19.01.2015 Views

MATH 434/534

MATH 434/534

MATH 434/534

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MATH</strong> <strong>434</strong>/<strong>534</strong><br />

Theoretical Assignment 4 Solution<br />

Chapter 4<br />

4.11<br />

(a) Show that if f(x) = log(x), then the condition number, c(x) = ∣ ∣<br />

1 ∣<br />

∣.<br />

log(x)<br />

(b) Using the above result (or otherwise), show that log(x) is ill-conditioned near x = 1.<br />

-Solution-<br />

(a)<br />

∣ ∣ ∣∣f<br />

Using the definition of a condition number of a function, c(x) = |x| ′ (x) ∣∣<br />

. we have<br />

|f(x)|<br />

∣ c(x) = |x| ∣∣ 1<br />

∣<br />

x<br />

log(x) = |x| 1<br />

|x|<br />

log(x) = 1<br />

log(x) .<br />

(b)<br />

Form part (a), we have c(x) = 1<br />

log(x) . Taking lim x→1 on both sides, we have<br />

1<br />

lim c(x) = lim<br />

x→1 x→1 log(x) = ∞.<br />

Therefore, log(x) is ill-conditioned near x = 1.<br />

4.16<br />

(a) How are Cond 2 (A) and Cond 2 (A −1 ) related<br />

(b) Show that<br />

(i) Cond(A) ≥ 1 for a norm ‖·‖ such that ‖I‖ ≥ 1;<br />

(ii) Cond 2 (A T A) = {Cond 2 (A)} 2 ;<br />

(iii) Cond(cA) = Cond(A) for any given norm.<br />

-Solution-<br />

(a)<br />

∥<br />

Cond 2 (A) = ‖A‖ ∥A −1∥ ∥<br />

∥ ∥∥A ∥ =<br />

−1 ∥ ‖A‖ = Cond2 (A −1 )<br />

Therefore, Cond 2 (A) = Cond 2 (A −1 ).<br />

(b)<br />

(i) Show that Cond(A) ≥ 1 for a norm ‖·‖ such that ‖I‖ ≥ 1.<br />

Cond(A) = ‖A‖ ∥ ∥ ∥A<br />

−1 ∥ ∥ ∥ ≥<br />

∥ ∥∥AA −1 ∥ ∥ ∥ = ‖I‖ = 1<br />

(ii) Show that Cond 2 (A T A) = (Cond 2 (A)) 2 .<br />

Cond 2 (A T A) =<br />

=<br />

∥<br />

∥<br />

∥A T ∥∥∥<br />

A∥ A ( −1 A ) ∥ T −1 ∥∥2<br />

2<br />

∥<br />

∥<br />

∥A T ∥∥∥ (<br />

A∥ (A −1 ) ) T T ( ∥ A −1) T ∥∥2<br />

2


Since ∥ ∥A T A ∥ ∥2 = ‖A‖ 2 2<br />

, we have<br />

However,<br />

Cond 2 (A T A) =<br />

∥<br />

∥A T ∥ ∥ ∥2 = ‖A‖ 2<br />

. Therefore, we have<br />

∥<br />

∥<br />

∥A T ∥∥∥ (<br />

A∥ (A −1 ) ) T T ( ∥ A −1) T ∥∥2<br />

2<br />

= ‖A‖ 2 ( ) ∥ 2 ∥ A<br />

−1<br />

T 2<br />

∥∥<br />

Cond 2 (A T A) = ‖A‖ 2 ∥<br />

∥<br />

2<br />

∥(A −1 ) T 2<br />

∥<br />

2<br />

= ‖A‖ 2 ∥<br />

2<br />

∥(A −1 ) ∥ 2<br />

∥<br />

2<br />

= { ‖A‖ 2<br />

∥ ∥∥(A −1 ) ∥ ∥ ∥2<br />

} 2<br />

= {Cond2 (A)} 2<br />

2<br />

(iii) Show that Cond(cA) = Cond(A) for any given norm.<br />

Cond(cA) = ‖cA‖ ∥ ∥ ∥(cA)<br />

−1 1<br />

∥ = |c| ‖A‖<br />

∥<br />

∥A −1∥ ∥ = Cond(A)<br />

|c|<br />

4.17<br />

(a) Let A be an orthogonal matrix. Then show that Cond 2 (A) = 1.<br />

(b) Show that Cond 2 (A) = 1 if and only if A is a scalar multiple of an orthogonal matrix.<br />

-Solution-<br />

(a)<br />

Since A is an orthogonal matrix, A T = A −1 . Now look at the Cond 2 (A). Letting ρ(A) be<br />

the maximum eigenvalue of A, we have<br />

∥ ∥∥A<br />

Cond 2 (A) = ‖A‖ ∥ −1 2 ∥2<br />

√ √<br />

= ρ(A T A) ρ ((A −1 ) T (A −1 ))<br />

Since A T = A −1 , A T A = A −1 A = I and A = (A −1 ) T . Therefore we have<br />

Cond 2 (A) =<br />

=<br />

=<br />

√ √<br />

ρ(A T A) ρ ((A −1 ) T (A −1 ))<br />

√ √<br />

ρ(I) ρ (A(A −1 ))<br />

√ √<br />

ρ(I) ρ (I)) = 1<br />

(b)<br />

First we will show that Cond 2 (A) = 1 if A is a scalar multiple of an orthogonal matrix.<br />

Let O be an orthogonal matrix and c be a scalar constant. Then, let A = cO and ρ(A) be<br />

the maximum eigenvalue of A. Then consider the Cond 2 (A)<br />

Cond 2 (A) = Cond 2 (cO)<br />

= Cond 2 (O)<br />

√<br />

√<br />

= ρ(O T O) = ρ(I) = 1<br />

2


Now suppose that Cond 2 (A) = 1. Then we will show A is a scalar multiple of an orthogonal<br />

matrix. From the singular value decomposition of A (Please read page 23 carefully), we have<br />

orthogonal matrices U ∈ R n×n and V ∈ R n×n<br />

A = UΣV T<br />

where Σ = diag(σ 1 , . . . , σ n ) ∈ R n×n and σ 1 ≥ σ 2 ≥ · · · ≥ σ n where σ i for i = 1, 2, . . . , n are<br />

called singular values of a matrix A.<br />

Now considering that Cond 2 (A) = 1, from “Some Properties of the Condition Number<br />

of Matrix” on page 67, we have<br />

1 = Cond 2 (A) = σ max<br />

σ min<br />

.<br />

This implies σ max = σ min . Therefore, we have σ max = σ 1 = σ 2 = · · · = σ n = σ min . Now let<br />

σ i = c for i = 1, 2, . . . , n. From A = UΣV T , we have<br />

⎛<br />

⎞<br />

c 0 · · · 0<br />

0 c · · · 0<br />

A = U<br />

⎜ .<br />

⎝ . . . ⎟<br />

. .<br />

V T<br />

⎠<br />

0 0 · · · c<br />

= cUIV T<br />

= cUV T .<br />

However, U and V T are orthogonal matrices. Letting O = UV T , we have A = cUV T = cO,<br />

where O is an orthogonal matrix because the product of orthogonal matrices is an orthogonal<br />

matrix.<br />

Therefore, Cond 2 (A) = 1 if and only if A is a scalar multiple of an orthogonal matrix.<br />

4.18<br />

Let U = (u ij ) be a nonsingular upper triangular matrix. Then show that<br />

Cond ∞ (U) ≥ max |u ii|<br />

min |u ii | .<br />

Hence construct a simple example of an ill conditioned nondiagonal symmetric positive definite<br />

matrix.<br />

-Solution-<br />

Let U be an n × n upper triangular matrix. First consider what U −1 looks like, especially<br />

its diagonal entries. Since U is an upper triangular matrix, U −1 is also an upper triangular<br />

matrix. Now letting<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

a 11 a 12 · · · a 1n<br />

b 11 b 12 · · · b 1n<br />

0 a<br />

U =<br />

22<br />

.. . a2n<br />

⎜ .<br />

and U −1 0 b<br />

=<br />

22<br />

.. . b2n<br />

⎝ . . .. ⎟<br />

⎜ .<br />

,<br />

. ⎠<br />

⎝ . . .. ⎟ . ⎠<br />

0 · · · 0 a nn 0 · · · 0 b nn<br />

we have<br />

⎛<br />

⎞<br />

a 11 b 11 ∗ · · · ∗<br />

. I = UU −1 0 a<br />

=<br />

22 b 22 . . .<br />

⎜ .<br />

⎝ . .. .<br />

.<br />

.. ⎟ ∗ ⎠<br />

0 · · · 0 a nn b nn<br />

3


Therefore, we can see that b ii = 1<br />

a ii<br />

. By the definition of a maximum row-sum norm ‖·‖ ∞<br />

,<br />

that is, ‖A‖ ∞<br />

= max 1≤i≤m<br />

∑ nj=1<br />

|a ij |, we have<br />

‖U‖ ∞<br />

≥ max |u ii |<br />

and<br />

∥<br />

∥U −1∥ ∥ ∥∞ ≥<br />

1<br />

min |u ii | .<br />

Take<br />

U =<br />

⎛<br />

⎜<br />

⎝<br />

0.0001 2 3<br />

0 1 12<br />

0 0 12<br />

⎞<br />

⎟<br />

⎠<br />

Then Cond(U) = 4.9025 × 10 5 .<br />

4.19<br />

Let A = LDL T be a symmetric positive definite matrix where L is a unit lower triangular<br />

matrix. Let D = diag(d ii ). Then show that<br />

Cond 2 (A) ≥ max(d ii)<br />

min(d ii ) .<br />

Hence construct an example for an ill-conditioned nondiagonal symmetric positive definite<br />

matrix.<br />

-Solution-<br />

Since A = LDL T is a symmetric positive definite matrix and L is a lower triangular matrix,<br />

we have the diagonal entries of a diagonal matrix, d ii > 0 for i = 1, 2, . . . , n. Therefore, we<br />

have<br />

A = LDL ⎛<br />

T<br />

⎞ ⎛<br />

1 0 0<br />

= ⎜<br />

⎝ ∗ . .. ⎟ ⎜<br />

0 ⎠ ⎝<br />

∗ ∗ 1<br />

⎞ ⎛<br />

d 11 0 0 1 ∗ ∗<br />

. 0 . . ⎟ ⎜<br />

0 ⎠ ⎝ 0 . .. ∗<br />

0 0 d nn 0 0 1<br />

⎞<br />

⎟<br />

⎠<br />

where d ii > 0 for i = 1, 2, . . . , n.<br />

Since d ii > 0 for i = 1, 2, . . . , n, we have<br />

A = LDL T = ( LD 1 2<br />

) (<br />

D<br />

1<br />

2 L<br />

T ) = ( D 1 2 L<br />

) (<br />

D<br />

1<br />

2 L<br />

) T<br />

where D 1 2<br />

have<br />

= diag( √ d 11 , √ d 22 , . . . , √ d nn ). Let a lower triangular matrix ̂L = LD 1 2 . Then we<br />

A = LDL T<br />

= ( D 1 2 L<br />

) (<br />

D<br />

1<br />

2 L<br />

) T<br />

=<br />

̂L ̂L<br />

T<br />

Now consider Cond 2 (A). Using Cond 2 (A T A) = {Cond 2 (A)} 2 , we have<br />

Cond 2 (A) = Cond 2 ( ̂L ̂L T )<br />

= { Cond 2 ( ̂L T ) } 2<br />

· · · (∗)<br />

4


Now look at only Cond 2 ( ̂L T ).<br />

Cond 2 ( ̂L T ) = ∥ ∥ ̂L ̂L ∥ ∥ T ∥∥∥ (<br />

∥2 ̂L ̂L ) ∥ T −1 ∥∥2<br />

(<br />

=<br />

∥ ̂L ) T T ( ̂L )∥ ∥ T ∥ ∥∥∥∥ { (<br />

∥∥2 ̂L −1) T } T ( ̂L −1) T<br />

∥ 2<br />

= ∥ ̂L ∥ T 2<br />

( ∥<br />

∥ 2 ∥ ̂L −1) T 2<br />

∥∥ = ∥ ∥ ̂L ∥ 2<br />

∥ ∥ ̂L −1∥ ∥2<br />

· · · (∗∗)<br />

2 2 2<br />

Now consider ∥ ̂L<br />

∥ and ∥ ̂L −1∥ ∥ ∥2 .<br />

2<br />

Using the standard basis e i = (0, 0, . . . , 0, 1, 0, 0, . . . , 0), and the definition of matrix norms<br />

} {{ }<br />

i−1 zeros<br />

‖A‖ p<br />

= max ‖x‖p =1 ‖Ax‖ p<br />

, we have<br />

∥ ̂L ∥ ∥2 = max ∥ ̂Le<br />

∥ √<br />

∥∥2 i = max d ii<br />

‖x‖ 2 =1<br />

Since the diagonal entries of ̂L −1 are the reciprocal of the diagonal entries of ̂L, it can be<br />

expressed as 1<br />

d ii<br />

for i = 1, 2, . . . , n. Therefore, we have<br />

∥ ̂L −1∥ ∥ ∥2 = max ∥ ̂L<br />

∥ −1 ∥∥2<br />

e i = max 1 1<br />

√ =<br />

‖x‖ 2 =1<br />

dii min √ d ii<br />

From (∗∗), we have<br />

Cond 2 ( ̂L T ) =<br />

( ) ( ) 2 2<br />

1<br />

max<br />

√d ii<br />

min √ d ii<br />

= max(d ii)<br />

min(d ii )<br />

From (∗) and (∗ ∗ ∗), since max(d ii)<br />

min(d ii<br />

, now we have<br />

)<br />

Therefore, we have<br />

Cond 2 (A) = { Cond 2 ( ̂L T ) } 2<br />

=<br />

· · · (∗ ∗ ∗)<br />

( ) 2<br />

max(dii )<br />

≥ max(d ii)<br />

min(d ii ) min(d ii ) .<br />

Cond 2 (A) ≥ max(d ii)<br />

min(d ii ) .<br />

The Hilbert matrix is a symmetric positive definite. However, it is known as an ill-conditioned<br />

matrix.<br />

4.20<br />

Prove that for a given norm, Cond(AB) ≤ Cond(A)Cond(B)<br />

-Solution-<br />

Cond(AB) = ‖(AB)‖ ∥ ∥ ∥(AB)<br />

−1 ∥<br />

≤ ‖A‖ ‖B‖ ∥ ∥ ∥<br />

∥A<br />

−1 ∥ ∥∥B ∥ −1 ∥<br />

= ‖A‖ ∥ ∥ ∥<br />

∥A<br />

−1 ∥ ‖B‖ ∥∥B ∥ −1 ∥ = Cond(A) · Cond(B)<br />

Therefore, Cond(AB) ≤ Cond(A) · Cond(B).<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!