20.01.2015 Views

Introduction to finite group theory

Introduction to finite group theory

Introduction to finite group theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

20. The Higman–Sims <strong>group</strong> 41<br />

Our immediate aim is <strong>to</strong> prove that ˛ is an au<strong>to</strong>morphism of the graph .<br />

20.5 Lemma. For any pair of ovals O i , O j and any line l in P 2 .4/ the following<br />

assertions hold:<br />

1) ˛.O i / is an oval;<br />

2) ˛2.O i / D O i ;<br />

3) O i \ l 1 D ¿ ” ˛.l 1 / 2 ˛.O i /;<br />

4) O i \ O j D ¿ ” ˛.O i / \ ˛.O j / D ¿.<br />

Proof. It is easy <strong>to</strong> compute that<br />

˛.O/ D ˚ ax 1 C x 2 C x 3 ; a 1 x 1 C x 2 C x 3 ; x 1 C ax 2 C x 3 ;<br />

where<br />

x 1 C a 1 x 2 C x 3 ; x 1 C x 2 C ax 3 ; x 1 C x 2 C a 1 x 3<br />

<br />

D xA O;<br />

0 1<br />

a 1 a<br />

A D @ 1 a a A :<br />

1 1 a 1<br />

1) Write O i in the form O i D xB O, where xB 2 PSL 3 .4/. Then<br />

˛.O i / D P 2 .4/ n S ˛. xB Nv/<br />

Nv2O<br />

D P 2 .4/ n S .B > / 1 ˛.Nv/<br />

Nv2O<br />

D .B > / 1 ˛.O/ D .B > / 1 A O;<br />

that is, ˛.O i / is an oval.<br />

2) We have ˛2.O i / D B.A > / 1 A O D xB O D O i since .A > / 1 A OD O,<br />

as can easily be proved.<br />

3) O i \ l 1 D ¿ ” Nv … l for all Nv 2 O i ” .l/ … .Nv/ for all Nv 2 O i<br />

” ˛.l 1 / 2 ˛.O i /.<br />

4) Suppose that O i \ O j D ¿, butNv 2 ˛.O i / \ ˛.O j /. By3)wehave<br />

˛.Nv/ \ O i D ¿ and ˛.Nv/ \ O j D ¿. Since the ovals O i , O j and the line<br />

l D ˛.Nv/ n f1g are pairwise disjoint, their complement in P 2 .4/ contains 4 points,<br />

say y 1 , y 2 , y 3 , y 4 . By Exercise 20.6, there exists a point x 2 l such that the number<br />

of lines connecting x <strong>to</strong> the points y k is at least 3.<br />

Denote three of these lines by l 1 , l 2 , l 3 . Since l 2 L i , at most one of them<br />

can lie in L i (by Lemma 20.3). Analogously at most one of them can lie in L j .<br />

Therefore one of them, say l 1 D l.x;y 1 /, does not lie in L i [ L j and hence it<br />

intersects O i and O j . Then l 1 contains 6 points: x, y 1 , two points from l 1 \ O i ,<br />

and two from l 1 \ O j (see Lemma 20.2), a contradiction. The converse implication<br />

follows from 2).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!