on</strong>g>matics come in c<strong>on</strong>tact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ag<strong>on</strong>ists (e.g. cold air, chemicals or dust),<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle in <str<strong>on</strong>g>th</str<strong>on</strong>g>e walls <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir lung airways c<strong>on</strong>tracts, causing wheezing<br />

and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er brea<str<strong>on</strong>g>th</str<strong>on</strong>g>ing difficulties. Over l<strong>on</strong>g periods <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is also substantial <str<strong>on</strong>g>th</str<strong>on</strong>g>ickening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e muscular airway wall. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling has significant potential<br />

to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>th</str<strong>on</strong>g>at initiate<br />

smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle c<strong>on</strong>tracti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-bridges wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in smoo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

muscle <str<strong>on</strong>g>th</str<strong>on</strong>g>at leads to c<strong>on</strong>tracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e airway and surrounding tissue, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

l<strong>on</strong>ger-term impact <str<strong>on</strong>g>of</str<strong>on</strong>g> wall remodelling <strong>on</strong> airway functi<strong>on</strong>. Here we address some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem by modelling an airway as a two-layer<br />

annulus in plane strain. The inner layer, representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e airway wall, is modelled<br />

as a n<strong>on</strong>linear incompressible fibre-reinforced material. The outer layer, representing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding parenchyma, is modelled as a linear compressible viscoelastic<br />

material. Airway deformati<strong>on</strong>s are induced ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er by imposing external stresses or<br />

via active forces generated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e inner muscular layer. When passively inflated,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e airway wall exhibits strain-stiffening and creep. The model reveals differences in<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> depending <strong>on</strong> whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er inflati<strong>on</strong> is driven by stresses <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

inner or outer boundary (reflecting differences between artificial and natural ventilati<strong>on</strong>).<br />

The model also shows significant stress gradients across <str<strong>on</strong>g>th</str<strong>on</strong>g>ickened airway<br />

walls. Initial results coupling wall and muscle mechanics will also be discussed.<br />

12:25–12:50<br />

Irene Vign<strong>on</strong>-Clementel<br />

INRIA Paris-Rocquencourt, France<br />

e-mail: irene.vign<strong>on</strong>-clementel@inria.fr<br />

G. Troiwanowski<br />

Stanford University, USA<br />

W. Yang<br />

UCSD, USA<br />

J. Feinstein<br />

Stanford University, USA<br />

A. Marsden<br />

UCSD, USA<br />

F. Migliavacca<br />

Politecnico Di Milano, Italy<br />

Towards predictive modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> patient-specific<br />

Glenn-to-F<strong>on</strong>tan c<strong>on</strong>versi<strong>on</strong>s: boundary c<strong>on</strong>diti<strong>on</strong>s and<br />

design issues.<br />

Single-ventricle defects are a class <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>genital heart diseases <str<strong>on</strong>g>th</str<strong>on</strong>g>at leave <str<strong>on</strong>g>th</str<strong>on</strong>g>e child<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e operati<strong>on</strong>al pump, requiring <str<strong>on</strong>g>th</str<strong>on</strong>g>e systemic and <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulm<strong>on</strong>ary circulati<strong>on</strong>s<br />

to be placed in series <str<strong>on</strong>g>th</str<strong>on</strong>g>rough several operati<strong>on</strong>s performed during young<br />

childhood. The last procedure (<str<strong>on</strong>g>th</str<strong>on</strong>g>e F<strong>on</strong>tan palliati<strong>on</strong>) artificially c<strong>on</strong>nects bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

venae cavae to <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulm<strong>on</strong>ary arteries, which improves oxygenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e baby<br />

265


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flowing passively into <str<strong>on</strong>g>th</str<strong>on</strong>g>e lungs. Numerical simulati<strong>on</strong>s may<br />

be used to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e flow and its c<strong>on</strong>necti<strong>on</strong> to post-operative<br />

failures and sources <str<strong>on</strong>g>of</str<strong>on</strong>g> morbidity. However <str<strong>on</strong>g>th</str<strong>on</strong>g>ey heavily rely <strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong><br />

prescripti<strong>on</strong>. We present our recent work <strong>on</strong> predictive patient-specific modeling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Glenn-to-F<strong>on</strong>tan c<strong>on</strong>versi<strong>on</strong>. Three-dimensi<strong>on</strong>al patient-specific preoperative<br />

models are developed based <strong>on</strong> clinical data. Results include a sensitivity analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

several hemodynamics factors to <str<strong>on</strong>g>th</str<strong>on</strong>g>e input data. In additi<strong>on</strong>, previous studies have<br />

dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometry plays an important role in F<strong>on</strong>tan hemodynamics.<br />

A novel Y-shaped design was recently proposed to improve up<strong>on</strong> traditi<strong>on</strong>al designs,<br />

and results showed promising hemodynamics. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we show how geometry<br />

and boundary c<strong>on</strong>diti<strong>on</strong>s affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese virtual surgical designs.<br />

In particular, we investigate if and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e inferior vena cava flow (which c<strong>on</strong>tains<br />

an important biological hepatic factor) can be optimally distributed amoung bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

lungs. Finally, we present a multiscale (<str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al to reduced model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

entire circulati<strong>on</strong>) predictive framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>is Glenn-to-F<strong>on</strong>tan c<strong>on</strong>versi<strong>on</strong>, which<br />

provides a means to relate global resp<strong>on</strong>se to local changes in geometry and hemodynamics<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e circulatory system. Results illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e local graft geometry<br />

plays essentially no role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e workload <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fset and Y-graft<br />

designs result in reduced energy loss, <str<strong>on</strong>g>th</str<strong>on</strong>g>is does not appear to have any significant<br />

impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac dynamics. This result suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at future work should focus<br />

not just <strong>on</strong> energy loss, but <strong>on</strong> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er clinical relevant parameters, such as hepatic<br />

flow distributi<strong>on</strong>.<br />

266


Neurosciences 1<br />

Wednesday, June 29, 08:30, Room: UA2<br />

Chaired by: Petr Lansky<br />

08:30–09:00<br />

Susanne Ditlevsen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Denmark<br />

e-mail: susanne@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

Priscilla Greenwood<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia, Vancouver, Canada<br />

e-mail: Priscilla.Greenwood@asu.edu<br />

The stochastic Morris-Lecar neur<strong>on</strong> model embeds a<br />

<strong>on</strong>e-dimensi<strong>on</strong>al diffusi<strong>on</strong> and its first-passage-time crossings<br />

Stochastic leaky integrate-and-fire models, i.e. <strong>on</strong>e-dimensi<strong>on</strong>al mean-reverting<br />

diffusi<strong>on</strong>s, are popular tools to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic fluctuati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>al<br />

membrane potential dynamics due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir simplicity and statistical tractability.<br />

They have been widely applied to gain understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying mechanisms<br />

for spike timing in neur<strong>on</strong>s, and have served as building blocks for more elaborate<br />

models. Especially <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ornstein-Uhlenbeck process is popular, but also o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

models like <str<strong>on</strong>g>th</str<strong>on</strong>g>e square-root model or models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n<strong>on</strong>-linear drift are sometimes<br />

applied. However, experimental data show varying time c<strong>on</strong>stants, state dependent<br />

noise, a graded firing <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold and time-inhomogeneous input, and higher<br />

dimensi<strong>on</strong>al, more biophysical models are called for.<br />

The stochastic Morris-Lecar neur<strong>on</strong> is a two-dimensi<strong>on</strong>al diffusi<strong>on</strong> which includes<br />

i<strong>on</strong> channel dynamics. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in a neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> its stable point,<br />

it can be approximated by a two-dimensi<strong>on</strong>al Ornstein-Uhlenbeck modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

c<strong>on</strong>stant circular moti<strong>on</strong>. The associated radial Ornstein-Uhlenbeck process is an<br />

example <str<strong>on</strong>g>of</str<strong>on</strong>g> a leaky integrate-and-fire model prior to firing. A new model c<strong>on</strong>structed<br />

from a radial Ornstein-Uhlenbeck process toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a simple firing mechanism<br />

based <strong>on</strong> detailed Morris-Lecar firing statistics reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e interspike interval<br />

distributi<strong>on</strong>, and has <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>e-dimensi<strong>on</strong>al model.<br />

The result justifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> attenti<strong>on</strong> paid to <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaky integrate-andfire<br />

models.<br />

267


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

09:05–09:25<br />

Daniel Forger<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

e-mail: forger@umich.edu<br />

Casey O. Diekman<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, Ohio State University<br />

The surprising complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> signal processing in clock<br />

neur<strong>on</strong>s<br />

Neur<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e suprachiasmatic nucleus (SCN) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>alamus act as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

central daily pacemakers in mammals. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese neur<strong>on</strong>s, a molecular circadian<br />

clock is closely coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>s electrical activity to process timekeeping<br />

signals from <str<strong>on</strong>g>th</str<strong>on</strong>g>e external world, and to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e signals <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>s will send<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e body. This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> many emerging examples <str<strong>on</strong>g>of</str<strong>on</strong>g> how neur<strong>on</strong>al<br />

firing influences, and is influenced by, intracellular biochemical systems.<br />

For as l<strong>on</strong>g as <str<strong>on</strong>g>th</str<strong>on</strong>g>ese neur<strong>on</strong>s had been studied, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey had been assumed to<br />

encode <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> day indicated by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir internal molecular clock by <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate at<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey fire acti<strong>on</strong> potentials. Here, I will present analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at suggests much more complex coding, largely based <strong>on</strong> a balance between<br />

calcium and sodium dynamics. Bifurcati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model we<br />

have developed <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s which c<strong>on</strong>trol daily timekeeping in mammals suggested<br />

a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical states, including depolarized low amplitude membrane oscillati<strong>on</strong>s<br />

and depolarizati<strong>on</strong> block. These states were c<strong>on</strong>firmed experimentally<br />

by colleagues. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er simulati<strong>on</strong>s suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at rest membrane potential may be<br />

more important <str<strong>on</strong>g>th</str<strong>on</strong>g>an spike rate for signaling in clock neur<strong>on</strong>s. This suggests a new<br />

modeling paradigm when c<strong>on</strong>sidering signaling from membrane to DNA and back.<br />

09:25–09:45<br />

Jan Pyrzowski<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurology, Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Gdansk<br />

e-mail: jan.pyrzowski@gmail.com<br />

A dynamical model <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy in a plastic neur<strong>on</strong>al network<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> self-organizati<strong>on</strong> scenarios<br />

taking place in a neur<strong>on</strong>al network model equipped wi<str<strong>on</strong>g>th</str<strong>on</strong>g> activity-dependent synaptic<br />

plasticity [1]. We identify several distinct stati<strong>on</strong>ary states as well as parameter<br />

regi<strong>on</strong>s in which two or more states are unstable and <str<strong>on</strong>g>th</str<strong>on</strong>g>e system displays sp<strong>on</strong>taneous<br />

dynamic transiti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>em. Such transiti<strong>on</strong>s take place recurrently,<br />

in various patterns, and involve abrupt reorganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al c<strong>on</strong>nectivity<br />

268


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simultaneous appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> new oscillatory behavior. For selected parameter<br />

regi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong>s suggestively resembles stereotypical seizurelike<br />

events <str<strong>on</strong>g>th</str<strong>on</strong>g>at reproduce some important pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ophysiological features <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy.<br />

These include: a pr<strong>on</strong>ounced peak in neur<strong>on</strong>al activity accompanied by hypersynchr<strong>on</strong>izati<strong>on</strong><br />

during <str<strong>on</strong>g>th</str<strong>on</strong>g>e events and l<strong>on</strong>g, irregular inter-event intervals. We also<br />

dem<strong>on</strong>strate transient "pre-seizure states", a feature which has been recently identified<br />

by n<strong>on</strong>linear EEG analysis in some forms <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy [2]. Our model suggests<br />

a novel hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis for <str<strong>on</strong>g>th</str<strong>on</strong>g>e still poorly understood basic mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy and<br />

seizure generati<strong>on</strong>. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological plausibility and bio-medical implicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our findings and outline some possible interpretati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phase transiti<strong>on</strong>s and complex systems <str<strong>on</strong>g>th</str<strong>on</strong>g>eory.<br />

References.<br />

[1] Izhikevich EM, Polychr<strong>on</strong>izati<strong>on</strong>: Computati<strong>on</strong> Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Spikes, Neural Comput. (2006) 18:245-<br />

282.<br />

[2] Le van Quyen M et al., Characterizing Neurodynamic Changes Before Seizures, J Clin Neurophysiol.<br />

(2001) 18(3):191-208.<br />

09:45–10:05<br />

Justyna Signerska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warszawa, Poland<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Technical Physics, Gdańsk University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Gdańsk, Poland<br />

e-mail: j.signerska@impan.pl<br />

Wacław Marzantowicz<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Sci., Adam Mickiewicz University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Poznań, Poznań, Poland<br />

e-mail: marzan@amu.edu.pl<br />

Firing map for integrate–and–fire models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> almost<br />

periodic stimulus<br />

In integrate–and–fire systems <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>secutive spikes can be recovered<br />

via iterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so–called firing map. Until now analytical approaches<br />

mainly c<strong>on</strong>centrated <strong>on</strong> models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type ẋ = f(t, x) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> f was<br />

c<strong>on</strong>tinuous and periodic in <str<strong>on</strong>g>th</str<strong>on</strong>g>e time variable ([1],[2],[3]). We analyze firing maps<br />

and firing sequences for <str<strong>on</strong>g>th</str<strong>on</strong>g>e class <str<strong>on</strong>g>of</str<strong>on</strong>g> integrate–and–fire models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulus<br />

functi<strong>on</strong> almost periodic in time (ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er uniformly almost periodic or in a Stepanov<br />

sense) and prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at many required properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing map still hold for<br />

leaky integrate-and fire ẋ = −σx + f(t) or Perfect Integrator ẋ = f(t) models when<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> f is <strong>on</strong>ly locally integrable. We prepare a formal framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing map arising from almost periodically driven<br />

integrate–and–fire systems. In particular, results c<strong>on</strong>cerning almost periodic displacement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing map and regularity properties (semi–/almost periodicity) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> interspike intervals will be shown.<br />

269


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] R. Brette, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e–dimensi<strong>on</strong>al spiking neur<strong>on</strong> model, J.Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.Biol., 48 (2004), 38–<br />

56.<br />

[2] H. Carrillo, F. A. Ongay, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing maps <str<strong>on</strong>g>of</str<strong>on</strong>g> a general class <str<strong>on</strong>g>of</str<strong>on</strong>g> forced integrate and fire<br />

neur<strong>on</strong>s, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci., 172 (2001), 33–53.<br />

[3] S. Coombes, P. C. Bressl<str<strong>on</strong>g>of</str<strong>on</strong>g>f, Mode locking and Arnold t<strong>on</strong>gues in integrate–and–fire neural<br />

oscillators, Phys. Rev. E, 60 (1999), 2086–2096.<br />

[4] W. Marzantowicz, J.Signerska, Firing map <str<strong>on</strong>g>of</str<strong>on</strong>g> an almost periodic input functi<strong>on</strong>, AIMS Proceedings<br />

2011, in print.<br />

10:05–10:25<br />

K.G. Kravchuk and A.K. Vidybida<br />

Bogolyubov Institute for Theoretical Physics,<br />

Metrololgichna str., 14-B, 03680 Kyiv, Ukraine<br />

e-mail: kgkravchuk@bitp.kiev.ua and vidybida@bitp.kiev.ua<br />

Delayed feedback results in n<strong>on</strong>-markovian statistics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>al firing<br />

The output inter-spike intervals (ISI) statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> a single neur<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delayed<br />

feedback is c<strong>on</strong>sidered. The c<strong>on</strong>structi<strong>on</strong> is driven externally wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Poiss<strong>on</strong> stream<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> excitatory impulses. Via <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback line, neur<strong>on</strong>’s output impulses are fed<br />

back to its input wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fixed time delay. We c<strong>on</strong>sider cases <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> excitatory and<br />

inhibitory neur<strong>on</strong>. Namely, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e first case, <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong> receives excitatory impulses<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e driving Poiss<strong>on</strong> stream and from its own output stream <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

feedback line. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d case, apart from <str<strong>on</strong>g>th</str<strong>on</strong>g>e external Poiss<strong>on</strong> excitati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

delayed self-inhibiti<strong>on</strong> is present. For analytical derivati<strong>on</strong>, we take binding neur<strong>on</strong><br />

(BN) model [1].<br />

delayed feedback<br />

input stream<br />

✲<br />

✲<br />

Σ ≤ N 0<br />

τ – memory ✲<br />

output stream<br />

}{{}<br />

t – ISI durati<strong>on</strong><br />

We obtain exact analytical expressi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e single-ISI c<strong>on</strong>diti<strong>on</strong>al probability<br />

density P (t 2 | t 1 ), which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability to obtain an output ISI <str<strong>on</strong>g>of</str<strong>on</strong>g> durati<strong>on</strong><br />

t 2 provided <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous ISI durati<strong>on</strong> was t 1 , and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e double-ISI c<strong>on</strong>diti<strong>on</strong>al<br />

probability density P (t 2 | t 1 , t 0 ).<br />

It turns out, <str<strong>on</strong>g>th</str<strong>on</strong>g>at P (t 2 | t 1 ) does not reduce to <str<strong>on</strong>g>th</str<strong>on</strong>g>e output ISI probability density<br />

P (t 2 ), found before. This means, <str<strong>on</strong>g>th</str<strong>on</strong>g>at firing statistics is n<strong>on</strong>-renewal <strong>on</strong>e even in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simplest possible neur<strong>on</strong>al network. Moreover, we prove exactly, <str<strong>on</strong>g>th</str<strong>on</strong>g>at P (t 2 | t 1 , t 0 )<br />

cannot be reduced to P (t 2 | t 1 ), <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <strong>on</strong> t 0 cannot be eliminated. This<br />

exactly means <str<strong>on</strong>g>th</str<strong>on</strong>g>at ISIs stream does not possess Markov property.<br />

270<br />


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Also, we introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>al probability density P (t n+1 | t n , . . . , t 1 , t 0 ). It<br />

is proven exactly, <str<strong>on</strong>g>th</str<strong>on</strong>g>at P (t n+1 | t n , . . . , t 1 , t 0 ) does not reduce to P (t n+1 | t n , . . . , t 1 )<br />

for any n ≥ 0. This means <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e output ISIs stream cannot be represented as<br />

Markov chain <str<strong>on</strong>g>of</str<strong>on</strong>g> any finite order.<br />

We c<strong>on</strong>clude, <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e delayed feedback presence causes n<strong>on</strong>-markovian behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>al firing statistics for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> excitatory and inhibitory neur<strong>on</strong>s. We<br />

suggest, <str<strong>on</strong>g>th</str<strong>on</strong>g>at interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental records <str<strong>on</strong>g>of</str<strong>on</strong>g> spiking activity should take<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is fact into account.<br />

References.<br />

[1] A.K. Vidybida, Neur<strong>on</strong> as time coherence discriminator. Biol. Cybern. 74 539–544 (1996).<br />

[2] K.G. Kravchuk, A.K. Vidybida, Delayed feedback causes n<strong>on</strong>-Markovian behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>al<br />

firing statistics. arXiv:1012.6019v2.<br />

271


Neurosciences 2<br />

Thursday, June 30, 11:30, Room: AM5<br />

Chaired by: Petr Lansky<br />

11:30–12:00<br />

Joanna Tyrcha<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Statistics, Stockholm University<br />

e-mail: joanna@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

John Hertz<br />

Niels Bohr Institute, Copenhagen; Nordita, Stockholm<br />

e-mail: hertz@nbi.dk<br />

Yasser Roudi<br />

Kavli Institute, NTNU, Tr<strong>on</strong>dheim; Nordita, Stockholm<br />

e-mail: yasserroudi@gmail.com<br />

Network rec<strong>on</strong>structi<strong>on</strong> from n<strong>on</strong>stati<strong>on</strong>ary spike trains<br />

Existing approaches to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> extracting neur<strong>on</strong>al c<strong>on</strong>nectivity from spike<br />

data [1,2] assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e network is in a stati<strong>on</strong>ary state, which it is not in many<br />

experiments. Here we describe a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for inferring bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network c<strong>on</strong>nectivity<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-dependent external drive <str<strong>on</strong>g>th</str<strong>on</strong>g>at causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>stati<strong>on</strong>arity.<br />

C<strong>on</strong>sider an experiment in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>s recorded are subjected repeatedly<br />

to a potentially unknown external input (such as would arise from sensory<br />

stimulati<strong>on</strong>). The spikes are assumed to be binned in time and represented by a<br />

binary array: S i (t, r) = 1 indicates a spike and S i (t, r) = −1 indicates no spike<br />

by neur<strong>on</strong> i in time bin t <str<strong>on</strong>g>of</str<strong>on</strong>g> repetiti<strong>on</strong> r <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e measurement. We fit <str<strong>on</strong>g>th</str<strong>on</strong>g>ese data to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest kind <str<strong>on</strong>g>of</str<strong>on</strong>g> binary stochastic model: At time step t <str<strong>on</strong>g>of</str<strong>on</strong>g> repetiti<strong>on</strong> r, each<br />

formal neur<strong>on</strong> receives a net input, H i (t, r) = h i (t)+ ∑ j J ijS j (t, r), and it takes <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

value +1 at <str<strong>on</strong>g>th</str<strong>on</strong>g>e next step wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a probability given by a logistic sigmoidal functi<strong>on</strong><br />

1/[1 + exp(−H i (t, r))] <str<strong>on</strong>g>of</str<strong>on</strong>g> H i (t, r). Maximizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data leads to<br />

learning rules<br />

(1)<br />

(2)<br />

δh i (t) = η h {〈S i (t + 1, r)〉 r − 〈tanh[H i (t, r))]〉 r ]}<br />

δJ ij = η J {〈S i (t + 1, r)S j (t, r)〉 rt − 〈tanh[H i (t, r)]S j (t, r)〉 rt }<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters – <str<strong>on</strong>g>th</str<strong>on</strong>g>e couplings J ij and external inputs h i (t). For weak<br />

coupling or densely c<strong>on</strong>nected networks, faster alternative algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are possible<br />

[3], based <strong>on</strong> expanding (1) and (2) around mean-field and TAP [4] equati<strong>on</strong>s for<br />

m i (t) = 〈S i (r, t)〉 r .<br />

273


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Here we present results <str<strong>on</strong>g>of</str<strong>on</strong>g> applying bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is and me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods assuming stati<strong>on</strong>arity<br />

to (1) data generated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic model itself (<str<strong>on</strong>g>th</str<strong>on</strong>g>e realizable case), (2)<br />

data from a realistic computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> a small cortical network, and (3)<br />

data recorded from salamander retina under visual stimulati<strong>on</strong>. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, in<br />

all <str<strong>on</strong>g>th</str<strong>on</strong>g>ree cases, performing <str<strong>on</strong>g>th</str<strong>on</strong>g>e rec<strong>on</strong>structi<strong>on</strong> assuming stati<strong>on</strong>arity systematically<br />

overestimates <str<strong>on</strong>g>th</str<strong>on</strong>g>e couplings in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network: <str<strong>on</strong>g>th</str<strong>on</strong>g>e algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms effectively invent fictitious<br />

couplings to explain stimulus-induced correlati<strong>on</strong>s. The n<strong>on</strong>stati<strong>on</strong>ary treatment<br />

outlined above enables us to find, for sufficient data, <str<strong>on</strong>g>th</str<strong>on</strong>g>e correct (weaker)<br />

couplings and to extract <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e external input.<br />

References.<br />

[1] E Schneidman, M Berry, R Segev and W Bialek, Weak pairwise correlati<strong>on</strong>s imply str<strong>on</strong>gly<br />

correlated networks states in a neural populati<strong>on</strong>, Nature 440 1007-1012 (2006).<br />

[2] Y Roudi, J Tyrcha and J Hertz, Ising model for neural data: Model quality and approximate<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for exctracting functi<strong>on</strong>al c<strong>on</strong>nectivity, Phys Rev E 79 051915 (2009).<br />

[3] Y Roudi and J Hertz, Mean Field Theory for N<strong>on</strong>equilibrium Network Rec<strong>on</strong>structi<strong>on</strong>, Phys<br />

Rev Lett 106 048702 (2011).<br />

[4] D Thouless et al, Soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘solvable model <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin glass’, Phil Mag 35 593-601 (1977).<br />

12:05–12:25<br />

Andrzej Bielecki<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, Jagiell<strong>on</strong>ian University, ul. Łojasiewicza<br />

6, 30-348 Kraków, Poland<br />

e-mail: bielecki@ii.uj.edu.pl<br />

Piotr Kalita<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, Jagiell<strong>on</strong>ian University, ul. Łojasiewicza<br />

6, 30-348 Kraków, Poland<br />

e-mail: piotr.kalita@ii.uj.edu.pl<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> presynaptic phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fast transport<br />

Neurotransmitters in <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal bout<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a presynaptic neur<strong>on</strong> are stored in vesicles,<br />

which diffuse in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasm and, after a stimulati<strong>on</strong> signal is received, fuse<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane and release its c<strong>on</strong>tents into <str<strong>on</strong>g>th</str<strong>on</strong>g>e synaptic cleft. It is comm<strong>on</strong>ly<br />

assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at vesicles bel<strong>on</strong>g to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree pools whose c<strong>on</strong>tent is gradually exploited<br />

during <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulati<strong>on</strong>.<br />

The physiological assumpti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed model are <str<strong>on</strong>g>th</str<strong>on</strong>g>e following:<br />

274<br />

1. Terminal bout<strong>on</strong> occupies a fixed domain, a fixed part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain<br />

boundary are <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicle release sites.<br />

2. The unknown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasm.<br />

The unit in which <str<strong>on</strong>g>th</str<strong>on</strong>g>is value is expressed can ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er be <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass<br />

or <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicles or <str<strong>on</strong>g>th</str<strong>on</strong>g>e fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoplasm volume <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

occupy.<br />

3. Vesicles diffuse inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal bout<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esized in<br />

some subdomain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bout<strong>on</strong>.


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

4. The efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicle syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e difference<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium c<strong>on</strong>centrati<strong>on</strong> (above which <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis does<br />

not take place) and current c<strong>on</strong>centrati<strong>on</strong>.<br />

5. Vesicles do not leave <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain unless <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> potential arrives. The<br />

arrival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> potential triggers <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicles release<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough some fixed period <str<strong>on</strong>g>of</str<strong>on</strong>g> time. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicles <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be<br />

released in a unit time <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit area is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicle<br />

c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e release site.<br />

6. Nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er re-uptake nor recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> released vesicles is c<strong>on</strong>sidered.<br />

7. The availability <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicles for release depends <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir locati<strong>on</strong>. The<br />

docking sites are modeled implicitly as <str<strong>on</strong>g>th</str<strong>on</strong>g>e areas in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

release sites specified <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bout<strong>on</strong> boundary.<br />

The following variables and parameters which express various physiological quantities<br />

are introduced:<br />

(i) Ω ⊂ R N , N ∈ {2, 3} - <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal bout<strong>on</strong>,<br />

(ii) Ω 1 ⊂ Ω - <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter producti<strong>on</strong>,<br />

(iii) ∂Ω d ⊂ ∂Ω - neurotransmitter release sites <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane,<br />

(iv) f : Ω → R - neurotransmitter source density defined, for example, by<br />

f(x) = 0 outside Ω 1 and f(x) = f z <strong>on</strong> Ω 1 ,<br />

(v) ¯ρ - <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter in <str<strong>on</strong>g>th</str<strong>on</strong>g>e bout<strong>on</strong>,<br />

(vi) α - <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficient denoting <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter exocytosis, α is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicles (or molecules) which are released <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane in unit time by <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit difference <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell and outside <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell (1 acti<strong>on</strong> potential activates 300 vesicles<br />

and 1 vesicle c<strong>on</strong>tains 10 3 − 10 4 molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter),<br />

(vii) a ij : Ω → R - <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> tensor for <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a neurotransmitter,<br />

(viii) τ - <str<strong>on</strong>g>th</str<strong>on</strong>g>e time period <str<strong>on</strong>g>th</str<strong>on</strong>g>rough which <str<strong>on</strong>g>th</str<strong>on</strong>g>e neurotransmitter is released from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e docked vesicles to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cleft (0.2 - 0.5 ms),<br />

(ix) t 0 - <str<strong>on</strong>g>th</str<strong>on</strong>g>e arrival moment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential (it is possible <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are many<br />

such moments during <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong>).<br />

The unknown in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> ρ : Ω × [0, T ] → R denoting <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> neurotransmitter.<br />

The functi<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong><br />

(1)<br />

∂ρ(x, t)<br />

∂t<br />

=<br />

N∑<br />

i,j=1<br />

(<br />

)<br />

∂ ∂ρ(x, t)<br />

a ij (x) + f(x)(¯ρ − ρ(x, t)) + .<br />

∂x i ∂x j<br />

The equati<strong>on</strong> is accompanied by boundary and initial c<strong>on</strong>diti<strong>on</strong>s implied directly<br />

by physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicle release as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>eir initial distributi<strong>on</strong> (see [1,2]):<br />

(2)<br />

N∑<br />

i,j=1<br />

a ij<br />

∂ρ(x, t)<br />

∂x j<br />

n i = 0 for (x, t) ∈ (∂Ω − ∂Ω d ) × [0, T ],<br />

(3)<br />

N∑<br />

i,j=1<br />

a ij<br />

∂ρ(x, t)<br />

∂x j<br />

n i = 0 for (x, t) ∈ ∂Ω d × ([0, t 0 ) ∪ (t 0 + τ, T ]),<br />

275


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

(4)<br />

N∑<br />

i,j=1<br />

a ij<br />

∂ρ(x, t)<br />

∂x j<br />

n i = αρ(x, t) for (x, t) ∈ ∂Ω d × [t 0 , t 0 + τ],<br />

(5) ρ(x, 0) = ρ 0 (x) <strong>on</strong> Ω,<br />

where (n i ) N i=1 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit normal vector directed outside Ω.<br />

The model is analyzed and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicular kinetics using Finite Element<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od are d<strong>on</strong>e.<br />

References.<br />

[1] A. Bielecki, P. Kalita, Model <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter fast transport in ax<strong>on</strong> terminal <str<strong>on</strong>g>of</str<strong>on</strong>g> presynaptic<br />

neur<strong>on</strong>, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 26 (2008) 559–576.<br />

[2] A. Bielecki, P. Kalita, M. Lewandowski, B. Siwek, Numerical simulati<strong>on</strong> for a neurotransmitter<br />

transport model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ax<strong>on</strong> terminal <str<strong>on</strong>g>of</str<strong>on</strong>g> a presynaptic neur<strong>on</strong>, Biol. Cybern. 102 (2010) 489–<br />

502.<br />

12:25–12:45<br />

Anastasia Lavrova<br />

Physics Institute, Humboldt University at Berlin<br />

e-mail: aurebours@googlemail.com<br />

L. Schimansky-Geier<br />

Physics Institute, Humboldt University at Berlin<br />

Dynamical switching between network states in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hippocampal circuit<br />

It is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at hippocampus is a structure required for processes <str<strong>on</strong>g>of</str<strong>on</strong>g> learning and<br />

memory [1]. Gloveli et al. [2] reported <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong> network <str<strong>on</strong>g>of</str<strong>on</strong>g> CA3<br />

regi<strong>on</strong> exhibits some types <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s, so called gamma (30-80 Hz) and <str<strong>on</strong>g>th</str<strong>on</strong>g>eta(4-<br />

12 Hz) rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. These oscillati<strong>on</strong>s are resp<strong>on</strong>sible for informati<strong>on</strong> transmissi<strong>on</strong>,<br />

storage, and spatial encoding [3]. Also, it have been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at gamma and <str<strong>on</strong>g>th</str<strong>on</strong>g>eta<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are generated by different types <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in CA3 regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hippocampus.<br />

We have c<strong>on</strong>sidered a minimal network scheme, which describes c<strong>on</strong>necti<strong>on</strong>s<br />

between different types <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. We have developed model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is scheme<br />

which reproduces important physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all cells<br />

types: <str<strong>on</strong>g>th</str<strong>on</strong>g>e period, amplitude and phase shift. The model allows us to analyze<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> synaptic streng<str<strong>on</strong>g>th</str<strong>on</strong>g>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network synchr<strong>on</strong>izati<strong>on</strong> and dynamical<br />

switching between <str<strong>on</strong>g>th</str<strong>on</strong>g>eta, gamma, and bursting regimes. In particular, we perform a<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>orough bifurcati<strong>on</strong> analysis and identify parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> synaptic c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

can efficiently induce switches in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network activity.<br />

References.<br />

[1] O’Keefe J.and Recce ML., Hippocampus, bf3 317-30, (1993)<br />

[2] Gloveli T., Dugladze T.,Rotstein H.,Traub R., M<strong>on</strong>yer H., Heinemann U., Whittingt<strong>on</strong> M.,<br />

Kopell N., PNAS, bf102 13295-300, (2005)<br />

[3] Harris KD, Csicsvari J., Hirase H., Dragoi G., Buzsaki G., Nature, bf424 552-56, (2003)<br />

[4] Tort A., Rotstein H., Dugladze T., Gloveli T., Kopell N., PNAS, bf104 13490-95, (2007)<br />

276


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

12:45–13:05<br />

Laura Sacerdote<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics “G. Peano”, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Torino, Via<br />

Carlo Alberto 10, Torino, Italy<br />

e-mail: laura.sacerdote@unito.it<br />

Massimiliano Tamborrino<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Universitetsparken<br />

5, DK 2100, Copenhagen, Denmark.<br />

e-mail: mt@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e Interspike Times <str<strong>on</strong>g>of</str<strong>on</strong>g> two Coupled Neur<strong>on</strong>s<br />

Stochastic Leaky Integrate and Fire models describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane<br />

potential {X t } t≥0<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stein equati<strong>on</strong><br />

{<br />

dXt = − Xt<br />

τ dt + adN t<br />

+ + idNt<br />

− .<br />

X 0 = x 0<br />

Here, a > 0, i < 0 are c<strong>on</strong>stants representing excitatory and inhibitory inputs,<br />

τ{ is <str<strong>on</strong>g>th</str<strong>on</strong>g>e } membrane { } time c<strong>on</strong>stant and x 0 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e resting potential. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

N<br />

+<br />

t and N<br />

−<br />

t are two independent Poiss<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> rates λ > 0 and β > 0,<br />

respectively. The release <str<strong>on</strong>g>of</str<strong>on</strong>g> a spike corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e first time when <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane<br />

potential attains a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold value S > x 0 . After a spike, <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane<br />

potential is reset to its resting value and <str<strong>on</strong>g>th</str<strong>on</strong>g>e process restarts its evoluti<strong>on</strong> until a<br />

time t max . The Interspike Intervals (ISI) are modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e random variables<br />

T = inf {t : X t > S}. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e seventies, <str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first passage time<br />

problem for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stein process has motivated <str<strong>on</strong>g>th</str<strong>on</strong>g>e introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> limits for<br />

its equati<strong>on</strong>. As result, an Ornstein-Uhlenbeck process is obtained. It models <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

sub-<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold membrane potential dynamics and it has developed <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

input-output relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> a single neur<strong>on</strong>.<br />

However, <strong>on</strong>e should c<strong>on</strong>sider two or more dependent neur<strong>on</strong>s to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

transmissi<strong>on</strong> <strong>on</strong> informati<strong>on</strong> in a network. Here, we extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stein process to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> k neur<strong>on</strong>s, modeling its spiking activity. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is aim, we prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>vergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a k-dimensi<strong>on</strong>al Stein process to a k-dimensi<strong>on</strong>al Ornstein-Uhlenbeck <strong>on</strong>e.<br />

We also prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e weak c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir ISIs.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e two dimensi<strong>on</strong>al case, we numerically determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ISIs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two neur<strong>on</strong>s. Finally, we illustrate some results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese times.<br />

13:05–13:25<br />

Mamiko Arai<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Program, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State Univ., Box 8203.Raleigh,<br />

NC 27695<br />

e-mail: marai@ncsu.edu<br />

Charles Eugene Smi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

277


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Program, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State<br />

Univ., Box 8203.Raleigh, NC 27695<br />

e-mail: bmasmi<str<strong>on</strong>g>th</str<strong>on</strong>g>@ncsu.edu<br />

Distinguishing <str<strong>on</strong>g>th</str<strong>on</strong>g>e Type <str<strong>on</strong>g>of</str<strong>on</strong>g> Input Noise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Fitzhugh-Nagumo Neur<strong>on</strong>al Model<br />

A n<strong>on</strong>linear system <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s known as <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fitzhugh-Nagumo (FN)<br />

is used to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological state <str<strong>on</strong>g>of</str<strong>on</strong>g> a nerve membrane. Several different<br />

kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> noise are added to <str<strong>on</strong>g>th</str<strong>on</strong>g>e FN model to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> noise <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane. They are Gaussian white noise, O-U process and Poiss<strong>on</strong> noise.<br />

Gaussian white noise represents many small synaptic inputs and Poiss<strong>on</strong> noise represents<br />

a few large synaptic inputs. The n<strong>on</strong>-oscillatory regi<strong>on</strong> before and after <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bifurcati<strong>on</strong> regi<strong>on</strong> is used to distinguish between Wiener vs. Poiss<strong>on</strong> inputs by a<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis test about <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> level crossings. The null hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e expected level crossings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium state by a time sampled linearized<br />

FN set <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Wiener input. The test performs well in rejecting<br />

n<strong>on</strong> Wiener inputs in simulati<strong>on</strong> studies, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized and n<strong>on</strong>linear<br />

F-N model. A res<strong>on</strong>ance type phenomena was also observed.<br />

Key Words: Neur<strong>on</strong>; First passage time; level crossings; Poiss<strong>on</strong> process; stochastic<br />

differential equati<strong>on</strong><br />

278


Populati<strong>on</strong> Dynamics 1<br />

Tuesday, June 28, 11:00, Room: AM2<br />

Chaired by: Mirosław Lachowicz<br />

11:00–11:30<br />

Carlos A. Braumann<br />

Centro de Investigação em Matemática e Aplicaçes, Universidade de<br />

Évora<br />

e-mail: braumann@uevora.pt<br />

Patrícia A. Filipe<br />

Centro de Investigação em Matemática e Aplicaçes, Universidade de<br />

Évora<br />

Clara Carlos<br />

Escola Superior de Tecnologia do Barreiro, Insytituto Politécnico<br />

de Setúbal<br />

Nuno M. Brites<br />

Universidade de Évora<br />

Carlos J. Roquete<br />

Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade<br />

de Évora<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it optimizati<strong>on</strong> issues in livestock producti<strong>on</strong> in a<br />

randomly variable envir<strong>on</strong>ment<br />

We use quite general stochastic differential equati<strong>on</strong> models to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> animals raised in a randomly varying<br />

envir<strong>on</strong>ment. These models are c<strong>on</strong>ceptually more adequate to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> random envir<strong>on</strong>mental variati<strong>on</strong>s <strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical regressi<strong>on</strong><br />

techniques (which are appropriate to describe measurement errors). We describe<br />

parameter estimati<strong>on</strong> and predicti<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, illustrating wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data <strong>on</strong> cow grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Mertolengo breed raised in Alentejo (Portugal) under natural c<strong>on</strong>diti<strong>on</strong>s and<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey outperform <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al regressi<strong>on</strong> models in predictive power.<br />

Mixed models, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> random variati<strong>on</strong> am<strong>on</strong>g animals <str<strong>on</strong>g>of</str<strong>on</strong>g> average asymptotic size,<br />

are also c<strong>on</strong>sidered.<br />

An applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it optimizati<strong>on</strong> in livestock producti<strong>on</strong><br />

is shown.<br />

Assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal is to be sold when it reaches some prescribed age and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are fixed and variable costs (per unit time) in raising <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

279


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

selling price is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal’s weight, we determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal age<br />

at which an animal should be sold in order to maximize pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it.<br />

The first passage time distributi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a prescribed size is studied and used<br />

to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal size at which <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal should be sold. We can <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

determine which policy (selling at a fixed age or selling at a fixed size) is preferable<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> expected pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it.<br />

Some issues related to optimizati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e simultaneous raising <str<strong>on</strong>g>of</str<strong>on</strong>g> several animals<br />

will also be discussed.<br />

11:35–11:55<br />

Chun Fang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: chun.fang@helsinki.fi<br />

Mats Gyllenberg and Yi Wang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> China<br />

e-mail: mats.gyllenberg@helsinki.fi and yi.wang@helsinki.fi<br />

Asymptotic almost periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive-cooperative<br />

systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> almost periodic time dependence<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is report, we are interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic almost periodicity for a<br />

positively bounded moti<strong>on</strong> π t (x, g) by investigating its ω-limit set. We proved if<br />

ω(x, g) is hyperbolic, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized equati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e flow <strong>on</strong> ω(x, g) has<br />

an Exp<strong>on</strong>ential Dichotomy <strong>on</strong> ω(x, g). Then ω(x, g) is 1-cover <str<strong>on</strong>g>of</str<strong>on</strong>g> H(f), <str<strong>on</strong>g>th</str<strong>on</strong>g>at is,<br />

π t (x, g) is asymptotically almost periodic.<br />

11:55–12:15<br />

Nicola McPhers<strong>on</strong><br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing Science & Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling,<br />

Stirling FK9 4LA, UK<br />

e-mail: njm@cs.stir.ac.uk<br />

Dr. Rachel Norman<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing Science & Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling,<br />

Stirling FK9 4LA, UK<br />

e-mail: ran@cs.stir.ac.uk<br />

Macroparasites in Managed Systems: Using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models to help reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Argulus foliaceus in UK<br />

Fisheries<br />

280


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Argulus foliaceus is a macroparasite which reduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e aes<str<strong>on</strong>g>th</str<strong>on</strong>g>etic appeal and catchability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow (Oncorhynchus mykiss) and brown (Salmo trutta) trout in stillwater<br />

fisheries across <str<strong>on</strong>g>th</str<strong>on</strong>g>e UK; infecti<strong>on</strong> is detrimental to fish welfare, can lead to<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> revenue, and impacts negatively <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reputati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e affected fisheries.<br />

Current me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol can be bo<str<strong>on</strong>g>th</str<strong>on</strong>g> extreme and ineffective, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasite<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten surviving in surprising circumstances, despite c<strong>on</strong>stant, expensive treatment.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is to present ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled<br />

n<strong>on</strong>-linear ODEs, which describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between argulids and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir hosts,<br />

incorporating reduced catch rates and several different stocking me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. Fishery<br />

managers can stock fish into <str<strong>on</strong>g>th</str<strong>on</strong>g>eir lakes in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different ways in order to<br />

make sure <str<strong>on</strong>g>th</str<strong>on</strong>g>at anglers catch enough fish and want to return to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir fishery. This<br />

talk will investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>ose stocking me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fish to parasitism and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lake. These combine to<br />

have a - sometimes counterintuitive - knock-<strong>on</strong> effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> fish caught<br />

and hence <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic viability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fishery.<br />

12:15–12:35<br />

Ye<strong>on</strong>taek Choi<br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

e-mail: ytchoi@nims.re.kr<br />

Ngo van Thanh<br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

Tae-Soo Ch<strong>on</strong><br />

Pusan Nati<strong>on</strong>al University, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

Sang-Hee Lee<br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

Movement pattern analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans based <strong>on</strong><br />

Box-Sized-Distributi<strong>on</strong><br />

It is already known <str<strong>on</strong>g>th</str<strong>on</strong>g>at locomoti<strong>on</strong> by C.elegans delivers characteristic patterns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

movements, e.g. forward and backward movement, rest, omega-turn, and coil-type<br />

turn. However <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous studies, being interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans<br />

movement, have had limitati<strong>on</strong> to give enough explanati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immediate c<strong>on</strong>necti<strong>on</strong><br />

between movement and pattern. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we introduced a way to<br />

deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> C.elegans movement patterns, called Box-Sized-Distributi<strong>on</strong> (BSD), in<br />

order to look to <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong> between movement and its pattern. BSD is defined by<br />

introducing a rectangular box which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wid<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>gest line formed<br />

by any two points <strong>on</strong> C.elegans, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e height, <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>gest vertical line determined<br />

by wid<str<strong>on</strong>g>th</str<strong>on</strong>g> line. We used experimental data sets for 50 individuals, being obtained<br />

after each c<strong>on</strong>trolled C.elegans was observed by real-time recording system for <str<strong>on</strong>g>th</str<strong>on</strong>g>ree<br />

hours <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e agar plate. As a result, BSD delivers a few interesting facts <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

movement patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans : 1) The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> wid<str<strong>on</strong>g>th</str<strong>on</strong>g> to height <str<strong>on</strong>g>of</str<strong>on</strong>g> a box can<br />

measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical activity <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans, i.e., speed <str<strong>on</strong>g>of</str<strong>on</strong>g> movement and turn. 2)<br />

281


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

BSD makes it possible to explain pattern transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans movements. 3)<br />

BSD also obeys a Boltzmann statistics based <strong>on</strong> shape itself.<br />

282


Populati<strong>on</strong> Dynamics 2<br />

Tuesday, June 28, 14:30, Room: AM2<br />

Chaired by: Carlos A. Braumann<br />

14:30–15:00<br />

Jaime Iranzo<br />

Centro de Astrobiología (INTA-CSIC), Madrid, Spain<br />

e-mail: iranzosj@cab.inta-csic.es<br />

Celia Perales<br />

Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid,<br />

Spain<br />

e-mail: cperales@cbm.uam.es<br />

Esteban Domingo<br />

Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid,<br />

Spain<br />

e-mail: edomingo@cbm.uam.es<br />

Susanna C. Manrubia<br />

Centro de Astrobiología (INTA-CSIC), Madrid, Spain<br />

e-mail: scmanrubia@cab.inta-csic.es<br />

Tempo and mode <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibitor-mutagen <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies: a<br />

multidisciplinary approach<br />

The c<strong>on</strong>tinuous emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> drug-resistant viruses is a major obstacle for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

successful treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> viral infecti<strong>on</strong>s, and is steadily spurring <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic strategies [1]. Corresp<strong>on</strong>dingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a pressing need to understand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical effect <str<strong>on</strong>g>of</str<strong>on</strong>g> antiviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies <strong>on</strong> complex, diverse and fast mutating<br />

viral populati<strong>on</strong>s. Indeed, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> viral populati<strong>on</strong>s is at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> some recently suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic strategies, such as le<str<strong>on</strong>g>th</str<strong>on</strong>g>al mutagenesis<br />

and le<str<strong>on</strong>g>th</str<strong>on</strong>g>al defecti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>at use mutagenic agents to induce viral extincti<strong>on</strong> [2,3].<br />

Despite bo<str<strong>on</strong>g>th</str<strong>on</strong>g> procedures have proved to be effective in vitro, <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> high doses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mutagen in vivo could involve severe side effects. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, low doses<br />

allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus to get adapted <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapid appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance mutants.<br />

Hence, research <strong>on</strong> combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies arises as a step towards reducing doses<br />

while keeping low <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus becomes resistant to <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug<br />

cocktail.<br />

Here we discuss combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies involving two dissimilar drugs: <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutagen<br />

ribavirin, and an inhibitor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral replicati<strong>on</strong>, guanidine. These drugs<br />

283


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

were used in vitro to analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sequential versus simultaneous<br />

administrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>s by foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease virus [4].<br />

C<strong>on</strong>trary to <str<strong>on</strong>g>th</str<strong>on</strong>g>e well known case when two inhibitors are used, it was found <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

sequential administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inhibitor followed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutagen is more effective<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an simultaneous treatment. In order to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e reas<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>is behavior we<br />

designed a simple computati<strong>on</strong>al model representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

viral populati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e two drugs. It shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-edged role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutagen,<br />

reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e viable <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus but also favouring <str<strong>on</strong>g>th</str<strong>on</strong>g>e appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resistant mutants, causes an interacti<strong>on</strong> between inhibitor and mutagen <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficience <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. In agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong>s,<br />

laboratory experiments c<strong>on</strong>firm in particular cases <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e suitability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

simultaneous or sequential administrati<strong>on</strong> depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e administered dose. The<br />

model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral populati<strong>on</strong> for any dose combinati<strong>on</strong><br />

and, in particular, determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibitor and mutagen required<br />

to minimise <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant mutants. Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relevant model parameters is obtainable by means <str<strong>on</strong>g>of</str<strong>on</strong>g> few, simple experiments, such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at our predicti<strong>on</strong>s could be extended to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er viral systems.<br />

References.<br />

[1] E. Domingo, A. Grande-Pérez & V. Martín, Future prospects for <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly<br />

evolving viral pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens: insights from evoluti<strong>on</strong>ary biology Expert Opin. Biol. Ther. 8 1455–<br />

1460 (2008).<br />

[2] M. Eigen, Error catastrophe and antiviral strategy Proc. Natl. Acad. Sci. USA 99 13374–13376<br />

(2002).<br />

[3] A. Grande-Pérez, E. Lázaro, P. Lowenstein, E. Domingo & S. C. Manrubia, Suppresi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viral infectivity <str<strong>on</strong>g>th</str<strong>on</strong>g>rough le<str<strong>on</strong>g>th</str<strong>on</strong>g>al defecti<strong>on</strong> Proc. Natl. Acad. Sci. USA 102 4448–4452 (2005).<br />

[4] C. Perales, R. Agudo, H. Tejero, S. C. Manrubia & E. Domingo, Potential benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> sequential<br />

inhibitor-mutagen treatments <str<strong>on</strong>g>of</str<strong>on</strong>g> RNA virus infecti<strong>on</strong>s PLoS Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>. 5 e1000658 (2009).<br />

15:05–15:25<br />

Wils<strong>on</strong> Ferreira Jr.<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Campinas - SP - Brazil<br />

e-mail: wils<strong>on</strong>@ime.unicamp.br<br />

Lucy T. Takahashi<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vicosa - MG - Brazil<br />

Dengue Epidemics : Urbi et Orbi<br />

Dengue is a viral disease which plagues most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tropical regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e world,<br />

mainly <str<strong>on</strong>g>th</str<strong>on</strong>g>ose wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high humidity and dense populati<strong>on</strong>. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is not<br />

permanent (since it is <str<strong>on</strong>g>th</str<strong>on</strong>g>rough in about 3 weeks) and in most cases not fatal, never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless<br />

it has an enormous impact in <str<strong>on</strong>g>th</str<strong>on</strong>g>e public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> system and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e affected regi<strong>on</strong>s. The viral infecti<strong>on</strong> is <strong>on</strong>ly transmitted by infected<br />

mosquito Aedes egypti which <strong>on</strong>ly get <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus by biting infected humans. So, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dengue epidemics depends str<strong>on</strong>gly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human movement (<str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

infected individuals) and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a large populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquitoes vectors.<br />

The coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s plus <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human populati<strong>on</strong><br />

284


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis for <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at we present, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e vector populati<strong>on</strong><br />

evolves locally (in urban areas) while <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected humans are resp<strong>on</strong>sible<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e large distance phenomena (orbi). We have tested <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e State <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sao Paulo-Brazil by devising a network c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> its largest 60 cities linked by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e highway traffic between <str<strong>on</strong>g>th</str<strong>on</strong>g>em as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir inter c<strong>on</strong>necti<strong>on</strong>s. At each<br />

city we have used a simple and homogeneous model <str<strong>on</strong>g>of</str<strong>on</strong>g> vector-epidemic dynamics.<br />

The simulati<strong>on</strong> were made by starting a focus <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> in a far west city <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

state (which is comm<strong>on</strong>ly observed) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e geographical and time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

results are quite close to <str<strong>on</strong>g>th</str<strong>on</strong>g>e data obtained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e State Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Department in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e last decade. The main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to have a reliable s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware to predict<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic burst , detect its main spreading nodes so <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

resp<strong>on</strong>sible public system can act sparsely (which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly way it can afford to<br />

do) but quickly in order to block <str<strong>on</strong>g>th</str<strong>on</strong>g>e fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong>.<br />

15:25–15:45<br />

Mickael Teixeira Alves<br />

UR880 - URIH / INRA Sophia Antipolis FRANCE<br />

e-mail: mteixeira@sophia.inra.fr<br />

Ludovic Mailleret<br />

UR880 - URIH / INRA Sophia Antipolis FRANCE<br />

e-mail: ludovic.mailleret@sophia.inra.fr<br />

Frédéric Grognard<br />

BIOCORE / INRIA Sophia Antipolis FRANCE<br />

e-mail: frederic.grognard@inria.fr<br />

Optimal foraging predators in Leslie Gower models wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

alternative prey<br />

Optimal foraging <str<strong>on</strong>g>th</str<strong>on</strong>g>eory defines <str<strong>on</strong>g>th</str<strong>on</strong>g>e diet choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a predator by imposing <str<strong>on</strong>g>th</str<strong>on</strong>g>at it<br />

chooses <str<strong>on</strong>g>th</str<strong>on</strong>g>e prey <str<strong>on</strong>g>th</str<strong>on</strong>g>at is instantaneously <str<strong>on</strong>g>th</str<strong>on</strong>g>e most beneficial for him [1]. It has been<br />

shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> leads to a switching diet and to <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

prey and predators in generalized Lokta-Volterra models [2, 3]. This framework can<br />

be useful to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> an introduced alternative prey <strong>on</strong> a <strong>on</strong>e-prey<strong>on</strong>e-predator<br />

system. In a Lokta-Volterra model, <str<strong>on</strong>g>th</str<strong>on</strong>g>is introducti<strong>on</strong> can enhance<br />

predator grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and have negative effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main prey, which is called apparent<br />

competiti<strong>on</strong> [4].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we focus <strong>on</strong> a Leslie-Gower model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two dynamic prey, where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e preyed populati<strong>on</strong> determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predator populati<strong>on</strong>.<br />

Optimal foraging aiming at <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e per capita grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

predator populati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>en leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its instantaneous carrying<br />

capacity. This optimizati<strong>on</strong> defines two main regi<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> state space,<br />

separated by a dividing plane, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>ree diet strategies. The predator populati<strong>on</strong><br />

will have <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice between eating <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e main prey, or <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e alternative<br />

prey, or following a mixed diet. In each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>ree regi<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics which<br />

285


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

are relevant to <str<strong>on</strong>g>th</str<strong>on</strong>g>e predator reduce to a Leslie-Gower model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a stable positive<br />

equilibrium.<br />

Depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system, different global behaviors arise.<br />

However, in all cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is <strong>on</strong>ly a single positive stable equilibrium, which can<br />

potentially lie <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dividing plane; <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium is such <str<strong>on</strong>g>th</str<strong>on</strong>g>at its predator populati<strong>on</strong><br />

is larger or equal <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alternative prey. Also,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an alternative prey is never detrimental to <str<strong>on</strong>g>th</str<strong>on</strong>g>e main prey; so <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

apparent competiti<strong>on</strong> does not hold.<br />

References.<br />

[1] W. W. Murdoch, Switching in General Predators: Experiments <strong>on</strong> Predator Specificity and<br />

Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Prey Populati<strong>on</strong>s Ecological M<strong>on</strong>ographs 1969 335–354.<br />

[2] M. van Baalen, V. Krivan, P. C.J. van Rijn and M. W. Sabelis, Alternative food, switching<br />

predators, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> predator-prey systems. The American Naturalist 2001 512–<br />

524.<br />

[3] V. Krivan and J. Eisner, Optimal Foraging and predator-prey dynamics III Theoretical Populati<strong>on</strong><br />

Biology 2003 269–279.<br />

[4] R. D. Holt, Predati<strong>on</strong>, Apparent Competiti<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Prey Communities Theoretical<br />

Populati<strong>on</strong> Biology 1977 197–229.<br />

15:45–16:05<br />

Luis Sanz<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics.<br />

Madrid. Madrid, Spain<br />

e-mail: lsanz@etsii.upm.es<br />

Juan Ant<strong>on</strong>io Al<strong>on</strong>so<br />

e-mail: jal<strong>on</strong>so@etsii.upm.es<br />

E.T.S.I.I, Universidad Politécnica de<br />

Exp<strong>on</strong>ential grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and extincti<strong>on</strong> in age structured<br />

populati<strong>on</strong>s incorporating envir<strong>on</strong>mental stochasticity<br />

We study different strategies to ascertain grow<str<strong>on</strong>g>th</str<strong>on</strong>g> or extincti<strong>on</strong> in Leslie type<br />

matrix models for age structured populati<strong>on</strong>s subjected to envir<strong>on</strong>mental stochasticity<br />

[1]. We <str<strong>on</strong>g>th</str<strong>on</strong>g>ink <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> described at time n by vector X n = (x 1 n, ..., x N n ) T<br />

and living in an ambient in which <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are s different envir<strong>on</strong>mental states. The<br />

vital rates corresp<strong>on</strong>ding to each <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese envir<strong>on</strong>ments are given by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Leslie<br />

matrices L α ∈ R N×N , α = 1, ..., s in such a way <str<strong>on</strong>g>th</str<strong>on</strong>g>at, for each α, L α c<strong>on</strong>tains <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fertility and survival rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> in envir<strong>on</strong>ment α. The envir<strong>on</strong>mental<br />

variati<strong>on</strong> is characterized by a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> random variables τ n , <str<strong>on</strong>g>th</str<strong>on</strong>g>at we will c<strong>on</strong>sider<br />

to be an irreducible and aperiodic Markov chain, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> state space {1, ..., s}<br />

in such a way <str<strong>on</strong>g>th</str<strong>on</strong>g>at τ n+1 describes for <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

between times n and n + 1. Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model reads<br />

(1) X n+1 = L τn+1 X n<br />

where X 0 ≥ 0 is a fixed (n<strong>on</strong> random) n<strong>on</strong>-zero vector. Moreover, we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices <str<strong>on</strong>g>of</str<strong>on</strong>g> vital rates meets a certain technical c<strong>on</strong>diti<strong>on</strong> (ergodic set).<br />

286


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The most important parameter c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called<br />

stochastic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate (s.g.r.) defined as a := lim n→∞ log ‖X n ‖ /n, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> probability<br />

<strong>on</strong>e [2]. Therefore, a > 0 implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at every realizati<strong>on</strong> grows asymptotically<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> rate e a , and a < 0 implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> goes extinct wi<str<strong>on</strong>g>th</str<strong>on</strong>g> probability<br />

<strong>on</strong>e. However, even in very simple situati<strong>on</strong>s, it is not possible to calculate a analytically.<br />

In order to find a useful way to study <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models, <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called “lognormal<br />

approximati<strong>on</strong>” has been proposed [2]. It c<strong>on</strong>sists in assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> size has a lognormal distributi<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is way an approximate s.g.r. â<br />

can be defined. The validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approximati<strong>on</strong> has <strong>on</strong>ly been tested numerically<br />

and in very specific situati<strong>on</strong>s [3]. Moreover, in principle <str<strong>on</strong>g>th</str<strong>on</strong>g>e approximati<strong>on</strong> does<br />

not allow <strong>on</strong>e to calculate â analytically.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first place, <str<strong>on</strong>g>th</str<strong>on</strong>g>is work examines bo<str<strong>on</strong>g>th</str<strong>on</strong>g> numerically and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lognormal approximati<strong>on</strong>, finding <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> situati<strong>on</strong>s in which<br />

it can be c<strong>on</strong>sidered <str<strong>on</strong>g>th</str<strong>on</strong>g>at it works well. Moreover, we build different bounds for a<br />

and for â, and analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s under which each bound works best. This is<br />

used to give necessary-sufficient c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e explosi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>. The results are applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> structured in<br />

juveniles and adults living in an ambient wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a “good” and a “bad” envir<strong>on</strong>ment.<br />

References.<br />

[1] H. Caswell. Matrix Populati<strong>on</strong> Models (2 nd ed.) Sinauer Associates Inc., Sunderland (2001).<br />

[2] S. Tuljapurkar. Populati<strong>on</strong> Dynamics in Variable Envir<strong>on</strong>ments Springer-Verlag, (1990).<br />

[3] S. Tuljapurkar, S. Orzack. Populati<strong>on</strong> dynamics in variable envir<strong>on</strong>ments. I. L<strong>on</strong>g-run grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rates and extincti<strong>on</strong> Theor. Popul. Biol. 18 314–342 (1980).<br />

16:05–16:25<br />

Andreas Bohn<br />

ITQB - New University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lisb<strong>on</strong><br />

e-mail: abohn@itqb.unl.pt<br />

Multi-level modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic spatio-temporal<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> phototrophic bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms<br />

Phototrophic bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms are complex microbial communities encased in an extracellular<br />

polymeric matrix and fueled by a significantly present photosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esizing fracti<strong>on</strong><br />

(e.g. cyanobacteria) existing in symbiosis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> heterotrophic bacteria [1]. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e present work we present our <strong>on</strong>going work <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> several integrated,<br />

quantitative approaches to modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm life cycle. In particular an SDE model predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm biomass as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency and size <str<strong>on</strong>g>of</str<strong>on</strong>g> abrupt biomass<br />

detachments, <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called sloughing events, is discussed [2]. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore analyze<br />

a kinetic flux-balance based PDE model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 16 particulate and solute bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm comp<strong>on</strong>ents [3], which has originally been<br />

developed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling framework AQUASIM [4]. Here, we report <strong>on</strong> our<br />

287


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

efforts to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> variables and parameters,<br />

in order to obtain a minimal model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> phototrophic<br />

bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms, and achieve integrati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> generic PDE-modeling approaches<br />

to bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms [5]. Our final aim is to c<strong>on</strong>nect bo<str<strong>on</strong>g>th</str<strong>on</strong>g> models in a coherent fashi<strong>on</strong>, and<br />

fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore adjust <str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> evidence from experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm physiology<br />

and morphology, obtained wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a <str<strong>on</strong>g>European</str<strong>on</strong>g> project <strong>on</strong> phototrophic bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms<br />

(http://www.photobi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms.org).<br />

References.<br />

[1] Roeselers et al. (2008) J Appl Phycol 20:227-235<br />

[2] Bohn et al. (2007) Wat Sci Technol 55(8-9):257-264<br />

[3] Wolf et al. (2007) Biotechnol Bioeng 97:1064-1079<br />

[4] Reichert (1996) Wat Sci Technol 30:21-30<br />

[5] Alpkvist and Klapper (2007) Bull Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biol 69:765-789<br />

288


Populati<strong>on</strong> Dynamics 3<br />

Tuesday, June 28, 17:00, Room: AM2<br />

Chaired by: Marek Kimmel<br />

17:00–17:30<br />

Peter Jagers<br />

Chalmers and U. <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: jagers@chalmers.se<br />

Finite Populati<strong>on</strong>s Regulated by a Carrying Capacity<br />

A populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> independently reproducing individuals in a stable envir<strong>on</strong>ment will<br />

die out, if reproducti<strong>on</strong> is critical or subcritical. If it is supercritical, <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

may escape extincti<strong>on</strong>. But <str<strong>on</strong>g>th</str<strong>on</strong>g>en it must grow exp<strong>on</strong>entially bey<strong>on</strong>d all limits,<br />

which is <str<strong>on</strong>g>of</str<strong>on</strong>g> course a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical artifact, unrealisabkle in a finite world. But<br />

what happens in reality, where <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a bound to grow<str<strong>on</strong>g>th</str<strong>on</strong>g> A carrying capacity<br />

such <str<strong>on</strong>g>th</str<strong>on</strong>g>at individuals reproduce in a supercritical manner while populati<strong>on</strong> size<br />

is below it, reproducti<strong>on</strong> however turning subcritical as so<strong>on</strong> as <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> is<br />

larger <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e habitat carrying capacity<br />

These questi<strong>on</strong>s are answered in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> general branching processes, i.e. populati<strong>on</strong>s<br />

where individuals have arbitrarily distributed life-spans and may give bir<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

according to an arbitrary pattern, and individual reproductive behaviour is influenced<br />

by populati<strong>on</strong> size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e manner described.<br />

References.<br />

[1] Jagers, P. and Harding, K., Viability <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s experiencing recurring catastrophes.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Pop. Studies 16 177–188 (2009).<br />

[2] Klebaner, F. C., Sagitov, S., Vatutin, V., Haccou, P., and Jagers, P., Stochasticity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

adaptive dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e bare b<strong>on</strong>es. J. Biol. Dyn. 5 147–162 (2011).<br />

[3] Jagers, P. and Klebaner, F. Populati<strong>on</strong> size dependent, age structured branching processes<br />

linger around <str<strong>on</strong>g>th</str<strong>on</strong>g>eir carrying capacity. J. Appl. Prob. 48A, to appear (2011).<br />

17:35–17:55<br />

Juliana Militão Berbert<br />

Institute for Theoretical Physics - IFT/Unesp - São Paulo/SP/Brazil<br />

e-mail: berbertj@gmail.com<br />

289


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Individual’s memory as a parameter to differentiate<br />

populati<strong>on</strong> distributi<strong>on</strong> patterns<br />

Recent studies including satellite analysis have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at movement <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>golian<br />

gazelles can be classified as nomadic. One explanati<strong>on</strong> emerges from <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir habitat is a dynamic envir<strong>on</strong>ment. It was proposed recently <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence<br />

<strong>on</strong> spatial heterogeneity and temporal predictability <str<strong>on</strong>g>of</str<strong>on</strong>g> resources for migrati<strong>on</strong>, nomadism<br />

and residence movement. One can define residence as distributi<strong>on</strong>s in which<br />

an individual over its lifetime occupies a relatively small area compared to <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

range; migrati<strong>on</strong> as a regular, l<strong>on</strong>g-distance pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> movement, and is<br />

typically observed in systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regular, seas<strong>on</strong>al fluctuati<strong>on</strong>s in envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s; and nomadism occurs when animals are nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er resident nor migratory,<br />

and instead move across <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape in routes <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not repeat across years.<br />

Here, we propose, at <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual level, <str<strong>on</strong>g>th</str<strong>on</strong>g>at a dependence <strong>on</strong> memory is also<br />

an important parameter characterizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> distributi<strong>on</strong> pattern. The<br />

movement decisi<strong>on</strong>s are based <strong>on</strong> known areas due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal’s memory. Migratory<br />

animals may have a l<strong>on</strong>g memory, perhaps <str<strong>on</strong>g>th</str<strong>on</strong>g>ey know all way between different<br />

locati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir journey. In ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er way, nomadic animals remember some last<br />

visited areas, where <str<strong>on</strong>g>th</str<strong>on</strong>g>ey stayed for a while. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparis<strong>on</strong> between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e memories toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape predictability can clarify <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual<br />

behavior behind <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> distributi<strong>on</strong> pattern. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach, we<br />

propose some tools for analyzing animals movement.<br />

17:55–18:15<br />

Iw<strong>on</strong>a Mroz<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wroclaw, Plac Maxa<br />

Borna 9, 50-204 Wroclaw, Poland<br />

e-mail: imroz@ifd.uni.wroc.pl<br />

Adaptati<strong>on</strong> to a given habitat as a factor influencing<br />

dynamics and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> model populati<strong>on</strong>s.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s under which a model populati<strong>on</strong> can survive in a<br />

given habitat, col<strong>on</strong>ize a new (spatially separated) habitat and is able to co-exist<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a populati<strong>on</strong> living in a neighbouring habitat.<br />

Each habitat is represented by a square lattice and a model phenotype, describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual <str<strong>on</strong>g>th</str<strong>on</strong>g>at is fully adapted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sidered habitat.<br />

The populati<strong>on</strong>s are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals <str<strong>on</strong>g>th</str<strong>on</strong>g>at move over <str<strong>on</strong>g>th</str<strong>on</strong>g>e lattice, mate,<br />

produce <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings and die. The individuals are characterized by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir genotypes,<br />

phenotypes and ages. The individuals adaptati<strong>on</strong> to a given habitat depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> its phenotypic features <str<strong>on</strong>g>th</str<strong>on</strong>g>at are <str<strong>on</strong>g>th</str<strong>on</strong>g>e same as <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ’<str<strong>on</strong>g>th</str<strong>on</strong>g>e model phenotype’ according to a power functi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some exp<strong>on</strong>ent n. The<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptati<strong>on</strong> is related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals probability <str<strong>on</strong>g>of</str<strong>on</strong>g> survival.<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics and<br />

its genetic and phenotypic variability. In particular, we compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e situati<strong>on</strong>s<br />

when: n>1 (briefly, in <str<strong>on</strong>g>th</str<strong>on</strong>g>is case <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals <str<strong>on</strong>g>th</str<strong>on</strong>g>at are quite similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

290


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

model phenotype can survive easily) and 0>n>1 (here, even small similarities between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sidered individual and <str<strong>on</strong>g>th</str<strong>on</strong>g>e model phenotype may be<br />

significantly advantageous for survival). For co-existing populati<strong>on</strong>s, possibilities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> different shapes are also investigated. Computer<br />

simulati<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard M<strong>on</strong>te Carlo technique are performed.<br />

References.<br />

[1] Mroz I, Pekalski A, Sznajd-Wer<strong>on</strong> K: C<strong>on</strong>diti<strong>on</strong>s for adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an evolving populati<strong>on</strong>.<br />

Phys Rev Lett 76,(1996),3025-3028.<br />

[2] Mroz I, Pekalski A: Model <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s col<strong>on</strong>izing a new habitat. Eur Phys J B 10,(1999),181-<br />

186.<br />

[3] Mroz I: A model <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamics - fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er investigati<strong>on</strong>s. Physica A 323,(2003),569-577.<br />

18:15–18:35<br />

Andrew Savory<br />

University Of Dundee<br />

e-mail: asavory@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Swimming Patterns Of Zoospores<br />

Oomycetes are a group <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens <str<strong>on</strong>g>th</str<strong>on</strong>g>at cause many destructive diseases in animals<br />

and plants. One species in particular, Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora Infestans, is perhaps <str<strong>on</strong>g>th</str<strong>on</strong>g>e most<br />

well known and is resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e potato blight disease. This causes severe<br />

ec<strong>on</strong>omic damage estimated at 3 billi<strong>on</strong> per annum. The epidemic spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

disease is primarily based <strong>on</strong> rapid dispersal from host to host by free-swimming<br />

zoospore cells. These are single-nucleated, wall-less cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at are released <strong>on</strong>ly<br />

into aqueous envir<strong>on</strong>ments. Zoospores exhibit a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> tactic resp<strong>on</strong>ses to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

envir<strong>on</strong>ment to locate suitable infecti<strong>on</strong> sites. We have begun to model <str<strong>on</strong>g>th</str<strong>on</strong>g>is process<br />

using a PDE chemotaxis model <str<strong>on</strong>g>of</str<strong>on</strong>g> Keller-Segel type and in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is approach captures some general behaviour seen in experiments. We will also<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastability <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

soluti<strong>on</strong>s.<br />

18:35–18:55<br />

Wayne M. Getz<br />

Dept. Envir<strong>on</strong>mental Science, Policy and Management<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Berkeley, CA 94720-3114, USA<br />

e-mail: getz@nature.berkeley.edu<br />

A Biomass Flow Approach to Populati<strong>on</strong> Models and Food<br />

Webs<br />

291


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dominant differential equati<strong>on</strong> paradigm for modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> species interacting in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> a food web retains at its core<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basic prey-predator and competiti<strong>on</strong> models formulati<strong>on</strong> by Alfred J. Lotka<br />

(1880-1945) and Vito Volterra (1860-1940) nearly nine decades ago. This framework<br />

lacks a trophic-level-independent formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> leading<br />

to ambiguities in how to treat populati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are simultaneously bo<str<strong>on</strong>g>th</str<strong>on</strong>g> prey and<br />

predator. Also, it does not fundamentally include inertial processes needed to account<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s to fluctuating resource envir<strong>on</strong>ments. Here I<br />

present an approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at corrects bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese deficits and provides a unified framework<br />

for accounting for biomass transformati<strong>on</strong> in food webs <str<strong>on</strong>g>th</str<strong>on</strong>g>at include bo<str<strong>on</strong>g>th</str<strong>on</strong>g> live<br />

and dead comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> all species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. This biomass transformati<strong>on</strong><br />

formulati<strong>on</strong> (BTW) allows for a unified treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> webs <str<strong>on</strong>g>th</str<strong>on</strong>g>at include c<strong>on</strong>sumers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> live and dead material—bo<str<strong>on</strong>g>th</str<strong>on</strong>g> carnivores and carcassivores, herbivores and<br />

detrivores—and incorporates scavengers, parasites, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er neglected food web<br />

c<strong>on</strong>sumpti<strong>on</strong> categories in a coherent manner. I trace how BTW is an outgrow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metaphysiological grow<str<strong>on</strong>g>th</str<strong>on</strong>g> modeling paradigm and provide a general compact<br />

formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BTW in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a live/dead/deficit-stress <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-variable differential<br />

equati<strong>on</strong> formulati<strong>on</strong> for each species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e food web. I <str<strong>on</strong>g>th</str<strong>on</strong>g>en illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is new paradigm to provide insights into two-species competiti<strong>on</strong><br />

in variable envir<strong>on</strong>ments and discuss applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BTW to food webs <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporate<br />

parasites and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens.<br />

292


Populati<strong>on</strong> Dynamics 4<br />

Wednesday, June 29, 08:30, Room: AM2<br />

Chaired by: Peter Jagers<br />

08:30–09:00<br />

Evgeniy Khain<br />

Oakland University<br />

e-mail: khain@oakland.edu<br />

Y. T. Lin<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

L. M. Sander<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

Role <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s in fr<strong>on</strong>t propagati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e insect outbreak<br />

model<br />

Propagating fr<strong>on</strong>ts arising from bistable reacti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s are a purely<br />

deterministic effect. Stochastic reacti<strong>on</strong> diffusi<strong>on</strong> processes also show fr<strong>on</strong>t propagati<strong>on</strong><br />

which coincides wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic effect in <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g> small fluctuati<strong>on</strong>s<br />

(usually, large populati<strong>on</strong>s). However, for larger fluctuati<strong>on</strong>s propagati<strong>on</strong> can be<br />

affected. We give an example, based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e classic spruce-budworm model, where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave propagati<strong>on</strong>, i.e., <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative stability <str<strong>on</strong>g>of</str<strong>on</strong>g> two phases, can be<br />

reversed by fluctuati<strong>on</strong>s.<br />

09:05–09:25<br />

Roumen Anguelov<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pretoria, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: roumen.anguelov@up.ac.za<br />

Kei<str<strong>on</strong>g>th</str<strong>on</strong>g> A. Berven and Meir Shillor<br />

Oakland University, Michigan, USA<br />

e-mail: berven@oakland.edu, shillor@oakland.edu<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> Wood Frog Populati<strong>on</strong><br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to embed into a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wood Frog,<br />

Rana sylvatica, populati<strong>on</strong> data collected by Berven, [3], over more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 25 years.<br />

293


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e frogs includes aquatic and terrestrial phases, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong><br />

in each phase is for different resources. Hence, we deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> separate<br />

populati<strong>on</strong>s, each <strong>on</strong>e providing <str<strong>on</strong>g>th</str<strong>on</strong>g>e new recruits for <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <strong>on</strong>e, see, e.g., [1].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wood Frogs, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are <str<strong>on</strong>g>th</str<strong>on</strong>g>ree main stages <str<strong>on</strong>g>of</str<strong>on</strong>g> development where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals compete for different resources. The toads live in <str<strong>on</strong>g>th</str<strong>on</strong>g>e water, and<br />

following <str<strong>on</strong>g>th</str<strong>on</strong>g>eir metamorphosis <str<strong>on</strong>g>th</str<strong>on</strong>g>ey become juvenile frogs, not yet large enough to<br />

reproduce. The <str<strong>on</strong>g>th</str<strong>on</strong>g>ird stage is <str<strong>on</strong>g>of</str<strong>on</strong>g> mature egg laying frogs. The populati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree stages <str<strong>on</strong>g>of</str<strong>on</strong>g> development have different dynamics. Hence, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are modelled<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical tools, which makes assembling <str<strong>on</strong>g>th</str<strong>on</strong>g>e model an interesting<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical problem. Due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>s in Michigan, <str<strong>on</strong>g>th</str<strong>on</strong>g>e eggs are laid over<br />

a short time period and <str<strong>on</strong>g>th</str<strong>on</strong>g>e juveniles emerge from <str<strong>on</strong>g>th</str<strong>on</strong>g>e water more or less <str<strong>on</strong>g>th</str<strong>on</strong>g>e same<br />

time, so, we model <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two events by impulses, [4]. The success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metamorphosis<br />

depends mainly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e toads. Hence, <str<strong>on</strong>g>th</str<strong>on</strong>g>e size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

toads at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> metamorphosis determines bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir initial size. Similarly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e transfer from juvenile to adults depends mainly <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e frogs. It does not occur at a fixed time, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e juveniles who do not<br />

grow sufficiently to mate need to wait for a year before laying eggs. The grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e toads and <str<strong>on</strong>g>th</str<strong>on</strong>g>e juveniles in size is not uniform across <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> and depends<br />

<strong>on</strong> external factors, as well. It is modelled using PDEs for <str<strong>on</strong>g>th</str<strong>on</strong>g>e density size<br />

distributi<strong>on</strong> at time t. The dea<str<strong>on</strong>g>th</str<strong>on</strong>g> and fertility rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mature frogs are not related<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir age. So <str<strong>on</strong>g>th</str<strong>on</strong>g>eir populati<strong>on</strong> is assumed to be homogeneous and is modelled<br />

by an ODE. Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e derived model comprises a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary and partial<br />

impulsive differential equati<strong>on</strong>s. The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> such a model can<br />

be complicated, see, e.g., [1]. Our analysis and numerical simulati<strong>on</strong>s focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

global properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model as a dynamical system, as in [2]. The results show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model may have a unique soluti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>verges to a stable periodic cycle.<br />

References.<br />

[1] A Ackleh, K Deng, A N<strong>on</strong>aut<strong>on</strong>omous Juvenile-Adult Model: Well-Posedness and L<strong>on</strong>g Term<br />

Behaivior via Comparis<strong>on</strong> Principle, SIAM Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics 6 (2009) 1644–<br />

1661.<br />

[2] R Anguelov, Y Dum<strong>on</strong>t, J M-S Lubuma, E Murei<str<strong>on</strong>g>th</str<strong>on</strong>g>i, Stability Analysis and Dynamics Preserving<br />

N<strong>on</strong>-Standard Finite Difference Schemes for a Malaria Model, Theoretical Populati<strong>on</strong><br />

Biology, to appear.<br />

[3] K A Berven, Density Dependence in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Terrestrial Stage <str<strong>on</strong>g>of</str<strong>on</strong>g> Wood Frogs: Evidence from a<br />

21-Year Populati<strong>on</strong> Study, Copeia, 2009, No. 2, 328–338<br />

[4] V Lakshmikan<str<strong>on</strong>g>th</str<strong>on</strong>g>an, D D Bainov, P S Sime<strong>on</strong>ov, Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Impulsive Differential Equati<strong>on</strong>s,<br />

World Scientific Publishing, 1989.<br />

09:25–09:45<br />

Saliha Hamdous<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tizi-Ouzou, Algeria<br />

e-mail: hamdoussaliha2002@yahoo.fr<br />

Hisao Fujita Yashima<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turin, Italy<br />

e-mail: hisao.fujitayashima@unito.it<br />

Luigi Manca<br />

294


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Marne la Vally, France<br />

e-mail: Luigi.Manca@univ-mlv.fr<br />

Invariant Measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stochastic Models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Populati<strong>on</strong> Dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Spatial Diffusi<strong>on</strong><br />

We c<strong>on</strong>sider a stochastic equati<strong>on</strong>s system modeling populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong><br />

and prey-predator type wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diffusi<strong>on</strong> in a territorial domain. We prove<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an invariant measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e prey-predator<br />

stochastic models. To dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results, we apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e Krylov-Bogoliubov’s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eorem, who requires an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic equati<strong>on</strong>s<br />

system.<br />

To obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e appropriate estimates we apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e Itô’s formula in infinite dimensi<strong>on</strong><br />

space to an adequate functi<strong>on</strong>.<br />

References.<br />

[1] S. Hamdous, H. Fujita Yashima: Mesure invariante pour le système d’équati<strong>on</strong>s stochastiques<br />

du modèle de compétiti<strong>on</strong> avec diffusi<strong>on</strong> spatiale. Rend. Sem. Mat. Padova, vol 122 (2009)<br />

p.p. 85-98.<br />

[2] S. Hamdous, L. Manca, H. Fujita Yashima: Mesure invariante pour le système d’équati<strong>on</strong>s<br />

stochastiques du modèle de proie-prédateur avec diffusi<strong>on</strong> spatiale. Rend. Sem. Mat. Padova,<br />

vol 124 (2010) p.p. 57-75.<br />

[3] R. Rudnicki: L<strong>on</strong>g-time behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a stochastic prey-predator model. Stoch. Proc. Appl.,<br />

vol. 108 (2003), pp. 93-107.<br />

[4] E. Tornatore: Stochastic equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamic wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> a domain. Rend.<br />

Circ. Mat. Palermo, Serie II, Tomo 52 (2003), pp. 15-29.<br />

09:45–10:05<br />

Hiromi Seno<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Life Sciences, Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Science, Hiroshima University, Higashi-hiroshima, 739-8526, Japan<br />

e-mail: seno@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.sci.hiroshima-u.ac.jp<br />

Ayaka Terada<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Hiroshima University,<br />

Higashi-hiroshima, 739-8526, Japan<br />

A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e annual variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epidemic outbreak wi<str<strong>on</strong>g>th</str<strong>on</strong>g> preventi<strong>on</strong> level affected by<br />

incidence size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last seas<strong>on</strong><br />

Annual or seas<strong>on</strong>al fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size has been observed for a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases, for example, influenza, measles, rubella, mumps, chickenpox<br />

etc. Here <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic seas<strong>on</strong> means <str<strong>on</strong>g>th</str<strong>on</strong>g>e final size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epidemic at <str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>, which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e fracti<strong>on</strong> or <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> infected populati<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic seas<strong>on</strong>. Such fluctuati<strong>on</strong>s have been attracting many researchers in<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology, and giving discussi<strong>on</strong>s about its driving factors. It would be<br />

taken natural <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e important factors is seas<strong>on</strong>ally varying envir<strong>on</strong>ment,<br />

295


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact rate, infecti<strong>on</strong> rate, or recruitment rate,<br />

for example due to social aggregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hosts or seas<strong>on</strong>ally restricted breeding seas<strong>on</strong>.<br />

In our work, in c<strong>on</strong>trast to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese factors <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamics, we c<strong>on</strong>sider<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a change <str<strong>on</strong>g>of</str<strong>on</strong>g> social behavior which determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong> level for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>sidered infectious disease. In case when <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last epidemic<br />

seas<strong>on</strong> is large, <str<strong>on</strong>g>th</str<strong>on</strong>g>e people in <str<strong>on</strong>g>th</str<strong>on</strong>g>e community would tend to increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong><br />

level against <str<strong>on</strong>g>th</str<strong>on</strong>g>e infectious disease, for instance, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> promoting washing hands,<br />

gargling, wearing a mask, and available vaccinati<strong>on</strong>. Such increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong><br />

level is reflected to <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> rate or recovery rate according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

disease. Differently from <str<strong>on</strong>g>th</str<strong>on</strong>g>ose factors potentially causing <str<strong>on</strong>g>th</str<strong>on</strong>g>e annual or seas<strong>on</strong>al<br />

fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size, <str<strong>on</strong>g>th</str<strong>on</strong>g>is social factor is what is affected by <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence<br />

size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last seas<strong>on</strong> or <str<strong>on</strong>g>th</str<strong>on</strong>g>e past seas<strong>on</strong>s.<br />

To c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential effect <str<strong>on</strong>g>of</str<strong>on</strong>g> such social factor <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e potentiality <str<strong>on</strong>g>of</str<strong>on</strong>g> incidence<br />

size fluctuati<strong>on</strong>, we c<strong>on</strong>struct and analyze a simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete<br />

dynamical system, which is derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e final-size equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kermack–<br />

McKendrick SIR model. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at such social factor could potentially<br />

or partially c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e driving force causing <str<strong>on</strong>g>th</str<strong>on</strong>g>e annual or seas<strong>on</strong>al fluctuati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size for some infectious diseases.<br />

10:05–10:25<br />

Glenn Mari<strong>on</strong><br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics & Statistics Scotland<br />

e-mail: glenn@bioss.ac.uk<br />

Stephen Catterall<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics & Statistics Scotland<br />

Alex R. Cook<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Nati<strong>on</strong>al University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Singapore<br />

Philip E. Hulme<br />

The Bio-Protecti<strong>on</strong> Research Centre, Lincoln University, New Zealand<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive aliens:<br />

process-based models and Bayesian inference<br />

Discrete state-space Markov processes provide a remarkably flexible framework bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

to describe and infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> systems in epidemiology and<br />

bey<strong>on</strong>d. For many models <str<strong>on</strong>g>of</str<strong>on</strong>g> interest reversible jump Markov chain M<strong>on</strong>te Carlo<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are a practical approach to implementing statistically sound parameter estimati<strong>on</strong><br />

for such models when, as is typically <str<strong>on</strong>g>th</str<strong>on</strong>g>e case, <strong>on</strong>ly partial observati<strong>on</strong>s are<br />

available. We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such inference approaches, applied wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

spatial epidemic models, to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species at large spatial<br />

296


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

scales. In such applicati<strong>on</strong>s local envir<strong>on</strong>mental characteristics determine susceptibility<br />

(suitability for <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive species) which emphasises <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape<br />

heterogeneity.<br />

In particular we present a generic Bayesian approach to parameter inference<br />

in a grid-based stochastic, spatio-temporal model <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal and establishment<br />

describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a regi<strong>on</strong> by an alien plant species. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od requires<br />

species distributi<strong>on</strong> data from multiple time points, and accounts for temporal uncertainty<br />

in col<strong>on</strong>isati<strong>on</strong> times inherent in such data. The impact <strong>on</strong> col<strong>on</strong>isati<strong>on</strong><br />

suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> covariates, which capture landscape heterogeneities, is also inferred.<br />

The model and inference algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m are applied to British floristic atlas data for Heracleum<br />

mantegazzianum (giant hogweed), an invasive alien plant <str<strong>on</strong>g>th</str<strong>on</strong>g>at has rapidly<br />

increased its range since 1970. Using systematic surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> species distributi<strong>on</strong><br />

across a 10km grid covering <str<strong>on</strong>g>th</str<strong>on</strong>g>e British Isles, we infer key characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

species, predict its future spread, and use <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting fitted model to inform a<br />

simulati<strong>on</strong>-based assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology.<br />

297


Populati<strong>on</strong> Dynamics 5<br />

Wednesday, June 29, 11:00, Room: AM2<br />

Chaired by: Andreas Bohn<br />

11:00–11:30<br />

Nicholas F. Britt<strong>on</strong><br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences & Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biology, Univ <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: n.f.britt<strong>on</strong>@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Interspecific kleptoparasitism<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough interspecific kleptoparasitism is widespread, <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models have<br />

focussed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraspecific case. We develop a game-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic model <str<strong>on</strong>g>of</str<strong>on</strong>g> interspecific<br />

kleptoparasitism, ultimately based <strong>on</strong> Ruxt<strong>on</strong> and Moody [1], c<strong>on</strong>sidering<br />

optimal host and parasite strategies. We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>th</str<strong>on</strong>g>at, <strong>on</strong> an ecological<br />

time scale, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system does not settle to a steady state but to oscillatory<br />

behaviour in strategy space.<br />

References.<br />

[1] G D Ruxt<strong>on</strong> and A L Moody, The ideal free distributi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> kleptoparasitism, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Biology 186, 449–458, 1997.<br />

11:35–11:55<br />

Etsuko N<strong>on</strong>aka<br />

IceLab & Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Envir<strong>on</strong>mental Science, Umeå University,<br />

Sweden<br />

e-mail: etsuko.n<strong>on</strong>aka@gmail.com<br />

David J. T. Sumpter<br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Uppsala University, Sweden<br />

Kalle Parvinen<br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

Åke Brännström<br />

IceLab & Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Statistics, Umeå University,<br />

Sweden<br />

299


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Adaptive advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregati<strong>on</strong> in a populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Allee effects<br />

Aggregati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten believed to be advantageous in populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> positive density<br />

dependence at small populati<strong>on</strong> size (i.e., Allee effects). Many species <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>social<br />

animals aggregate to acquire resources for survival and reproducti<strong>on</strong>. By aggregating,<br />

organisms may create a more favorable envir<strong>on</strong>ment, reduce per capita<br />

predati<strong>on</strong> risk, or procure resources, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> which is likely attainable for individuals<br />

acting al<strong>on</strong>e. However, when resources are scarce or populati<strong>on</strong> density is high,<br />

aggregati<strong>on</strong> likely results in overcrowding and severe competiti<strong>on</strong>. Moreover, aggregati<strong>on</strong><br />

behavior can affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e collective reproductive success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>us can alter populati<strong>on</strong> dynamics and populati<strong>on</strong> density. Because benefits to aggregati<strong>on</strong><br />

behavior may be density dependent, its adaptive advantage can be more<br />

properly examined by explicitly accounting for <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback loop between behavior<br />

and populati<strong>on</strong> dynamics. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is project is to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s<br />

under which aggregati<strong>on</strong> is advantageous. We c<strong>on</strong>structed a minimal model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates aggregati<strong>on</strong>, Allee effects, and scramble competiti<strong>on</strong>. The part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> group formati<strong>on</strong> by preferential attachment is<br />

based <strong>on</strong> analytical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> groups <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different sizes. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en used <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods from adaptive dynamics and performed<br />

invasi<strong>on</strong> analysis to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> various aggregati<strong>on</strong> tendencies.<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough a str<strong>on</strong>g tendency to join larger groups is advantageous for<br />

establishing a populati<strong>on</strong> from a small size, it is generally not advantageous. This<br />

is due to high populati<strong>on</strong> density produced by effective aggregati<strong>on</strong>. A strategy<br />

where individuals pick a group randomly is overall more advantageous and able<br />

to invade populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a str<strong>on</strong>ger aggregati<strong>on</strong> tendency. In some regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter space, we observe evoluti<strong>on</strong>ary suicide where invaders go extinct after<br />

successfully invading <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident populati<strong>on</strong>. Str<strong>on</strong>g tendencies for aggregati<strong>on</strong><br />

become advantageous enough to persist when some mechanisms regulating group<br />

size are included or when <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> frequently experiences a low density (e.g,<br />

dispersal, stochastic high mortality events). We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at aggregati<strong>on</strong> al<strong>on</strong>e is<br />

mostly not advantageous and needs some additi<strong>on</strong>al mechanisms to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er regulate<br />

group size or suppress populati<strong>on</strong> density.<br />

11:55–12:15<br />

Urszula Skwara<br />

Maria Curie Skłodowska University<br />

e-mail: uskwara@o2.pl<br />

Asymptotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic symbiosis model<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> various stochastic perturbati<strong>on</strong>s <strong>on</strong> symbiosis system.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e following system <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic equati<strong>on</strong>s<br />

{ dX(t) = ((a1 + b 1 Y (t) − c 1 X(t)) dt + ρ 11 dW 1 (t) + ρ 12 dW 2 (t)) X(t)<br />

(1)<br />

dY (t) = ((a 2 + b 2 X(t) − c 2 Y (t)) dt + ρ 21 dW 1 (t) + ρ 22 dW 2 (t)) Y (t),<br />

300


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

which describes relati<strong>on</strong>s between two populati<strong>on</strong>s living in symbiosis. We assume<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at a i , b i , c i > 0 (i = 1, 2) are positive c<strong>on</strong>stants, W 1 (t), W 2 (t) are two independent<br />

standard Wiener processes, X(t), Y (t) are stochastic processes which represent, respectively,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first and <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d populati<strong>on</strong>. We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>ree kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic<br />

perturbati<strong>on</strong>s:<br />

(i) weakly correlated, i.e. ρ 11 ρ 22 − ρ 12 ρ 21 ≠ 0;<br />

(ii) str<strong>on</strong>gly correlated, i.e. ρ 11 > 0, ρ 21 > 0, ρ 12 = 0, ρ 22 = 0;<br />

(iii) <strong>on</strong>ly <strong>on</strong>e populati<strong>on</strong> is stochastically perturbed, by symmetry we assume<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d populati<strong>on</strong> is perturbed, i.e. ρ 11 = 0, ρ 21 > 0, ρ 12 = 0,<br />

ρ 22 = 0.<br />

First we show <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence, uniqueness, positivity and n<strong>on</strong>-extincti<strong>on</strong> property <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> system (1) <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at b 1 b 2 < c 1 c 2 . Next we prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e probability distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process (X(t), Y (t)) are absolutely c<strong>on</strong>tinuous<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lebesgue measure. Let U(x, y, t) be <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> (X(t), Y (t)). We give a sufficient and a necessary c<strong>on</strong>diti<strong>on</strong> for asymptotic<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> system (1), i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> U(x, y, t) to an invariant density<br />

U ∗ (x, y). In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case when <str<strong>on</strong>g>th</str<strong>on</strong>g>is system is not asymptotically stable, we prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

lim t→∞ Y (t) = 0 a.e. We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>is case lim t→∞ X(t) = 0 a.e. or <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

probability distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process X(t) c<strong>on</strong>verge weakly to some probability<br />

measure. We give a biological interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results.<br />

References.<br />

[1] U. Skwara, A stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> symbiosis Ann. Pol<strong>on</strong>. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.97.3 257–272 .<br />

[2] U. Skwara, A stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> symbiosis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> degenerate difussi<strong>on</strong> process Ann. Pol<strong>on</strong>.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. 98.2 111–128.<br />

12:15–12:35<br />

Flora Cordoleani<br />

Jean-Christophe Poggiale<br />

David Nerini<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Gauduch<strong>on</strong><br />

Andrew Morozov<br />

Centre d’Oceanologie de Marseille, Universite de la Mediterranee,<br />

UMR LMGEM 6117 CNRS, Campus de Luminy, Case 901,13288 Marseille<br />

Cedex 09, FRANCE<br />

e-mail: flora.cordoleani@univmed.fr<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> structure sensitivity analysis me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time, sensitivity analyses performed <strong>on</strong> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models are<br />

limited to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters. Though, it has been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e wants to model can<br />

also be very important for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological systems. For instance, several<br />

au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors have highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>al resp<strong>on</strong>se formulati<strong>on</strong>,<br />

which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sumpti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> predators as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prey density, can have<br />

301


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

a str<strong>on</strong>g impact <strong>on</strong> predator-prey models behavior and stability. This is referred by<br />

[1] as a new type <str<strong>on</strong>g>of</str<strong>on</strong>g> model sensitivity, called <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

The formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological processes can be very complex and it is not rare<br />

to find several possible ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical expressi<strong>on</strong>s to model <strong>on</strong>e process. Indeed,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e process studied is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten difficult to measure in <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural medium and it is<br />

approximated by functi<strong>on</strong>s estimated from laboratory or in situ experiments. These<br />

functi<strong>on</strong>s are c<strong>on</strong>sidered as a good approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomen<strong>on</strong> observed in<br />

natural systems, which is <str<strong>on</strong>g>of</str<strong>on</strong>g> course questi<strong>on</strong>able since it has been dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

natural systems are much more heterogeneous <str<strong>on</strong>g>th</str<strong>on</strong>g>an simplified laboratory systems.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>text, we have decided to develop some simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at will help modelers to detect and to measure if <str<strong>on</strong>g>th</str<strong>on</strong>g>eir system is sensitive to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process studied. We argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is type <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis is<br />

essential if <strong>on</strong>e wants to be able to use and comment informati<strong>on</strong>s obtained from<br />

model simulati<strong>on</strong>s. We show an example <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> by investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>al resp<strong>on</strong>se formulati<strong>on</strong> <strong>on</strong> a chemostat-type predator-prey model<br />

dynamics. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e system does exhibit structure sensitivity, which is even<br />

str<strong>on</strong>ger <str<strong>on</strong>g>th</str<strong>on</strong>g>an system parameters sensitivity.<br />

References.<br />

[1] Wood, S. N. and Thomas, M. B., 1999. Super-sensitivity to structure in biological models.<br />

Proc. R. Soc. L<strong>on</strong>d. B 266, 565-570.<br />

12:35–12:55<br />

Lai Zhang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark<br />

e-mail: L.Zhang@mat.dtu.dk<br />

K.H. Andersen<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Resources, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Denmark<br />

U.H. Thygesen<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Resources, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Denmark<br />

K. Knudsen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark<br />

Trait diversity promotes to stabilize community dynamics<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> marine communities are generally modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e McKendrickv<strong>on</strong><br />

Foerster equati<strong>on</strong>s describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e biomass flow al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e size spectrum. This<br />

modeling disregards <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate am<strong>on</strong>g different<br />

species due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e ignorance <str<strong>on</strong>g>of</str<strong>on</strong>g> species identities. The potential c<strong>on</strong>sequence is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at predicti<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>is model might deviate from <str<strong>on</strong>g>th</str<strong>on</strong>g>e reality by ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er being<br />

overestimated or underestimated. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e novel size- and trait-based species<br />

model where <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate is explicitly included, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

community size spectrum can be represented as an output <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e total species size<br />

spectra. A significant stabilizing mechanism is recognized for <str<strong>on</strong>g>th</str<strong>on</strong>g>e first time. It is<br />

302


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributed individual grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate tends to smoo<str<strong>on</strong>g>th</str<strong>on</strong>g>en out <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fluctuati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting community spectrum and <str<strong>on</strong>g>th</str<strong>on</strong>g>us individual experiences<br />

less variable prey and predator fields. Effectively, trophic waves are smoo<str<strong>on</strong>g>th</str<strong>on</strong>g>ed out<br />

due to different grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals at a given point in <str<strong>on</strong>g>th</str<strong>on</strong>g>e wave.<br />

The finding infers <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al community modeling is to some extent oversimplified.<br />

303


Populati<strong>on</strong> Dynamics 6<br />

Wednesday, June 29, 14:30, Room: AM2<br />

Chaired by: N. F. Britt<strong>on</strong><br />

14:30–15:00<br />

Luis Fernando Chaves<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science, Hokkaido University, Sapporo,<br />

Japan<br />

e-mail: lchaves@ees.hokudai.ac.jp<br />

N<strong>on</strong>-linear impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic variability <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e density<br />

dependent regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an insect vector <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

Aedes aegypti is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> urban tropical mosquito species and an<br />

important vector <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue, chikungunya, and yellow fever viruses. It is also an organism<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a complex life history where larval stages are aquatic and adults are terrestrial.<br />

This <strong>on</strong>togenetic niche shift could shape <str<strong>on</strong>g>th</str<strong>on</strong>g>e density dependent regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er mosquito species because events <str<strong>on</strong>g>th</str<strong>on</strong>g>at occur during <str<strong>on</strong>g>th</str<strong>on</strong>g>e larval stages<br />

impact adult densities. Here, we present results from simple density-dependence<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models fitted using maximum likelihood me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to weekly time<br />

series data from Puerto Rico and Thailand. Density dependent regulati<strong>on</strong> was<br />

str<strong>on</strong>g in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic forcing indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>at populati<strong>on</strong>s<br />

were more sensitive to climatic variables wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low kurtosis (i.e., highly variable<br />

around <str<strong>on</strong>g>th</str<strong>on</strong>g>e median) rainfall in Puerto Rico and temperature in Thailand. Changes<br />

in envir<strong>on</strong>mental variability appear to drive sharp increases in <str<strong>on</strong>g>th</str<strong>on</strong>g>e abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mosquitoes. The identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exogenous factors forcing <str<strong>on</strong>g>th</str<strong>on</strong>g>e sharp increases in<br />

disease vector populati<strong>on</strong>s using <str<strong>on</strong>g>th</str<strong>on</strong>g>eir statistical properties, such as kurtosis, could<br />

be useful to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> changing climate patterns <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vector-borne diseases.<br />

15:05–15:25<br />

Christian Winkel<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Analysis and Numerical Simulati<strong>on</strong> · University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Stuttgart · Pfaffenwaldring 57 · D-70569 Stuttgart<br />

e-mail: christian.winkel@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik.uni-stuttgart.de<br />

305


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Christina Surulescu<br />

Institut <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics · University <str<strong>on</strong>g>of</str<strong>on</strong>g> Münster<br />

· Einsteinstraße 62 · D-48149 Münster<br />

e-mail: christina.surulescu@uni-muenster.de<br />

Peter Scheurich<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Biology and Immunology · University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stuttgart<br />

· Allmandring 31 · D-70569 Stuttgart<br />

e-mail: peter.scheurich@izi.uni-stuttgart.de<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model(s) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> (TNF-)<br />

Receptor Clustering<br />

Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system are coordinated by immune horm<strong>on</strong>es, called<br />

cytokines. Tumor necrosis factor (TNF) is a cytokine regulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e innate immune<br />

system, including cells like dendritic cells, macrophages and neutrophils.<br />

Disregulated TNF has been recognized as <str<strong>on</strong>g>th</str<strong>on</strong>g>e main factor in progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

autoimmune diseases, like Rheumatoid Ar<str<strong>on</strong>g>th</str<strong>on</strong>g>ritis and Morbus Crohn. TNF is a homotrimeric<br />

protein capable to bind <str<strong>on</strong>g>th</str<strong>on</strong>g>ree receptors. But also unligated receptors<br />

occur <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell surface as homomultimers due to a homophilic interacti<strong>on</strong> domain.<br />

Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two interacti<strong>on</strong> motivs (ligand/receptor and receptor/receptor) we<br />

present two different modelling and simulati<strong>on</strong> strategies.<br />

Firstly, we use a mass acti<strong>on</strong> kinetics approach to propose an ordinary differential<br />

equati<strong>on</strong>s model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> subsequent formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> signal clusters <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane. Thereby, we focus our attenti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e system <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary ligand/receptor complexes <str<strong>on</strong>g>th</str<strong>on</strong>g>at can initiate intracellular<br />

signaling processes eventually leading to caspase mediated cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. Therefore we<br />

develop our model in a way <str<strong>on</strong>g>th</str<strong>on</strong>g>at not <strong>on</strong>ly receptor cross-linking by ligand but also<br />

homophilic interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> receptors leading to homodimer formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ligand is encompassed.<br />

It turns out <str<strong>on</strong>g>th</str<strong>on</strong>g>at using parameter values for binding affinities c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

experimentally determined values <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> our model suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> high ligand and low receptor c<strong>on</strong>centrati<strong>on</strong> no substrate inhibiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

receptor cross-linking can be observed. In c<strong>on</strong>trast, our model shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at an increasing<br />

ligand c<strong>on</strong>centrati<strong>on</strong> leads to a saturati<strong>on</strong> in receptor cross-linking and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erewi<str<strong>on</strong>g>th</str<strong>on</strong>g> illustrating <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e downstream signaling events even in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> ligand excess. These results are underlined by numerical simulati<strong>on</strong>s,<br />

which are c<strong>on</strong>firmed by experimental data.<br />

Sec<strong>on</strong>dly, we apply a populati<strong>on</strong> balance model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simultaneous grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

breakage processes in order to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e forming <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling clusters al<strong>on</strong>g<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cluster sizes and couple <str<strong>on</strong>g>th</str<strong>on</strong>g>is wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er equati<strong>on</strong> characterising<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free receptors. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is system<br />

in its integro-differential form we use several discretizati<strong>on</strong> techniques including<br />

finite differences and semi-discrete moment preserving finite volume schemes which<br />

can be extended to incorporate fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er spatial effects <strong>on</strong> cell surfaces. Thereby we<br />

examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e results obtained not <strong>on</strong>ly wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regard to biological relevance but also<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to stability and robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e discretizati<strong>on</strong>.<br />

306


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:25–15:45<br />

Nick Jagiella<br />

INRIA Rocquencourt, Paris, France<br />

e-mail: nick.jagiella@inria.fr<br />

Benedikt Müller 1 , Irene Vign<strong>on</strong>-Clementel 2 , Margareta Müller 1 , Dirk<br />

Drasdo 2<br />

1 DKFZ, Heidelberg, Germany, 2 INRIA Rocquencourt, Paris, France<br />

From Data Analysis to Model Parameterizati<strong>on</strong> &<br />

Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Therapy<br />

In order to establish a predictive model for in-vivo tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy a<br />

multi-scale model has to be set-up and calibrated individually in a stepwise process<br />

to a targeted cell type. As a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> principle we will present <str<strong>on</strong>g>th</str<strong>on</strong>g>e process chain<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> model c<strong>on</strong>structi<strong>on</strong> and parameterizati<strong>on</strong> from different data sources for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

EMT6/Ro and <str<strong>on</strong>g>th</str<strong>on</strong>g>e SK-MES-1 cell line.<br />

In a first step <str<strong>on</strong>g>th</str<strong>on</strong>g>e model has been built up and validated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> EMT6/Ro mouse<br />

mammary carcinoma multi-cellular cell spheroid data from literature. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is cell<br />

line it predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetics to be c<strong>on</strong>trolled by spatial restrains over a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen and glucose medium c<strong>on</strong>centrati<strong>on</strong>s. Only if bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, oxygen and<br />

glucose are very limiting saturati<strong>on</strong> was observed which <str<strong>on</strong>g>th</str<strong>on</strong>g>e model could explain<br />

by cells switching from aerobic to anaerobic glycolysis.<br />

In a sec<strong>on</strong>de step <str<strong>on</strong>g>th</str<strong>on</strong>g>e model was adapted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e SK-MES-1 cell line. The<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetics was calibrated quantitatively in comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> curves<br />

and qualitatively by image analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> spheroid cryo<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g>s stained for apoptosis<br />

and proliferati<strong>on</strong>.<br />

15:45–16:05<br />

Je<strong>on</strong>g-Mi Yo<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Houst<strong>on</strong>-Downtown<br />

e-mail: yo<strong>on</strong>j@uhd.edu<br />

Lisa Morano<br />

Vlad Hrynkiv<br />

Anh Tuan Nguyen ∗<br />

Sara Wilder ∗<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Houst<strong>on</strong>-Downtown; *: undergraduate students<br />

e-mail: Moranol@uhd.edu,Hrynkivv@uhd.edu<br />

Populati<strong>on</strong> Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Glassy-winged Sharpshooter in<br />

Texas Vineyards<br />

Pierce’s Disease (PD) is a bacterial disease <str<strong>on</strong>g>of</str<strong>on</strong>g> grapevines wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e capacity to kill an<br />

entire vineyard in <strong>on</strong>e year. Outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease <str<strong>on</strong>g>th</str<strong>on</strong>g>reaten California vineyards<br />

and are a chr<strong>on</strong>ic problem in Texas, particularly al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gulf Coast. The disease<br />

307


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

is caused by a bacterium, Xylella fastidiosa and is transmitted by xylem-feeding<br />

insects comm<strong>on</strong>ly called sharpshooters. To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> sharpshooter<br />

ecology <strong>on</strong> PD epidemiology, <str<strong>on</strong>g>th</str<strong>on</strong>g>e USDA-APHIS has funded sharpshooter trap data<br />

from 50 Texas vineyards from 2003-to present under <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dr. Forrest<br />

Mitchell, Texas A&M University. Am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e insects m<strong>on</strong>itored, Homolodisca<br />

vitripennis (Glassy-winged sharpshooter-GWSS) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most abundant insect captured<br />

across all vineyards in Texas. Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e enormous GWSS data set is<br />

an excellent opportunity to have bo<str<strong>on</strong>g>th</str<strong>on</strong>g> biology and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics students and apply<br />

modeling techniques to temporal changes in insect populati<strong>on</strong>s in order to predict<br />

future PD risk and determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal management protocols.<br />

This collaborative research has been funded by <str<strong>on</strong>g>th</str<strong>on</strong>g>e NSF Grant: The Interdisciplinary<br />

Training for Undergraduates in Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences (UBM).<br />

During year 2009-2010, our group has developed a populati<strong>on</strong> model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

time-delayed logistic equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant single species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central Texas<br />

hill regi<strong>on</strong>s (Ecoregi<strong>on</strong> 7: Edwards Plateau) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e years 2003-2009. The chosen<br />

model was transformed as <strong>on</strong>e-parameter delayed equati<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-dimensi<strong>on</strong>al<br />

technique. The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic cyclic soluti<strong>on</strong> was explained by <str<strong>on</strong>g>th</str<strong>on</strong>g>e local<br />

stability analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear model near <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity analytically. Undergraduate<br />

students worked <strong>on</strong> obtaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal values <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters which<br />

could guarantee <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic soluti<strong>on</strong> numerically using s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, MATLAB and<br />

compared it to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental histogram. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 2010 we have been<br />

working <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e revisi<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> harvesting and immigrati<strong>on</strong> terms which could<br />

include <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental factors such as insecticide use, informati<strong>on</strong> campaigns,<br />

weeds cleaning, and temperature changes. We will test <str<strong>on</strong>g>th</str<strong>on</strong>g>e aut<strong>on</strong>omous and also<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-aut<strong>on</strong>omous harvesting terms. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e future, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model will be extended<br />

to a spatio-temporal model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fisher’s equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delayed logistic<br />

populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

16:05–16:25<br />

Jeremy Thibodeaux<br />

Loyola University New Orleans<br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>ibodea@loyno.edu<br />

Timo<str<strong>on</strong>g>th</str<strong>on</strong>g>y P. Schlittenhardt<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Central Oklahoma<br />

Optimal Treatment Strategies for Malaria Infecti<strong>on</strong><br />

We develop a numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for estimating optimal parameters in a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> malaria infecti<strong>on</strong>. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a quasilinear system <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s. We present several numerical<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at periodic treatments <str<strong>on</strong>g>th</str<strong>on</strong>g>at are in synchr<strong>on</strong>izati<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic bursting rate <str<strong>on</strong>g>of</str<strong>on</strong>g> infected ery<str<strong>on</strong>g>th</str<strong>on</strong>g>rocytes are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most productive<br />

strategies.<br />

308


Populati<strong>on</strong> Dynamics 8<br />

Thursday, June 30, 11:30, Room: AM2<br />

Chaired by: Eva Kisdi<br />

11:30–12:00<br />

Peter Pang<br />

Nati<strong>on</strong>al University <str<strong>on</strong>g>of</str<strong>on</strong>g> Singapore (Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>)<br />

e-mail: matpyh@nus.edu.sg<br />

H. L. Li<br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>east University, China<br />

M. X. Wang<br />

Harbin Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, China<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-level<br />

trophic interacti<strong>on</strong>s<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, <str<strong>on</strong>g>th</str<strong>on</strong>g>e speaker will discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatiotemporal<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-level trophic interacti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

model, a general trophic functi<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio between <str<strong>on</strong>g>th</str<strong>on</strong>g>e prey and a linear<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predator is used at each level. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e two limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is trophic<br />

functi<strong>on</strong>, <strong>on</strong>e recovers <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical prey-dependent (Lotka-Volterra type) predati<strong>on</strong><br />

model and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio-dependent predati<strong>on</strong> model, respectively.<br />

The model results in a str<strong>on</strong>gly-coupled system <str<strong>on</strong>g>of</str<strong>on</strong>g> parabolic partial differential<br />

equati<strong>on</strong>s. The speaker will analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence, uniqueness, stability and bifurcati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> equilibrium (steady state) soluti<strong>on</strong>s using <str<strong>on</strong>g>th</str<strong>on</strong>g>e upper-lower soluti<strong>on</strong>s me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e topological degree me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. He will also interpret some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> different predati<strong>on</strong> behaviors (prey-dependent vs ratio-dependent).<br />

The speaker also points out <str<strong>on</strong>g>th</str<strong>on</strong>g>at he and his co-au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors have used similar me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

to study ecosystems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different predati<strong>on</strong> behaviors and strategies, different<br />

spatial features, as well as different species grow<str<strong>on</strong>g>th</str<strong>on</strong>g> patterns. This talk will include<br />

a brief survey <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results (which have been published in a series <str<strong>on</strong>g>of</str<strong>on</strong>g> papers<br />

in Proc Roy Soc Edinburgh, Proc L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Soc, J Differential Equati<strong>on</strong>s,<br />

IMA J Appl Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>, SIAM J Appl Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> etc).<br />

12:05–12:25<br />

309


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fabio Chalub<br />

Universidade Nova de Lisboa<br />

e-mail: chalub@fct.unl.pt<br />

Max Souza<br />

Universidade Federal Fluminense<br />

Discrete and c<strong>on</strong>tinous models in evoluti<strong>on</strong>ary dynamics<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e large populati<strong>on</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Moran and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wright-Fisher process,<br />

under <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak-selecti<strong>on</strong>, and for different scalings. Depending <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e particular choice <str<strong>on</strong>g>of</str<strong>on</strong>g> scalings, we obtain a c<strong>on</strong>tinuous model <str<strong>on</strong>g>th</str<strong>on</strong>g>at may highlight<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic-drift (neutral evoluti<strong>on</strong>) or natural selecti<strong>on</strong>; for <strong>on</strong>e precise scaling,<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> effects are present. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalings <str<strong>on</strong>g>th</str<strong>on</strong>g>at take <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic-drift into account,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous model is given by a singular diffusi<strong>on</strong> equati<strong>on</strong>, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two<br />

c<strong>on</strong>servati<strong>on</strong> laws <str<strong>on</strong>g>th</str<strong>on</strong>g>at are already present at <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete level. For scalings <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

take into account <strong>on</strong>ly natural selecti<strong>on</strong>, we obtain a hyperbolic singular equati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at embeds <str<strong>on</strong>g>th</str<strong>on</strong>g>e Replicator Dynamics and satisfies <strong>on</strong>ly <strong>on</strong>e c<strong>on</strong>servati<strong>on</strong> law. The<br />

derivati<strong>on</strong> is made in two steps: a formal <strong>on</strong>e, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e candidate limit model<br />

is obtained, and a rigorous <strong>on</strong>e, where c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability density is<br />

proved. Additi<strong>on</strong>al results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fixati<strong>on</strong> probabilities are also presented.<br />

12:25–12:45<br />

O. Angulo<br />

Universidad de Valladolid, Valladolid, Spain<br />

e-mail: oscar@mat.uva.es<br />

J. C. López-Marcos<br />

Universidad de Valladolid, Valladolid, Spain<br />

e-mail: lopezmar@mac.uva.es<br />

M. A. López-Marcos<br />

Universidad de Valladolid, Valladolid, Spain<br />

e-mail: malm@mac.uva.es<br />

J. Martínez-Rodríguez<br />

Universidad de Valladolid, Valladolid, Spain<br />

e-mail: julia@eco.uva.es<br />

Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> marine<br />

invertebrates wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different life stages<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we c<strong>on</strong>sider an age-structured populati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> marine invertebrates<br />

whose life stage is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> sessile adults and pelagic larvae, such as<br />

barnacles c<strong>on</strong>tained in a local habitat. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, proposed by Roughgarden and<br />

Iwasa and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically analyzed by Kamioka, space is <str<strong>on</strong>g>th</str<strong>on</strong>g>e principal limiting resource.<br />

The l<strong>on</strong>g time simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is kind <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled systems is difficult. Here,<br />

310


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

we propose and analyze a numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od in order to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s.<br />

References.<br />

[1] J. Roughgarden and Y. Iwasa, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a metapopulati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> space-limited subpopulati<strong>on</strong>,<br />

Theoretical Populati<strong>on</strong> Biology 29 (1986) 235–261.<br />

[2] K. Kamioka, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an age-structured populati<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> space-limited<br />

recruitment, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences 198 (2005) 27–56.<br />

[3] O. Angulo, L. M. Abia, J. C. López-Marcos and M. A. López-Marcos, L<strong>on</strong>g-time simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a size-structured populati<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a dynamical resource, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Natural Phenomena 5 (2010) 1–21.<br />

[4] O. Angulo, J. C. López-Marcos, M. A. López-Marcos and J. Martínez-Rodríguez, Numerical<br />

investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e recruitment process in open marine populati<strong>on</strong> models, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistical<br />

Mechanics: Theory and Experiment (2011) doi: 10.1088/1742-5468/2011/01/P01003.<br />

.<br />

12:45–13:05<br />

Hiroshi Toyoizumi<br />

Waseda University<br />

e-mail: toyoizumi@waseda.jp<br />

Jeremy Field<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex<br />

e-mail: j.field@sussex.ac.uk<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> social queues<br />

A wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> animals are known to form simple hierarchical groups called<br />

social queues, where individuals inherit resources or social status in a predictable<br />

order. Queues are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten age-based, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at a new individual joins <str<strong>on</strong>g>th</str<strong>on</strong>g>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

queue <strong>on</strong> reaching adul<str<strong>on</strong>g>th</str<strong>on</strong>g>ood, and must wait for older individuals to die in order<br />

to reach <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e queue. While waiting, an individual may work for her<br />

group, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g>ten risking her own survival and hence her chance <str<strong>on</strong>g>of</str<strong>on</strong>g> inheritance.<br />

Eventually, she may survive to reach <str<strong>on</strong>g>th</str<strong>on</strong>g>e head <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e queue and becomes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e group. Queueing has been particularly well-studied in hover<br />

wasps (Hymenoptera: Stenogastrinae). In hover wasp social groups, <strong>on</strong>ly <strong>on</strong>e female<br />

lays eggs, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a strict, age-based queue to inherit <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproductive<br />

positi<strong>on</strong>. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant individual (queen) c<strong>on</strong>centrates <strong>on</strong> breeding, subordinate<br />

helpers risk dea<str<strong>on</strong>g>th</str<strong>on</strong>g> by foraging outside <str<strong>on</strong>g>th</str<strong>on</strong>g>e nest, but have a slim chance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eventually inheriting dominance. Some explanati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>is altruistic behavior<br />

and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> social queues have been proposed and analyzed [1, 2]. Since<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nest and <str<strong>on</strong>g>th</str<strong>on</strong>g>e chance to inherit <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant positi<strong>on</strong><br />

depend critically <strong>on</strong> group size, queueing dynamics are crucial for understanding<br />

social queues, but detailed analysis is lacking. Here, using hover wasps as an example,<br />

we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at some basic queueing <str<strong>on</strong>g>th</str<strong>on</strong>g>eory[3] and n<strong>on</strong>-homogeneous<br />

bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes are useful for analyzing queueing dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

demographics <str<strong>on</strong>g>of</str<strong>on</strong>g> social queues. Our work leads to better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

how envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s and strategic decisi<strong>on</strong>-making by individuals interact<br />

311


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

to produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed group dynamics; and in turn, how group dynamics affects<br />

individual decisi<strong>on</strong>-making.<br />

References.<br />

[1] J. Field, A. Cr<strong>on</strong>in, and C. Bridge. Future fitness and helping in social queues. Nature, 441:214–<br />

217, 2006.<br />

[2] H. Kokko and R. A. Johnst<strong>on</strong>e. Social queuing in animal societies: a dynamic model <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive<br />

skew. Proc. R. Soc. L<strong>on</strong>d. B, 266:571–578, 1999.<br />

[3] H. Toyoizumi. Sample pa<str<strong>on</strong>g>th</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> and reward in cooperative groups. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology, 2008.<br />

13:05–13:25<br />

Roberto Rosà<br />

F<strong>on</strong>dazi<strong>on</strong>e Edmund Mach, San Michele all’Adige (TN) - ITALY<br />

e-mail: rosa@cealp.it<br />

Luca Bolz<strong>on</strong>i<br />

F<strong>on</strong>dazi<strong>on</strong>e Edmund Mach, San Michele all’Adige (TN) - ITALY<br />

Andrea Pugliese<br />

Dipartimento di Matematica, Universita’ di Trento, Povo (TN) - ITALY<br />

Fausta Rosso<br />

F<strong>on</strong>dazi<strong>on</strong>e Edmund Mach, San Michele all’Adige (TN) - ITALY<br />

Annapaola Rizzoli<br />

F<strong>on</strong>dazi<strong>on</strong>e Edmund Mach, San Michele all’Adige (TN) - ITALY<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> helmin<str<strong>on</strong>g>th</str<strong>on</strong>g> parasite <strong>on</strong> rock partridge<br />

populati<strong>on</strong> dynamics<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work was to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> helmin<str<strong>on</strong>g>th</str<strong>on</strong>g> parasites <strong>on</strong> rock partridge<br />

(Alectoris graeca saxatilis) populati<strong>on</strong> dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dolomitic Alps (nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern<br />

Italy). Specifically, we investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e nematode parasite Ascaridia<br />

compar can drive populati<strong>on</strong> cycles in rock partridge dynamics. In order<br />

to support <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis, we compared <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong>s obtained from a hostmacroparasite<br />

interacti<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multi-annual empirical data <str<strong>on</strong>g>of</str<strong>on</strong>g> A. compar<br />

infecti<strong>on</strong> in natural host populati<strong>on</strong>s. We estimated host demographic parameters<br />

from rock partridge census data, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasitological parameters from a<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental infecti<strong>on</strong>s in a rock partridge captive populati<strong>on</strong>. Our model<br />

predicts higher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> A. compar infestati<strong>on</strong> for rock partridge populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a cyclic dynamics respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n<strong>on</strong>-cyclic dynamics. In additi<strong>on</strong>, for<br />

populati<strong>on</strong>s exhibiting cyclic dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicts a positive correlati<strong>on</strong><br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean parasite burden and <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cycle period. Model predicti<strong>on</strong>s<br />

are well-supported by field data; in fact, a significant differences in parasite<br />

infecti<strong>on</strong> between cyclic and n<strong>on</strong> cyclic populati<strong>on</strong>s and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in cyclic populati<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different oscillati<strong>on</strong> periods were observed. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results, we<br />

c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at helmin<str<strong>on</strong>g>th</str<strong>on</strong>g> parasites can be a possible driver for rock partridge populati<strong>on</strong><br />

dynamics and must be c<strong>on</strong>sidered when planning c<strong>on</strong>servati<strong>on</strong> strategies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>reatened species.<br />

312


Populati<strong>on</strong> Dynamics 9<br />

Friday, July 1, 14:30, Room: AM6<br />

Chaired by: Peter Pang<br />

14:30–15:00<br />

Christina Cobbold<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Glasgow<br />

e-mail: cc@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.gla.ac.uk<br />

Emerging spatio-temporal patterns in a model <str<strong>on</strong>g>of</str<strong>on</strong>g> insect<br />

invasi<strong>on</strong><br />

Recent empirical studies <str<strong>on</strong>g>of</str<strong>on</strong>g> insect invasi<strong>on</strong>s have provided evidence for invasive<br />

waves wi<str<strong>on</strong>g>th</str<strong>on</strong>g> endogenously generated variance in spread rates. Integrodifference equati<strong>on</strong>s<br />

provide a general framework to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive species when<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e species has distinct grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and dispersal phases. Many insects from temporate<br />

climates satisfy <str<strong>on</strong>g>th</str<strong>on</strong>g>is descripti<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will present an integrodifference<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> insect host-parasitoid co-invasi<strong>on</strong> which exhibits endogenously generated<br />

variance in spread rate. The emerging spatio-temporal patterns which form in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

wake <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulsed wavefr<strong>on</strong>t may provide insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to<br />

collapse and generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insect outbreaks at <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape scale.<br />

15:05–15:25<br />

Erwan Hingant<br />

Institut Camille Jordan, Ly<strong>on</strong>, France.<br />

e-mail: hingant@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Pascaline F<strong>on</strong>tes<br />

Centre CECEMA, M<strong>on</strong>tpellier, France.<br />

Teresa Alvarez-Martinez<br />

Institut Fédératif de Biologie de M<strong>on</strong>tpellier, M<strong>on</strong>tpellier, France.<br />

Jacques-Damien Arnaud<br />

Institut Fédératif de Biologie de M<strong>on</strong>tpellier, M<strong>on</strong>tpellier, France.<br />

Jean-Pierre Liautard<br />

Centre de Recherche sur les Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogènes et Biologie pour la Santé,<br />

M<strong>on</strong>tpellier, France<br />

313


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Laurent Pujo-Menjouet<br />

Institut Camille Jordan, Ly<strong>on</strong>, France.<br />

An <strong>on</strong>-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way step explains <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic <str<strong>on</strong>g>of</str<strong>on</strong>g> pri<strong>on</strong> amyloid<br />

formati<strong>on</strong><br />

The pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissible sp<strong>on</strong>giform encephalopa<str<strong>on</strong>g>th</str<strong>on</strong>g>ies diseases,<br />

is typically associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>formati<strong>on</strong>al c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called pri<strong>on</strong><br />

protein (PrP). The protein-<strong>on</strong>ly model asserts <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e misfolded is<str<strong>on</strong>g>of</str<strong>on</strong>g>orm represents<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e infectious pri<strong>on</strong> agent, self-propagating by binding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal PrP<br />

and inducing its c<strong>on</strong>versi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e abnormal form [6]. This scenario was quantitatively<br />

described as a nucleati<strong>on</strong>-dependent amyloid polymerizati<strong>on</strong> [4]. However,<br />

we obtained experimental results inc<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. Indeed al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> polymerizati<strong>on</strong> resemble a simple nucleus-dependent fibrillogenesis, nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e initial c<strong>on</strong>centrati<strong>on</strong> dependence nor <str<strong>on</strong>g>of</str<strong>on</strong>g>f-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis fit completely<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental results when submitted to <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models [1], comparable<br />

discrepancies were obtained by o<str<strong>on</strong>g>th</str<strong>on</strong>g>er [2,3,4,5]. We <str<strong>on</strong>g>th</str<strong>on</strong>g>us hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esise <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>on</strong>-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way before nucleati<strong>on</strong> associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a c<strong>on</strong>formati<strong>on</strong>al change <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

generates intermediate c<strong>on</strong>formati<strong>on</strong>s compatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> nucleati<strong>on</strong> and polymerizati<strong>on</strong>.<br />

Using electr<strong>on</strong> microscopy analysis, we observed odd-structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at behaved<br />

as precursor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e amyloid formati<strong>on</strong>. We have developed a quantitative model<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an explicit descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microscopic processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at takes into account our<br />

observati<strong>on</strong>s. Then, we c<strong>on</strong>fr<strong>on</strong>ted, under several c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicti<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data. It appears <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are in a good agreement. Several<br />

c<strong>on</strong>clusi<strong>on</strong>s can be drawn from <str<strong>on</strong>g>th</str<strong>on</strong>g>is model <str<strong>on</strong>g>th</str<strong>on</strong>g>at better explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleati<strong>on</strong> kinetic<br />

barrier and pri<strong>on</strong> misfolding. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e light<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e in vivo phenomen<strong>on</strong>.<br />

References.<br />

[1] Alvarez-Martinez, M. T., et al., Dynamic <str<strong>on</strong>g>of</str<strong>on</strong>g> polymerizati<strong>on</strong> shed light <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

lead to multiple amyloid structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pri<strong>on</strong> protein. Submit (2010).<br />

[2] Baskakov, I. V. & Bochora, 0. V., In vitro c<strong>on</strong>verti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mammalian pri<strong>on</strong> protein into amyloid<br />

fibrils displays unusual features. Biochemistry 44, 2339–2348 (2005).<br />

[3] Collins, S. R., Douglass, A., Vae, R. D. & Weissmann, J. S., Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> pri<strong>on</strong> propagati<strong>on</strong>:<br />

Amyloid grow<str<strong>on</strong>g>th</str<strong>on</strong>g> occurs by m<strong>on</strong>omer additi<strong>on</strong>. PLOS Biol. 2, e321 (2004).<br />

[4] Come, J. H., Fraser, P. E. & Landsbury, P. T. A kinetic model for amyloid formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pri<strong>on</strong> diseases: Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> seeding. Proc. Natl. Acad. Sci. U S A 90, 5959–5963 (1993).<br />

[5] Masel, J., Jansen, V. A. A. & Nowak, M. A., Quantifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> pri<strong>on</strong><br />

replicati<strong>on</strong>. Biophys. Chem. 77, 139–152 (1999).<br />

[6] Prusiner, S. B., Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144<br />

(1982).<br />

15:25–15:45<br />

Jennifer Reynolds<br />

Heriot-Watt University<br />

e-mail: jjr6@hw.ac.uk<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> silica defences in driving vole populati<strong>on</strong> cycles<br />

314


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

As wi<str<strong>on</strong>g>th</str<strong>on</strong>g> many small mammals, vole populati<strong>on</strong>s are comm<strong>on</strong>ly characterized by<br />

multi-year cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance. Uncertainty remains over <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms underpinning<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese populati<strong>on</strong> cycles. One possible factor is <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

voles and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir food.<br />

Some grass species mount a delayed defensive resp<strong>on</strong>se to grazing by increasing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir rate <str<strong>on</strong>g>of</str<strong>on</strong>g> uptake and depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silica. This induced resp<strong>on</strong>se occurs when<br />

herbivore populati<strong>on</strong>s are high. Elevated silica levels make <str<strong>on</strong>g>th</str<strong>on</strong>g>e grass a lower quality<br />

food for herbivores, leading to a reducti<strong>on</strong> in herbivore performance. When grazing<br />

impact is lessened, silica defences relax and plant quality recovers. This inducible<br />

defence may have an important role in driving cycles in some populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> voles.<br />

We have developed a delay differential equati<strong>on</strong> model to represent <str<strong>on</strong>g>th</str<strong>on</strong>g>is herbivoreplant<br />

interacti<strong>on</strong>. This has been parameterized using empirical data from a particular<br />

system, namely field voles (Microtus agrestis) and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir principal food species,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e grass Deschampsia caespitosa, in Kielder Forest in Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern England. I will<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir implicati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

silica defences shape <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic vole populati<strong>on</strong>s.<br />

15:45–16:05<br />

Xuxin Yang<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki (visiting) and Hunan First Normal University<br />

e-mail: xuxin.yang@helsinki.fi<br />

Permanence <str<strong>on</strong>g>of</str<strong>on</strong>g> a logistic type impulsive equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

infinite delay<br />

Many evoluti<strong>on</strong> processes are characterized by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at at certain moments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>th</str<strong>on</strong>g>ey experience a change <str<strong>on</strong>g>of</str<strong>on</strong>g> state abruptly. Theses processes are subject to<br />

short-time perturbati<strong>on</strong>s whose durati<strong>on</strong> is negligible in comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process. C<strong>on</strong>sequently, it is natural to assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese perturbati<strong>on</strong>s<br />

act instantaneously, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> impulses. It is known, for example,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at many biological phenomena involving <str<strong>on</strong>g>th</str<strong>on</strong>g>resholds, bursting rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>m models in<br />

medicine and biology, optimal c<strong>on</strong>trol models in ec<strong>on</strong>omics, pharmacokinetics and<br />

frequency modulated systems, do exhibit impulsive effects.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong> we give an introducti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> impulsive differential<br />

equati<strong>on</strong>s. Impulsive differential equati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, differential equati<strong>on</strong>s involving<br />

impulse effects, appear as a natural descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed evoluti<strong>on</strong> phenomena<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> several real world problems. We investigate a n<strong>on</strong>-aut<strong>on</strong>omous Logistic type<br />

impulsive equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> infinite delay. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e general n<strong>on</strong>-aut<strong>on</strong>omous case, some<br />

sufficient c<strong>on</strong>diti<strong>on</strong>s which guarantee <str<strong>on</strong>g>th</str<strong>on</strong>g>e permanence <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s are obtained.<br />

Our results extend a known result <str<strong>on</strong>g>of</str<strong>on</strong>g> Seifert [1]. This presentati<strong>on</strong> is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

paper [2].<br />

References.<br />

[1] G. Seifert, Almost periodic soluti<strong>on</strong>s for delay Logistic equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> almost periodic time<br />

dependence Differential and Integral Equati<strong>on</strong>s 9 (2) (1996) 335–342.<br />

315


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] X. Yang, W. Wang and J. Shen, Permanence <str<strong>on</strong>g>of</str<strong>on</strong>g> a logistic type impulsive equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> infinite<br />

delay Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Letters 24 (2011) 420–427.<br />

316


Populati<strong>on</strong> Dynamics 10<br />

Saturday, July 2, 11:00, Room: AM2<br />

Chaired by: Christina Cobbold<br />

11:00–11:30<br />

Max O. Souza<br />

Departamento de Matemática Aplicada, Universidade Federal Fluminense,<br />

R. Mário Santos Braga, s/n, Niterói - RJ, 24020-140, Brazil<br />

e-mail: msouza@mat.uff.br<br />

Multiscaling Modelling in Evoluti<strong>on</strong>ary Dynamics<br />

We start from a family <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous approximati<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a frequency dependent Moran process studied by Chalub & Souza in [1]. These<br />

approximati<strong>on</strong>, depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalings, can be <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusive or n<strong>on</strong>-diffusive type,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e latter being equivalent to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Replicator Dynamics. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en study <str<strong>on</strong>g>th</str<strong>on</strong>g>e small<br />

diffusi<strong>on</strong> limit, and show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e Replicator Dynamics can be c<strong>on</strong>sistenly fitted in<br />

a diffusive approximati<strong>on</strong>. Some additi<strong>on</strong>al results c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e fixati<strong>on</strong> probabilites<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is limit are also presented. This is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Fabio Chalub.<br />

References.<br />

[1] Fabio A. C. C. Chalub & Max O. Souza, From discrete to c<strong>on</strong>tinuous evoluti<strong>on</strong> models: A<br />

unifying approach to drift-diffusi<strong>on</strong> and replicator dynamics, Theoretical Populati<strong>on</strong> Biology,<br />

76 (4) 268–277, 2009.<br />

11:35–11:55<br />

Atiyo Ghosh<br />

Leiden University<br />

e-mail: ghosh@cml.leidenuniv.nl<br />

Quantifying Stochastic Introgressi<strong>on</strong> Processes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Hazard<br />

Rates<br />

Introgressi<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e permanent incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes from <strong>on</strong>e populati<strong>on</strong> into<br />

ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er. It has become <str<strong>on</strong>g>of</str<strong>on</strong>g> particular c<strong>on</strong>cern wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e advent <str<strong>on</strong>g>of</str<strong>on</strong>g> genetically modified<br />

crops, since <str<strong>on</strong>g>th</str<strong>on</strong>g>e introgressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genetically modified crop genes into <str<strong>on</strong>g>th</str<strong>on</strong>g>eir wild<br />

317


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

relatives could have adverse effects <strong>on</strong> local biodiversity. Modeling introgressi<strong>on</strong><br />

can become a difficult task, compounded by stochasticity <strong>on</strong> several levels, from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> certain plants, to different wea<str<strong>on</strong>g>th</str<strong>on</strong>g>er patterns. This talk<br />

outlines how a branching process based approach can be used to derive a measure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> introgressi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e hazard rate, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability per generati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at introgressi<strong>on</strong> occurs given it hasn’t occurred before. Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hazard rate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> randomness <strong>on</strong> different levels, from individual to envir<strong>on</strong>mental,<br />

form <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk.<br />

11:55–12:15<br />

Ryan Chisholm<br />

Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>s<strong>on</strong>ian Tropical Research Institute<br />

e-mail: ryan.chis@gmail.com<br />

A <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model linking interspecific variati<strong>on</strong> in density<br />

dependence to species abundances<br />

Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at govern <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong>ness and rarity <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

species is a central challenge in community ecology. Empirical studies have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

found <str<strong>on</strong>g>th</str<strong>on</strong>g>at abundance is related to traits associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> competitive ability and<br />

suitability to <str<strong>on</strong>g>th</str<strong>on</strong>g>e local envir<strong>on</strong>ment, and more recently also to negative c<strong>on</strong>specific<br />

density dependence. Here, we c<strong>on</strong>struct a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical framework to show how a<br />

species abundance is in general expected to be dependent <strong>on</strong> its per-capita grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate when rare and <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate at which its grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate declines wi<str<strong>on</strong>g>th</str<strong>on</strong>g> increasing abundance<br />

(streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilizati<strong>on</strong>). We argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at per-capita grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate when rare<br />

can be interpreted as competitive ability and <str<strong>on</strong>g>th</str<strong>on</strong>g>at streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilizati<strong>on</strong> largely<br />

reflects negative c<strong>on</strong>specific inhibiti<strong>on</strong>. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en analyze a simple spatially implicit<br />

model in which each species is defined by <str<strong>on</strong>g>th</str<strong>on</strong>g>ree parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at affect its juvenile<br />

survival: its generalized competitive effect <strong>on</strong> o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers, its generalized resp<strong>on</strong>se to<br />

competiti<strong>on</strong>, and an additi<strong>on</strong>al negative effect <strong>on</strong> c<strong>on</strong>specifics. This model facilitates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stable coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> an arbitrarily large number <str<strong>on</strong>g>of</str<strong>on</strong>g> species and qualitatively<br />

reproduces empirical relati<strong>on</strong>ships between abundance, competitive ability<br />

and negative c<strong>on</strong>specific density dependence. Our results provide <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical support<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined roles <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive ability and negative density dependence<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species abundances in real ecosystems, and suggest new avenues<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> research for understanding abundance in models and in real communities.<br />

12:15–12:35<br />

Wes Maciejewski<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Queen’s University, Canada<br />

e-mail: wes@mast.queensu.ca<br />

318


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Resistance Distance and Relatedness <strong>on</strong> an Evoluti<strong>on</strong>ary<br />

Graph<br />

When investigating evoluti<strong>on</strong> in structured populati<strong>on</strong>s, it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>venient to<br />

c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> as an evoluti<strong>on</strong>ary graph – individuals as nodes, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

relati<strong>on</strong>s as edges. There has, in recent years, been a surge <str<strong>on</strong>g>of</str<strong>on</strong>g> interest in evoluti<strong>on</strong>ary<br />

graphs, especially in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> social behaviors ([5],[6]). An<br />

inclusive fitness framework is best suited for <str<strong>on</strong>g>th</str<strong>on</strong>g>is type <str<strong>on</strong>g>of</str<strong>on</strong>g> study [2]. An expressi<strong>on</strong><br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic similarity between individuals residing <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e graph is required for<br />

inclusive fitness calculati<strong>on</strong>s. This has been a major hindrance for work in <str<strong>on</strong>g>th</str<strong>on</strong>g>is area<br />

as highly technical ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten required [1]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong>, I will<br />

derive a recent result [4] <str<strong>on</strong>g>th</str<strong>on</strong>g>at links genetic relatedness between haploid individuals<br />

<strong>on</strong> an evoluti<strong>on</strong>ary graph to <str<strong>on</strong>g>th</str<strong>on</strong>g>e resistance between vertices <strong>on</strong> a corresp<strong>on</strong>ding<br />

electrical network. Specifically, if R ij be <str<strong>on</strong>g>th</str<strong>on</strong>g>e relatedness and γ ij <str<strong>on</strong>g>th</str<strong>on</strong>g>e resistance<br />

distance [3] bo<str<strong>on</strong>g>th</str<strong>on</strong>g> between individuals i and j <strong>on</strong> a transitive graph G wi<str<strong>on</strong>g>th</str<strong>on</strong>g> N<br />

vertices each <str<strong>on</strong>g>of</str<strong>on</strong>g> degree k. Then,<br />

R ij = 1 − γ ij<br />

γ ave<br />

.<br />

An example <str<strong>on</strong>g>th</str<strong>on</strong>g>at dem<strong>on</strong>strates <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is result over c<strong>on</strong>temporary<br />

approaches will be provided. I will discuss some new insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relatedness c<strong>on</strong>cept brought about by <str<strong>on</strong>g>th</str<strong>on</strong>g>is result and menti<strong>on</strong> possible directi<strong>on</strong>s<br />

for future investigati<strong>on</strong>.<br />

References.<br />

[1] Grafen, A. (2007). An Inclusive Fitness Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Alrtuism <strong>on</strong> a Cyclical Network. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong>ary Biology, 20, pp. 2278-2283.<br />

[2] Hamilt<strong>on</strong>, W. D. (1964) The Genetical Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Social Behaviour I and II. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Biology, 7, pp. 1–16, and 17-52.<br />

[3] Klein, D.J., Randić, M. (1993). Resistance Distance. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Chemistry, 12,<br />

pp. 81-95.<br />

[4] Maciejewski, W. (for<str<strong>on</strong>g>th</str<strong>on</strong>g>coming). Resistance Distance and Relatedness <strong>on</strong> an Evoluti<strong>on</strong>ary<br />

Graph.<br />

[5] Nowak, M.A. (2006). Evoluti<strong>on</strong>ary Dynamics. Cambridge, MA: Harvard University Press.<br />

[6] Taylor, P., Day, T., Wild, G. (2007). Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cooperati<strong>on</strong> in a Finite Homogeneous Graph.<br />

Nature, 447, pp. 469-472.<br />

12:35–12:55<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Rault<br />

BIOCORE / INRIA sophia Antipolis FRANCE<br />

e-mail: j<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an.rault@inria.fr<br />

Eric Benoit<br />

Laboratoire de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques / Université de La Rochelle FRANCE<br />

e-mail: ebenoit@univ-lr.fr<br />

Equilibria and stability results for some zooplankt<strong>on</strong><br />

size-structured models<br />

319


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structured models are increasingly used in biological modelling, particularly to<br />

describe marine ecosystems, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals is str<strong>on</strong>gly dependant<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir size. To modelize zooplankt<strong>on</strong> community, we first have to describe<br />

how an individual <str<strong>on</strong>g>of</str<strong>on</strong>g> some size feeds, and <str<strong>on</strong>g>th</str<strong>on</strong>g>en how it uses <str<strong>on</strong>g>th</str<strong>on</strong>g>e acquired food to grow<br />

and reproduce (according to some dynamic energy budget in order to guarantee<br />

mass c<strong>on</strong>servati<strong>on</strong>). Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e model includes cannibalism <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout zooplankt<strong>on</strong><br />

populati<strong>on</strong>, we obtain a variant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known McKendrick-v<strong>on</strong> Foerster<br />

equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> integral terms which appear in grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, mortality and reproducti<strong>on</strong>.<br />

Such models are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten hard to analyse ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some<br />

more hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cannibalism behavior, we can find equilibria <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

as fixed points <str<strong>on</strong>g>of</str<strong>on</strong>g> a functi<strong>on</strong> in a finite dimensi<strong>on</strong>al space. The linearized system<br />

around <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium provides us, <str<strong>on</strong>g>th</str<strong>on</strong>g>anks to <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> linear semigroup <str<strong>on</strong>g>th</str<strong>on</strong>g>eory,<br />

some local (un)stability results about <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equilibria.<br />

Results obtained will be applied to a simple versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, which allows<br />

us to go fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er into <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis.<br />

Keywords : Size-structured models, Zooplankt<strong>on</strong> ecosystem, Cannibalism, Str<strong>on</strong>gly<br />

c<strong>on</strong>tinuous semigroups.<br />

References.<br />

[1] Maury O., Faugeras B., Shin Y.-J., et al, Modelling envir<strong>on</strong>mental effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e size-structured<br />

energy flow <str<strong>on</strong>g>th</str<strong>on</strong>g>rough marine ecosystems. Part 1: <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. Progr. Oceanogr. 2007;74:479-499.<br />

[2] Farkas Jozsef Z. and Hagen Thomas, Stability and regularity results for a size-structured<br />

populati<strong>on</strong> model. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. Appl. 328 (2007) 119–136.<br />

[3] Benoît E. and Rochet M.J., A c<strong>on</strong>tinuous Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomass Size Spectra Governed by Predati<strong>on</strong>,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fishing <strong>on</strong> Them. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology, Vol. 226(2004), pp<br />

9-21.<br />

[4] Vandromme P., Decadal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ligurian sea zooplankt<strong>on</strong> linked to envir<strong>on</strong>mental fluctuati<strong>on</strong>s.<br />

From imaging systems to size-based models. PhD <str<strong>on</strong>g>th</str<strong>on</strong>g>esis (2010). http://www.obsvlfr.fr/LOV/ZooPart/ZooScan/<br />

320


Populati<strong>on</strong> Dynamics 11<br />

Saturday, July 2, 14:30, Room: AM2<br />

Chaired by: Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y Wallace<br />

14:30–15:00<br />

Isaias Chairez Hernández 1 , J. Natividad Gurrola Reyes 1 and Cipriano<br />

García Gutiérrez 2<br />

1 IPN CIIDIR Durango México, 2 IPN CIIDIR Sinaloa México, Becarios<br />

de COFAA<br />

e-mail: ichairez@hotmail.com<br />

e-mail: ngurrola@ipn.mx<br />

e-mail: garciacipriano@hotmail.com<br />

Grasshopper populati<strong>on</strong> interpolati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Generalized<br />

linear models<br />

This study was carried up in grassland areas in Durango México. Between latitude<br />

(23.916 o , 25.983 o ) and l<strong>on</strong>gitude ( -104.997 o , -104.010 o ). There were established<br />

sampling sites. At each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese sites, twice a m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g> a grasshopper sampling was<br />

d<strong>on</strong>e from June to November 2003. Three were <str<strong>on</strong>g>th</str<strong>on</strong>g>e most abundant species. The<br />

purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study was to create grasshopper populati<strong>on</strong> maps wi<str<strong>on</strong>g>th</str<strong>on</strong>g> linear regressi<strong>on</strong>.<br />

Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normality failed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependent variables, <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong>s<br />

Poiss<strong>on</strong>, Gamma and Inverse binomial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e generalized linear models were<br />

analyzed. taking as dependent variable <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> grasshopper surveyed <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

species and <str<strong>on</strong>g>th</str<strong>on</strong>g>e independent variables were, latitude ( o ), l<strong>on</strong>gitude ( o ), altitude (m),<br />

slope (percentage), temperature (annual average o C), precipitati<strong>on</strong> (annual mm),<br />

landcover, type <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, type <str<strong>on</strong>g>of</str<strong>on</strong>g> soil and vegetati<strong>on</strong> index. According to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

deviance criteria <str<strong>on</strong>g>th</str<strong>on</strong>g>e best model was Gamma wi<str<strong>on</strong>g>th</str<strong>on</strong>g> logari<str<strong>on</strong>g>th</str<strong>on</strong>g>mic link functi<strong>on</strong> since<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e deviance 11.211 wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 9 d. f. was lower <str<strong>on</strong>g>th</str<strong>on</strong>g>an 16.91 <str<strong>on</strong>g>th</str<strong>on</strong>g>e 95-<str<strong>on</strong>g>th</str<strong>on</strong>g> percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

chi-squared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 9 d.f. The distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e residuals were heterogeneous at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree grasshopper species and <str<strong>on</strong>g>th</str<strong>on</strong>g>e lowest correlati<strong>on</strong> coefficient between predicted<br />

grasshopper and observed was R 2 =0.83. The generalized linear models are alternative<br />

models when <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal assumpti<strong>on</strong> has not been reached and when <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dependent variable is a count data.<br />

321


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:05–15:25<br />

Joanna Jaroszewska<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics, and Mechanics; University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Warsaw<br />

e-mail: jar@mimuw.edu.pl<br />

Chaotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> some partial differential equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a random delay describing cellular replicati<strong>on</strong><br />

We study some model <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell populati<strong>on</strong>, which is based <strong>on</strong> a model proposed<br />

by Mackey and Rudnicki in [1]. Our model is described by a partial differential<br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a transport-type wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a random delay. We c<strong>on</strong>sider a random dynamical<br />

system generated by <str<strong>on</strong>g>th</str<strong>on</strong>g>is equati<strong>on</strong> and describe its chaotic behaviour.<br />

References.<br />

[1] M. C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equati<strong>on</strong><br />

describing cellular replicati<strong>on</strong>, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., 33, 89–109.<br />

15:25–15:45<br />

Adriana Bernal Escobar<br />

Universidad de los Andes<br />

e-mail: ad-berna@uniandes.edu.co<br />

Juan Cordovez<br />

Universidad de los Andes<br />

Esteban Payan<br />

Pan<str<strong>on</strong>g>th</str<strong>on</strong>g>era Foundati<strong>on</strong><br />

Spatial explicit dispersal modeling for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

jaguars in Colombia<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at go bey<strong>on</strong>d traditi<strong>on</strong>al c<strong>on</strong>servati<strong>on</strong> paradigms <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> corridors and potential areas for species dispersi<strong>on</strong> have<br />

proven to be an important and useful tool in <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> new c<strong>on</strong>servati<strong>on</strong> and<br />

management plans (Adriaensen et al., 2003; Beier et al., 2009; Ray et al., 2002; Rabinowitz<br />

& Zeller, 2009). Particularly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> jaguars, Rabinowitz &<br />

Zeller (2009) gave a first push by analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e species at a metapopulati<strong>on</strong> level<br />

and measuring c<strong>on</strong>nectivity as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey produced a complex pa<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> interc<strong>on</strong>nected<br />

populati<strong>on</strong>s. This model was based <strong>on</strong> a least-cost me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology <str<strong>on</strong>g>th</str<strong>on</strong>g>at in spite <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its virtuosity gave <strong>on</strong>ly a steady state analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>nectivity and distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e jaguars <str<strong>on</strong>g>th</str<strong>on</strong>g>at does not necessarily reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e current situati<strong>on</strong>. Their<br />

results identified Colombia as a key element for c<strong>on</strong>nectivity between nor<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

sou<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s, but for some parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e country it did not accurately capture<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e most suitable areas for dispersi<strong>on</strong>. We previously proposed an spatially explicit<br />

dispersal model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e least-cost matrix obtained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e least-cost<br />

analysis, to provide temporal informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e areas for<br />

322


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

jaguar dispersi<strong>on</strong>, and increase accuracy by scaling <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>of</str<strong>on</strong>g> study to Colombia.<br />

The model proved to be a better tool for dynamical studies, however some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong>s showed a deviati<strong>on</strong> from total populati<strong>on</strong> predicti<strong>on</strong> respect to<br />

field data. We speculated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is discrepancy is mainly due to our way to compute<br />

diffusi<strong>on</strong> coefficients, carrying capacities and boundary c<strong>on</strong>diti<strong>on</strong>s. Here we<br />

present a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes a new me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology for estimating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ose parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes <str<strong>on</strong>g>th</str<strong>on</strong>g>e noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> jaguar c<strong>on</strong>servati<strong>on</strong> units (JCU), as<br />

defined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e current c<strong>on</strong>servati<strong>on</strong> program. Here we present preliminary results<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>is modified model and compare it wi<str<strong>on</strong>g>th</str<strong>on</strong>g> previous simulati<strong>on</strong>s. We found<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at accurately defining <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity and including boundary c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at mimic better <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e specie gives an overall improvement in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our ability to predict current populati<strong>on</strong> densities and temporal aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

populati<strong>on</strong> dynamics.<br />

15:45–16:05<br />

Yo-Hey Otake<br />

NISTEP, MEXT, Government <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan<br />

e-mail: otake@nistep.go.jp<br />

C<strong>on</strong>vergence properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e law <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

first principle derivati<strong>on</strong> in populati<strong>on</strong> dynamics<br />

We want to relate <str<strong>on</strong>g>th</str<strong>on</strong>g>e law <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> interacti<strong>on</strong> between individuals. For<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is purpose, we use <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite series, which is called “first principle derivati<strong>on</strong>”<br />

[5, chapter 4]. By <str<strong>on</strong>g>th</str<strong>on</strong>g>is me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, we can derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> reproducti<strong>on</strong><br />

functi<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals (<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> functi<strong>on</strong> between individuals). Previous research[1, 5] has<br />

derived a few c<strong>on</strong>cave functi<strong>on</strong>s, which are Ricker model and Skellam model. We<br />

extended previous research in ec<strong>on</strong>omical viewpoint. As a result, we could derive<br />

new types <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong> like Holling’s type III functi<strong>on</strong>al resp<strong>on</strong>se [2], so we could represent<br />

bistability in populati<strong>on</strong> dynamics[3]. The reas<strong>on</strong> comes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e derived functi<strong>on</strong> has c<strong>on</strong>vexity in case <str<strong>on</strong>g>th</str<strong>on</strong>g>at populati<strong>on</strong> is small. Previous research<br />

did not have <str<strong>on</strong>g>th</str<strong>on</strong>g>is property. Our model, in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, c<strong>on</strong>tains bo<str<strong>on</strong>g>th</str<strong>on</strong>g> density<br />

dependent effect and Allee effect. In order to clarify <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e law <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> from “first principle derivati<strong>on</strong>”, we analysed <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability<br />

and bifurcati<strong>on</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed points <str<strong>on</strong>g>of</str<strong>on</strong>g> our infinite series functi<strong>on</strong>[4, chapter 2].<br />

References.<br />

[1] Å. Brännström and D. J. T. Sumpter, The role <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> and clustering in populati<strong>on</strong><br />

dynamics Proc. R. Soc. B 272(1576) : 2065–2072, oct 2005.<br />

[2] C. S. Holling, The comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> predati<strong>on</strong> as revealed by a study <str<strong>on</strong>g>of</str<strong>on</strong>g> small-mammal predati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e european pine sawfly Canad. Entomol. 91(5) : 293–320, may 1959.<br />

[3] Yo-Hey Otake et al., Clustering and relati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> neighbors in populati<strong>on</strong> dynamics: Expansi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individual-based first principle derivati<strong>on</strong> RIMS Kokyuroku, Kyoto-U 1556 : 59–102,<br />

mar 2007. (in Japanese)<br />

[4] Yo-Hey Otake, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Study <strong>on</strong> Decisi<strong>on</strong> Making and Collective Behavior in Social<br />

Relati<strong>on</strong>ship PhD <str<strong>on</strong>g>th</str<strong>on</strong>g>esis, U-Tokyo , mar 2008. (in Japanese)<br />

323


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[5] T. Royama, Populati<strong>on</strong> process models , Chapman & Hall, L<strong>on</strong>d<strong>on</strong>, 1992.<br />

324


Populati<strong>on</strong> Genetics 1<br />

Wednesday, June 29, 14:30, Room: AM3<br />

Chaired by: Adam Bobrowski<br />

14:30–15:00<br />

M. G<strong>on</strong>zález<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Extremadura<br />

e-mail: mvelasco@unex.es<br />

C. Gutiérrez<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Extremadura<br />

e-mail: cgutierrez@unex.es<br />

R. Martínez<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Extremadura<br />

e-mail: rmartinez@unex.es<br />

M. Mota<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Extremadura<br />

e-mail: mota@unex.es<br />

C<strong>on</strong>diti<strong>on</strong>s for extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some le<str<strong>on</strong>g>th</str<strong>on</strong>g>al alleles <str<strong>on</strong>g>of</str<strong>on</strong>g> X-linked<br />

genes<br />

Some le<str<strong>on</strong>g>th</str<strong>on</strong>g>al alleles <str<strong>on</strong>g>of</str<strong>on</strong>g> certain genes can cause <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at carry<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese alleles, as could be <str<strong>on</strong>g>th</str<strong>on</strong>g>at resp<strong>on</strong>sible <str<strong>on</strong>g>of</str<strong>on</strong>g> hemophilia, corresp<strong>on</strong>d<br />

to genes linked to sex chromosomes, especially to X chromosome. If <str<strong>on</strong>g>th</str<strong>on</strong>g>ese alleles<br />

are dominant, all <str<strong>on</strong>g>th</str<strong>on</strong>g>e carriers die so <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are rarely detected due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir rapid<br />

eliminati<strong>on</strong> from populati<strong>on</strong>s. However, recessive le<str<strong>on</strong>g>th</str<strong>on</strong>g>al alleles <strong>on</strong>ly cause dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> carrier males and homozygous carrier females, <str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e last <strong>on</strong>es must be<br />

daughters <str<strong>on</strong>g>of</str<strong>on</strong>g> a carrier male, so <str<strong>on</strong>g>th</str<strong>on</strong>g>ey rarely exist. Heterozygous carrier females<br />

are able to live and reproduce. They do not phenotypically express <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic<br />

c<strong>on</strong>diti<strong>on</strong> but can pass <str<strong>on</strong>g>th</str<strong>on</strong>g>e le<str<strong>on</strong>g>th</str<strong>on</strong>g>al allele <strong>on</strong>to <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we introduce a multitype bisexual branching process for describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals carrying <str<strong>on</strong>g>th</str<strong>on</strong>g>e alleles, R and r, <str<strong>on</strong>g>of</str<strong>on</strong>g> a gene<br />

linked to X chromosome. The R allele is c<strong>on</strong>sidered dominant and <str<strong>on</strong>g>th</str<strong>on</strong>g>e r allele is<br />

assumed to be recessive and le<str<strong>on</strong>g>th</str<strong>on</strong>g>al. Females can have two genotypes: homozygous,<br />

RR, and heterozygous, Rr, whereas <strong>on</strong>ly R males are able to live. Homozygous and<br />

heterozygous females have identical phenotypes so males do not know <str<strong>on</strong>g>th</str<strong>on</strong>g>e genotype<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir mates, it can be said <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey made a “blind” choice am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

genotypes.<br />

325


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

In such a model, we take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring <str<strong>on</strong>g>of</str<strong>on</strong>g> a couple wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

homozygous female do not carry <str<strong>on</strong>g>th</str<strong>on</strong>g>e le<str<strong>on</strong>g>th</str<strong>on</strong>g>al allele. However, couples wi<str<strong>on</strong>g>th</str<strong>on</strong>g> heterozygous<br />

females can give bir<str<strong>on</strong>g>th</str<strong>on</strong>g> to RR and Rr females and R and r males. Since r males<br />

die, Mendelian inheritance ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese couples are altered. The total <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each couple is modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a random variable whose probability distributi<strong>on</strong><br />

is supposed to be different for homozygous and heterozygous females.<br />

We use <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e extincti<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese le<str<strong>on</strong>g>th</str<strong>on</strong>g>al alleles,<br />

i.e. under which c<strong>on</strong>diti<strong>on</strong>s it will eventually disappear and when it will survive<br />

al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong>s. Such c<strong>on</strong>diti<strong>on</strong>s are expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> extincti<strong>on</strong>, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carriers <str<strong>on</strong>g>of</str<strong>on</strong>g> such alleles.<br />

Acknowledgements: Research supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ministerio de Ciencia e Innovación,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Junta de Extremadura and <str<strong>on</strong>g>th</str<strong>on</strong>g>e FEDER, grants MTM2009-13248 and<br />

GR10118.<br />

15:05–15:25<br />

Thiemo Hustedt<br />

Universität Bielefeld, Technische Fakultät, Bielefeld<br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>ustedt@techfak.uni-bielefeld.de<br />

Moment closure in a Moran model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> recombinati<strong>on</strong><br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> genetics is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten well understood in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite populati<strong>on</strong> size where a law <str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers leads to a deterministic<br />

descripti<strong>on</strong>. Great challenges arise in models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> finite populati<strong>on</strong>s<br />

and interacting individuals. In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese n<strong>on</strong>linear models even <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expectati<strong>on</strong><br />

is difficult. Its dynamics does, usually, not <strong>on</strong>ly depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e current<br />

expectati<strong>on</strong> but <strong>on</strong> higher moments, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no moment closure.<br />

In my talk, I will present an excepti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>is rule. I will c<strong>on</strong>sider a c<strong>on</strong>tinuoustime<br />

Moran model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> arbitrary recombinati<strong>on</strong> and mutati<strong>on</strong>, but wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out resampling<br />

(i.e., genetic drift). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case <str<strong>on</strong>g>th</str<strong>on</strong>g>e expectati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> products <str<strong>on</strong>g>of</str<strong>on</strong>g> marginal processes<br />

defined via partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sites form a closed hierarchy, which is exhaustively<br />

described by a finite system <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s. One <str<strong>on</strong>g>th</str<strong>on</strong>g>us has <str<strong>on</strong>g>th</str<strong>on</strong>g>e excepti<strong>on</strong>al<br />

situati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moment closure in a n<strong>on</strong>linear system. Surprisingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>is property is<br />

lost when resampling is included.<br />

References.<br />

[1] E. Baake, and T. Hustedt, Moment closure in a Moran model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> recombinati<strong>on</strong>, submitted.<br />

15:25–15:45<br />

Satoshi Takahashi<br />

326


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> and Computer Sciences, Nara Women’s<br />

University<br />

e-mail: takahasi@lisboa.ics.nara-wu.ac.jp<br />

Rika Okamoto, Sayaka Noguchi, Yumiko Inoue, Tomoko Kawasaki<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> and Computer Sciences, Nara Women’s<br />

University<br />

Michio Hori<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, Kyoto University<br />

e-mail: hori@terra.zool.kyoto-u.ac.jp<br />

From Populati<strong>on</strong> Dynamics to Evoluti<strong>on</strong>: Oscillati<strong>on</strong> in<br />

Lateral Asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish Induces <str<strong>on</strong>g>th</str<strong>on</strong>g>e Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Homozygote Incompatibility<br />

Lateral asymmetry, originally found in scale eating cichlid fish in Lake Tanganyika,<br />

was first c<strong>on</strong>sidered to follow <str<strong>on</strong>g>th</str<strong>on</strong>g>e simple Mendelian genetics. Later, more c<strong>on</strong>trolled<br />

mating experiments <strong>on</strong> scale eaters and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er fish reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey lack lefty<br />

(dominant) homozygote. Le<str<strong>on</strong>g>th</str<strong>on</strong>g>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty homozygote explains F1 ratio, but not<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e high hatchability <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty pairs. We c<strong>on</strong>struct models <str<strong>on</strong>g>of</str<strong>on</strong>g> incompatibilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lefty homozygote and investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> and fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

incompatibility gene. Laterality morph frequencies in many fish oscillate due to<br />

cross-predati<strong>on</strong> am<strong>on</strong>g prey and predators: predators feed <strong>on</strong> prey <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same<br />

laterality wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> different laterality. Incompatibility gene,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at prevents eggs <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty gene from fertilizing sperm <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty gene, spreads in case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> group spawning, as l<strong>on</strong>g as laterality morph frequencies oscillates. Under pair<br />

spawning c<strong>on</strong>diti<strong>on</strong>, however, incompatibility gene does not spread, as incompatibility<br />

gene prevents part <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs to fertilize in some genotype combinati<strong>on</strong>s. We<br />

c<strong>on</strong>sider partial incompatibility where eggs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incompatibility gene and <str<strong>on</strong>g>th</str<strong>on</strong>g>e lefty<br />

gene fertilize wi<str<strong>on</strong>g>th</str<strong>on</strong>g> sperm <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty gene in smaller ratio <str<strong>on</strong>g>th</str<strong>on</strong>g>an sperm <str<strong>on</strong>g>of</str<strong>on</strong>g> righty gene.<br />

The incompatibility gene spreads even under pair spawning c<strong>on</strong>diti<strong>on</strong> if its incompatibility<br />

is partial. We also study <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> incompatibility<br />

by simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> two incompatibility genes <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

incompatibility levels bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in prey and predator. Str<strong>on</strong>ger cross predati<strong>on</strong>, large<br />

predati<strong>on</strong> coefficient, as well as larger survival rate lead to larger level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lefty<br />

homozygote incompatibility.<br />

15:45–16:05<br />

Meike Wittmann<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology II, Ludwig-Maximilians University Munich<br />

e-mail: wittmann@bio.lmu.de<br />

Wilfried Gabriel<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology II, Ludwig-Maximilians University Munich<br />

e-mail: wilfried.gabriel@lmu.de<br />

Dirk Metzler<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology II, Ludwig-Maximilians University Munich<br />

327


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

e-mail: metzler@bio.lmu.de<br />

Genetic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced species <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir native<br />

competitors in habitats wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different spatial structures<br />

When a new species is introduced to a habitat where it did not occur before, it<br />

interacts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local community and influences <str<strong>on</strong>g>th</str<strong>on</strong>g>em in many<br />

ways. Most empirical and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical work so far has focused <strong>on</strong> how introduced<br />

species cause changes in populati<strong>on</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting native species. However, little<br />

is known <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced species <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir native competitors,<br />

predators, or prey species. Using analytical arguments and computer simulati<strong>on</strong>s,<br />

we aim to understand how <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount and spatial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic variati<strong>on</strong> in<br />

a native species changes after <str<strong>on</strong>g>th</str<strong>on</strong>g>e introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecologically similar competitor.<br />

Genetic variati<strong>on</strong> measured in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected heterozygosity at a neutral locus<br />

declines after <str<strong>on</strong>g>th</str<strong>on</strong>g>e introducti<strong>on</strong> event, reaches a minimum, and eventually rises<br />

again provided <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e native species does not go extinct. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

reducti<strong>on</strong> as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale <strong>on</strong> which it occurs depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

introduced individuals, <str<strong>on</strong>g>th</str<strong>on</strong>g>e size, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e native populati<strong>on</strong>.<br />

The expected impacts differ between single homogeneous populati<strong>on</strong>s, subdivided<br />

populati<strong>on</strong>s, and metapopulati<strong>on</strong>s subject to local extincti<strong>on</strong> and recol<strong>on</strong>izati<strong>on</strong>.<br />

These results for neutral loci suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at also variati<strong>on</strong> at loci for ecologically<br />

important traits may be affected by competiti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> introduced species, <str<strong>on</strong>g>th</str<strong>on</strong>g>us influencing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e species ability to adapt to new envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s.<br />

16:05–16:25<br />

Małgorzata Pułka<br />

Gdansk University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: mpulka@mif.pg.gda.pl<br />

N<strong>on</strong>homogeneous Markov chains and quadratic stochastic<br />

processes in biology<br />

N<strong>on</strong>linear mappings appear in many branches <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and its applicati<strong>on</strong>s.<br />

In ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology, so-called quadratic stochastic processes (QSP) are used<br />

to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems. We examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such processes as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>homogeneous Markov chain and asymptotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> QSP. Moreover, we<br />

study <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometric structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> Markov chains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a particular limit<br />

bahavior.<br />

328


Populati<strong>on</strong> Genetics 2<br />

Wednesday, June 29, 17:00, Room: AM3<br />

Chaired by: Reinhard Bürger<br />

17:00–17:30<br />

Sivan Leviyang<br />

Georgetown University<br />

e-mail: sr286@georgetown.edu<br />

Sampling HIV intrahost genealogies based <strong>on</strong> a model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acute stage CTL resp<strong>on</strong>se<br />

Genealogy based me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods have become a comm<strong>on</strong> tool in analyzing intrahost HIV<br />

evoluti<strong>on</strong>. These me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods require a coalescent model which implicitly describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary forces in shaping HIV genealogies. Currently, HIV genealogies<br />

are c<strong>on</strong>structed assuming variants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kingman coalescent. The Kingman coalescent<br />

is a generic coalescent model <str<strong>on</strong>g>th</str<strong>on</strong>g>at does not explicitly account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e special<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV evoluti<strong>on</strong>. For example, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kingman coalescent does not account<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> CTL attack.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we introduce a coalescent model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e acute stage <str<strong>on</strong>g>th</str<strong>on</strong>g>at explicitly<br />

incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> early CTL attack. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is coalescent model, we develop<br />

a computati<strong>on</strong>al me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows us to sample HIV genealogies shaped by CTL<br />

attack. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at such genealogies are different in form <str<strong>on</strong>g>th</str<strong>on</strong>g>an Kingman coalescent<br />

genealogies. We use our genealogy sampler to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> CTL attack<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at is best at c<strong>on</strong>trolling HIV diversity. Our work is a first step in developing<br />

computati<strong>on</strong>al tools <str<strong>on</strong>g>th</str<strong>on</strong>g>at can use HIV genetic data to infer parameters describing<br />

CTL attack.<br />

17:35–17:55<br />

Wojciech Bartoszek (1) and Małgorzata Pułka (2)<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Gdańsk University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, ul.<br />

Narutowicza 11/12, 80-233 Gdańsk, Poland<br />

e-mail: bartowk@mifgate.mif.pg.gda.pl (1)<br />

e-mail: mpulka@mif.pg.gda.pl (2) 329


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

On dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> quadratic stochastic processes and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

applicati<strong>on</strong>s in biology<br />

A quadratic stochastic operator Q : X → X is defined by a cubic (finite or<br />

infinite) array <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative real numbers [q ij,k ] i,j,k≥1 which satisfy<br />

(1) 0 ≤ q ij,k = q ji,k ≤ 1 for all i, j, k ≥ 1,<br />

(2) ∑ k=1 q ij,k = 1 for any pair (i, j),<br />

where X is l 1 or l 1 d<br />

equipped wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a standard norm. The family <str<strong>on</strong>g>of</str<strong>on</strong>g> all quadratic<br />

stochastic operators is denoted by Q. Any quadratic stochastic operator (process)<br />

Q<br />

∑<br />

may be viewed as a bilinear mapping Q : X × X → X if we set Q(x, y)(k) =<br />

x i y j q ij,k . Clearly Q is m<strong>on</strong>ot<strong>on</strong>e (i.e. Q(x, y) ≥ Q(u, w) whenever x ≥ u ≥<br />

i=1,j=1<br />

0 and y ≥ w ≥ 0) and is bounded as sup ‖x‖1,‖y‖ 1≤1 ‖Q(x, y)‖ 1 = 1 . It follows<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at Q may also be viewed as a mapping Q : D × D → D, where D stands for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simplex <str<strong>on</strong>g>of</str<strong>on</strong>g> probability vectors. In populati<strong>on</strong> genetics a special attenti<strong>on</strong> is paid to<br />

a n<strong>on</strong>linear mapping D ∋ p → Q(p) = Q(p, p). Here Q : D → D. Roughly speaking<br />

Q(p) represents a distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e next generati<strong>on</strong> if parent’s gens have<br />

a distributi<strong>on</strong> p. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is simplified model <str<strong>on</strong>g>th</str<strong>on</strong>g>e iterates Q k (p), where k = 0, 1, . . . ,<br />

describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a genom. Given an initial distributi<strong>on</strong> p ∈ D <strong>on</strong>e may<br />

ask about asymptotic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trajectory (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence (Q n (p)) n≥0 ).<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linearity, <str<strong>on</strong>g>th</str<strong>on</strong>g>e trajectories enjoy several unexpected features (as it<br />

was c<strong>on</strong>jectured by S. Ulam). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we discuss some generic properties in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

set Q. We also present c<strong>on</strong>diti<strong>on</strong>s for asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Q ∈ Q .<br />

17:55–18:15<br />

Stephan Fischer<br />

INSA-Ly<strong>on</strong>, CNRS, INRIA, LIRIS, UMR5205, F-69621, France<br />

e-mail: stephan.fischer@insa-ly<strong>on</strong>.fr<br />

Carole Knibbe<br />

Université Ly<strong>on</strong> 1, CNRS, INRIA, LIRIS, UMR5205, F-69622, France<br />

e-mail: carole.knibbe@liris.cnrs.fr<br />

Samuel Bernard<br />

Université Ly<strong>on</strong> 1, CNRS, INRIA, Institut Camille Jordan, UMR 5208,<br />

F-69222, France<br />

e-mail: bernard@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Guillaume Besl<strong>on</strong><br />

INSA-Ly<strong>on</strong>, CNRS, INRIA, LIRIS, UMR5205, F-69621, France<br />

e-mail: guillaume.besl<strong>on</strong>@liris.cnrs.fr<br />

Unravelling laws <str<strong>on</strong>g>of</str<strong>on</strong>g> genome evoluti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and individual-based models<br />

In order to investigate laws <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genome organizati<strong>on</strong> over large evoluti<strong>on</strong>ary<br />

time scales, our lab has developed an individual-based model simulating<br />

330


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Darwinian selecti<strong>on</strong> and most <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong>s and rearrangements underg<strong>on</strong>e by a<br />

chromosome during asexual reproducti<strong>on</strong>. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chromosome<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number and leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> genes are free to vary. It was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

evoluti<strong>on</strong>ary success depends not <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness but also <strong>on</strong> an appropriate<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between genome robustness and variability. This indirect selective pressure<br />

regulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> coding DNA, but also, more surprisingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-coding DNA, if large rearrangements are taken into account. The higher <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

sp<strong>on</strong>taneous rate <str<strong>on</strong>g>of</str<strong>on</strong>g> duplicati<strong>on</strong>s and deleti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e more compact <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e surviving lineages [1].<br />

This phenomen<strong>on</strong> is reminiscent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e error-<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold effect described by Eigen<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasispecies <str<strong>on</strong>g>th</str<strong>on</strong>g>eory [2, 3], where <str<strong>on</strong>g>th</str<strong>on</strong>g>e per-digit mutati<strong>on</strong> rate q sets a maximum<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> digits ν <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be reproducibly preserved: ν < − ln(σ0)<br />

ln(q) , where σ 0 is a<br />

parameter quantifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness superiority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fittest sequence. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong><br />

rate is increased bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>is limit, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> structure breaks down, and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> disperses over sequence space. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is effect was mostly<br />

studied in <str<strong>on</strong>g>th</str<strong>on</strong>g>e special case where all sequences have an equal leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and <strong>on</strong>ly point<br />

mutati<strong>on</strong>s can occur. In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum chain leng<str<strong>on</strong>g>th</str<strong>on</strong>g> ν max applies<br />

<strong>on</strong>ly to <str<strong>on</strong>g>th</str<strong>on</strong>g>e segments <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute to fitness [3], and <str<strong>on</strong>g>th</str<strong>on</strong>g>us cannot directly explain<br />

our results regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-coding DNA.<br />

The computati<strong>on</strong>al model cannot be c<strong>on</strong>sidered as an analytic pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

observed relati<strong>on</strong>. Here, we combine <str<strong>on</strong>g>th</str<strong>on</strong>g>e intuiti<strong>on</strong> and power <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis. By relaxing Eigen’s hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses, we developed simpler<br />

dynamical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at exhibit essentially <str<strong>on</strong>g>th</str<strong>on</strong>g>e same behavior as <str<strong>on</strong>g>th</str<strong>on</strong>g>e original computati<strong>on</strong>al<br />

model as far as genome leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and coding/n<strong>on</strong>-coding ratio is c<strong>on</strong>cerned.<br />

These models yield a better insight <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> essential parameters and<br />

provide valuable feedback for computati<strong>on</strong>al simulati<strong>on</strong>s. In return, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese computati<strong>on</strong>al<br />

improvements lead to new relati<strong>on</strong>s and limits <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be investigated<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically, closing <str<strong>on</strong>g>th</str<strong>on</strong>g>e emulati<strong>on</strong> loop.<br />

References.<br />

[1] C. Knibbe, A. Coul<strong>on</strong>, O. Mazet, J.M. Fayard, G. Besl<strong>on</strong> (2007). A L<strong>on</strong>g-Term Evoluti<strong>on</strong>ary<br />

Pressure <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Amount <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>coding DNA. Molecular Biology and Evoluti<strong>on</strong> 24(10) 2344–<br />

2353.<br />

[2] M. Eigen (1971), Selforganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological macromolecules.<br />

Naturwissenschaften 58(10) 465–523.<br />

[3] M. Eigen, J. McCaskill, P. Schuster (1988). Molecular Quasi-Species. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical<br />

Chemistry 92:6881-6891.<br />

18:15–18:35<br />

Sandra Klu<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Bielefeld University<br />

e-mail: sandra.klu<str<strong>on</strong>g>th</str<strong>on</strong>g>@uni-bielefeld.de<br />

The stati<strong>on</strong>ary distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral types in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Moran model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mutati<strong>on</strong> and selecti<strong>on</strong><br />

331


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

We c<strong>on</strong>sider a stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> genetics, namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Moran model<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mutati<strong>on</strong> and selecti<strong>on</strong>. We use it to trace back <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral lines <str<strong>on</strong>g>of</str<strong>on</strong>g> single<br />

individuals, and are interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

ancestral types. Two approaches to <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem are already available: The <strong>on</strong>e by<br />

Fearnhead (2002), which is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral selecti<strong>on</strong> graph (Kr<strong>on</strong>e/Neuhauser<br />

1997), and <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e by Taylor (2007), which relies <strong>on</strong> a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e full populati<strong>on</strong><br />

backward in time by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a diffusi<strong>on</strong> equati<strong>on</strong>.<br />

In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> approaches, <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting expressi<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary distributi<strong>on</strong> does<br />

not have an obvious interpretati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e graphical representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e representati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at makes individual lineages and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s<br />

explicit). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>tributi<strong>on</strong> (which is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Ellen Baake), we use <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

graphical representati<strong>on</strong> to derive equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fixati<strong>on</strong> probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all ‘fit’ individuals (regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring’s type). In <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong><br />

limit, <str<strong>on</strong>g>th</str<strong>on</strong>g>is yields Taylor’s differential equati<strong>on</strong> - but now wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a plausible interpretati<strong>on</strong><br />

attached to it. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>is also points <str<strong>on</strong>g>th</str<strong>on</strong>g>e way towards a better<br />

understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficients <str<strong>on</strong>g>th</str<strong>on</strong>g>at define <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary distributi<strong>on</strong>.<br />

18:35–18:55<br />

Su-Chan Park<br />

The Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>olic University <str<strong>on</strong>g>of</str<strong>on</strong>g> Korea, Republic <str<strong>on</strong>g>of</str<strong>on</strong>g> Korea<br />

e-mail: spark0@ca<str<strong>on</strong>g>th</str<strong>on</strong>g>olic.ac.kr<br />

Kavita Jain<br />

Jawaharlal Nehru Centre for Advanced Scientific Research, India<br />

Joachim Krug<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cologne, Germany<br />

Evoluti<strong>on</strong>ary advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s <strong>on</strong> complex<br />

fitness landscapes<br />

Recent experimental (Rozen et al. 2008) and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical (Handel and Rozen, 2009)<br />

studies have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at small asexual populati<strong>on</strong>s evolving <strong>on</strong> complex fitness landscapes<br />

may achieve a higher fitness <str<strong>on</strong>g>th</str<strong>on</strong>g>an large <strong>on</strong>es due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e increased heterogeneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive trajectories. Here we introduce a class <str<strong>on</strong>g>of</str<strong>on</strong>g> haploid <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-locus fitness<br />

landscapes <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is scenario in a precise and quantitative<br />

way. Our main result derived analytically shows how <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> choosing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e largest initial fitness increase grows wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> size. This<br />

makes large populati<strong>on</strong>s more likely to get trapped at local fitness peaks and implies<br />

an advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s at intermediate time scales. The range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

populati<strong>on</strong> sizes where <str<strong>on</strong>g>th</str<strong>on</strong>g>is effect is operative coincides wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al<br />

interference. Additi<strong>on</strong>al studies using ensembles <str<strong>on</strong>g>of</str<strong>on</strong>g> random fitness landscapes show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e results achieved for a particular choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-locus landscape parameters<br />

are robust and also persist as <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> loci increases. Our study indicates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at an advantage for small populati<strong>on</strong>s is likely whenever <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness landscape<br />

c<strong>on</strong>tains local maxima. The advantage appears at intermediate time scales, which<br />

are l<strong>on</strong>g enough for trapping at local fitness maxima to have occurred but too short<br />

332


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

for peak escape by <str<strong>on</strong>g>th</str<strong>on</strong>g>e creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple mutants. This presentati<strong>on</strong> is based <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e paper (Jain et al. 2011).<br />

References.<br />

[1] Rozen, D. E., M. G. J. L. Habets, A. Handel, and J. A. G. M. de Visser. 2008. Heterogeneous<br />

adaptive trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s <strong>on</strong> complex fitness landscapes. PLoS ONE 3:e1715.<br />

[2] Handel, A., and D. E. Rozen. 2009. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> size <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> asexual<br />

microbes <strong>on</strong> smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> versus rugged fitness landscapes. BMC Evoluti<strong>on</strong>ary Biology 9:236.<br />

[3] Jain, K., J. Krug, and S.-C. Park. 2011. Evoluti<strong>on</strong>ary advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s <strong>on</strong><br />

complex fitness landscapes, to appear in Evoluti<strong>on</strong>.<br />

333


Populati<strong>on</strong> Genetics 3<br />

Friday, July 1, 14:30, Room: AM3<br />

Chaired by: Manuel Mota<br />

14:30–15:00<br />

Reinhard Bürger<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna<br />

e-mail: reinhard.buerger@univie.ac.at<br />

Ada Akerman<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage and gene flow <strong>on</strong> local adaptati<strong>on</strong>: A<br />

two-locus c<strong>on</strong>tinent-island model<br />

We study a populati<strong>on</strong>-genetic model <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> in a derived (island) populati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at experiences altered envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s and maladaptive gene flow<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral (c<strong>on</strong>tinental) populati<strong>on</strong>. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at locally advantageous<br />

mutati<strong>on</strong>s have arisen <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e island at two linked loci. Gene flow in c<strong>on</strong>cert<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> selecti<strong>on</strong> induces substantial linkage disequilibrium. This has a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>sequences for evoluti<strong>on</strong>. The central ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical result is an explicit characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all possible equilibrium c<strong>on</strong>figurati<strong>on</strong>s. From <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we deduce explicit<br />

expressi<strong>on</strong>s for two measures <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage disequilibrium. We determine explicitly<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> gene flow <str<strong>on</strong>g>th</str<strong>on</strong>g>at admits <str<strong>on</strong>g>th</str<strong>on</strong>g>e preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e locally<br />

adapted haplotype depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> and selecti<strong>on</strong>. We also<br />

study <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beneficial mutants <str<strong>on</strong>g>of</str<strong>on</strong>g> small effect <str<strong>on</strong>g>th</str<strong>on</strong>g>at are linked to an already<br />

present, locally adapted allele. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage disequilibrium, mutants<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> much smaller effect can invade successfully <str<strong>on</strong>g>th</str<strong>on</strong>g>an predicted by naive single-locus<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory. This raises interesting questi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic architecture,<br />

in particular, about <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> tightly linked, slightly beneficial<br />

mutati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> and chromosome inversi<strong>on</strong>s. Finally,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> local adaptati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> load is<br />

explored.<br />

References.<br />

[1] Bürger, R., and A. Akerman. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage and gene flow <strong>on</strong> local adaptati<strong>on</strong>: A<br />

two-locus c<strong>on</strong>tinent-island model. Submitted manuscript (2011)<br />

335


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

15:05–15:25<br />

Ada Akerman<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna, Austria<br />

e-mail: ada.akerman@univie.ac.at<br />

Reinhard Bürger<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna, Austria<br />

Local adaptati<strong>on</strong> under diversifying selecti<strong>on</strong>: A two-locus<br />

migrati<strong>on</strong>- selecti<strong>on</strong> model<br />

A populati<strong>on</strong>-genetic model <str<strong>on</strong>g>of</str<strong>on</strong>g> local adapti<strong>on</strong> in discrete space and time is studied.<br />

We model a populati<strong>on</strong> inhabiting two discrete demes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> gene flow between <str<strong>on</strong>g>th</str<strong>on</strong>g>em.<br />

Genetic drift is ignored as we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> size is large. We c<strong>on</strong>sider<br />

two linked loci under selecti<strong>on</strong> and assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment favors alternative<br />

alleles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e two demes. An important interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a quantitative trait <str<strong>on</strong>g>th</str<strong>on</strong>g>at is under directi<strong>on</strong>al selecti<strong>on</strong> acting in opposite directi<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e two demes. The trait is assumed to be determined additively, i.e., wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

epistasis, by two loci <str<strong>on</strong>g>th</str<strong>on</strong>g>at may exhibit dominance. Thus, essentially, disruptive<br />

selecti<strong>on</strong> acts <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait. This scenario allows us to answer interesting questi<strong>on</strong>s<br />

<strong>on</strong> local adaptati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic variati<strong>on</strong>. We derive explicit<br />

results for <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence and amount <str<strong>on</strong>g>of</str<strong>on</strong>g> polymorphism in several limiting cases such<br />

as weak migrati<strong>on</strong>, weak selecti<strong>on</strong>, tight linkage, and free recombinati<strong>on</strong>. In particular,<br />

we present informative approximati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> well-known measures <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage<br />

disequilibrium and investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage and dominance <strong>on</strong> local<br />

adapti<strong>on</strong> and genetic variati<strong>on</strong>.<br />

References.<br />

[1] Akerman, A., and R. Bürger. Local adaptati<strong>on</strong> under diversifying selecti<strong>on</strong>: A two-locus<br />

migrati<strong>on</strong>- selecti<strong>on</strong> model. Manuscript (2011)<br />

15:25–15:45<br />

Marina Rafajlovic<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, SE-41296 Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg,<br />

Sweden<br />

e-mail: Marina.Rafajlovic@physics.gu.se<br />

Linkage disequilibrium in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variable size<br />

We c<strong>on</strong>sider neutral evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a large populati<strong>on</strong> subject to changes in its populati<strong>on</strong><br />

size to understand how <str<strong>on</strong>g>th</str<strong>on</strong>g>e covariance <str<strong>on</strong>g>of</str<strong>on</strong>g> gene-histories and linkage disequilibrium<br />

are influenced by such populati<strong>on</strong>-size fluctuati<strong>on</strong>s. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e coalescent<br />

approximati<strong>on</strong>, using <str<strong>on</strong>g>th</str<strong>on</strong>g>e approach employed by [2] and <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> [3], we have<br />

obtained an exact expressi<strong>on</strong> (see [1]) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e covariance <str<strong>on</strong>g>of</str<strong>on</strong>g> gene-histories in a populati<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a populati<strong>on</strong> size <str<strong>on</strong>g>th</str<strong>on</strong>g>at randomly jumps between two values. We show<br />

336


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

under which circumstances an effective-populati<strong>on</strong>-size approximati<strong>on</strong> is appropriate,<br />

and when it fails. In additi<strong>on</strong>, we identify a parameter regime where two-locus<br />

gene-history correlati<strong>on</strong>s are well described by a coalescent process wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple<br />

mergers.<br />

References.<br />

[1] Schaper, E., A. Erikss<strong>on</strong>, M. Rafajlovic, S. Sagitov and B. Mehlig. Linkage disequilibrium in<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variable size. (unpublished).<br />

[2] Erikss<strong>on</strong>, A. and B. Mehlig, 2004. Gene-history correlati<strong>on</strong> and populati<strong>on</strong> structure. Phys.<br />

Biol. I: 220–228.<br />

[3] Erikss<strong>on</strong>, A., B. Mehlig, M. Rafajlovic and S. Sagitov, 2010. The total branch leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sample<br />

genealogies in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variable size. Genetics 186: 601–611.<br />

15:45–16:05<br />

Ute v<strong>on</strong> Wangenheim<br />

Technische Fakultät, Universität Bielefeld, 335011 Bielefeld<br />

e-mail: uv<strong>on</strong>wang@techfak.uni-bielefeld.de<br />

Single–crossover recombinati<strong>on</strong> and ancestral recombinati<strong>on</strong><br />

trees<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s under recombinati<strong>on</strong> leads to a large coupled<br />

n<strong>on</strong>-linear dynamical system <str<strong>on</strong>g>th</str<strong>on</strong>g>at is notoriously difficult to treat. In my talk, I will<br />

present a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes recombinati<strong>on</strong> in an ’infinite‘ populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> single<br />

crossovers <strong>on</strong>ly.<br />

The comm<strong>on</strong> way to solve <str<strong>on</strong>g>th</str<strong>on</strong>g>ese systems relies <strong>on</strong> a certain n<strong>on</strong>linear transformati<strong>on</strong><br />

from (gamete or haplotype) frequencies to suitable correlati<strong>on</strong> functi<strong>on</strong>s.<br />

This provides an elegant soluti<strong>on</strong> in principle, but <str<strong>on</strong>g>th</str<strong>on</strong>g>e price to be paid is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficients<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transformati<strong>on</strong> must be c<strong>on</strong>structed via recursi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at involve <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e recombinati<strong>on</strong> model [1], i.e. an explicit soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

cannot be stated.<br />

I will describe a new approach to infer an explicit soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics. To<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is end, I use <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying stochastic process to trace recombinati<strong>on</strong> backwards<br />

in time, i.e. by backtracking <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various independent segments each<br />

type is composed <str<strong>on</strong>g>of</str<strong>on</strong>g>. This results in binary tree structures, which can be used as a<br />

tool to formulate an explicit soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics.<br />

References.<br />

[1] v<strong>on</strong> Wangenheim, U., Baake, E., Baake, M. Single–crossover recombinati<strong>on</strong> in discrete time<br />

J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol 60 727–760 (2010).<br />

16:05–16:25<br />

Robert Puddicombe<br />

337


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Surrey, Guildford, Surrey,<br />

GU2 7XH, UK<br />

e-mail: R.Puddicombe@surrey.ac.uk<br />

Dr André Grüning<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Surrey, Guildford, Surrey,<br />

GU2 7XH, UK<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> distinct col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype in a sympatric<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> diploid entities<br />

As part <str<strong>on</strong>g>of</str<strong>on</strong>g> an investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sympatric speciati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study used a computer<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diploid entities to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> stable<br />

col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g> genotypes. The investigati<strong>on</strong> tested development in variously shaped<br />

spaces where, in order to maintain a sympatric envir<strong>on</strong>ment, uniform developmental<br />

characteristics were applied in all areas.<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to establish whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er species can separate in a<br />

uniform envir<strong>on</strong>ment simply by random genetic development. The study’s dem<strong>on</strong>strati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stable ’col<strong>on</strong>ies’ wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a uniform space seems to imply <str<strong>on</strong>g>th</str<strong>on</strong>g>at sympatric<br />

speciati<strong>on</strong> is possible.<br />

The computer model represented chromosomes as binary numbers, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each<br />

digit equivalent to a gene: being ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er ’wild’ or mutated. Processes <str<strong>on</strong>g>of</str<strong>on</strong>g> inheritance<br />

were modelled using probabilistic rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong> and cross-over. The populati<strong>on</strong><br />

was subject to a randomly-applied dea<str<strong>on</strong>g>th</str<strong>on</strong>g>-rate and <str<strong>on</strong>g>of</str<strong>on</strong>g>f-spring competed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting<br />

space. A key characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model was <str<strong>on</strong>g>th</str<strong>on</strong>g>e limited range for selecting<br />

a mate and placing <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring. This places <str<strong>on</strong>g>th</str<strong>on</strong>g>e model between models which allow<br />

panmictic mating and <str<strong>on</strong>g>th</str<strong>on</strong>g>ose which employ sexual selecti<strong>on</strong> mechanisms.<br />

In a ring-shaped corridor, starting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uniform or random populati<strong>on</strong>s, four<br />

or five distinct col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g> genotypes developed and remained stable for several<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ousand generati<strong>on</strong>s. These col<strong>on</strong>ies were similar to biological ’ring-species’ but<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model all <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighbouring col<strong>on</strong>ies become equally incompatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. The development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese col<strong>on</strong>ies was found to be related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e wid<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corridor, as well as to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rates <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> and mutati<strong>on</strong> which were<br />

applied. In a narrow corridor several distinct col<strong>on</strong>ies persisted whereas in a wide<br />

corridor <strong>on</strong>e dominant type quickly developed.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er study is required to establish whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ese col<strong>on</strong>ies can be c<strong>on</strong>sidered<br />

as proper examples <str<strong>on</strong>g>of</str<strong>on</strong>g> sympatric speciati<strong>on</strong>.<br />

338


Regulatory Networks 1<br />

Tuesday, June 28, 17:00, Room: AM4<br />

Chaired by: Jarosław Śmieja<br />

17:00–17:30<br />

Lorenzo Sella † ‡ , Sander Hille † , Michael Emmerich ‡<br />

† Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Leiden University,<br />

‡ Leiden Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Computer Science<br />

e-mail: lsella@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.leidenuniv.nl, shille@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.leidenuniv.nl,<br />

emmerich@liacs.nl<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling and regulatory networks in B. subtilis<br />

B. subtilis is a Gram-positive bacterium comm<strong>on</strong>ly found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e soil. This bacterium<br />

has been studied extensively especially for <str<strong>on</strong>g>th</str<strong>on</strong>g>e way it manages to induce<br />

itself to sporulate [1-4]. Sporulati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spore is a last resort alternative<br />

a bacterium chooses to undertake when <str<strong>on</strong>g>th</str<strong>on</strong>g>e resources in <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment<br />

are not compatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> maintaining a normal metabolism, especially when <str<strong>on</strong>g>th</str<strong>on</strong>g>ere<br />

is shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, <str<strong>on</strong>g>th</str<strong>on</strong>g>e input <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular respirati<strong>on</strong>.<br />

In such c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> an isogenic populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B.subtilis is not<br />

uniform. Some bacteria sporulate, some faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers, some do not. This kind<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> behaviour is called bet hedging, and it is understood as a differentiati<strong>on</strong> strategy<br />

which maximize <str<strong>on</strong>g>th</str<strong>on</strong>g>e survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e col<strong>on</strong>y. In facts if <str<strong>on</strong>g>th</str<strong>on</strong>g>e shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> resources is<br />

l<strong>on</strong>g lasting, sporulati<strong>on</strong> truly gives an advantage to individuals producing spores.<br />

Spores have very str<strong>on</strong>g endurance and almost a frozen metabolism. These spores<br />

can reactivate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir metabolism when <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s turn to be more favourable.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand if <str<strong>on</strong>g>th</str<strong>on</strong>g>e shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> resource is <strong>on</strong>ly temporary <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

producing a spore is not advantageous because it is energetically expensive and<br />

it is not reversible; from an early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> any quick reappearance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resources would have not been exploited by <str<strong>on</strong>g>th</str<strong>on</strong>g>e new born spore.<br />

Sporulati<strong>on</strong> is a quite complex process which entails <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> more <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

500 genes in a period <str<strong>on</strong>g>of</str<strong>on</strong>g> about 10 hours.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we want to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase which trigger <str<strong>on</strong>g>th</str<strong>on</strong>g>e sporulati<strong>on</strong>, a<br />

phase where <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell produces <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein σ H , a sigma factor which plays a key role<br />

in triggering sporulati<strong>on</strong> in B. subtilis.<br />

Few parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is regulatory network are available in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

are mostly <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. Statistical<br />

descripti<strong>on</strong> about chemical reacti<strong>on</strong>s rates, spatial dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules and syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

producti<strong>on</strong> are almost totally unknown.<br />

339


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> some parameters can be made by looking<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>dent parameters in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er species like E. choli.<br />

We combine <str<strong>on</strong>g>th</str<strong>on</strong>g>is comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a rigorous approach. We have developed a<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware which perform a stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network which produces σ H .<br />

We <str<strong>on</strong>g>th</str<strong>on</strong>g>en identify unknown parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network by comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e output <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our simulati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental data.<br />

The available experimental data is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> time series <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins KinA,<br />

Spo0A, Spo0B, Spo0F and sigmaH in arbitrary unit. The measurement has been<br />

performed in bacterial col<strong>on</strong>ies by using green fluorescent protein (GFP). The measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each protein occurred in different experiments (<strong>on</strong>e for protein) where<br />

a gene <str<strong>on</strong>g>of</str<strong>on</strong>g> GFP was insert in a suitable locati<strong>on</strong> to keep track <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e protein. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> luminescence is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> GFP<br />

present in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell which can be assumed proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e protein.<br />

The simulati<strong>on</strong> produces as output time series for each protein in a form homogeneous<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data. We compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e two time series wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

root square mean error. We use evoluti<strong>on</strong>ary strategies [5] to perform a black box<br />

optimizati<strong>on</strong> in order to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters which minimize <str<strong>on</strong>g>th</str<strong>on</strong>g>is error.<br />

In our talk we are going to discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e results we obtained and we compare<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e present literature.<br />

References.<br />

[1] D. Schultz, P. Wolynes, E. Jacob, J. Onuchic Deciding fate in adverse times: sporulati<strong>on</strong> and<br />

competence in Bacillus subtilis PNAS Vol. 106 No. 50.<br />

[2] A. Chastanet, D. Vitkup, G. Yuan, T. Norman, J. Liu, R. Losick Broadly heterogeneous<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e master regulator for sporulati<strong>on</strong> in Bacillus subtilis PNAS 107:8486–8491.<br />

[3] Hoch, J.A. Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phosphorelay and <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> in bacillus subtilis<br />

Annu Rev Microbiol 47 (1993) 441-65<br />

[4] I. G. de J<strong>on</strong>g, J. Veening, and O. P. Kuipers Heterochr<strong>on</strong>ic Phosphorelay Gene Expressi<strong>on</strong> as<br />

a Source <str<strong>on</strong>g>of</str<strong>on</strong>g>Heterogeneity in Bacillus subtilis Spore Formati<strong>on</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Bacterelology, Vol.<br />

192, No. 8<br />

[5] T. Bäck, Evoluti<strong>on</strong>ary algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms in <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and practice: evoluti<strong>on</strong> strategies, evoluti<strong>on</strong>ary<br />

programming, genetic algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. Oxford University Press, Oxford,UK (1996).<br />

17:35–17:55<br />

Madalena Chaves<br />

Project-team COMORE, INRIA, 06902 Sophia Antipolis, France<br />

e-mail: madalena.chaves@inria.fr<br />

Jean-Luc Gouzé<br />

Project-team COMORE, INRIA, 06902 Sophia Antipolis, France<br />

e-mail: gouze@sophia.inria.fr<br />

Qualitative C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a Bistable Genetic Network<br />

The c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic model for a genetic network is studied using piecewise<br />

affine differential systems. The system is <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known bistable switch wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two<br />

340


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

genes and proteins x 1 , x 2 :<br />

ẋ 1 = uκ 1 s − (x 2 , θ 2 ) − γ 1 x 1<br />

ẋ 2 = uκ 2 s − (x 1 , θ 1 ) − γ 2 x 2 .<br />

where κ i denote producti<strong>on</strong> rates, γ i denote <str<strong>on</strong>g>th</str<strong>on</strong>g>e degradati<strong>on</strong> rate c<strong>on</strong>stants, and<br />

θ i <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold c<strong>on</strong>centrati<strong>on</strong>s. The step functi<strong>on</strong> represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each gene by <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er.<br />

{<br />

s − 1, r < θ<br />

(r, θ) =<br />

0, r > θ.<br />

This class <str<strong>on</strong>g>of</str<strong>on</strong>g> piecewise affine systems (PWA) was first introduced by [1], and is<br />

widely used for modeling genetic regulatory networks [2]. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

state measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> x 1 , x 2 are qualitative (each variable is at high or low c<strong>on</strong>centrati<strong>on</strong>)<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible input values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol u are also qualitative<br />

(no c<strong>on</strong>trol, high value or low value). The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach is to obtain<br />

c<strong>on</strong>trol laws which can be implemented in <str<strong>on</strong>g>th</str<strong>on</strong>g>e laboratory, using <strong>on</strong>ly qualitative<br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system’s variables. Soluti<strong>on</strong>s are given for <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolling<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e bistable switch to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>of</str<strong>on</strong>g> its <str<strong>on</strong>g>th</str<strong>on</strong>g>ree steady states [3].<br />

References.<br />

[1] L. Glass and S.A. Kauffman. The logical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous, n<strong>on</strong>linear biochemical c<strong>on</strong>trol<br />

networks. J. Theor. Biol., 39:103–129, 1973.<br />

[2] R. Casey, H. de J<strong>on</strong>g, and J.L. Gouzé. Piecewise-linear models <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic regulatory networks:<br />

equilibria and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir stability. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., 52:27–56, 2006.<br />

[3] M. Chaves and J.L. Gouzé. Qualitative C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetic Networks: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bistable Switch<br />

Example. Technical Report, INRIA, 2010, http://hal.inria.fr/<br />

17:55–18:15<br />

Mochamad Apri<br />

Biometris, Wageningen University, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: mochamad.apri@wur.nl<br />

Maarten de Gee<br />

Biometris, Wageningen University, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

Jaap Molenaar<br />

Biometris, Wageningen University, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

Identifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e core <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical networks: complexity<br />

reducti<strong>on</strong> preserving dynamical behavior<br />

Biochemical systems are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten very complex. The complexity stems from bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents and <str<strong>on</strong>g>th</str<strong>on</strong>g>e intricate interacti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at may occur. When a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model is used to describe such a system, its complexity may lead to a<br />

very l<strong>on</strong>g computing time, n<strong>on</strong>-identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, and most importantly<br />

may hinder us in understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemical system.<br />

Therefore, effective me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are required to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e key comp<strong>on</strong>ents and<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

341


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

We present a novel and efficient reducti<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e core <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

biochemical system. This new me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called<br />

admissible regi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters for which <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

yields <str<strong>on</strong>g>th</str<strong>on</strong>g>e required output. For illustrati<strong>on</strong>al purpose, <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> is first applied<br />

to a very small artificial network, c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> just <str<strong>on</strong>g>th</str<strong>on</strong>g>ree nodes and <str<strong>on</strong>g>th</str<strong>on</strong>g>ree parameters.<br />

Our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are many parameter sets <str<strong>on</strong>g>th</str<strong>on</strong>g>at give rise to similar<br />

dynamical behavior, which indicates, despite its simplicity, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is not<br />

identifiable. Next, <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> is applied to an epidermal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor receptor<br />

(EGFR) network model. It turns out <strong>on</strong>ly about 62% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network comp<strong>on</strong>ents are<br />

required to yield <str<strong>on</strong>g>th</str<strong>on</strong>g>e correct resp<strong>on</strong>se to epidermal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor (EGF), whereas<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rest could be c<strong>on</strong>sidered redundant. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough parameter sensitivity<br />

is expected to give an indicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e redundancy <str<strong>on</strong>g>of</str<strong>on</strong>g> a parameter, we found<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at a highly sensitive parameter is not always necessarily important, whereas a<br />

slightly sensitive parameter is not always removable. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at parameter<br />

sensitivity <strong>on</strong> its own is not a reliable tool for model reducti<strong>on</strong>.<br />

18:15–18:35<br />

E. S. Roberts<br />

Randall Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell and Molecular Biophysics,<br />

King’s College L<strong>on</strong>d<strong>on</strong><br />

e-mail: ekaterina.roberts@kcl.ac.uk<br />

A. C. C. Coolen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

King’s College L<strong>on</strong>d<strong>on</strong><br />

e-mail: t<strong>on</strong>.coolen@kcl.ac.uk<br />

T. Schlitt<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical and Molecular Genetics,<br />

King’s College L<strong>on</strong>d<strong>on</strong><br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>omas.schlitt@kcl.ac.uk<br />

Tailored graph ensembles as proxies or null models for real<br />

networks<br />

There is a great demand, especially in cellular biology, for precise ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

approaches to studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed topology <str<strong>on</strong>g>of</str<strong>on</strong>g> networks. We generate new<br />

tools wi<str<strong>on</strong>g>th</str<strong>on</strong>g> which to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic topological structure <str<strong>on</strong>g>of</str<strong>on</strong>g> large directed<br />

networks, via a statistical mechanical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>strained maximum entropy<br />

ensembles <str<strong>on</strong>g>of</str<strong>on</strong>g> directed random graphs. We look at prescribed joint distributi<strong>on</strong>s<br />

for in- and out-degrees and prescribed degree-degree correlati<strong>on</strong> functi<strong>on</strong>s. We follow<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e approach pi<strong>on</strong>eered in [1] for undirected networks. Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

tools include: comparing networks; distinguishing between meaningful and random<br />

structural features; and, defining and generating tailored random graphs as null<br />

342


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

models. We calculate exact and explicit formulae for <str<strong>on</strong>g>th</str<strong>on</strong>g>e leading orders in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shann<strong>on</strong> entropies and complexities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ensembles. The results<br />

are applied to data <strong>on</strong> gene regulati<strong>on</strong> networks.<br />

References.<br />

[1] Annibale A , Coolen A C C , Fernandes L P , Fraternali F and Kleinjung J, Tailored graph<br />

ensembles as proxies or null models for real networks I: tools for quantifying structure J. Phys.<br />

A, 42 (48):485001, (2009)<br />

[2] Roberts E S , Coolen A C C , and Schlitt T Tailored graph ensembles as proxies or null models<br />

for real networks II: results <strong>on</strong> directed graphs In preparati<strong>on</strong>.<br />

[3] Fernandes L P, Annibale A, Kleinjung J, Coolen A C C, and Fraternali F, Protein networks<br />

reveal detecti<strong>on</strong> bias and species c<strong>on</strong>sistency when analysed by informati<strong>on</strong>-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

J. PLoS ONE, 5 :e12083, (2010).<br />

18:35–18:55<br />

Robert Noble<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: robert.noble@linacre.ox.ac.uk<br />

Zoe Christodoulou<br />

Wear<str<strong>on</strong>g>th</str<strong>on</strong>g>erall Institute for Molecular Medicine<br />

Robert Pinches<br />

Wear<str<strong>on</strong>g>th</str<strong>on</strong>g>erall Institute for Molecular Medicine<br />

Sue A. Kyes<br />

Wear<str<strong>on</strong>g>th</str<strong>on</strong>g>erall Institute for Molecular Medicine<br />

Chris I. Newbold<br />

Wear<str<strong>on</strong>g>th</str<strong>on</strong>g>erall Institute for Molecular Medicine<br />

Mario Recker<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Using iterative me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to determine an antigenic switching<br />

network in Plasmodium falciparum<br />

Background: The malaria parasite Plasmodium falciparum evades host protective<br />

antibody resp<strong>on</strong>ses by transcripti<strong>on</strong>al switching between members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e var gene<br />

family, which encode <str<strong>on</strong>g>th</str<strong>on</strong>g>e immunodominant surface proteins and virulence factors<br />

PfEMP1. This process <str<strong>on</strong>g>of</str<strong>on</strong>g> antigenic variati<strong>on</strong> must be coordinated across a whole<br />

populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites during infecti<strong>on</strong> to minimise exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasites limited<br />

antigenic repertoire. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro transcripti<strong>on</strong> data has previously suggested<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is process underlies a n<strong>on</strong>-random pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al change<br />

in which activati<strong>on</strong> and silencing not <strong>on</strong>ly differs significantly between individual<br />

var genes but may also be biased [1,2].<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: To elucidate whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er switching between var genes is predominantly<br />

governed by local switch hierarchies, whereby activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> var genes is dominated<br />

by switch biases between different genes, or by a more global hierarchy in which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> activati<strong>on</strong> is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e previously active gene, we analysed in<br />

vitro expressi<strong>on</strong> data from eleven cl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e HB3 isolate toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parent<br />

culture. We used simulated annealing and a Markov Chain M<strong>on</strong>te Carlo me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to<br />

343


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>f-rates and switch biases <str<strong>on</strong>g>th</str<strong>on</strong>g>at best fitted <str<strong>on</strong>g>th</str<strong>on</strong>g>e data, enabling us to<br />

c<strong>on</strong>struct a global gene switching network <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e var gene repertoire <str<strong>on</strong>g>of</str<strong>on</strong>g> HB3. Tests<br />

using artificial data c<strong>on</strong>firmed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms can recover reliable estimates<br />

despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e large parameter space.<br />

Principle findings: Our results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> antigenic variati<strong>on</strong> in<br />

P. falciparum can be described by a fixed network <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong> rates. C<strong>on</strong>sistent<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> previous studies we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at activated var genes switch <str<strong>on</strong>g>of</str<strong>on</strong>g>f at fixed rates<br />

which range between 0.3% and 5.2% per generati<strong>on</strong>. Our results fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular var being activated depends <strong>on</strong> which var is switching<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biases towards <strong>on</strong>e dominant gene found to vary from less <str<strong>on</strong>g>th</str<strong>on</strong>g>an 25% to more<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an 75%. This indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at var gene switching in P. falciparum is a combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local switch biases and global activati<strong>on</strong> hierarchies.<br />

References.<br />

[1] Horrocks, P., Pinches, R., Christodoulou, Z., Kyes, S.A., Newbold, C.I (2004) Variable var<br />

transiti<strong>on</strong> rates underlie antigenic variati<strong>on</strong> in malaria. Proc.Natl.Acad.Sci.U.S.A. 101(30):<br />

11129-11134<br />

[2] Recker, M., Buckee, C.O., Serazin, A., Kyes, S., Pinches, R., Christodoulou, Z., Springer, A.L.,<br />

Gupta, S., Newbold, C.I (in press) Antigenic variati<strong>on</strong> in Plasmodium falciparum malaria<br />

involves a highly structured switching pattern. PLoS Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens<br />

344


Regulatory Networks 2<br />

Friday, July 1, 14:30, Room: AM2<br />

Chaired by: John Tys<strong>on</strong><br />

14:30–15:00<br />

Daniele Muraro 1<br />

e-mail: daniele.muraro@nottingham.ac.uk<br />

Leah Band 1<br />

e-mail: leah.band@nottingham.ac.uk<br />

Helen Byrne 1,2<br />

e-mail: helen.byrne@nottingham.ac.uk<br />

John King 1,2<br />

e-mail: john.king@nottingham.ac.uk<br />

Ute Voß 1<br />

e-mail: ute.voss@nottingham.ac.uk<br />

Susana Ubeda Tomas 1<br />

e-mail: susana.ubeda-tomas@nottingham.ac.uk<br />

Joseph Kieber 3<br />

e-mail: jkieber@ad.unc.edu<br />

Malcolm Bennett 1<br />

e-mail: malcolm.bennett@nottingham.ac.uk<br />

[1]: Centre for Plant Integrative Biology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, Sutt<strong>on</strong> B<strong>on</strong>ingt<strong>on</strong> Campus, Loughborough<br />

LE12 5RD, UK<br />

[2]: School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, University<br />

Park, Nottingham NG7 2RD, UK<br />

[3]: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina at<br />

Chapel Hill, Chapel Hill, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina 27599-3280<br />

A multi-scale analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> horm<strong>on</strong>al<br />

cross-talk: cell-fate determinati<strong>on</strong> in Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana<br />

root development<br />

Root grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and development in Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana are sustained by a specialised<br />

z<strong>on</strong>e termed <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem, which c<strong>on</strong>tains a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dividing and<br />

differentiating cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at is functi<strong>on</strong>ally analogous to a stem cell niche in animals.<br />

The size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem is regulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance between cell divisi<strong>on</strong> and<br />

cell differentiati<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is balance is c<strong>on</strong>trolled antag<strong>on</strong>istically by <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>es<br />

auxin and cytokinin. Local accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin promotes cell divisi<strong>on</strong>, whereas<br />

345


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

high cytokinin c<strong>on</strong>centrati<strong>on</strong>s promote differentiati<strong>on</strong>. The cross-talk between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

two horm<strong>on</strong>es is c<strong>on</strong>trolled by a genetic regulatory network.<br />

As a first step <str<strong>on</strong>g>of</str<strong>on</strong>g> our analysis, we propose and compare wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental observati<strong>on</strong>s<br />

a single-cell, deterministic ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is regulatory mechanism.<br />

We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough genetic mutati<strong>on</strong>s can reproduce qualitatively <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> varying auxin and cytokinin supply <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir resp<strong>on</strong>se genes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e general<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network is different and an analysis based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese two horm<strong>on</strong>es may be misleading.<br />

Recently, gibberellin has been shown to be relevant in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e adult<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem by interacting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> auxin and cytokinin. We propose a multiscale<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is interacti<strong>on</strong> and we validate <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> our simulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

experimental data. We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at a multi-scale investigati<strong>on</strong> can provide insight<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e signalling network c<strong>on</strong>trolling meristematic activity, by enabling <str<strong>on</strong>g>th</str<strong>on</strong>g>e study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network in different tissues and <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> potential missing comp<strong>on</strong>ents.<br />

15:05–15:25<br />

C. Bodenstein 1 , B. Knoke 1 , S. Schuster 1<br />

1 Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics, Friedrich Schiller University Jena, Ernst-<br />

Abbe-Platz 2, D-07743 Jena, Germany<br />

2 Current address: Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stuttgart, Germany<br />

e-mail: {christian.bodenstein,stefan.schu}@uni-jena.de<br />

M. Marhl 3 , M. Perc 3<br />

3 Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia<br />

Protein activati<strong>on</strong> by calcium oscillati<strong>on</strong>s and Jensen’s<br />

Inequality<br />

Oscillating c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular Ca 2+ -i<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance for <str<strong>on</strong>g>th</str<strong>on</strong>g>e signalling<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. It is widely believed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular stimuli<br />

is encoded into an oscillating Ca 2+ pattern, which subsequently is decoded by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ -sensitive proteins. Besides <str<strong>on</strong>g>th</str<strong>on</strong>g>is advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> an oscillating Ca 2+<br />

signal, we here show <str<strong>on</strong>g>th</str<strong>on</strong>g>at oscillati<strong>on</strong>s additi<strong>on</strong>ally lead to a better activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e target proteins compared to a c<strong>on</strong>stant signal. In two asymptotic cases we can<br />

analytically prove <str<strong>on</strong>g>th</str<strong>on</strong>g>is for arbitrary oscillati<strong>on</strong> shapes and a very general decoding<br />

model, which comprises most previous models <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ -sensitive proteins. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

we use Jensen’s inequality <str<strong>on</strong>g>th</str<strong>on</strong>g>at relates <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>vex functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an average<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>vex functi<strong>on</strong>. Moreover, numerical simulati<strong>on</strong>s indicate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at oscillati<strong>on</strong>s lead to a better activati<strong>on</strong> not <strong>on</strong>ly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e two asymptotic cases.<br />

The results underline <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperativity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> zero-order ultrasensitivity, which are two properties <str<strong>on</strong>g>th</str<strong>on</strong>g>at are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten observed<br />

in experiments <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ -sensitive target proteins. We compare<br />

346


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

our <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data from experimental studies investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NFAT and Ras by oscillatory and c<strong>on</strong>stant signals.<br />

References.<br />

[1] Dolmetsch et al., Calcium oscillati<strong>on</strong>s increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency and specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong><br />

Nature 392 933–936, 1998.<br />

[2] Kupzig et al., The frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium oscillati<strong>on</strong>s are optimized for efficient calciummediated<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ras and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ERK/MAPK cascade Proc Natl Acad Sci USA 102 7577–<br />

7582, 2005.<br />

15:25–15:45<br />

Michael Knudsen<br />

Bioinformatics Research Centre, Aarhus University, Denmark<br />

e-mail: micknudsen@gmail.com<br />

Elisenda Feliu<br />

Bioinformatics Research Centre, Aarhus University, Denmark<br />

e-mail: efeliu@birc.au.dk<br />

Carsten Wiuf<br />

Bioinformatics Research Centre, Aarhus University, Denmark<br />

e-mail: wiuf@birc.au.dk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Phosphorelay Dynamics<br />

Phosphorylati<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most prevalent forms <str<strong>on</strong>g>of</str<strong>on</strong>g> post-translati<strong>on</strong>al modificati<strong>on</strong>s<br />

by which signals are transmitted in living cells. A type <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

prevalent in bacteria is <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-comp<strong>on</strong>ent system (TCS), in which a signal is transferred<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough a series <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate group transfers moving <str<strong>on</strong>g>th</str<strong>on</strong>g>e phosphate group<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensor domain <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e protein to <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulator domain <str<strong>on</strong>g>of</str<strong>on</strong>g> ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er protein.<br />

Similar pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways involving more <str<strong>on</strong>g>th</str<strong>on</strong>g>an two proteins exist, and toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> TCSs<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese are known as phosphorelays.<br />

We present a rigorous ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorelays assuming <strong>on</strong>ly<br />

mass-acti<strong>on</strong> kinetics. By combining an algebraic approach, previously applied to<br />

linear signaling cascades [1], wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for m<strong>on</strong>ot<strong>on</strong>e systems, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at phosphorelays<br />

c<strong>on</strong>verge to unique stable steady states given initial total substrate c<strong>on</strong>centrati<strong>on</strong>s.<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> relies <strong>on</strong> graph <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e species-reacti<strong>on</strong><br />

Petri net (SR-net) and an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phosphorelay system in reacti<strong>on</strong> coordinates.<br />

Using reacti<strong>on</strong> coordinates, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system exhibits a special kind <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ot<strong>on</strong>icity<br />

(<str<strong>on</strong>g>th</str<strong>on</strong>g>e system is cooperative).<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>e TCS, algebraic manipulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady state equati<strong>on</strong> lead to fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e system dynamics, for example in relati<strong>on</strong> to stimulus-resp<strong>on</strong>se<br />

curves. We obtain a polynomial equati<strong>on</strong> relating stimulus and resp<strong>on</strong>se, <strong>on</strong>ly depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate c<strong>on</strong>stants and <str<strong>on</strong>g>th</str<strong>on</strong>g>e total substrate c<strong>on</strong>centrati<strong>on</strong>s. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

relati<strong>on</strong>ship we are able to investigate, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out restoring to simulati<strong>on</strong> or fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

approximati<strong>on</strong>, how <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulus depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number phosphorylati<strong>on</strong> sites <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each protein.<br />

347


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Algebraic approaches to phosphorylati<strong>on</strong> networks have been <str<strong>on</strong>g>th</str<strong>on</strong>g>e topic <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

recent publicati<strong>on</strong>s, see [1,2] and references <str<strong>on</strong>g>th</str<strong>on</strong>g>erein, and we believe <str<strong>on</strong>g>th</str<strong>on</strong>g>at such approaches<br />

will be helpful for understanding many different types <str<strong>on</strong>g>of</str<strong>on</strong>g> systems.<br />

References.<br />

[1] E. Feliu, M. Knudsen, L.N. Andersen, C. Wiuf: An Algebraic Approach to Signaling Cascades<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n Layers, arXiv:1008.0431 (2010).<br />

[2] E. Feliu, L.N. Andersen, M. Knudsen, C. Wiuf: A General Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Framework Suitable<br />

for Studying Signaling Cascades, arXiv:1008.0427 (2010).<br />

15:45–16:05<br />

M. Koetzing 1 , C. Kaleta 1 , S. Schuster 1<br />

1 Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics, Friedrich Schiller University Jena, Ernst-<br />

Abbe-Platz 2, D-07743 Jena, Germany<br />

e-mail: {martin.koetzing, christoph.kaleta, stefan.schu}@uni-jena.de<br />

M. Bartl 2<br />

2 Simulati<strong>on</strong> and Optimal Processes Group, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science<br />

and Automati<strong>on</strong>, Ilmenau University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Max-Planck-<br />

Ring 14, D-98693 Ilmenau, Germany<br />

Dynamic Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nitrogen Assimilati<strong>on</strong> in<br />

Chlamydom<strong>on</strong>as reinhardtii<br />

Optimizati<strong>on</strong> approaches are a useful tool to study principles behind dynamics<br />

observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways [1]. While earlier studies c<strong>on</strong>sidered<br />

mostly steady-state systems [1, 2], <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic regulati<strong>on</strong>, or just-in-time<br />

activati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways has attracted increasing attenti<strong>on</strong> [3, 4] and was<br />

experimentally observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e amino acid biosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> Escherichia coli [4]. Using<br />

dynamic optimizati<strong>on</strong> by solving a n<strong>on</strong>linear, dynamic optimal c<strong>on</strong>trol problem<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasi-sequential approach [5], we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nitrogen<br />

assimilati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e nitrogen metabolism [6] by <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian clock [7] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e green<br />

algae Chlamydom<strong>on</strong>as reinhardtii. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> our analysis is to identify which enzymes<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a drastically simplified model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> C. reinhardtii need<br />

to be subjected to circadian c<strong>on</strong>trol in order to adapt <str<strong>on</strong>g>th</str<strong>on</strong>g>e organism to day-night<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological and envir<strong>on</strong>mental c<strong>on</strong>straints <str<strong>on</strong>g>th</str<strong>on</strong>g>at imply <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

necessity <str<strong>on</strong>g>of</str<strong>on</strong>g> circadian regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different enzymes are investigated. Important<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> such a model are appropriate kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> participating reacti<strong>on</strong>s as<br />

well as c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes and metabolites. We developed such a model<br />

focusing <strong>on</strong> nitrogen metabolism including assimilati<strong>on</strong>, transport and processing<br />

in C. reinhardtii. This model was analyzed under different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s<br />

and provides first insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolite and<br />

enzymes c<strong>on</strong>centrati<strong>on</strong>s observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> a day.<br />

References.<br />

[1] Heinrich et al., Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymic reacti<strong>on</strong> systems using optimizati<strong>on</strong> principles.<br />

Eur J Biochem 201 1–21. 1991.<br />

348


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] Heinrich R. and Schuster S., The Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cellular Systems New York: Chapman & Hall<br />

1996<br />

[3] Klipp et al., Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal gene expressi<strong>on</strong>. Metabolic opimizati<strong>on</strong> by re-distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme activities. Eur J Biochem 269 5406–5413. 2002.<br />

[4] Zaslaver et al., Just-in-time transcripti<strong>on</strong> program in metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Nat Genet 36 486–<br />

491. 2004.<br />

[5] H<strong>on</strong>g et al., A quasi-sequential approach to large-scale dynamic optimizati<strong>on</strong> problems AIChE<br />

Journal 52 255–268. 2006.<br />

[6] Fernandez E. and Galvan A., Inorganic nitrogen assimilati<strong>on</strong> in Chlamydom<strong>on</strong>as. J Exp Bot<br />

58 2279–2287. 2007.<br />

[7] Mittag et al., The circadian clock in Chlamydom<strong>on</strong>as reinhardtii. What is it for What is it<br />

similar to Plant Physiol 137 399–409, 2005.<br />

16:05–16:25<br />

Daniella Schittler<br />

Institute for Systems Theory and Automatic C<strong>on</strong>trol, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stuttgart<br />

e-mail: schittler@ist.uni-stuttgart.de<br />

Christian Breindl<br />

Institute for Systems Theory and Automatic C<strong>on</strong>trol, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stuttgart<br />

Frank Allgower<br />

Institute for Systems Theory and Automatic C<strong>on</strong>trol, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stuttgart<br />

Model selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> networks <str<strong>on</strong>g>th</str<strong>on</strong>g>at are robust against kinetic<br />

uncertainties<br />

Gene regulatory networks are driving major biological processes, such as cell differentiati<strong>on</strong>.<br />

Dynamical models can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be built <strong>on</strong> a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> key regulators,<br />

but are usually hampered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e lack <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative knowledge about <str<strong>on</strong>g>th</str<strong>on</strong>g>e detailed<br />

interacti<strong>on</strong> kinetics. Thus, it is desirable to deduce certain system properties already<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative interacti<strong>on</strong> structure.<br />

This study aims at selecting prototypes <str<strong>on</strong>g>of</str<strong>on</strong>g> minimalistic <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-node network<br />

motifs, <str<strong>on</strong>g>th</str<strong>on</strong>g>at can serve as a genetic switch model driving cell differentiati<strong>on</strong>. As a<br />

selecti<strong>on</strong> criteri<strong>on</strong>, we demand <str<strong>on</strong>g>th</str<strong>on</strong>g>at a candidate model must be able to produce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e biologically observed <str<strong>on</strong>g>th</str<strong>on</strong>g>ree cell states: a progenitor, and two differentiated<br />

cell types. The goal is to find necessary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> structure<br />

such <str<strong>on</strong>g>th</str<strong>on</strong>g>at a network exhibits <str<strong>on</strong>g>th</str<strong>on</strong>g>e required stable steady states, and to classify <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is capability. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is model selecti<strong>on</strong>, we employ a qualitative<br />

modeling framework based <strong>on</strong> ordinary differential equati<strong>on</strong>s, but requiring <strong>on</strong>ly<br />

few qualitative assumpti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic interacti<strong>on</strong>s. The robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> a model<br />

is defined as <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum perturbati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> functi<strong>on</strong>s under which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model criteria are still fulfilled, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us measures <str<strong>on</strong>g>th</str<strong>on</strong>g>e validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model if<br />

<strong>on</strong>ly qualitative knowledge is available.<br />

In particular, we focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e operator combining <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s<br />

acting <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same node: These can be c<strong>on</strong>nected in an OR-fashi<strong>on</strong> (i.e. ingoing<br />

349


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

activators and inhibitors act independently <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er), or in an AND-fashi<strong>on</strong><br />

(resulting e.g. from complex formati<strong>on</strong>s at gene promoters). We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e OR-networks selected as models for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system are a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ANDnetworks<br />

selected as models, nor vice versa; but am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>em are networks <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

meet <str<strong>on</strong>g>th</str<strong>on</strong>g>e selecti<strong>on</strong> criteria for OR- as well as for AND-kinetics. This n<strong>on</strong>empty<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> models can be regarded as robust not <strong>on</strong>ly against quantitative uncertainties,<br />

but also against uncertain knowledge about <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact interacti<strong>on</strong> c<strong>on</strong>juncti<strong>on</strong>s.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e network c<strong>on</strong>nectivity is directly correlated to <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e network capability to meet <str<strong>on</strong>g>th</str<strong>on</strong>g>e model selecti<strong>on</strong> criteria. In c<strong>on</strong>clusi<strong>on</strong>, for some<br />

specific interacti<strong>on</strong> networks it may be uncritical whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are modeled wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

OR- or AND-interacti<strong>on</strong> kinetics, but also in many cases <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two opti<strong>on</strong>s<br />

can successfully result in a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e system properties.<br />

350


Regulatory Networks 3<br />

Saturday, July 2, 11:00, Room: AM6<br />

Chaired by: Daniele Muraro<br />

11:00–11:30<br />

Sim<strong>on</strong> van Mourik<br />

Kerstin Kaufmann<br />

Richard Immink<br />

Gerco Angenent<br />

Jaap Molenaar<br />

Wageningen University, Wageningen, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: Sim<strong>on</strong>.vanmourik@wur.nl<br />

Quantitative modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> in Arabidopsis<br />

flowers<br />

Flowers have a complex structure in which tissues and organs obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>eir identities<br />

and arrangements in a very special way. According to <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called ABC(DE) model<br />

[1], <str<strong>on</strong>g>th</str<strong>on</strong>g>e different floral organs in Arabidopsis are specified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> five<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> MADS box genes. During development, <str<strong>on</strong>g>th</str<strong>on</strong>g>e floral meristem gets divided<br />

into four c<strong>on</strong>centric areas (whorls) in which different combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> MADS gene<br />

expressi<strong>on</strong>s are observed: A+E in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sepal whorl, A+B+E in <str<strong>on</strong>g>th</str<strong>on</strong>g>e petal whorl,<br />

B+C+E in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stamen whorl, and C+E in <str<strong>on</strong>g>th</str<strong>on</strong>g>e carpel whorl.<br />

In [2] we proposed an ODE model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene regulatory network<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at underlies <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e MADS domain proteins. We showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

model type is well suited for testing hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses <strong>on</strong> formati<strong>on</strong> and functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

higher order complexes, transcripti<strong>on</strong> activati<strong>on</strong> and DNA binding.<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>e predictive power <str<strong>on</strong>g>of</str<strong>on</strong>g> such a model, accurate estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter values<br />

plays an essential role. To <str<strong>on</strong>g>th</str<strong>on</strong>g>is end, we developed a spatiotemporal data set <str<strong>on</strong>g>of</str<strong>on</strong>g> in<br />

vivo protein c<strong>on</strong>centrati<strong>on</strong>s, using a state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e art protein tagging procedure. We<br />

used a novel image analysis technique to estimate relative protein c<strong>on</strong>centrati<strong>on</strong>s<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting c<strong>on</strong>focal images [3].<br />

We also developed a novel parameter estimati<strong>on</strong> procedure <str<strong>on</strong>g>th</str<strong>on</strong>g>at explicitly incorporates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal expressi<strong>on</strong> development, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e measured standard<br />

deviati<strong>on</strong>s. The estimati<strong>on</strong> results will give a direct feedback <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey will be presented at <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>ference.<br />

351


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] Causier B, Schwarz-Sommer Z, Davies B: Floral organ identity: 20 years <str<strong>on</strong>g>of</str<strong>on</strong>g> ABCs. Seminars<br />

in Cell & Developmental Biology 2010, 21(1):73-79.<br />

[2] van Mourik S, van Dijk AD, de Gee M, Immink RG, Kaufmann K, Angenent GC, van Ham<br />

RC, Molenaar J: C<strong>on</strong>tinuous-time modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell fate determinati<strong>on</strong> in Arabidopsis flowers.<br />

BMC Syst Biol 2010, 4:101.<br />

[3] Quelhas P, Mend<strong>on</strong>ca, A, Campilho, A: 3D cell nuclei fluorescence quantificati<strong>on</strong> using sliding<br />

band filter. In: Internati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Pattern Recogniti<strong>on</strong>: 2010: IEEE Press -<br />

Computer Society; 2010: 2508-2511.<br />

11:35–11:55<br />

Elpida Tzafestas<br />

Cognitive Science Lab., Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Hist. & Philosophy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Univ.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens, GREECE<br />

e-mail: etzafestas@phs.uoa.gr<br />

Modeling horm<strong>on</strong>ally dependent genetic networks<br />

Usual approaches to regulatory genetic network modeling follow a feed-forward<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e network represents a black-box wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. The operati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e black box is modeled as an input-output relati<strong>on</strong> and research tries<br />

to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper relati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at holds for several observed cases; <str<strong>on</strong>g>th</str<strong>on</strong>g>is relati<strong>on</strong><br />

may be expressed in various formalisms (typically boolean networks [1], but also<br />

Bayesian networks, etc.).<br />

Our proposal follows a developmental perspective and borrows <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically<br />

from modern accounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene as an informati<strong>on</strong>-carrier and as a complex entity<br />

and c<strong>on</strong>cept [2-5]. These <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical developments bel<strong>on</strong>g to <str<strong>on</strong>g>th</str<strong>on</strong>g>e broad evo-devo<br />

trend and attempt to use <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene as a functi<strong>on</strong>al biological entity or as a developmental<br />

molecular process instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a well-delimited structural entity encoding for<br />

a specific trait.<br />

Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical c<strong>on</strong>text, it is wor<str<strong>on</strong>g>th</str<strong>on</strong>g>while to study enhanced relati<strong>on</strong>s<br />

between genetic network and cellular behavior <str<strong>on</strong>g>th</str<strong>on</strong>g>at include c<strong>on</strong>trol in <str<strong>on</strong>g>th</str<strong>on</strong>g>e loop in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> memory : in regulatory networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> memory, subsequent activati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same input vector will yield different output vectors, i.e.<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e transfer functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole network will be itself dynamic. From an external<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, <str<strong>on</strong>g>th</str<strong>on</strong>g>is may be seen as <str<strong>on</strong>g>th</str<strong>on</strong>g>e network prefering some inputs already seen, or<br />

dismissing <str<strong>on</strong>g>th</str<strong>on</strong>g>em, or in general specializing to certain activity pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. We expect<br />

a cell to behave in such a way so as to resist to abrupt changes and to external<br />

manipulati<strong>on</strong>, for example by viruses. In a medium term, a genetic network wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

memory will behave in a more aut<strong>on</strong>omous and prudent manner and it will be less<br />

dependent <strong>on</strong> quick changes in its envir<strong>on</strong>ment.<br />

From a technical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, <strong>on</strong>e way to introduce a sort <str<strong>on</strong>g>of</str<strong>on</strong>g> memory is to<br />

define individual gene functi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are not uniquely defined but <str<strong>on</strong>g>th</str<strong>on</strong>g>at vary for<br />

different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. One such c<strong>on</strong>trolling c<strong>on</strong>diti<strong>on</strong> may be <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> an horm<strong>on</strong>e [6]. This model represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> various genes<br />

<strong>on</strong> external factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at change slowly in comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

352


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene. We have studied gene functi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at differ according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> an external horm<strong>on</strong>e <str<strong>on</strong>g>th</str<strong>on</strong>g>at follows its own dynamics. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, l<strong>on</strong>g<br />

complex (irregular) attractors emerge wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic network. We have also<br />

studied genetic networks <str<strong>on</strong>g>th</str<strong>on</strong>g>at interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e following<br />

ways: <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e does not have intrinsic dynamics but its producti<strong>on</strong> is triggered<br />

or hindered ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er by each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene functi<strong>on</strong>s per horm<strong>on</strong>al level, or by each <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at may be in <strong>on</strong> or <str<strong>on</strong>g>of</str<strong>on</strong>g>f state. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks reach<br />

a co-attractor wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e (<str<strong>on</strong>g>th</str<strong>on</strong>g>at is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e network state and <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>al level<br />

reach coupled attractors). In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first case, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese attractors are very <str<strong>on</strong>g>of</str<strong>on</strong>g>ten irregular<br />

and l<strong>on</strong>ger <str<strong>on</strong>g>th</str<strong>on</strong>g>at usual attractors <str<strong>on</strong>g>of</str<strong>on</strong>g> RBNs, while in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d case <str<strong>on</strong>g>th</str<strong>on</strong>g>ey resemble<br />

more <str<strong>on</strong>g>th</str<strong>on</strong>g>e short point and periodic attractors <str<strong>on</strong>g>of</str<strong>on</strong>g> RBNs. A few higher c<strong>on</strong>nectivity<br />

studies (K = number <str<strong>on</strong>g>of</str<strong>on</strong>g> inputs per gene > 2) and perturbati<strong>on</strong> studies have been<br />

performed, <str<strong>on</strong>g>th</str<strong>on</strong>g>at are indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> enhanced robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models: for example<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic-horm<strong>on</strong>al systems appear robust to <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>al<br />

levels c<strong>on</strong>sidered per gene but not to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir number.<br />

References.<br />

[1] S.A.Kauffman. The origins <str<strong>on</strong>g>of</str<strong>on</strong>g> order: Self-organizati<strong>on</strong> and selecti<strong>on</strong> in evoluti<strong>on</strong>, Oxford University<br />

Press, 1993.<br />

[2] P.Beurt<strong>on</strong>, R.Falk, H-J.Rheinberger. The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene in development and evoluti<strong>on</strong>,<br />

Cambridge University Press, 2000.<br />

[3] P.Portin. Historical development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine and Philosophy,<br />

27(3):257-286, 2002.<br />

[4] J.Marks, R.B.Lyles. Re<str<strong>on</strong>g>th</str<strong>on</strong>g>inking genes, Evoluti<strong>on</strong>ary An<str<strong>on</strong>g>th</str<strong>on</strong>g>ropology, 3(4):139-146, 1994.<br />

[5] D.Cassill. The social gene, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioec<strong>on</strong>omics, 7(1):73-84, 2005.<br />

[6] A.Q.Chen, S.D.Yu, Z.G.Wang, Z.R.Hu, Z.G.Yang. Stage-specific expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e morphogenetic<br />

protein type I and type II receptor genes: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> follicle-stimulating horm<strong>on</strong>e <strong>on</strong><br />

ovine antral follicles, Animal Reproducti<strong>on</strong> Science, 111:391-399, 2009.<br />

11:55–12:15<br />

Marcin Zagórski<br />

Jagiell<strong>on</strong>ian University, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

e-mail: marcin.zagorski@uj.edu.pl<br />

Model gene regulatory networks under mutati<strong>on</strong>-selecti<strong>on</strong><br />

balance<br />

Gene regulatory networks typically have low in-degrees, whereby any given gene<br />

is regulated by few <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. They also tend to have broad<br />

distributi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e out-degree. What mechanisms might be resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

degree distributi<strong>on</strong>s Starting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an accepted framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong><br />

factors to DNA, we c<strong>on</strong>sider a simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulatory dynamics.<br />

There, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at selecti<strong>on</strong> for a target expressi<strong>on</strong> pattern leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> minimum c<strong>on</strong>nectivities compatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e selective c<strong>on</strong>straint. As a<br />

c<strong>on</strong>sequence, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese gene networks have low in-degree, and “functi<strong>on</strong>ality” is parsim<strong>on</strong>ious,<br />

i.e., is c<strong>on</strong>centrated <strong>on</strong> a sparse number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s as measured for<br />

353


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

instance by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir essentiality. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong><br />

factors drive <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks to have broad out-degrees. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese classes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

models are evolvable, i.e., significantly different genotypes can emerge gradually<br />

under mutati<strong>on</strong>-selecti<strong>on</strong> balance.<br />

12:15–12:35<br />

Ben Fitzpatrick<br />

Loyola Marymount University<br />

e-mail: bfitzpatrick@lmu.edu<br />

Modeling and Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gene Regulatory Networks and<br />

Envir<strong>on</strong>mental Stress Resp<strong>on</strong>se<br />

This talk investigates <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulatory networks governing cold<br />

shack resp<strong>on</strong>se in budding yeast, Saccharomyces cerevisiae, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

differential equati<strong>on</strong> model. The inverse problem <str<strong>on</strong>g>of</str<strong>on</strong>g> determining model parameters<br />

from observed data is our primary interest. We fit <str<strong>on</strong>g>th</str<strong>on</strong>g>e differential equati<strong>on</strong> model to<br />

microarray data from a cold shock experiment using a Bayesian maximum likelihood<br />

approach, and we discuss future efforts involving gene deleti<strong>on</strong> experiments and<br />

related modeling problems.<br />

12:35–12:55<br />

Anna Ochab-Marcinek<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry, Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw,<br />

Poland<br />

e-mail: ochab@ichf.edu.pl<br />

Marcin Tabaka<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry, Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw,<br />

Poland<br />

How stochasticity in gene expressi<strong>on</strong> differentiates<br />

phenotypes wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out changing genotypes<br />

Bimodal gene expressi<strong>on</strong> (<str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene products <str<strong>on</strong>g>th</str<strong>on</strong>g>at has two<br />

maxima), as an effect c<strong>on</strong>tributing to phenotypic diversity in genetically identical<br />

cell populati<strong>on</strong>s, enhances <str<strong>on</strong>g>th</str<strong>on</strong>g>e survival <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in a fluctuating envir<strong>on</strong>ment. We<br />

study a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> in a minimal gene cascade, in which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory gene produces transcripti<strong>on</strong> factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at have a n<strong>on</strong>linear effect <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e target gene. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at a unimodal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong><br />

factors over <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell populati<strong>on</strong> can generate a bimodal steady-state output<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out cooperative transcripti<strong>on</strong> factor binding and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out feedback loops. We<br />

introduce a simple me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> geometric c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows <strong>on</strong>e to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

354


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> bimodality. A. Ochab-Marcinek, M. Tabaka, Bimodal gene expressi<strong>on</strong> in<br />

n<strong>on</strong>cooperative regulatory systems , PNAS 107(51) (2010) 22096-22101<br />

355


Index <str<strong>on</strong>g>of</str<strong>on</strong>g> au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors<br />

Abreu, Fernão Vistulo de, 258<br />

Adams, Ben, 172<br />

Af<strong>on</strong>nikov, Dmitry, 20<br />

Akberdin, Ilya, 38<br />

Akerman, Ada, 335, 336<br />

Akhobadze, Vladimer, 70<br />

Akutsu, T., 43<br />

Alam-Nazki, Aiman, 129<br />

Alf<strong>on</strong>so, Juan Carlos López, 50<br />

Al-husari, Maym<strong>on</strong>a, 56<br />

Allgower, Frank, 349<br />

Al<strong>on</strong>so, Juan Ant<strong>on</strong>io, 286<br />

Alvarez-Martinez, Teresa, 313<br />

Ammunét, Tea, 221<br />

Anandanadesan, Anan<str<strong>on</strong>g>th</str<strong>on</strong>g>i, 198<br />

Anazawa, Masahiro, 199<br />

Andersen, K.H., 302<br />

Anders<strong>on</strong>, Alexandar R. A., 59<br />

Anders<strong>on</strong>, Alexander, 240<br />

Anders<strong>on</strong>, Alexander R. A., 69, 87<br />

Anders<strong>on</strong>, A. R. A., 70<br />

Andriv<strong>on</strong>, Didier, 223<br />

Andrzej, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr hab. inż. Polaski, 117<br />

Angenent, Gerco, 351<br />

Anguelov, Roumen, 293<br />

Angulo, O., 310<br />

Apri, Mochamad, 341<br />

Arai, Mamiko, 277<br />

Arnaud, Jacques-Damien, 313<br />

Arndts, Julian, 46<br />

Arnold, Anne, 32<br />

Artalejo, Jesus R., 175<br />

Ascolani, Gianluca, 62<br />

Astola, Laura, 25<br />

Avilov, K.K., 204<br />

Baeumer, Boris, 254<br />

Baker, Ru<str<strong>on</strong>g>th</str<strong>on</strong>g>, 134<br />

Baklouti, Melika, 157<br />

Bakshi, Suruchi, 134<br />

Band, Leah, 345<br />

Barbarossa, Maria, 68<br />

Barles, Guy, 259<br />

Barreira, Raquel, 135<br />

Bartl, M., 348<br />

Bartoszek, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 228<br />

Bartoszek, Wojciech, 329<br />

Basanta, David, 69, 240<br />

Basler, K<strong>on</strong>rad, 137<br />

Bauer, Robert, 108<br />

Beauchemin, Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>erine, 251<br />

Becker, S., 74<br />

Becker, Stefan, 98<br />

Begum, Najida, 263<br />

Belm<strong>on</strong>te-Beitia, J., 51<br />

Bennett, Malcolm, 345<br />

Benoit, Eric, 319<br />

Berbert, Juliana Militão, 289<br />

Berec, Luděk, 181<br />

Beretta, Edoardo, 49<br />

Bergmann, Sven, 137<br />

Bernard, Samuel, 330<br />

Berven, Kei<str<strong>on</strong>g>th</str<strong>on</strong>g> A., 293<br />

Besl<strong>on</strong>, Guillaume, 330<br />

Best, Alex, 215<br />

Bhattacharya, B.S., 123<br />

Bidot, Caroline, 197<br />

Bielecki, Andrzej, 274<br />

Binder, Hans, 37<br />

Bisseling, T., 144<br />

Blanco, Stéphane, 200<br />

Błażej, Paweł, 242<br />

Bodenstein, C., 346<br />

Bohn, Andreas, 115, 287<br />

Bolz<strong>on</strong>i, Luca, 312<br />

Boots, Mike, 215<br />

Boová, Katarína, 242, 243<br />

Borina, Maria Yu., 145<br />

Borkowski, Wojciech, 238<br />

Borys, P., 103<br />

Bowers, Roger, 232<br />

Bradham, Cyn<str<strong>on</strong>g>th</str<strong>on</strong>g>ia, 135<br />

Brännström, Åke, 299<br />

Bratus, Alexander S., 216<br />

Braumann, Carlos A., 279<br />

Breindl, Christian, 349<br />

Breward, Chris, 92<br />

Brites, Nuno M., 279<br />

357


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Britt<strong>on</strong>, Nicholas F., 299<br />

Brook, B.S., 264<br />

Brooks-Pollock, Ellen, 171<br />

Brown, Ian H., 185<br />

Bürger, Reinhard, 335, 336<br />

Bushmelev, Eugene, 33<br />

Buske, Peter, 109<br />

Buzug, Thorsten M., 98<br />

Buzug, T.M., 74<br />

Byrne, Helen, 345<br />

Cai, Yin, 253<br />

Calvo, G. F., 51, 63, 75<br />

Camara, Baba Issa, 156<br />

Capasso, Vincenzo, 49<br />

Carlos, Clara, 279<br />

Castel, Magda, 173, 223<br />

Castillo-Chavez, Carlos, 179<br />

Catterall, Stephen, 296<br />

Cebrat, Stanisław, 242<br />

Cer<strong>on</strong>e, Luca, 115<br />

Chairez Hernández, Isaias, 321<br />

Chalub, Fabio, 309<br />

Chandrashaker, Akhila, 19<br />

Chaplain, Mark, 58, 67, 198<br />

Chaplain, Mark A. J., 65<br />

Charles, Sandrine, 167<br />

Chaves, Luis Fernando, 305<br />

Chaves, Madalena, 340<br />

Cheddadi, Ibrahim, 79<br />

Cherstvy, Andrey, 13<br />

Chettaoui, Chadha, 139<br />

Chiam, Keng-Hwee, 97<br />

Chiam, K.-H., 118<br />

Chisholm, Ryan, 318<br />

Choi, Ye<strong>on</strong>taek, 281<br />

Ch<strong>on</strong>, Tae-Soo, 281<br />

Choserot, Victoria, 25<br />

Chowell, Gerardo, 179<br />

Christodoulou, Zoe, 343<br />

Chrobak, Joanna M. Rodríguez, 82<br />

Cieutat, P., 188<br />

Ciffroy, Philippe, 167<br />

Ciric, Catalina, 167<br />

Clark, Alys, 15<br />

Cobbold, Christina, 313<br />

Collinet, Claudio, 19<br />

Colnot, Sabine, 29<br />

C<strong>on</strong>duit, Paul, 134<br />

C<strong>on</strong>way, Jessica, 253<br />

Cook, Alex R., 296<br />

Coolen, A. C. C., 342<br />

Coombs, Dr. Daniel, 253<br />

Cordoleani, Flora, 301<br />

Cordovez, Juan, 322<br />

Cornell, Stephen, 221, 229<br />

Coster, Adelle, 97<br />

Crauste, Fabien, 113<br />

Csikasz-Nagy, Attila, 127<br />

Cui, Jing-an, 210<br />

Dads, E.Ait, 188<br />

Dalessi, Sascha, 137<br />

Damineli, Daniel, 115<br />

Danek, Agnieszka, 244<br />

Daus<strong>on</strong>, Erin, 238<br />

Davids<strong>on</strong>, Ross, 186<br />

Deakin, Niall, 80<br />

Deinum, E.E., 144<br />

Delgado-Eckert, Edgar, 248<br />

Deutsch, Andreas, 81, 149<br />

Dhirasakdan<strong>on</strong>, Thanate, 186<br />

Diego, D., 51, 75<br />

Diekman, Casey O., 268<br />

Dimitriu, Gabriel, 257<br />

Dingli, David, 87<br />

Ditlevsen, Susanne, 100, 267<br />

Dobrota, Dušan, 57<br />

Dolfin, Marina, 249<br />

Domijan, Mirela, 38<br />

Domingo, Esteban, 283<br />

D<strong>on</strong>nelly, Ruairi, 159<br />

Doroshkov, Alexey, 20<br />

Drasdo, Dirk, 29, 79, 139, 307<br />

Drubi, Fátima, 227<br />

Ducray, François, 61<br />

Dushek, Omer, 134<br />

Edmunds, W.J., 211<br />

Elaiw, A. M., 213<br />

Elliott, Charlie M., 135<br />

Elliott, Elizabe<str<strong>on</strong>g>th</str<strong>on</strong>g>, 229<br />

Ellner, Steve, 162<br />

Erban, Radek, 125<br />

Erikss<strong>on</strong>, Olivia, 127<br />

Escobar, Adriana Bernal, 322<br />

Essen, Steve C., 185<br />

Eynaud, Yoan, 157<br />

Fae<str<strong>on</strong>g>th</str<strong>on</strong>g>, Stanley H., 186<br />

Fang, Chun, 280<br />

Feinstein, J., 265<br />

Feliu, Elisenda, 124, 347<br />

Ferreira Jr., Wils<strong>on</strong>, 284<br />

Field, Jeremy, 311<br />

Filipe, Patrícia A., 279<br />

Fischer, Stephan, 330<br />

Fitzpatrick, Ben, 354<br />

Flint, Harry, 159<br />

F<strong>on</strong>telos, M. A., 166<br />

F<strong>on</strong>tes, Pascaline, 313<br />

Forger, Daniel, 268<br />

Fortmann-Roe, Scott, 28<br />

Foszner, Pawel, 26<br />

Foszner, Paweł, 45<br />

Fournier, Richard, 200<br />

Frank, M<strong>on</strong>ika, 191<br />

358


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Franz, Benjamin, 199<br />

Franz<strong>on</strong>e, P. Colli, 14<br />

Fuhrmann, Jan, 92<br />

Fujita Yashima, Hisao, 294<br />

Gabriel, Wilfried, 327<br />

Gaffney, Eam<strong>on</strong>n, 92, 134<br />

Gallaher, Jill, 87<br />

Galle, Joerg, 37, 109<br />

Gallenberger, Martina, 263<br />

Galvez, Thierry, 19<br />

García, José A., 254<br />

Gasselhuber, Astrid, 50<br />

Gatenby, R. A., 70<br />

Gauduch<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ias, 301<br />

Gautrais, Jacques, 200<br />

Gee, Maarten de, 341<br />

Genaev, Mikhail, 20<br />

George, Uduak, 106<br />

Georgelin, Christine, 259<br />

Gerdes, Sebastian, 249<br />

Gerisch, Alf, 91<br />

Gerlee, Philip, 88, 237<br />

Getz, Wayne, 28<br />

Getz, Wayne M., 291<br />

Geurts, R., 144<br />

Ghosh, Atiyo, 317<br />

Gillies, R. J., 70<br />

Giorgakoudi, Kyriaki, 93<br />

Glauche, Ingmar, 23, 249<br />

Glimm, Tilmann, 143<br />

Gog, Julia R., 185<br />

G<strong>on</strong>zález, M., 325<br />

Gouzé, Jean-Luc, 340<br />

Gramotnev, Dmitri K., 258<br />

Gramotnev, Galina, 258<br />

Greenman, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an, 160<br />

Greenwood, Priscilla, 267<br />

Grenfell, Bryan T., 185<br />

Grimal, Quentin, 91<br />

Groenenboom, Marian, 25<br />

Grognard, Frédéric, 285<br />

Gruca, Aleksandra, 26<br />

Grüning, Dr André, 337<br />

Grzywna, Z.J., 103<br />

Gubbins, Sim<strong>on</strong>, 93<br />

Gubernov, Vladimir V., 80<br />

Guillomot, Michel, 139<br />

Gutiérrez, C., 325<br />

Gyllenberg, Mats, 167, 233, 280<br />

Haccou, Patsy, 227<br />

Hadeler, Karl P., 186<br />

Haemmerich, Dieter, 50<br />

Hall, I., 264<br />

Hamdous, Saliha, 294<br />

Hamelin, Frédéric, 173<br />

Hamelin, Frederic M., 223<br />

Handelman, Samuel, 39<br />

Hänel, Sven-Erik, 144<br />

Hansen, Thomas, 228<br />

Hardway, Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>er, 135<br />

Harel, Roi, 28<br />

Harris<strong>on</strong>, Eleanor, 172<br />

Hashemi, S.Naser, 210<br />

Hatzikirou, Haralampos, 78<br />

Hayashida, M., 43<br />

Heise, Robert, 112<br />

Hengstler, Jan G., 29<br />

Henkel, Annett, 155<br />

Henrikss<strong>on</strong>, Johan, 237<br />

Hense, Burkhard A., 263<br />

Herrero, Dr. Miguel A., 50<br />

Herrero, Henar, 82<br />

Hertz, John, 273<br />

Hicks<strong>on</strong>, R.I., 181<br />

Hingant, Erwan, 313<br />

Hiorns, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an E., 264<br />

Hirt, Bar<str<strong>on</strong>g>th</str<strong>on</strong>g>olomäus, 27<br />

Hoehme, Stefan, 29<br />

Hoek, Milan J.A. van, 125<br />

Höfer, Thomas, 253<br />

Holtrop, Grietje, 159<br />

Hori, Michio, 326<br />

Hoyle, Andy, 232<br />

Hrynkiv, Vlad, 307<br />

Hubbard, Steven, 198<br />

Hue, Isabelle, 139<br />

Hui, C., 169<br />

Hulme, Philip E., 296<br />

Hustedt, Thiemo, 326<br />

Hutchings, Mike, 186<br />

Igarashi, Tatsuhiko, 251<br />

Ikeda, Kota, 162<br />

Immink, Richard, 351<br />

Inoue, Yumiko, 326<br />

Iranzo, Jaime, 283<br />

Iwami, Shingo, 251<br />

Iwasa, Yoh, 255<br />

Jabbari, Sara, 31<br />

Jacks<strong>on</strong>, K.G., 123<br />

Jafari-Mamaghani, Mehrdad, 127<br />

Jagers, Peter, 289<br />

Jagiella, Nick, 307<br />

Jain, Kavita, 332<br />

Jaksik, Roman, 26, 40<br />

Jalilzadeh, Aidin, 254<br />

Janies, D. A., 39<br />

Jaroszewska, Joanna, 322<br />

Jensen, O.E., 264<br />

Jensen, Ole Nørregaard, 241<br />

Je<strong>on</strong>, W<strong>on</strong>ju, 158<br />

Jędrzejec, Bartosz, 44<br />

Johns<strong>on</strong>*, H.C., 211<br />

J<strong>on</strong>es, Z<str<strong>on</strong>g>of</str<strong>on</strong>g>ia, 105<br />

Jost, Christian, 200<br />

359


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Kahm, Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias, 110<br />

Kalaidzidis, Yannis, 19<br />

Kaleta, C., 348<br />

Kalita, Piotr, 274<br />

Kamimura, Atsushi, 203<br />

Kaper, Tasso, 135<br />

Karczewski, Jerzy, 150<br />

Karkach, Arseny S., 217<br />

Karley, Alis<strong>on</strong>, 198<br />

Kar<strong>on</strong>en, Ilmari, 224<br />

Kassa, Semu Mitiku, 209<br />

Katauskis, Pranas, 256<br />

Kaufmann, Kerstin, 351<br />

Kawasaki, Tomoko, 326<br />

Kazantsev, Fedor, 38<br />

Kelly, Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>, 180<br />

Kettle, Helen, 159<br />

Khain, Evgeniy, 293<br />

Khan, Amjad, 212<br />

Khan, Rahmat Ali, 212<br />

Khatiashvili, Nino, 70<br />

Khlebodarova, Tamara M., 38<br />

Kieber, Joseph, 345<br />

Kim, Eunjung, 69<br />

King, John, 345<br />

Kisdi, Eva, 233<br />

Kleessen, Sabrina, 32<br />

Klemola, Tero, 221<br />

Klepac, Kristen, 234<br />

Kl<str<strong>on</strong>g>of</str<strong>on</strong>g>t, Charlotte, 191<br />

Klu<str<strong>on</strong>g>th</str<strong>on</strong>g>, Sandra, 331<br />

Knibbe, Carole, 330<br />

Knudsen, K., 302<br />

Knudsen, Michael, 347<br />

Kobayashi, Tetsuya J., 116<br />

Kobayashi, Yutaka, 227<br />

Koetzing, M., 348<br />

K<str<strong>on</strong>g>of</str<strong>on</strong>g>f, David, 21<br />

Kolev, Mikhail, 75<br />

Kollár, Richard, 242, 243<br />

Kolobov, Andrey V., 80<br />

Kolomeisky, A., 13<br />

Kornyshev, A., 13<br />

Kowalik-Urbaniak, Il<strong>on</strong>a Anna, 21<br />

Krasowska, M., 103<br />

Kravchuk, K.G., 270<br />

Krishnan, J., 129<br />

Kritz, Maurício Vieira, 34<br />

Krug, Joachim, 332<br />

Kschischo, Maik, 110<br />

Kücken, Michael, 133<br />

Kumar, S. B., 39<br />

Kuniya, Toshikazu, 206<br />

Kuttler, Christina, 68, 263<br />

Kuznetsov, Alexey, 121<br />

Kwiek, J. J., 39<br />

Kyes, Sue A., 343<br />

Kzhyshkowska, Julia, 247<br />

Lachapelle, Aitana Mort<strong>on</strong> de, 137<br />

Lachor, Paweł, 16<br />

Lachowicz, Mirosław, 65<br />

Lai, Tanny, 118<br />

Lansky, Petr, 100<br />

Lavrova, Anastasia, 276<br />

LeDuc, Philip R., 118<br />

Lee, Sang-Hee, 158, 281<br />

Lescoat, Philippe, 259<br />

Leviyang, Sivan, 329<br />

Lhachimi, L., 188<br />

Li, H. L., 309<br />

Li, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an F., 106<br />

Liautard, Jean-Pierre, 313<br />

Licois, Jean-René, 259<br />

Liddell, Chelsea, 234<br />

Likhoshvai, Vitaly, 140<br />

Likhoshvai, Vitaly A., 38<br />

Lim, F<strong>on</strong>g Yin, 97<br />

Lin, Y. T., 293<br />

Lock, John, 127<br />

Loeffler, Markus, 109<br />

Lokuge, K.M., 181<br />

Lopez, Luis F., 205<br />

Lopez-Herrero, M. J., 175<br />

López-Marcos, J. C., 310<br />

López-Marcos, M. A., 310<br />

Louis, Petra, 159<br />

Lowengrub, John, 78, 106<br />

Lozoya, Oswaldo, 140<br />

Lubkin, Shar<strong>on</strong>, 140<br />

Lundh, Torbjörn, 144, 237<br />

Lunelli, Ant<strong>on</strong>ella, 171<br />

Maciejewski, Wes, 318<br />

Mackiewicz, Paweł, 242<br />

Madzvamuse, Anotida, 106, 135<br />

Mahadevan, L., 97<br />

Mahmood, 57<br />

Mahmood, Silvia, 57<br />

Mailleret, Ludovic, 173, 223, 285<br />

Maini, Philip, 134<br />

Makuchowski, Adam, 117<br />

Makuchowski, mgr Adam, 117<br />

Manca, Luigi, 294<br />

Mang, A., 74<br />

Mang, Andreas, 98<br />

Manrubia, Susanna C., 283<br />

Marczyk, Michał, 40<br />

Marhl, M., 346<br />

Mari<strong>on</strong>, Glenn, 159, 186, 296<br />

Marsden, A., 265<br />

Martínez, R., 325<br />

Martínez-G<strong>on</strong>zález, A., 75<br />

Martínez-G<strong>on</strong>zález, A., 63<br />

Martínez-Rodríguez, J., 310<br />

Marzantowicz, Wacław, 269<br />

Massad, Eduardo, 205<br />

360


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Massey, Susan, 59<br />

Maxin, Daniel, 181<br />

McCauley, John W., 185<br />

McDougall, Dr Steven, 133<br />

McPhers<strong>on</strong>, Nicola, 280<br />

Melgar, P., 75<br />

Melnichenko, O.A., 182<br />

Mendoza-Juez, B., 75<br />

Mente, Carsten, 81<br />

Meral, Gülnihal, 85<br />

Mercer, Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>fry N., 180<br />

Mercer, G.N., 181<br />

Merks, Roeland M.H., 125<br />

Metzler, Dirk, 327<br />

Meyers, Rachel, 19<br />

Migliavacca, F., 265<br />

Miki, Takeshi, 162<br />

Miller, Judi<str<strong>on</strong>g>th</str<strong>on</strong>g>, 239<br />

Miller, Laura, 162<br />

Mimura, Masayasu, 162<br />

Minihane, A., 123<br />

Mir<strong>on</strong>ova, Victoria, 140<br />

Miura, Tomoyuki, 251<br />

Molenaar, Jaap, 25, 341, 351<br />

Molnar, Ferenc, 91<br />

Moobedmehdiabadi, Shabnam, 78<br />

Morano, Lisa, 307<br />

Morishita, Yoshihiro, 149<br />

Morozov, Andrew, 301<br />

Morozova, Nadya, 49<br />

Mostad, Petter, 228<br />

Mostardinha, Patricia, 258<br />

Mota, M., 325<br />

Mourik, Sim<strong>on</strong> van, 351<br />

Mroz, Iw<strong>on</strong>a, 290<br />

Mrugala, Maciej M., 59<br />

Mulder, B.M., 144<br />

Müller, Benedikt, 307<br />

Müller, Johannes 155<br />

Müller, Margareta, 307<br />

Munoz-Garcia, Javier, 115<br />

Muraro, Daniele, 345<br />

Nacher, J.C., 43<br />

Nagy, John, 224<br />

Namba, Toshiyuki, 160<br />

Na<str<strong>on</strong>g>th</str<strong>on</strong>g>an, Ran, 28<br />

Navarrete, Clara, 110<br />

Nelander, Sven, 88<br />

Nerini, David, 301<br />

Neufeld, Zoltan, 115<br />

Newbold, Chris I., 343<br />

Nguyen, Anh Tuan, 307<br />

Nguyen, H., 181<br />

Nikolaev, Sergey, 146<br />

Nikoloski, Zoran, 32, 111, 112<br />

Nishi, Ryosuke, 203<br />

Nishinari, Katsuhiro, 203<br />

Nishiura, Hiroshi, 179<br />

Noble, Robert, 343<br />

Noguchi, Sayaka, 326<br />

N<strong>on</strong>aka, Etsuko, 299<br />

Norman, Dr. Rachel, 280<br />

Nosek, Jozef, 242, 243<br />

Nosova, Ekaterina A., 187<br />

Novoselova, Ekaterina, 140<br />

Novozhilov, Artem S., 192, 216<br />

Nunez, Dr. Luis, 50<br />

Nurmi, Tuomas, 233<br />

Ochab-Marcinek, Anna, 354<br />

Ohira, Toru, 203<br />

Okamoto, Rika, 326<br />

Olczak, Łukasz, 245<br />

Omelyanchuk, Nadya, 140<br />

Otake, Yo-Hey, 323<br />

Otani, Hiroki, 144<br />

Ouhinou, A., 169<br />

Ouhinou, Aziz, 209<br />

Owusu-Brackett, Nicci, 234<br />

Pacheco, Jorge M., 87<br />

Pang, Peter, 309<br />

Park, Su-Chan, 332<br />

Parvinen, Kalle, 221, 224, 231, 299<br />

Pasour, Virginia, 160, 162<br />

Pavarino, L. F., 14<br />

Pawełek, P., 103<br />

Payan, Esteban, 322<br />

Perales, Celia, 283<br />

Perc, M., 346<br />

Pérez-García, Víctor M., 51<br />

Pérez-García, V. M., 75<br />

Pérez-García, V. M., 63<br />

Perminov, Valeriy, 206<br />

Per<str<strong>on</strong>g>th</str<strong>on</strong>g>ame, Benoît, 79<br />

Peruani, Fernando, 149<br />

Pfenning, Philipp-Niclas, 98<br />

Pienaar, Jas<strong>on</strong>, 228<br />

Pinches, Robert, 343<br />

Pini<strong>on</strong>, Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>erine, 238<br />

Pirumova, Christina, 70<br />

Pluciński, Mateusz M., 174<br />

Poggi, Sylvain, 223<br />

Poggiale, Jean-Christophe, 157, 301<br />

Pokrzywa, Rafał, 244<br />

Pokrzywa, Rafał, 245<br />

Polanska, Joanna, 26<br />

Polańska, Joanna, 40<br />

Polański, Andrzej, 16, 45<br />

Polanski, Andrzej, 26<br />

Polański, Andrzej, 40<br />

Polaski, Andrzej, 245<br />

Polezhaev, Andrey A., 80, 145<br />

Porter, Rosalyn, 176<br />

Posvyanskii, Vladimir P., 216<br />

Potapov, Ilya, 121, 129<br />

361


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Pötzsche, Christian, 155<br />

Powa<str<strong>on</strong>g>th</str<strong>on</strong>g>il, Gibin, 58<br />

Prentice, Jamie, 177<br />

Pshenichnikova, Tatyana, 20<br />

Psiuk-Maksymowicz, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 64<br />

Puddicombe, Robert, 337<br />

Pugliese, Andrea, 171, 312<br />

Pujo-Menjouet, Laurent, 313<br />

Pułka, Małgorzata, 328<br />

Puszyński, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 16<br />

Puszynski, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 131<br />

Pyrzowski, Jan, 268<br />

Rafajlovic, Marina, 336<br />

Rafał, dr inż. Pokrzywa, 117<br />

Raff, Jordan, 134<br />

Ramanantoanina, A., 169<br />

Ramis-C<strong>on</strong>de, Ignacio, 67<br />

Ramos, José, 110<br />

Rault, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an, 319<br />

Raum, Kay, 91<br />

Recker, Mario, 343<br />

Repsys, Sarunas, 194<br />

Reynolds, Jennifer, 314<br />

Ri, Maxim, 38<br />

Ri, Natalya, 38<br />

Ribba, Benjamin, 61<br />

Rigas, A.G., 99<br />

Rizzoli, Annapaola, 312<br />

Roberts, E. S., 342<br />

Roberts, Mick, 176<br />

Roberts<strong>on</strong>-Tessi, Mark, 70<br />

Rockne, Russell, 59<br />

Roeder, Ingo, 23, 249<br />

Romanyukha, Alexei A., 187, 217<br />

Roquete, Carlos J., 279<br />

Rosà, Roberto, 312<br />

Rosso, Fausta, 312<br />

Roudi, Yasser, 273<br />

Sacerdote, Laura, 277<br />

Sadovsky, Michael, 33<br />

Saeki, Koichi, 255<br />

Saenz, Roberto, 185<br />

Sajitz-Hermstein, Max, 111<br />

Sanchez-Prieto, P., 75<br />

Sander, L. M., 293<br />

Sanz, Luis, 286<br />

Sapoukhina, Natalia, 156<br />

Satake, Akiko, 218<br />

Savory, Andrew, 291<br />

Scacchi, S., 14<br />

Scherf, Nico, 23<br />

Scheurich, Peter, 305<br />

Schimansky-Geier, L., 276<br />

Schittler, Daniella, 349<br />

Schley, David, 93<br />

Schlitt, T., 342<br />

Schlittenhardt, Timo<str<strong>on</strong>g>th</str<strong>on</strong>g>y P., 308<br />

Schlüter, Daniela, 67<br />

Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, Pietá, 198<br />

Schuster, S., 346, 348<br />

Schütte, Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>, 191<br />

Schütz, T.A., 74<br />

Schütz, Tina A., 98<br />

Schwämmle, Veit, 241<br />

Schwank, Gerald, 137<br />

Scott, Jacob, 240<br />

Selbach-Allen, Megan, 193<br />

Sella, Lorenzo, 339<br />

Seno, Hiromi, 295<br />

Seppänen, Anne, 224<br />

Seri, Raffaello, 22<br />

Shapiro, Michael, 248<br />

Sharkey, Dr. Kieran, 193<br />

Shillor, Meir, 293<br />

Shirinifard, Abbas, 55<br />

Signerska, Justyna, 269<br />

Skakauskas, Vladas, 194, 256<br />

Skvortsov, Alex, 256<br />

Skwara, Urszula, 300<br />

Smalley, Keiran S., 69<br />

Smieja, Jaroslaw, 131<br />

Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, Charles Eugene, 277<br />

S.M.Salehi, Fazeleh, 210<br />

Sneppen, Kim, 241<br />

S<strong>on</strong>g, Guohua, 210<br />

Souza, Max, 309<br />

Souza, Max O., 317<br />

Spanou, E.N., 99<br />

Spiegel, Orr, 28<br />

Starruß, Jörn, 149<br />

Steiner, Lydia, 37<br />

Stéphanou, Angélique, 106<br />

Stepien, Tracy, 95<br />

Stevens, Angela, 92<br />

Stokes, Yv<strong>on</strong>ne, 15<br />

St<strong>on</strong>e, Lewi, 193<br />

Strömblad, Staffan, 127<br />

Sturrock, Marc, 52<br />

Sumpter, David J. T., 299<br />

Surulescu, Christina, 85, 305<br />

Swans<strong>on</strong>, Kristin R., 59<br />

Swat, Maciej, 55<br />

Sweby, P.K., 123<br />

Świder, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 44<br />

Swig<strong>on</strong>, David, 95<br />

Szymanowska-Pułka, Joanna, 150<br />

Szymańska, Zuzanna, 65<br />

Tabaka, Marcin, 354<br />

Tada, Tetsuko, 251<br />

Taghipoor, Masoomeh, 259<br />

Takada, Takenori, 212<br />

Takahashi, Lucy T., 284<br />

Takahashi, Satoshi, 326<br />

Tamborrino, Massimiliano, 100, 277<br />

362


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Tang, Min, 79<br />

Tapani, S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia, 152<br />

Teixeira Alves, Mickael, 285<br />

Terada, Ayaka, 295<br />

Thanh, Ngo van, 281<br />

Theraulaz, Guy, 200<br />

Thibodeaux, Jeremy, 308<br />

Thieme, Horst R., 186<br />

Thierbach, K<strong>on</strong>stantin, 23<br />

Thygesen, U.H., 302<br />

Tiburtius, Sara, 91<br />

Tim<strong>on</strong>ov, Vladimir, 38<br />

Tindall, Marcus, 123<br />

Toiv<strong>on</strong>en, Jaakko, 230<br />

Toma, A., 74<br />

Toma, Alina, 98<br />

Tomas, Susana Ubeda, 345<br />

Tomáška, Ľubomír, 242<br />

Tomáška, Ľubomír, 243<br />

Tomba, Gianpaolo Scalia, 171<br />

Touzeau, Suzanne, 197<br />

Toyoizumi, Hiroshi, 311<br />

Traulsen, Arne, 87<br />

Troiwanowski, G., 265<br />

Trubuil, Alain, 139<br />

Tyrcha, Joanna, 127, 273<br />

Tzafestas, Elpida, 352<br />

Udagawa, Jun, 144<br />

Utz, Margarete, 233<br />

Uziel, Asher, 193<br />

Wennberg, Bernt, 237<br />

White, Andy, 215, 232<br />

White, R.G., 211<br />

Wick, Wolfgang, 98<br />

Wilder, Sara, 307<br />

Willis, Lisa, 153<br />

Winkel, Christian, 305<br />

Wittmann, Meike, 327<br />

Wiuf, Carsten, 73, 124, 347<br />

Wrzosek, Dariusz, 65<br />

Yamamura, Norio, 165<br />

Yamauchi, Atsushi, 227<br />

Yan, Ping, 167<br />

Yang, W., 265<br />

Yang, Xuxin, 315<br />

Yo<strong>on</strong>, Je<strong>on</strong>g-Mi, 307<br />

Yoshida, Hiroshi, 138<br />

Zagórski, Marcin, 353<br />

Zeng, Yukai, 118<br />

Zerial, Marino, 19<br />

Zhang, Lai, 302<br />

Zhang, Zhid<strong>on</strong>g, 93<br />

Zientek, Michał, 45<br />

Zijerveld, Leo, 186<br />

Zubairova, Ulyana, 45<br />

Zubik-Kowal, Barbara, 75<br />

Zubkov, Vladimir, 92<br />

Vassilevska, Tanya Kostova, 219<br />

Vassiliadis, V.G., 99<br />

Vauchelet, Nicolas, 79<br />

Vela-Pérez, M., 166<br />

Velázquez, J. J. L., 166<br />

Verducci, J. S., 39<br />

Vidybida, A.K., 270<br />

Vign<strong>on</strong>-Clementel, Irene, 265, 307<br />

Vign<strong>on</strong>-Clémentel, Irène, 79<br />

Volkov, Evgenii, 121, 129<br />

v<strong>on</strong> Kleist, Max, 191<br />

Voß, Ute, 345<br />

Vrscay, Edward R., 21<br />

Wakano, Joe Yuichiro, 162<br />

Wallace, Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y, 234, 238<br />

Wang, Juhui, 139<br />

Wang, M. X., 309<br />

Wang, Yi, 167, 280<br />

Wang, Zhou, 21<br />

Wangenheim, Ute v<strong>on</strong>, 337<br />

Ward, John, 93, 263<br />

Wats<strong>on</strong>, Michael, 133<br />

Webb, Dr Steven, 56<br />

Webb, Steve, 215<br />

Weens, William, 29<br />

Weitz, Sebastian, 200<br />

363

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!