21.01.2015 Views

RF Bipolar Biasing - NTMS

RF Bipolar Biasing - NTMS

RF Bipolar Biasing - NTMS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Optical Navigation Division<br />

<strong>Biasing</strong> <strong>Bipolar</strong> Junction Transistors<br />

Al Ward<br />

W5LUA<br />

January 31, 2007


Wireless Semiconductor Division<br />

Various BJT <strong>Biasing</strong> Networks<br />

V BB<br />

V CC<br />

R B R C<br />

R B<br />

R C<br />

V CC<br />

R B1 R C<br />

V CC<br />

1<br />

R B2<br />

R B<br />

2 3<br />

R B1<br />

R C<br />

V CC<br />

4 5<br />

R B2<br />

Page 2


Wireless Semiconductor Division<br />

AT-41486<br />

Page 3


Wireless Semiconductor Division<br />

<strong>Bipolar</strong> Transistor Bias Network Analysis<br />

R B1<br />

R C<br />

I BB<br />

+I B<br />

R B<br />

B<br />

C<br />

V CE<br />

I C<br />

+I BB<br />

+I B<br />

I BB<br />

B<br />

V BE<br />

I B<br />

h ie<br />

R B1<br />

I BB<br />

+ I B<br />

I C<br />

C<br />

V CE<br />

R B2<br />

I B<br />

E<br />

h FE<br />

I B<br />

I CBO<br />

(1+h FE<br />

)<br />

V’ BE<br />

R B2<br />

I BB<br />

V BE<br />

B. The equivalent circuit of figure A used in DC stability analysis.<br />

R C<br />

V CC<br />

A. Bias circuit showing only the DC components.<br />

I C = h FE I B + I CBO (1+h FE )<br />

- where h FE is the DC current gain of the transistor and I CBO is the current flowing through a reverse biased PN junction.<br />

E<br />

V BE = V BE + I B h ie<br />

- where V BE is internal to the transistor and h ie is the equivalent Hybrid input resistance of the transistor and is equal<br />

- to h FE / (Ic) where =40 @ +25 degrees C. h ie is generally much smaller than Rb<br />

Page 4


Wireless Semiconductor Division<br />

Temperature Sensitive Parameters<br />

R B1<br />

I BB<br />

+ I B<br />

I C<br />

C<br />

B<br />

I B<br />

h ie<br />

I BB<br />

V BE<br />

V CE<br />

R C<br />

h FE<br />

I B<br />

I CBO<br />

(1+h FE<br />

)<br />

V’ BE<br />

R B2<br />

V CC<br />

E<br />

The equivalent circuit of the voltage feedback and constant base current source bias<br />

network used in DC stability analysis.<br />

V’ BE , h FE , I CBO<br />

V’ BE has a typical negative temperature coefficient of -2mV/°C.<br />

h FE typically increases with temperature at the rate of 0.5%/°C.<br />

I CBO typically doubles for every 10°C temperature rise.<br />

Page 5


Wireless Semiconductor Division<br />

Non-Stabilized Bias Network #1<br />

V CC = V BB = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

R B<br />

V CC V BE<br />

I B<br />

R C<br />

V CC V CE<br />

I C<br />

V BB<br />

R B<br />

V CC<br />

R C<br />

R B = 30770 ohms<br />

R C = 140 ohms<br />

Page 6


Wireless Semiconductor Division<br />

Non-Stabilized Bias Network #1<br />

V CC = V BB = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

V BB<br />

V CC<br />

h . FE<br />

V CC<br />

V BE<br />

I C<br />

I . CBO<br />

1 h FE<br />

h ie<br />

R B<br />

R B<br />

R C<br />

Based on h FE alone<br />

I C max = 9.27 mA<br />

I C min = 3.14 mA<br />

Page 7


Wireless Semiconductor Division<br />

Voltage Feedback Bias Network #2<br />

V CC = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

V CE V BE<br />

V CC V CE<br />

R B R C<br />

I B I C<br />

I B<br />

R B<br />

R C<br />

V CC<br />

R B = 19552 ohms<br />

R C = 138 ohms<br />

Page 8


Wireless Semiconductor Division<br />

Voltage Feedback Bias Network #2<br />

V CC = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

h . FE V CC V BE I . .<br />

CBO 1 h FE h ie R B R C<br />

I C<br />

h ie R . B R C 1 h FE<br />

R B<br />

R C<br />

V CC<br />

Based on h FE alone<br />

I C max = 7.09 mA<br />

I C min = 3.63 mA<br />

Page 9


Wireless Semiconductor Division<br />

Voltage Feedback and Constant Base Current<br />

Source Bias Network #3<br />

V CC = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80 typ, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

R B1 R C<br />

V CC<br />

Choose V RB2 , in which V CE > V RB2 > V BE . Suggest a V RB2 of 1.5V<br />

Suggest a voltage divider current of .5mA.<br />

V CC V CE<br />

V RB2<br />

V BE<br />

R C R B<br />

I C I B2 I B<br />

I B<br />

V CE V RB2<br />

V RB2<br />

R B1 R<br />

I B2<br />

B2 I B I B2<br />

R B2<br />

R B<br />

R C = 126 ohms<br />

R B = 11,539 ohms<br />

R B1 = 889 ohms<br />

R B2 = 3000 ohms<br />

Page 10


Wireless Semiconductor Division<br />

Voltage Feedback and Constant Base Current<br />

Source Bias Network #3<br />

V CC = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80 typ, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

V . BE R B1 R B2 R C R . B2 R . . C I CBO 1 h FE V CC<br />

I .<br />

C<br />

h<br />

R . B<br />

h ie<br />

R B1<br />

R B2<br />

R . C<br />

R . B2<br />

h FE<br />

R C<br />

R C<br />

R FE<br />

I . CBO<br />

1 h FE<br />

B1<br />

R B1 R C<br />

V CC<br />

Based on h FE alone<br />

I C max = 6.98 mA<br />

I C min = 3.66 mA<br />

R B2<br />

R B<br />

Page 11


Wireless Semiconductor Division<br />

Voltage Feedback Bias Network #4<br />

V CC = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80 typ, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

Choose I B2<br />

, suggest a voltage divider current of .5mA, to calculate R B2<br />

.<br />

R B2<br />

V BE<br />

I B2<br />

V CC V CE<br />

R C<br />

I C I B I B2<br />

I B I B2<br />

V CE I . B2 R B2<br />

R B1<br />

R C = 126 ohms<br />

R B1 = 2169 ohms<br />

R B2 = 1560 ohms<br />

Page 12


Wireless Semiconductor Division<br />

Voltage Feedback Bias Network #4<br />

V CC = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80 typ, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

R C<br />

R<br />

. I . C<br />

R<br />

CBO R C I .<br />

C<br />

R<br />

CBO V . . C<br />

R<br />

BE<br />

h FE R<br />

.<br />

h ie I . . B1<br />

R<br />

CBO h ie I .<br />

CBO I . B1<br />

R<br />

CBO R B1 I .<br />

B1<br />

R<br />

CBO V . . B1<br />

BE<br />

B2 R B2 h FE R B2 h FE R<br />

.<br />

h ie I . .<br />

1<br />

CBO h ie I CBO V . BE h . ie I CBO h . ie I CBO<br />

B2 R B2 h FE R B2 h FE<br />

I C<br />

R C<br />

R C<br />

R C<br />

R<br />

. B1<br />

R B1<br />

h . 1<br />

h . ie h .<br />

FE R B2 h FE h . ie h ie<br />

FE R B2 h FE h FE<br />

V CC<br />

Based on h FE alone<br />

I C max = 5.44 mA<br />

I C min = 4.53 mA<br />

Page 13


Wireless Semiconductor Division<br />

Emitter Feedback Bias Network #5<br />

V CC = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80 typ, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

R E<br />

V CC V CE<br />

I C<br />

. I CBO<br />

1 h FE<br />

h FE<br />

I C<br />

V CC I . B2 R 2<br />

R 1<br />

I B2 I B<br />

Pick Ib2 of 10% of Ic which is equal to .0005<br />

R 2<br />

V RB2<br />

I B2<br />

V RB2 V BE<br />

. I B I C R E<br />

R E = 138 ohms<br />

R B1 = 2169 ohms<br />

R B2 = 2960 ohms<br />

Page 14


Wireless Semiconductor Division<br />

Emitter Feedback Bias Network #5<br />

V CC = 2.7V, V CE = 2V, I C = 5 mA, h FE = 80 typ, 50 min, 150 max<br />

V BE = 0.78 V, I CBO = 1x10 -7 A @ +25 deg C<br />

1<br />

R<br />

V<br />

. .<br />

BE h ie I<br />

. E<br />

R<br />

CBO h ie I<br />

.<br />

CBO I<br />

. 1<br />

R<br />

CBO R E I<br />

.<br />

1<br />

R<br />

CBO V<br />

. . 1.<br />

R<br />

BE h<br />

h FE<br />

h FE<br />

R . ie I<br />

. 1.<br />

R E<br />

R<br />

CBO h ie I<br />

. 1.<br />

R<br />

CBO I<br />

. 1<br />

CBO R E I<br />

.<br />

CBO I CBO R<br />

. 1 I CBO<br />

2<br />

R 2<br />

h FE<br />

R 2<br />

R 2<br />

h FE<br />

R 2<br />

h FE<br />

I C<br />

1<br />

R<br />

. E<br />

R 1<br />

R<br />

h ie<br />

R . 1<br />

R<br />

E<br />

h . E<br />

R 1<br />

R<br />

. 1<br />

h FE<br />

h . ie<br />

R E<br />

FE<br />

R 2<br />

h FE<br />

R 2<br />

h FE<br />

R 2<br />

h FE<br />

V CC<br />

Based on h FE alone<br />

I C max = 5.27 mA<br />

I C min = 4.70 mA<br />

Page 15


Wireless Semiconductor Division<br />

Summary of I C Variation vs h FE For All Bias Circuits<br />

V BB V CC<br />

R<br />

R B<br />

R B1<br />

R C<br />

C V<br />

V CC<br />

R B1<br />

R C<br />

V<br />

R CC CC<br />

B<br />

R<br />

B<br />

R B2<br />

R B2<br />

Bias Circuit<br />

Nonstabilized<br />

Bias<br />

Network<br />

Voltage<br />

Feedback Bias<br />

Network<br />

Feedback<br />

Voltage<br />

Feedback<br />

w/Current<br />

Source Bias<br />

Network<br />

Voltage<br />

Feedback<br />

w/Voltage<br />

Source Bias<br />

Network<br />

Ic(mA) @ 3.14 3.63 3.66 4.53 4.70<br />

minimum h FE<br />

Ic(mA) @ typical 5.0 5.0 5.0 5.0 5.0<br />

h FE<br />

Ic(mA) @<br />

maximum h FE<br />

9.27 7.09 6.98 5.44 5.27<br />

Percentage change<br />

in Ic from<br />

nominal Ic<br />

+85%<br />

-37%<br />

+42%<br />

-27%<br />

+40%<br />

-27%<br />

+9%<br />

-9%<br />

Emitter<br />

Feedback Bias<br />

Network<br />

+5.4%<br />

-6%<br />

Bias circuit #5 offers best control on h FE<br />

variation but requires emitter resistor<br />

Bias circuit #4 offer best control on h FE<br />

variation without the use of an emitter resistor<br />

Bias circuits #2 and #3 are very similar in performance.<br />

Page 16


Wireless Semiconductor Division<br />

Use of Stability Factors<br />

I CBO = I C First Calculate the stability<br />

I CBO h FE, V’ BE = constant factors for V’ BE , I CBO , and h FE.<br />

Then, to find the change in<br />

V’ BE = I C collector current at any temperature,<br />

V’ BE I CBO, h FE = constant multiply the change from 25C of<br />

each temperature dependent variable<br />

h FE = I C with its corresponding stability<br />

h FE I CBO , V’ BE = constant factor and sum.<br />

I C = SI CBO I CBO + SV’ BE V’ BE +<br />

Sh FE h FE<br />

Page 17


Wireless Semiconductor Division<br />

Calculating I CBO , V BE , and h FE<br />

Example: Calculate deltas from +25 o C to +65 o C<br />

I CBO is typically 100nA @+25 o C and typically doubles for every 10°C<br />

temperature rise. Therefore I CBO<br />

= 1600nA @ +65 o C. I CBO<br />

= 1600 - 100<br />

= 1500 nA<br />

V BE<br />

measured at .755V@ 25 o C and has a typical negative temperature<br />

coefficient of -2mV/°C. Therefore V BE<br />

will be .675V @ +65 o C making<br />

V BE<br />

equal to .675 - .755 = -.08V<br />

h FE is 80 @ +25 o C and typically increases 0.5%/ o C. Therefore h FE<br />

will increase from 80 to 96 @ +65 o C making h FE<br />

equal to 96<br />

-80 = 16<br />

Page 18


Wireless Semiconductor Division<br />

Bias Stability Analysis @ +65 o C using HBFP-04XX<br />

V BB V CC<br />

R B<br />

R C<br />

V R<br />

R CC B1 R C<br />

V B CC<br />

R B1<br />

R C<br />

V CC<br />

R<br />

B<br />

R B2<br />

R B2<br />

Bias Circuits<br />

#1 non-stabilized<br />

#2 volt feedback<br />

#3 volt feedback w/current source<br />

#4 voltage feedback<br />

#5 emitter feedback<br />

Page 19<br />

Bias Circuit<br />

#1 Non-<br />

Stabilized<br />

#2 Voltage<br />

Feedback<br />

#3 Voltage<br />

Feedback<br />

w/Current Source<br />

#4 Voltage<br />

Feedback<br />

#5 Emitter Feedback<br />

I CBO Stability Factor 81 52.238 50.865 19.929 11.286<br />

V’ BE Stability Factor -2.56653x 10 -3 -2.568011x10 -3 -3.956x10 -3 -0.015 -6.224378x10 -3<br />

h FE Stability Factor 6.249877x10 -5 4.031x10 -5 3.924702x10 -5 1.537669x 8.707988x10 -6<br />

10 -5<br />

I C due to I CBO (mA) 0.120 0.078 0.076 0.030 0.017<br />

I C due to V’ BE (mA) 0.210 0.205 0.316 1.200 0.497<br />

I C due to h FE (mA) 0.999 0.645 0.628 0.246 0.140<br />

Total I C (mA) 1.329 0.928 1.020 1.476 0.654<br />

Percentage change in<br />

Ic from nominal Ic<br />

26.6% 18.6% 20.4% 29.5% 13.1%<br />

Bias circuits #2 and #3 similar in<br />

performance at temp and superior<br />

to #1 and #4<br />

Bias circuit #5 is superior but requires<br />

emitter resistor and emitter bypass


Wireless Semiconductor Division<br />

Calculating I CBO , V BE , and h FE<br />

Example: Calculate deltas from +25 o C to +85 o C<br />

I CBO is typically 200nA @+25 o C and typically doubles for every 10°C<br />

temperature rise. Therefore I CBO<br />

= 12800nA @ +85 o C. I CBO<br />

=12800 - 200<br />

= 12600 nA= 12.6 uA<br />

V BE<br />

measured at .755V@ 25 o C and has a typical negative temperature<br />

coefficient of -2mV/°C. Therefore V BE<br />

will be .635V @ +85 o C making<br />

V BE<br />

equal to .635 - .755 = -.120V<br />

h FE is 150 @ +25 o C and typically increases 0.5%/ o C. Therefore h FE<br />

will increase from 150 to 195 @ +85 o C making h FE<br />

equal to 195<br />

- 150 = 45<br />

Page 20


Wireless Semiconductor Division<br />

Bias Stability Analysis @ +85 o C using HBFP-04XX<br />

V BB V CC<br />

R B<br />

R B<br />

R C<br />

VCC<br />

R B1<br />

R C<br />

V CC<br />

R B1<br />

R C<br />

V CC<br />

R<br />

B<br />

R B2<br />

R B2<br />

Bias Circuit #1 #2 #3 #4 #5<br />

I CBO Stability Factor 81 52.238 50.865 19.929 11.286<br />

V’ BE Stability Factor -2.56653x 10 -3 -2.568011x10 -3 -3.956x10 -3 -0.015 -6.224378x10 -3<br />

h FE Stability Factor 6.249877x10 -5 4.031x10 -5 3.924702x10 -5 1.537669x10 -5 8.707988x10 -6<br />

I C due to I CBO (mA) 1.021 0.658 0.641 0.251 0.142<br />

I C due to V’ BE (mA) 0.308 0.308 0.475 1.800 0.747<br />

I C due to h FE (mA) 2.812 1.814 1.766 0.692 0.392<br />

Total I C (mA) 4.141 2.780 2.882 2.743 1.281<br />

Bias Circuits<br />

#1 non-stabilized<br />

#2 volt feedback<br />

#3 volt feedback w/current source<br />

#4 voltage feedback<br />

#5 emitter feedback<br />

Bias circuits #2, #3 and #4 similar in<br />

performance at temp and superior<br />

to #1<br />

Bias circuit #5 is superior but requires<br />

emitter resistor and emitter bypass<br />

I CBO and h FE variations are major<br />

contributors at elevated temperature<br />

Page 21


Wireless Semiconductor Division<br />

Avago Technologies AppCAD<br />

Page 22


Wireless Semiconductor Division<br />

Percent Change in Quiescent Collector Current<br />

versus h FE for the HBFP-0405<br />

Percent Deviation From A<br />

Quiescent Collector Current<br />

100.00%<br />

80.00%<br />

60.00%<br />

40.00%<br />

20.00%<br />

0.00%<br />

-20.00%<br />

-40.00%<br />

50 70 90 110 130 150<br />

Nob-stabilized<br />

Voltage Feedback<br />

Voltage Feedback<br />

w/Current Source<br />

Voltage Feedback<br />

w/Voltage Source<br />

Emitter Feedback<br />

V CC =2.7V<br />

V CE =2V<br />

I C =5 mA<br />

T J =+25 o C<br />

h FE<br />

Page 23


Wireless Semiconductor Division<br />

Percent Change in Quiescent Collector Current<br />

versus Temperature for the HBFP-0405<br />

Percent Change From A<br />

Quiescent Collector Current<br />

30.00%<br />

20.00%<br />

10.00%<br />

0.00%<br />

-10.00%<br />

-20.00%<br />

-30.00%<br />

-40.00%<br />

-25 -15 -5 5 15 25 35 45 55 65<br />

Non-stabilized<br />

Voltage Feedback<br />

Voltage Feedback<br />

w/Current Source<br />

Voltage Feedback<br />

w/Voltage Source<br />

Emitter Feedback<br />

V CC =2.7V<br />

V CE =2V<br />

I C =5 mA<br />

Temperature ( o C)<br />

Page 24


Wireless Semiconductor Division<br />

Percent Change in Quiescent Collector Current versus<br />

Ratio of I C to I RB1 for Max. h FE and +65 o C for the HBFP-<br />

0405<br />

Maximum h FE and +65 o C<br />

Percentage Change from Ic<br />

(+)<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

1 10 100<br />

Non-stabilized<br />

Voltage Feedback<br />

Voltage Feedback<br />

w/Current Source<br />

Voltage Feedback<br />

w/Voltage Source<br />

Emitter Feedback<br />

V CC =2.7V<br />

V CE =2V<br />

I C =5 mA<br />

Ratio of Ic to IRB1<br />

Page 25


Wireless Semiconductor Division<br />

Percent Change in Quiescent Collector Current versus<br />

Ratio of I C to I RB1 for Min. h FE and -25 o C for the HBFP-0405<br />

Minimum h FE and -25 o C<br />

Percentage Change fromIC (-<br />

)<br />

140.00%<br />

120.00%<br />

100.00%<br />

80.00%<br />

60.00%<br />

40.00%<br />

20.00%<br />

0.00%<br />

Non-stabilized<br />

Voltage Feedback<br />

Voltage Feedback<br />

w/Current Source<br />

Voltage Feedback<br />

w/Voltage Source<br />

Emitter Feedback<br />

V CC =2.7V<br />

V CE =2V<br />

I C =5 mA<br />

1 10 100<br />

Ratio of Ic to IRB1<br />

Page 26


Wireless Semiconductor Division<br />

Conclusions<br />

Emitter feedback in circuit #5 offers the best control on h FE variations<br />

from device to device and over temperature. However, an emitter<br />

bypass capacitor is needed to provide a good <strong>RF</strong> short. The inductance<br />

associated with the bypass capacitor quite often causes circuit<br />

instabilities with high f t transistors.<br />

Best alternative is circuit #4 followed by circuit #2. Circuit #4 offers best<br />

control on h FE variation from device to device and circuit #2 provides<br />

best performance up to +65 degrees C. At +85 degrees C, circuit #4<br />

performs as well as circuit #2.<br />

Page 27


Wireless Semiconductor Division<br />

Additional Thoughts<br />

Higher Vcc can improve the performance of all bias circuits<br />

Additional base bias resistor current can often improve bias regulation<br />

An increase in the value of the emitter resistor for circuit #5 will offer<br />

increased bias circuit regulation.<br />

Active bias network offers best regulation but requires additional<br />

components.<br />

Page 28


Wireless Semiconductor Division<br />

Related Application Notes and Articles<br />

AN 1084 Two-Stage 800 – 1000 MHz Amplifier using the AT-41511<br />

Silicon <strong>Bipolar</strong> Transistor – 5964-3853E (11/99)<br />

AN 1085 900 and 2400 MHz Amplifiers using the AT-3 Series Low Noise<br />

Silicon <strong>Bipolar</strong> Transistors – 5964-3854E (11/99)<br />

AN 1131 Low Noise Amplifiers for 320 MHz and 850 MHz Using the AT-<br />

32063 Dual Transistor – 5966-0781E (11/99)<br />

AN 1293 A Comparison of Various <strong>Bipolar</strong> Transistor <strong>Biasing</strong> Circuits –<br />

5988-6173EN June 27, 2006<br />

AN S014 750 – 1250 MHz Voltage Controlled Oscillators – 5988-0273EN<br />

(9/00)<br />

A Comparison of Various <strong>Bipolar</strong> Transistor <strong>Biasing</strong> Circuits by Al<br />

Ward (W5LUA) and Bryan Ward (N5QGH), Agilent Technologies,<br />

Applied Microwave & Wireless, April 2001, pages 30-44<br />

Page 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!