19.01.2015 Views

APPROACH TO REFINING PROCESSES - petrofed.winwinho...

APPROACH TO REFINING PROCESSES - petrofed.winwinho...

APPROACH TO REFINING PROCESSES - petrofed.winwinho...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>APPROACH</strong> <strong>TO</strong><br />

<strong>REFINING</strong> <strong>PROCESSES</strong><br />

1


Beginning of Petroleum Refining in India<br />

In 1890s Crude Oil used to be<br />

distilled in DIGBOI in Cast<br />

Iron pans – called ‘Stills’.<br />

Bottom portion of one such<br />

still of 9 feet dia is still kept at<br />

Digboi Refinery.<br />

A refinery was commissioned<br />

in 1901 at Digboi with 500<br />

Barrels per Day capacity<br />

THE FIRST STILL LIES STILL


OUTLINE<br />

1. Introduction<br />

2. Physical Processes<br />

3. Thermal Processes<br />

4. Catalytic Processes<br />

5. Conversion of Heavy Residues<br />

6. Treatment of Refinery Gas Streams


INTRODUCTION<br />

Oil refining is a key activity in the CPI.<br />

Over 600 refineries worldwide have a total<br />

annual capacity of more than 3500 x 10 6<br />

tonnes.<br />

Goal of oil refining is mainly twofold:<br />

i. production of fuels for transportation, power<br />

generation and heating; and<br />

ii.<br />

production of raw materials for the CPI.<br />

Oil refineries are complex plants, but are<br />

relatively mature and highly integrated.


Overview<br />

After desalting and dehydration, crude is<br />

separated into fractions by distillation.<br />

The distilled fractions can not be used directly.<br />

The reason for such a complex set of<br />

processes is the difference between the crude<br />

oil properties and the needs of the market.<br />

Another reason for complexity is<br />

environmental. Legislation demands cleaner<br />

products and is the major drive for process<br />

improvement and development of novel<br />

processes.


Quality<br />

Control<br />

COMPLETE REFINERY<br />

Marketing<br />

Power &<br />

Utilities<br />

OM&S (Product Blending &<br />

Dispatch)<br />

Finishing<br />

Units<br />

Crude<br />

Oil<br />

Jetty /<br />

Pipeline<br />

OM&S<br />

Separation<br />

Units<br />

OM&S<br />

(Intermediates)<br />

Waste<br />

Treatment<br />

Round the clock operation<br />

Conversion<br />

Units<br />

Welfare /<br />

Admn.


Physical and Chemical processes<br />

Physical<br />

Thermal<br />

Chemical<br />

Catalytic<br />

Distillation<br />

Solvent extraction<br />

Propane deasphalting<br />

Solvent dewaxing<br />

Blending<br />

Visbreaking<br />

Delayed coking<br />

Flexicoking<br />

Hydrotreating<br />

Catalytic reforming<br />

Catalytic cracking<br />

Hydrocracking<br />

Catalytic dewaxing<br />

Alkylation<br />

Polymerization<br />

Isomerization


Flow scheme of a modern refinery


Desalting/dehydration<br />

Crude oil often contains water, inorganic salts, suspended<br />

solids, and water-soluble trace metals.<br />

Step 0 in the refining process is to remove these contaminants<br />

so as to reduce corrosion, plugging, and fouling of equipment<br />

and to prevent poisoning catalysts in processing units.<br />

The typical method of crude-oil desalting is electrostatic<br />

separation.<br />

In desalting, water<br />

and chemical<br />

surfactant<br />

(demulsifiers) are<br />

added to the crude,<br />

which is heated so that<br />

salts and other<br />

impurities dissolve or<br />

attach to the water;<br />

then held in a tank to<br />

settle out.


Desalting/dehydration<br />

The crude oil feedstock is heated to 110 – 150 °C to<br />

reduce viscosity and surface tension for easier mixing<br />

and separation of the water. The temperature is limited<br />

by the vapor pressure of the crude oil.<br />

High-voltage electrostatic charges are applied at the<br />

settling tank to concentrate suspended water globules<br />

in the bottom of the settling tank.


Crude distillation<br />

Step 1 in the refining process is the separation of crude oil<br />

into various fractions or straight-run cuts by distillation. The<br />

main fractions or "cuts" obtained have specific boilingpoint<br />

ranges and can be classified in order of decreasing<br />

volatility into gases, light distillates, middle distillates,<br />

heavy vacuum distillates and residuum.<br />

The desalted crude feedstock is preheated using<br />

recovered process heat.<br />

The feedstock then flows to a direct-fired crude charge<br />

heater then into the vertical distillation column just above<br />

the bottom, at pressure slightly above atmospheric and at<br />

temperatures ranging from 340-370°C (above these<br />

temperatures undesirable thermal cracking may occur).<br />

All but the heaviest fractions flash into vapor at the feedentry<br />

location of the column.


Liquid and vapor flows in a tray column


Crude distillation<br />

As the hot vapor rises in the tower, portions of the vapor are<br />

condensed at successively higher stages in the tower, and<br />

the various products – e.g., diesel, kerosene, gasoline – are<br />

drawn off as liquids (through side-draw strippers).<br />

Uncondensed vapours leave column<br />

overhead, are condensed outside and<br />

stored in overhead accumulator drum.<br />

Part of this liquid is refluxed back to the<br />

column at top, and part is withdrawn as<br />

the ‘top’ fraction.<br />

Heavy residuum is drawn out from<br />

column bottom.<br />

To further distill the residuum from the<br />

atmospheric tower, without thermal<br />

cracking, reduced pressure is required.<br />

The process takes place in vacuum distillation tower. The principles<br />

of vacuum distillation are same, except that larger diameter<br />

columns are used to maintain comparable vapor velocities at the<br />

reduced pressures.


Atmospheric & Vacuum Distillation Unit<br />

S<br />

LPG<br />

T<br />

A<br />

Pr= 40-60 mm Hg a<br />

T=200 Deg C<br />

Pre-topping<br />

Unstabilised<br />

Naphtha<br />

B<br />

Stabilized Naphtha<br />

Light Naphtha<br />

Heavy Naphtha<br />

To Steam Ejector<br />

LVGO<br />

LDO<br />

Crude Oil<br />

Desalter<br />

T=130-140<br />

Deg C<br />

Furnace<br />

T= 370 oC<br />

RCO<br />

Atmospheric<br />

Kero / ATF<br />

LGO<br />

HGO<br />

Furnace<br />

T= 415 oC<br />

Vacuum<br />

HVGO<br />

Vac Slop<br />

VR


Streams from Atm. Distillation<br />

Crude<br />

oil<br />

Stream<br />

b.p.,<br />

o<br />

C<br />

Application<br />

Key<br />

Property<br />

Treatment<br />

Gas Refinery fuel H 2 S Amine<br />

scrubbing<br />

LPG Domestic /<br />

Industrial fuel<br />

Naphtha 30 – 140 MS blend,<br />

feed for<br />

Petrochemical<br />

/ fertilzer<br />

Kerosine<br />

/ ATF<br />

140 – 270<br />

140 – 240<br />

Domestic fuel /<br />

Jet fuel<br />

Cu corrosion,<br />

Weathering<br />

Cu corrosion,<br />

Component<br />

analysis<br />

(PIONA)<br />

Smoke pt. /<br />

Freeze pt.,<br />

Ag corr.<br />

Gas Oil 240 – 370 Diesel fuel ‘S’ content,<br />

Cetane no.<br />

Caustic<br />

wash,<br />

Merox<br />

Catalytic<br />

reforming /<br />

isomerization<br />

Merox /<br />

Hydrotreatment<br />

Hydrotreatment<br />

Reduced<br />

crude<br />

> 370 Further<br />

conversion,<br />

Furnace Oil<br />

Vacuum<br />

distillation


Catalytic Reforming Reactions


Semi-regenerative Catalytic Reforming Unit<br />

Flow Scheme


Effect of process variables on Reforming


Continuous Catalytic Reforming Unit<br />

Flow Scheme<br />

LSRN (85-160)<br />

VBN<br />

NHDT<br />

Off Gas to<br />

FG system<br />

H2 RICH<br />

GAS <strong>TO</strong> PSA<br />

Off Gas to<br />

FG system<br />

COL OVHD<br />

RECEIVER<br />

Pr. 17.0<br />

kg/cm2g<br />

RGC<br />

SEPARA<strong>TO</strong>R<br />

Pr. 17.0<br />

kg/cm2g<br />

T =-10 deg c<br />

Recontacting drum<br />

S<br />

T<br />

A<br />

B<br />

I<br />

L<br />

I<br />

S<br />

E<br />

R<br />

LPG<br />

T=520-540 Deg C<br />

Regenerator<br />

Reformate to MS Pool<br />

via RSU


Diesel Hydro Desulphurisation (DHDS) Unit<br />

Fuel gas<br />

Off. gas<br />

H2 Recycle<br />

H2 Make<br />

Up<br />

Temp. 350<br />

Deg C<br />

High Pr.<br />

Separator<br />

Pr. 35-40<br />

kg/cm2g<br />

A<br />

b<br />

s<br />

or<br />

b<br />

er<br />

Lean<br />

Amine<br />

Rich<br />

Amine<br />

S<br />

T<br />

R<br />

I<br />

P<br />

P<br />

E<br />

R<br />

COL OVHD<br />

RECEIVER<br />

Wild<br />

naphtha<br />

Steam<br />

Feed<br />

Furnace<br />

Reactor<br />

Desulphurized<br />

Diesel


DHDS / DHDT :<br />

Product Yields & Operating Conditions<br />

1. Typical Product Yields, wt.% on feed<br />

No. Products DHDS DHDT End Use<br />

1. Off Gas 1.4 1.8 Refinery Fuel Gas<br />

after Amine Wash<br />

2. Wild<br />

Naphtha<br />

1.3 2.0 Naphtha after<br />

stabilization<br />

3. Diesel 97.2 96.1 Diesel Pool<br />

2. Typical Operating Conditions<br />

DHDS<br />

DHDT<br />

Temperature, o C 340 – 390 330 – 370<br />

System Pressure, kg/cm 2 (g) 40 – 50 90 – 105


Secondary processing of VDU streams<br />

No VDU Product Quality Processing<br />

1. VGO & SO High ‘S’. Low<br />

Cetane no.<br />

Hydrotreatment (DHDT) for Sulphur and<br />

Cetane No./LOBS<br />

2. LO High ‘S’. Heavy<br />

Hydrocarbons<br />

3. IO High ‘S’. Heavy<br />

Hydrocarbons<br />

4. HVGO High ‘S’. Heavy<br />

Hydrocarbons<br />

5. Vacuum Slop Heavy<br />

Hydrocarbons,<br />

Fuel oil Product<br />

Fluid Catalytic Cracking (FCC) unit /<br />

Hydro-Cracking Unit(HCU) / LOBS<br />

Fluid Catalytic Cracking (FCC) unit /<br />

Hydro-Cracking Unit(HCU) / LOBS<br />

Fluid Catalytic Cracking (FCC) unit /<br />

Hydro-Cracking Unit(HCU) / LOBS<br />

Visbreaker unit / Coker/ Fluid Catalytic<br />

Cracking (FCC) unit<br />

6. Vacuum<br />

Residue<br />

Residue<br />

Bitumen Blowing Unit / VBU / Coker/<br />

Propane De-Asphalting (PDA) unit


Lube Base Oil Processing<br />

Crude Selection<br />

Multi-step manufacturing process


BASE OIL COMPONENT PROPERTIES<br />

PROPERTY<br />

N-<br />

PARAFFINS<br />

ISO-<br />

PARAFFINS<br />

NAPHTHENES<br />

AROMATICS<br />

VI HIGH HIGH MEDIUM LOW<br />

POUR PT HIGH LOW LOW LOW<br />

OXIDATION<br />

STABILITY<br />

GOOD GOOD FAIR LOW<br />

THERMAL<br />

STABILITY<br />

GOOD GOOD FAIR LOW


Lube Base Oil Processing Philosophy<br />

Crude<br />

oil<br />

Atmospheric distillation<br />

Gas<br />

Naphtha<br />

Kero<br />

Diesel<br />

RCO<br />

VGO<br />

Vacuum distillation<br />

VR<br />

Propane De-<br />

Asphalting<br />

Properties controlled by Process Units<br />

KV,<br />

Flash Point<br />

VI, CCR Pour Point<br />

Vacuum<br />

Distillates<br />

DAO<br />

Solvent Extraction<br />

(Furfural & NMP)<br />

Waxy<br />

Raffinate<br />

De-waxed<br />

oils<br />

Colour &<br />

Stability<br />

H 2<br />

Solvent<br />

Dewaxing<br />

Unit<br />

VI,Pour Point,<br />

Colour&Stability<br />

100N<br />

Catalytic 150N<br />

Dewaxing 500N<br />

H Unit 150BS<br />

2<br />

Hydrofinishing<br />

Group I<br />

LOBS<br />

150N<br />

500N<br />

HN<br />

BN/150BS<br />

Group II LOBS


EXTRACTION UNIT<br />

Feed stock: - Vac. Distillates<br />

ex VDU<br />

-DAO ex PDA<br />

Purpose : Extraction of<br />

aromatics – using Furfural as<br />

solvent – to improve VI of<br />

LOBS.<br />

Products : - Raffinate<br />

- Aromatic extract.<br />

Quality Monitoring:<br />

Raffinate: K.V (100 oC), RI,<br />

Extract : Density.


FURFURAL EXTRACTION SCHEME<br />

TREATING SECTION<br />

EXTRACT E RECOVERY<br />

SECTION<br />

RAFFINATE RECOVERY<br />

SECTION<br />

SOLVENT PURIFICATION<br />

DEAERATED<br />

FEEDS<strong>TO</strong>CK<br />

E<br />

X<br />

T<br />

R<br />

C<br />

T<br />

O<br />

R<br />

HP<br />

MP<br />

LP<br />

Flash<br />

Tower<br />

STEAM<br />

VAC<br />

S<br />

T<br />

R<br />

I<br />

P<br />

P<br />

E<br />

R<br />

STEAM<br />

VAC<br />

FURFURAL<br />

A<br />

T<br />

O<br />

W<br />

E<br />

R<br />

B<br />

T<br />

O<br />

W<br />

E<br />

R<br />

WASTE<br />

WATER<br />

R/D RAFFINATE<br />

R/D EXTRACT<br />

FURFURAL


SOLVENT DE-WAXING UNIT<br />

Objective<br />

To remove paraffinic<br />

hydrocarbons so that<br />

LOBS is suitable for low<br />

temp. application<br />

The Process<br />

Extraction and<br />

crystallization to achieve<br />

de-waxing, followed by<br />

Filtration & Solvent<br />

Recovery<br />

Solvent : MEK & Toluene in<br />

equal proportions.<br />

Toluene is oil solvent &<br />

MEK is anti wax solvent.<br />

Feed characterized by<br />

Density, Kin. Visc & RI<br />

LOBS characterized by KV,<br />

P.Pt., VI, Fl.Point,


General Effects of Refining on Main<br />

Characteristics of Lube Oil Fractions<br />

Main<br />

Characteristics<br />

General Range of Changes Brought about<br />

Solvent<br />

Refining<br />

Dewaxing<br />

Hydro<br />

finishing<br />

Viscosity ↓ --<br />

V.I. ↓ --<br />

Pour Point ↓ →<br />

C.C.R ↓ -- ↓<br />

Acidity ↓ -- ↓<br />

Sulphur ↓ -- ↓<br />

Colour ↓ -- ↓


CATALYTIC DE-WAXING UNIT<br />

SIMPLIFIED PROCESS SCHEME<br />

RECYCLE<br />

HYDROTREATING<br />

MSDW<br />

PURGE<br />

HYDROFINISHING<br />

FEED<br />

SEPARA<strong>TO</strong>R<br />

MAKE UP<br />

HYDROGEN<br />

HDT. EFFLUENT<br />

STRIPPING & SCRUBBING<br />

NAPHTHA<br />

DIESEL<br />

PRODUCT<br />

FRACTIONATION<br />

SECTION<br />

GROUP II / GROUP III LOBS PRODUCT


Fluidized Catalytic Cracking Unit (FCCU)<br />

Objective : To convert Heavy Vacuum Gas Oil<br />

to valuable distillates like LPG, Gasoline, Diesel<br />

by catalytic cracking in fluidized bed.<br />

Feed : VGO/RCO/VR/HydroCracker Bottom.<br />

Catalyst : Silica & Alumina Zeolite Structure


FCCU Product Qualities & End Uses<br />

No Product Qualities End Use<br />

1. Gas H2S rich Off. Gas Refinery Fuel Gas after<br />

Amine scrubbing<br />

2. LPG H2S, Mercaptons,<br />

olefins like<br />

Propylene/Butylene<br />

3. Gasoline High Octane No. and<br />

high Olefin contents<br />

To LPG Pool/<br />

Petrochemical feedstock<br />

MS Pool<br />

4. HNaphtha<br />

+ LCO<br />

Low Cetane no. High<br />

‘S’, Unsaturates<br />

Diesel Pool after<br />

Hydrotreatment<br />

5. CLO High Aromatics, Good<br />

Cutter Stock<br />

Fuel Oil


Yield pattern of Different Types of FCC<br />

VGO FCC RFCC INDMAX PETROFCC<br />

FEED VGO VGO+VR VGO+VR VGO<br />

FEED QUALITY<br />

CCR, WT% 0.74 4.06


Hydro-cracking Unit<br />

Objective<br />

: To convert Heavy Vacuum<br />

Gas Oil to valuable distillates like LPG, Naphtha, ATF,<br />

Kerosene and Diesel.<br />

Feed<br />

: VGO / Coker Products<br />

Operating Conditions<br />

- Temperature range : 370 – 420 o C<br />

- System Pressure : 160 – 170 kg/cm 2 (g)<br />

Catalyst : - Ni/Mo oxides for hydro-treating<br />

- Ni/Mo/W(Tungsten) for Hydro-cracking


Hydro Cracker Unit Flow Scheme<br />

Ex<br />

MPU<br />

Makeup H2<br />

MUC<br />

R-1 R-2<br />

RGC<br />

HP Amine<br />

Gas & LN to Light<br />

End<br />

Recovery Section<br />

PSA<br />

G-1<br />

V-1<br />

F-1<br />

Wash Water<br />

Amine<br />

Scrubber<br />

Heavy<br />

Naphtha<br />

HVGO<br />

Feed<br />

Filter<br />

E-1<br />

Feed Preheat Ex<br />

Hydrocracking<br />

Reactor<br />

PRT<br />

V-2 V-3<br />

V-8<br />

V-9<br />

MPU<br />

To MUG<br />

F-2<br />

CR<br />

Unconverted<br />

Oil<br />

ATF/Kero<br />

Diesel


HCU Product Qualities & End Uses<br />

No. Product Qualities End Uses<br />

1. Gas H 2 S rich Off. Gas Refinery Fuel Gas<br />

after Amine Wash<br />

2. LPG H 2 S Contents LPG Pool after caustic<br />

wash<br />

3. Naphtha low Octane No. and low<br />

‘S’ contents<br />

Hydrogen Unit Feed /<br />

CRU feed/ Naphtha<br />

4. ATF /<br />

Kero<br />

Low ‘S’ and Low<br />

Aromatics<br />

ATF/ Kero.<br />

5. Diesel Low ‘S’ and High Cetane Euro – IV/ III Diesel<br />

6. Unconverted<br />

Oil<br />

Low ‘S’, High Saturates<br />

FCCU Feed


Delayed Coking Process<br />

Feedstock<br />

: Vacuum Residue<br />

Good process for increasing distillates and minimizing<br />

black oil production.<br />

Products Yields :<br />

Gas+loss 8%<br />

LPG 4%<br />

Naphtha 6%<br />

Gas oil 43%<br />

FO 11%<br />

RPC 28%<br />

Gas oil & Naphtha need further treatment.


Delayed Coking Unit (DCU) flow scheme<br />

Gas/LPG<br />

FEED<br />

F<br />

SR<br />

A<br />

O<br />

C<br />

AT<br />

KI<br />

O<br />

EN<br />

RA<br />

T<br />

O<br />

R<br />

Naphtha<br />

Kero<br />

Gas Oil<br />

Fuel Oil<br />

S<br />

E<br />

P<br />

A<br />

R<br />

A<br />

T<br />

O<br />

R<br />

RFO<br />

C<br />

O<br />

K<br />

E<br />

C<br />

H<br />

A<br />

M<br />

B<br />

E<br />

R<br />

C<br />

O<br />

K<br />

E<br />

C<br />

H<br />

A<br />

M<br />

B<br />

E<br />

R<br />

Pre heat Exchanger<br />

Furnace<br />

T=505 0 C


Delayed Coker<br />

Products Qualities & End Uses<br />

No Product Qualities End Uses<br />

1. Gas H2S rich Off Gas Refinery FG after<br />

Amine Wash<br />

2. LPG Mercaptons, unsaturates LPG after Merox /<br />

Caustic wash<br />

3. Naphtha Low Octane, High Olefins NHDT / DHDT feed<br />

4. Kerosene High unsatuartes DHDT Feed<br />

5. Gas Oil Low Cetane No. and high DHDT / HCU feed<br />

unsaturates<br />

6. Fuel Oil Good cutter stock Fuel Oil<br />

7. Coke Low ash, Sulphur content<br />

depends on feed ‘S’<br />

Gasification/ cement<br />

ind. /Electrode<br />

Preparation


Sulphur Recovery - schematic


Flow scheme of a modern refinery


Thank you<br />

Thank you


BASIC REFINERY OPERATIONS<br />

Hydrocarbon molecules in crude do NOT meet customer needs<br />

SEPARATION <strong>PROCESSES</strong><br />

(Primary Processes)<br />

Segregate the molecules<br />

CONVERSION <strong>PROCESSES</strong><br />

(Secondary Processes)<br />

Rearrange the molecules<br />

FINISHING <strong>PROCESSES</strong><br />

(Secondary Processes)<br />

Remove Contaminants<br />

MARKETABLE PRODUCTS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!