20.01.2015 Views

A CMOS CONTINUOUS-TIME CURRENT MODE FILTER ...

A CMOS CONTINUOUS-TIME CURRENT MODE FILTER ...

A CMOS CONTINUOUS-TIME CURRENT MODE FILTER ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>CMOS</strong> <strong>CONTINUOUS</strong>-<strong>TIME</strong> <strong>CURRENT</strong> <strong>MODE</strong> <strong>FILTER</strong> TECHNIQUE<br />

FOR LOW SUPPLY VOLTAGE APPLICATIONS<br />

Elena Doicaru*, Mircea Bodea**<br />

*University of Craiova, Faculty of Automation, Computer Science and Electronics<br />

Blvd. Decebal, Nr. 5, 1100 Craiova, ROMANIA, e-mail: dmilena@electronics.ucv.ro<br />

** POLITEHNICA University of Bucharest, Faculty of Electronics, Telecommunication<br />

and Information Technology<br />

Blvd. Iuliu Maniu, Nr. 1-3, 061071 Bucharest, ROMANIA, e-mail: mircea.bodea@yahoo.com<br />

Abstract: This paper presents a current mode (translinear) technique for low voltage,<br />

continuous-time, analogue filter implementation. Firstly, the state-space description of<br />

current-mode filter is presented. Then the current-mode integrator based on translinear<br />

approach is presented and analyzed. Finally, as a test vehicle for the proposed technique,<br />

a low voltage, third order, continuous-time filter, for low power applications structure<br />

implementation is described.<br />

Keywords: Analogue signal processing circuits, translinear circuits, <strong>CMOS</strong> analogue<br />

filters, low power and low voltage circuits.<br />

1. INTRODUCTION<br />

The existing <strong>CMOS</strong> technologies provide ample<br />

opportunity to integrate entire system on a single<br />

chip. To date, the ability to integrate large digital<br />

systems has far out weighted the ability to integrate<br />

the analogue systems. The greatest impediment to<br />

analogue <strong>CMOS</strong> VLSI design has been the difficulty<br />

to get consistent circuit performance over the broad<br />

range of requirements for signal gain, frequency<br />

and/or phase response, delay, power consumption<br />

and signal integrity. In the same time the analogue<br />

design in mixed signal environments becomes more<br />

difficult and challenging as the IC’s power supply<br />

voltage scales down, to the values slightly higher<br />

than the MOS threshold voltage.<br />

The translinear circuits, due to their current domain<br />

operation, are suitable for low supply voltage operation.<br />

In translinear circuits the MOS transistors<br />

usually operate in weak inversion (or sub-threshold)<br />

region, (Enz et al., 1995), where the current-voltage<br />

characteristic is exponential. The main problems<br />

associated to the sub-threshold region operation are<br />

the relatively low speed capability and inferior<br />

matching. But these problems are relatively solved in<br />

sub-micron technology.<br />

This paper presents a synthesis technique for continuous<br />

time current-mode filters operating at very<br />

low supply voltage. The basic current-mode integrator<br />

is analyzed and finally the structure of a third<br />

order current-mode filter is presented. This technique<br />

can be extended, (Doicaru, 2007), in order to optimize<br />

performances like bandwidth, noise, errors due<br />

to mismatching and dynamic range.<br />

2. THE STATE-SPACE DESCRIPTION AND<br />

SYNTHESIS OF <strong>CURRENT</strong>-<strong>MODE</strong> <strong>FILTER</strong><br />

This section presents the way the intermediate transfer<br />

function synthesis method (Snelgrove et al.,<br />

1986) can be used in current-mode domain filters.<br />

The method was developed for AO-RC filter; basically<br />

a given n-th order transfer function is realized<br />

using n resistively interconnected integrators. The<br />

design process comprises two steps: firstly a set of<br />

intermediate transfer functions (IFs) is selected and<br />

then the set is using in synthesis of circuit that realized<br />

the given transfer function. The major advantage<br />

of this method is that the filter’s performance evaluation<br />

and optimization can be performed at the<br />

abstract level of transfer function generation and not<br />

at the circuit topology level.


The state-variable formulation of the AO-RC is<br />

s ⋅ x(s)<br />

= A ⋅ x(s)<br />

+ b ⋅ u(s)<br />

+ ε(s)<br />

y(s)<br />

= c<br />

T<br />

⋅ x(s)<br />

+ d ⋅ u(s)<br />

(1)<br />

where the vector x(s) represents the circuit state<br />

(integrators outputs), matrix A describes the interconnections<br />

between the n integrators, vector b contains<br />

the coefficients that multiply the input signal u(s) in<br />

order to be applied to the integrators inputs, vector c<br />

contains the coefficients required to form the output,<br />

scalar d is the coefficient of the feedthrough component<br />

from input to output, and ε(s) is the vector containing<br />

the noise component at the integrator inputs.<br />

The dual sets of IFs, {f i (s)} and {g i (s)} are given by:<br />

∆ xi<br />

( s)<br />

−1<br />

fi<br />

(s) = ; f(<br />

s) = (s ⋅ I − A ) ⋅ b<br />

u( s)<br />

∆ y( s) T T<br />

−1<br />

gi<br />

(s) = ; g (s) = c (s ⋅ I − A )<br />

εi<br />

( s)<br />

(2)<br />

The set {f i (s)} contains the transfer function from the<br />

filter input to the integrator outputs, and the set,<br />

{g i (s)}, can be physically interpreted as the integrators<br />

noise gains. Given a transfer function t(s), IF<br />

synthesis is based on choosing a set of linearly<br />

independent functions, {f i (s)}, having identical<br />

denominator polynomials, e(s), and arbitrary<br />

numerator polynomials of degree less than n. From<br />

this set the {A, b, c, d} parameters can be obtained<br />

using the following relation:<br />

−1<br />

T T −1<br />

A = F⋅E⋅<br />

F , b = F⋅1,<br />

c = t ⋅F<br />

,<br />

T<br />

d = tn+<br />

1, t(s)<br />

= t ⋅v(s)<br />

+ tn+<br />

1,<br />

f (s) = F⋅<br />

v(s)<br />

, g(s)<br />

= G ⋅v(s)<br />

,<br />

1<br />

v<br />

i<br />

(s) = , i = 1,<br />

n,<br />

s − ei<br />

T −1<br />

G = H⋅F<br />

(3)<br />

where t is a vector containing the t(s) n residues at<br />

the poles, t n+1 – the residue at s=∞, F – a matrix containing<br />

the residues of the f functions evaluated at the<br />

poles, G – a matrix of the residues of the g functions,<br />

e i – the e(s) roots, E – the diagonal matrix having the<br />

natural modes e i as its elements, H – a diagonal matrix<br />

formed from the residues of t(s), and<br />

1 = (1, 1, ...1) T .<br />

The sensitivities of filter directly depend of IFs set:<br />

t(s)<br />

Aij<br />

S = gi<br />

(s) ⋅ fi<br />

(s) ⋅ ,<br />

Aij<br />

t(s)<br />

t(s)<br />

b t(s)<br />

c<br />

S = g (s) i , S f (s) i<br />

i ⋅ = i ⋅<br />

bi<br />

t(s)<br />

ci<br />

t(s)<br />

t(s)<br />

d t(s)<br />

s<br />

Sd<br />

= , S = f (s) g (s) ,<br />

t(s)<br />

γi<br />

(s) i ⋅ i ⋅<br />

t(s)<br />

t(s)<br />

t(s)<br />

γi<br />

(s)<br />

S = S ⋅ S<br />

µ i (s) γi<br />

(s) µ i (s)<br />

(4)<br />

In the above equations γ i is the integrator gain and<br />

µ i (s) is the operational amplifier gain.<br />

Noise signals injected at integrator inputs can be<br />

modelled by ε(s). Assuming white input noise, with<br />

spectral density N<br />

is given by<br />

2<br />

i<br />

, the output noise power spectrum<br />

2<br />

2<br />

n0 )<br />

i<br />

P<br />

with a rms level of<br />

where<br />

( ω) = Ni<br />

⋅ ∑ gi<br />

( jω<br />

(5)<br />

2<br />

i<br />

P 0( ω) = N ∑ g ( jω)<br />

(6)<br />

n<br />

g ( jω)<br />

i<br />

i<br />

2<br />

= ∫<br />

∞ 2<br />

i −∞<br />

g ( jω) dω<br />

2 i<br />

(7)<br />

This description can be adapted to the current-mode<br />

filter. The current through the k-th capacitor of the<br />

current-mode filter is<br />

Ck<br />

v&<br />

Ck = iCk1<br />

+ iC k 2 + ... + iC k n + iCbk<br />

=<br />

* * * * *<br />

= a k 1i1<br />

+ a k 2i2<br />

+ ... + a kn v n + b k i in + ε k<br />

2<br />

2<br />

(8)<br />

where i Ckj , k, j=1÷n, is the k-th capacitor current component<br />

dependent on output current i j , j=1÷n, i j is the<br />

j-th current-mode integrator output current, i in is the<br />

filter input current,<br />

*<br />

a kj , k, j=1÷n and<br />

*<br />

b k , k=1÷n,<br />

coefficients describes the capacitor current components<br />

dependence on the output currents of the<br />

current-mode integrators, respectively, on the filter<br />

* *<br />

input current, and ε k = ∑ j ε kj is the total noise<br />

current through capacitor.<br />

Using convenient circuit technique to implement a<br />

logarithmic dependence between capacitor voltage,<br />

v Ck , and output current of current-mode integrator, i k ,<br />

v = V ln ( i / I )<br />

(9)<br />

Ck<br />

x<br />

where V x and I y are scale factors, the capacitor voltage<br />

derivative, v& Ck , becomes:<br />

d<br />

k<br />

y<br />

Vx<br />

i<br />

v& k<br />

Ck = .<br />

(10)<br />

ik<br />

dt<br />

Using the translinear loops one get for each component<br />

of the capacitor current<br />

*<br />

*<br />

i Ckj ik<br />

= akj<br />

i j , iCbk<br />

ik<br />

= bk<br />

iin<br />

(11)<br />

and equation (8) becomes<br />

d<br />

d<br />

ik<br />

t<br />

where<br />

akn<br />

=<br />

1 2 2<br />

*<br />

kn<br />

ak1i<br />

+ ak<br />

i<br />

+ ... +<br />

*<br />

b k<br />

aknv<br />

+<br />

bk<br />

n<br />

i in<br />

+ ε<br />

k<br />

(12)<br />

= a /( C V ), b = /( C V ), ε = ε /( C V ) (13)<br />

k<br />

x<br />

k<br />

The circuit resulted by interconnection of n current<br />

mode integrators with translinear loops can be<br />

described by the same state-variable formulation (1):<br />

k<br />

x<br />

k<br />

*<br />

k<br />

s ⋅ x(s)<br />

= A ⋅ x(s)<br />

+ b ⋅iin(s)<br />

+ ε(s)<br />

T<br />

iout<br />

(s) = c ⋅ x(s)<br />

+ d ⋅iin(s)<br />

k<br />

x<br />

(14)<br />

where the states x k are represented by the integrators<br />

output current, matrix element A kj is implemented by<br />

a translinear loop with input current x k and output the<br />

component i Ckj of the current through k-th, the vector


element b k is implemented by translinear loop from<br />

the input i in to state k, c k is multiplication coefficient<br />

of state k required to form the output current of the<br />

filter i out , d is multiplication coefficient of input current<br />

i in and ε (s)<br />

can model the current noise at the<br />

input of the k-th current integrator.<br />

1<br />

I D /I F<br />

5%<br />

saturation<br />

G<br />

D<br />

I R<br />

B<br />

I F<br />

S<br />

So the meaning of {f k (s)} IF's set is the same as in the<br />

OA-RC filter synthesis (the state k and the input<br />

signal ratio) and the physical meaning of {g k (s)} IF's<br />

set is the noise gain to the input of integrator k at<br />

output of filter. We can conclude that the all results<br />

obtained in the OA-RC filter synthesis can be applied<br />

to the current-mode filter synthesis.<br />

3. MOS TRANSISTOR <strong>CURRENT</strong>-VOLTAGE<br />

CHARACTERISTICS<br />

This section presents a brief review of the MOS transistor<br />

I-V characteristics, focused on weak inversion<br />

operation.<br />

The MOS transistor drain current equation valid in<br />

all operating regions is (Enz et al., 1995):<br />

with<br />

I<br />

D<br />

VD<br />

∫<br />

= β ( −Q<br />

/ C ) dV<br />

(15)<br />

VS<br />

i<br />

ox<br />

β = µC ox ( W / L)<br />

(16)<br />

where W and L are the channel width and length,<br />

C ox – gate capacitance per unit area, µ – charge<br />

carrier mobility, Q i – induced mobile charge in<br />

channel, V D , V S – drain, source voltages referred to<br />

the local substrate, V – channel potential. Equation<br />

(15) may be decomposed, (Vittoz, 1994), into:<br />

I<br />

D<br />

∞<br />

= β ∫<br />

( −Qi<br />

/ Cox<br />

)dV<br />

− β∫<br />

∞<br />

VS V D<br />

= IF − I R<br />

( −Q<br />

/ C<br />

i<br />

ox<br />

) dV<br />

(17)<br />

where I F is called forward current (controlled by<br />

source voltage V S ) and I R is called reverse current<br />

(controlled by drain voltage V D ). Taking into account<br />

weak inversion channel charge dependency on<br />

channel potential<br />

I F and I R are given by<br />

( VP − V ) / V<br />

Q<br />

T<br />

i / Cox<br />

~ e<br />

(18)<br />

I F ~ β e<br />

( R)<br />

( V −V<br />

P<br />

S(<br />

D)<br />

) / V<br />

And the drain current equation results:<br />

V<br />

ID<br />

= IS<br />

e<br />

P<br />

/ V<br />

T<br />

⎡ −V<br />

⎢e<br />

⎣<br />

S<br />

/ V<br />

T<br />

T<br />

−V<br />

− e<br />

D<br />

/ V<br />

In terms of V GS and V GD equation (20) becomes<br />

( V<br />

ID<br />

= IS<br />

e<br />

V ) / V<br />

P − G<br />

T<br />

⎡ −V<br />

⎢e<br />

⎣<br />

GS<br />

/ V<br />

T<br />

−V<br />

− e<br />

T<br />

GD<br />

⎤<br />

⎥<br />

⎦<br />

/ V<br />

T<br />

⎤<br />

⎥<br />

⎦<br />

(19)<br />

(20)<br />

(21)<br />

where I S is a specific current (limit of weak<br />

inversion), proportional to W/L<br />

0<br />

0 1 2 3 4 5 6 V G<br />

DS /V T<br />

I R<br />

V S =const.<br />

S<br />

(a)<br />

(b)<br />

Fig. 1. (a) The operation regions in weak inversion of<br />

the MOS transistor; (b) Non-saturated MOS transistor<br />

is equivalent to two saturated transistors<br />

anti-parallel connected.<br />

I<br />

S<br />

e<br />

( VP<br />

−VG<br />

) / VT<br />

=<br />

W<br />

L<br />

I<br />

◊<br />

( V )<br />

G<br />

(22)<br />

I ◊ ( V G ) is the square transistor zero-bias ( V GS = 0 )<br />

current.<br />

Using (22) I F and I R equations become:<br />

I<br />

I<br />

non-saturation<br />

F<br />

R<br />

W<br />

= ⋅ I<br />

L<br />

W<br />

= ⋅ I<br />

L<br />

◊<br />

◊<br />

( V )<br />

G<br />

( V )<br />

G<br />

⋅ e<br />

⋅ e<br />

V<br />

V<br />

GS<br />

GD<br />

/ V<br />

T<br />

/ V<br />

T<br />

(23)<br />

If I R


(a)<br />

(b)<br />

Fig. 2. The current mode integrator with translinear loop for capacitor current component I Cij .<br />

(a) Circuit schematic; (b) Circuit symbolic representation.<br />

Therefore, using the decomposition technique<br />

described above (see Fig. 2.b.), the fictitious<br />

transistors M 2* , M 4* , M 6* and M 13* (dashed line in<br />

Fig. 2.b) were added in order to account the nonsaturated<br />

operation of these transistors. This way all<br />

transistors can now be regarded as saturated, I R


But<br />

and<br />

I<br />

I<br />

I<br />

I<br />

D4*<br />

D6*<br />

D2*<br />

D13*<br />

I0<br />

+ I<br />

I<br />

0<br />

( iin<br />

+ I IN ) I0<br />

=<br />

I<br />

0<br />

+ I<br />

( iout<br />

+ IOUT<br />

) I<br />

=<br />

I0<br />

+ I<br />

( I0<br />

+ I ) I0<br />

=<br />

iout<br />

+ IOUT<br />

I I IN<br />

=<br />

i + I<br />

I<br />

out<br />

D10<br />

= I<br />

OUT<br />

D9<br />

0<br />

0<br />

i out + I<br />

I<br />

0<br />

OUT<br />

I D10<br />

= I D4<br />

− I D4*<br />

− I D5<br />

+ I D6<br />

− I<br />

( iin<br />

+ I IN ) I0<br />

= iin<br />

+ I IN −<br />

− I0<br />

+<br />

I0<br />

+ I<br />

( iout<br />

+ IOUT<br />

) I0<br />

i out + IOUT<br />

−<br />

=<br />

I0<br />

+ I<br />

( iin<br />

+ I IN ) I ( iout<br />

+ IOUT<br />

) I<br />

=<br />

+<br />

− I<br />

I + I I + I<br />

=<br />

i<br />

out<br />

0<br />

= ( I − I<br />

IN<br />

I I<br />

+ I<br />

IN<br />

) − ( I −<br />

i<br />

OUT<br />

out<br />

I I<br />

+ I<br />

IN<br />

OUT<br />

− I<br />

D6*<br />

I D9<br />

= iC<br />

+ I x − I0<br />

+ I D2<br />

− I D2*<br />

=<br />

( I0<br />

+ I ) I0<br />

= iC<br />

+ I x − I0<br />

+ I + I0<br />

−<br />

iout<br />

+ IOUT<br />

( I0<br />

+ I ) I0<br />

= iC<br />

+ I<br />

x<br />

+ I −<br />

iout<br />

+ IOUT<br />

I<br />

x<br />

= ( I − I IN ) − ( I D13<br />

− I D13*<br />

− I<br />

IN<br />

0<br />

D16<br />

=<br />

) =<br />

=<br />

) =<br />

(33)<br />

(34)<br />

(35)<br />

Substituting equations (33) and (34) into general<br />

translinear loop equations (32) yields:<br />

( i in + I IN ) I = ( iC<br />

+ I x ) ( iout<br />

+ IOUT<br />

)<br />

( i + I ) I = i ( i + I ) + I I<br />

in<br />

IN<br />

in<br />

C<br />

out<br />

i I = i +<br />

OUT<br />

C ( iout<br />

IOUT<br />

)<br />

IN<br />

(36)<br />

Noting that the capacitor voltage, v C , is the difference<br />

between the gate-source voltages of M 7 and M 8<br />

v<br />

C<br />

i i I<br />

v<br />

out + OUT<br />

= (37)<br />

I<br />

D7<br />

GS7 − vGS8<br />

= VT<br />

ln = VT<br />

ln<br />

I0<br />

and replacing (37) into the capacitor current equation<br />

dvC<br />

iC<br />

= C<br />

(38)<br />

dt<br />

and taking into account the lower equation (36)<br />

results the capacitor current<br />

i<br />

C<br />

C VT<br />

diout<br />

= (39)<br />

iout<br />

+ IOUT<br />

dt<br />

Finally we get a linear integrator function:<br />

0<br />

Fig. 3. The third order filter structure.<br />

I<br />

iout = ∫iin<br />

d t<br />

(40)<br />

CV<br />

T<br />

The integrator operates correctly as long as the<br />

quiescent values of the currents I, I 0 , I IN , I OUT is<br />

chosen so that the integrator’s transistors drain<br />

currents to be strictly positive for the input voltage<br />

range, (Seevinck, 1988).<br />

5. THE THIRD ORDER<br />

<strong>CURRENT</strong> <strong>MODE</strong> <strong>FILTER</strong><br />

As an example of the application of the synthesis<br />

technique presented in Section 2 a third order current<br />

mode filter have been synthesised. The transfer<br />

function of the filter is:<br />

1<br />

t (s) =<br />

3 2<br />

(41)<br />

s + 2s + 2s + 1<br />

The system parameters {A,b,c,d} resulted using the<br />

SSAF program (Doicaru et. al., 2007) for orthonormal<br />

IFs are:<br />

⎡ 0<br />

⎢<br />

A =<br />

⎢<br />

0<br />

⎢<br />

⎣−<br />

0,707<br />

⎡ 0 ⎤<br />

⎢ ⎥<br />

b =<br />

⎢<br />

0<br />

⎥<br />

⎢<br />

⎣0,798<br />

⎥<br />

⎦<br />

0,707 0 ⎤<br />

⎥<br />

−1,225<br />

− 2<br />

⎥<br />

0 1,225⎥<br />

⎦<br />

⎡ 0 ⎤<br />

⎢ ⎥<br />

c =<br />

⎢<br />

0<br />

⎥<br />

⎢<br />

⎣1,447⎥<br />

⎦<br />

d = 0<br />

(42)<br />

We choose this type of IFs to be generated by SSAF<br />

because the structures to be synthesised using orthonormal<br />

intermediate transfer functions generally have<br />

good dynamic range, good signal swing and low sensitivity.<br />

The structure of the current mode filter characterised<br />

by parameters (42) is presented in Fig. 3 and the<br />

system equation are:<br />

i<br />

i<br />

i<br />

i<br />

C1<br />

C2<br />

C3<br />

out<br />

= iC12<br />

= iC<br />

22 + i<br />

= iC<br />

31 + i<br />

= c i<br />

3 out3<br />

C23<br />

C33<br />

+ i<br />

Cb3<br />

(43)


Using the relations developed in Section 3 the system<br />

(43) becomes:<br />

out3<br />

C1V<br />

T diout1<br />

iout2<br />

I<br />

= 12<br />

iout1<br />

+ IOUT1<br />

dt<br />

iout1<br />

+ IOUT1<br />

C3VT<br />

iout3<br />

+ I<br />

iout1I<br />

−<br />

i + I<br />

C2VT<br />

diout2<br />

=<br />

iout2<br />

+ IOUT<br />

2 d t<br />

iout2<br />

I22<br />

iout3<br />

I<br />

= −<br />

− 23<br />

iout2<br />

+ IOUT<br />

2 iout2<br />

+ IOUT<br />

2<br />

OUT 3<br />

31<br />

OUT 3<br />

di<br />

dt<br />

out3<br />

+<br />

i<br />

=<br />

iout3<br />

I<br />

+ I<br />

out3<br />

i = c i<br />

out<br />

33<br />

OUT 3<br />

3 out3<br />

+<br />

i<br />

out3<br />

i I<br />

+ I<br />

in b3<br />

OUT 3<br />

and the state-space description of this filter is:<br />

di<br />

d t<br />

di<br />

dt<br />

out3<br />

out2<br />

= −<br />

It is obvious that:<br />

diout1<br />

iout<br />

I<br />

= 2 12<br />

d t C1VT<br />

== −<br />

iout1I<br />

C V<br />

3<br />

iout2<br />

I<br />

C V<br />

31<br />

T<br />

2<br />

22<br />

T<br />

iout3<br />

I<br />

+<br />

C V<br />

iout3<br />

I<br />

−<br />

C V<br />

3<br />

i out = c3iout3<br />

33<br />

T<br />

2<br />

23<br />

T<br />

i I<br />

+<br />

C V<br />

in b3<br />

I12<br />

a12<br />

= ;<br />

C1VT<br />

I 22<br />

I23<br />

a22<br />

= , a23<br />

= ;<br />

C2VT<br />

C2VT<br />

I31<br />

I33<br />

a31<br />

= , a33<br />

= ;<br />

C3VT<br />

C3VT<br />

Ib3<br />

b3<br />

= ;<br />

C3VT<br />

( W / L)<br />

outMOS<br />

c3<br />

=<br />

.<br />

( W / L)<br />

TLb3<br />

3<br />

T<br />

(44)<br />

(45)<br />

(46)<br />

In the future work the current-mode filters synthesis<br />

method presented in this paper will be refined being<br />

focused on optimization of specific performances<br />

like bandwidth, noise, errors du mismatching and<br />

dynamic range.<br />

6. CONCLUSIONS<br />

Future analogue circuits will have to operate successfully<br />

at supply voltages slightly higher than the MOS<br />

transistor threshold voltage. So, the suitable topologies<br />

for signal processing at such low values of<br />

supply voltages are the translinear circuits because<br />

are operating in current domain and in this way the<br />

very small voltage swings are avoided.<br />

This paper presented a technique for very low supply<br />

voltage, continuous time, current-mode filters synthesis<br />

based on the intermediate transfer functions<br />

method. This method has the distinct advantage of<br />

filter performance optimization at the abstract level<br />

of IFs, not at the topological level. In paper is also<br />

presented the basic cell of the filter – the current<br />

mode integrator, suitable for static and dynamic<br />

analogue signal processing and very low supply<br />

voltage operation. The minimum value of supply<br />

voltage required for this circuit is given by the sum<br />

of the MOS transistor threshold voltage and the<br />

drain-source saturation voltage.<br />

All transistors of these networks operate in weak<br />

inversion due to the requirements of translinear<br />

principle to have an exponential I-V characteristic<br />

and the very low power supply voltage. Therefore,<br />

bandwidth will be limited and the circuits will be<br />

sensitive to the threshold voltage matching. Finally,<br />

as a test vehicle for the proposed synthesis method,<br />

the structure of a third order continuous-time filter<br />

for low power applications was is presented and<br />

analyzed.<br />

ACKNOWLEDGMENT<br />

This work was supported by the CNCSIS Research<br />

Project no. 29C/08.05.2007, theme no. 5, CNCSIS<br />

code no.602.<br />

REFERENCES<br />

Doicaru E., L. Barbulescu, C. Dan, (2007). SSAF –<br />

A Powerful Tool for High-Order Analogue<br />

Continuous Time Filter Synthesis, WSEAS<br />

European Computing Conference, Athens,<br />

Greece, September 25-27, 2007, accepted.<br />

Doicaru, E., M. Bodea, C. Dan, Current-mode filters<br />

advanced synthesis methods, based on intermediate<br />

transfer function algorithm, unpublished<br />

works.<br />

Enz, C.C., F. Krummenacher and E. Vittoz (1995).<br />

An analytical MOS transistor model valid in all<br />

regions of operation and dedicated to low-voltage<br />

and low-current applications. IEEE Journal<br />

of Analog Integrated Circuits Signal Processing,<br />

8, 83-114.<br />

Seevinck, E., (1988). Synthesis of TL Networks,<br />

Analysis and Synthesis of Translinear Integrated<br />

Circuits, Elsevier, page 69-132, Amsterdam.<br />

Snelgrove W.M. and A.S. Sedra (1986). Synthesis<br />

and Analysis of State-Space Active Filters Using<br />

Intermediate Transfer Functions, IEEE Trans.<br />

Circuits and Systems, CAS-33, 287-300.<br />

Vittoz, E. (1994). Micropower techniques, Design of<br />

VLSI Circuits for Telecommunication and Signal<br />

Processing, Prentice Hall.<br />

Vittoz, E., and J Fellrath (1997). <strong>CMOS</strong> analog integrated<br />

circuits based on weak inversion operation,<br />

IEEE J. Solid-State Circuits, 12, 224-231.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!