22.01.2015 Views

NMR in natural product research General setup for all Bruker NMR ...

NMR in natural product research General setup for all Bruker NMR ...

NMR in natural product research General setup for all Bruker NMR ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>NMR</strong> <strong>in</strong> <strong>natural</strong> <strong>product</strong> <strong>research</strong><br />

Extract<br />

Flash<br />

chromatography<br />

HPLC<br />

Concentration<br />

Structural elucidation <strong>in</strong> <strong>natural</strong><br />

<strong>product</strong> <strong>research</strong><br />

Dr. Till Kühn<br />

SPE<br />

Evaporation<br />

Fate of a plant / animal / cell <strong>in</strong> NP <strong>research</strong><br />

⇒ a fraction of mg of a (hopefully) pure compound<br />

2<br />

<strong>NMR</strong> Standard parameter-set:<br />

rpar …<br />

PROTON<br />

C13CPD, C13DEPT135<br />

High Res. MS, Elemental Analysis<br />

(MW and DBE)<br />

1<br />

H <strong>NMR</strong><br />

( 1 H shifts + <strong>in</strong>tegrals: some functional groups)<br />

13<br />

C <strong>NMR</strong>, DEPT<br />

( 13 C shifts, multiplicity: some functional groups and features)<br />

HSQCEDETGPSI (TS)<br />

INVIEDETGPSISW (XW)<br />

COSYGPSW, COSYDFGPPHSW<br />

HMBCGP (TS)<br />

INV4GPLPLRNDSW (XW)<br />

MLEVPHSW<br />

HSQCGP + h2bcctetl3<br />

(DQF)COSY + (ed)HSQC<br />

(fragments, 13 C multiplicity)<br />

HMBC + TOCSY (+ HSQC-TOCSY + H2BC)<br />

(connect<strong>in</strong>g the dots, 13 C <strong>in</strong>fo)<br />

<strong>General</strong> <strong>setup</strong> <strong>for</strong> <strong>all</strong> <strong>Bruker</strong> <strong>NMR</strong> experiments<br />

• put the sample <strong>in</strong>to magnet<br />

• Make sure you use the correct fill<strong>in</strong>g height:<br />

• 5mm probe: > 4cm (> 550ul <strong>in</strong> a 5mm tube)<br />

• 1.7mm probe: > 2cm (> 30ul <strong>in</strong> a 1.7mm tube<br />

• 1mm probe: > 1cm (> 5ul <strong>in</strong> a 1mm tube)<br />

• <strong>for</strong> 5mm tubes: use depth gauge to position sample tube <strong>in</strong><br />

sp<strong>in</strong>ner<br />

ROESYPHSW + roesyph.2<br />

<strong>for</strong> up to 400MHz<br />

NOESYPHSW<br />

<strong>for</strong> 500MHZ and up<br />

3<br />

ROESY / NOESY<br />

(stereochemistry)<br />

4<br />

1


<strong>General</strong> <strong>setup</strong> <strong>for</strong> <strong>all</strong> <strong>Bruker</strong> <strong>NMR</strong> experiments<br />

Important-1: def<strong>in</strong>e the current probe (edhead)<br />

Type edhead after each probe change, or try it out at any time<br />

• read the desired parameter set: rpar PARAMETERSET <strong>all</strong><br />

• possibly adjust desired parameters (ns, td, o1p, o2p, sw)<br />

• read the probe dependant parameters: getprosol<br />

• lock on the solvent: lock<br />

• match and tune the probe: wobb or atma<br />

• shim: topshim, gradshim or shim manu<strong>all</strong>y<br />

• start the experiment: xaua or rga (except <strong>for</strong> DQF COSY) and zg<br />

• process the data:<br />

• automatic<strong>all</strong>y: xaup or<br />

• manu<strong>all</strong>y: 1D: efp, apk, abs<br />

2D: xfb, correct the phase and abs1, abs2<br />

5<br />

6<br />

Important-2: have a complete edprosol table!<br />

PROTON Channel, standard hard pulses:<br />

here the probe appears, which is<br />

def<strong>in</strong>ed as the “current probe” by edhead!<br />

Important-2: have a complete edprosol table!<br />

CARBON Channel, standard hard pulses:<br />

⇒ Important: always run edhead<br />

after a probe change!<br />

7<br />

8<br />

2


Important-2: have a complete edprosol table!<br />

CARBON Channel, standard soft pulses (=shaped pulses):<br />

Important-2: have a complete edprosol table!<br />

Global parameters: Gradients, trim pulses:<br />

calculate<br />

calculate<br />

9<br />

10<br />

Even <strong>setup</strong> a list of experiments <strong>in</strong> Icon<strong>NMR</strong><br />

Dr. Vatchar<strong>in</strong>’s compound: Instrumentation<br />

normal experiments (N)<br />

composite experiments (C)<br />

a preparation experiment<br />

is done be<strong>for</strong>e the 2D<br />

11<br />

• ca. 0.6mg (<strong>NMR</strong> quantification) HPLC purified compound<br />

• dissolved <strong>in</strong> 30ul MeOD<br />

• <strong>all</strong> experiments <strong>in</strong> a 1.7mm MicroProbe<br />

• on a 400MHz <strong>in</strong>strument<br />

• 1D Proton (PROTON)<br />

• 1D 13 C (C13CPD) and 1D 13 C-Dept-90 (C13DEPT90)<br />

• 2D edited-HSQC (HSQCEDETGP)<br />

• 2D COSY (COSYGPSW) and DQF-COSY (COSYGPDFPHSW)<br />

• 2D HMBC (HMBCGP) and<br />

2D H2BC (HSQCETGP and type: pulprog h2bccteal3)<br />

• 2D ROESY (ROESYPHSW)<br />

• Total experiment time: less than a weekend<br />

12<br />

3


Advantages of sm<strong>all</strong> volume <strong>NMR</strong><br />

• High mass-sensitivity (4 x sensitivity = 16 times faster):<br />

13<br />

• 1.7mm: 1 H sensitivity = 2 x 5mm BBI, 13 C sensitivity = 2 x BBO<br />

• 1mm: 1H sensitivity = 4 x 5mm BBI<br />

• 1.7mm MicroCryoProbe: 1 H sens. = 14 x BBI, 13 C sens. = 4 x BBO<br />

• No problems with solvent impurities (high concentration even with<br />

very sm<strong>all</strong> sample amounts)<br />

• No problems with solvent suppression (no radiation damp<strong>in</strong>g etc.)<br />

• Advantage of work<strong>in</strong>g with sm<strong>all</strong> sample amounts: cleaner samples!<br />

• It’s often much easier to get CLEAN samples <strong>in</strong> sm<strong>all</strong> amounts<br />

• No danger to overload flash chromatography or HPLC columns<br />

• You might even use analytical HPLC columns and fraction collect<br />

(better separation on with sm<strong>all</strong> sample amounts)<br />

<strong>NMR</strong> Standard parameter-set:<br />

rpar …<br />

PROTON<br />

C13CPD, C13DEPT135<br />

14<br />

High Res. MS, Elemental Analysis<br />

(MW and DBE)<br />

1<br />

H <strong>NMR</strong><br />

( 1 H shifts + <strong>in</strong>tegrals: some functional groups)<br />

13<br />

C <strong>NMR</strong>, DEPT<br />

( 13 C shifts, multiplicity: some functional groups and features)<br />

HSQCEDETGPSI (TS)<br />

INVIEDETGPSISW (XW)<br />

COSYGPSW, COSYDFGPPHSW<br />

HMBCGP (TS)<br />

INV4GPLPLRNDSW (XW)<br />

MLEVPHSW<br />

HSQCGP + h2bcctetl3<br />

ROESYPHSW + roesyph.2<br />

<strong>for</strong> up to 400MHz<br />

NOESYPHSW<br />

<strong>for</strong> 500MHZ and up<br />

(DQF)COSY + (ed)HSQC<br />

(fragments, 13 C multiplicity)<br />

HMBC + TOCSY (+ HSQC-TOCSY + H2BC)<br />

(connect<strong>in</strong>g the dots, 13 C <strong>in</strong>fo)<br />

ROESY / NOESY<br />

(stereochemistry)<br />

Dr. Vatchar<strong>in</strong>’s compound: HR-MS: C 20 H 28 O 4<br />

1st. th<strong>in</strong>g <strong>in</strong> <strong>NMR</strong>: 1 H shifts + <strong>in</strong>tegrals<br />

• Application of the rule <strong>for</strong> double-bond equivalents (DBE):<br />

2a<br />

+ 2 + d − b 2*20 + 2 − 28<br />

CaHbOc<br />

N DBE =<br />

=<br />

= 7<br />

d<br />

2<br />

2<br />

• 7 double bond equivalents (DBE):<br />

• 1 double bond or 1 r<strong>in</strong>g closure = 1 DBE<br />

• 1 triple bond = 2 DBE’s<br />

⇒ 7 double bonds or 6 r<strong>in</strong>gs and 1 db or 5 r<strong>in</strong>gs and 2 db…<br />

15<br />

Source:<br />

16<br />

E. Breitmaier:<br />

Structure Elucidation by <strong>NMR</strong> <strong>in</strong> Organic Chemistry, John Wiley & Sons<br />

4


Dr. Vatchar<strong>in</strong>’s compound: 1 H <strong>in</strong><strong>for</strong>mation<br />

PROTON<br />

No Phenol OH and no COOH:<br />

• no aromatic protons and<br />

• not broad enough<br />

Aldehyde<br />

roof effect:<br />

AB sp<strong>in</strong> system<br />

Alkene-CH<br />

AB Sp<strong>in</strong> System<br />

3 x Methyl<br />

Setup a list of identified groups<br />

• Molecular <strong>for</strong>mula: C 20<br />

H 28<br />

O 4<br />

• Identified groups:<br />

• Alkene C=C-H 6.08 ppm<br />

• Aldehyde CHO 9.73 ppm<br />

• 3 Methyl groups CH 3<br />

1.04 ppm<br />

CH 3<br />

0.98 ppm<br />

CH 3<br />

0.82 ppm<br />

• Additional <strong>in</strong><strong>for</strong>mation:<br />

• AB sp<strong>in</strong> sytem<br />

• No aromatics<br />

17<br />

Solvent: MeOD<br />

18<br />

Dr. Vatchar<strong>in</strong>’s compound: 1 H <strong>in</strong><strong>for</strong>mation<br />

PROTON<br />

COSYGPSW<br />

Setup a list of identified groups<br />

Isopropyl group<br />

coupl<strong>in</strong>g to 2 of the Methyls<br />

• Molecular <strong>for</strong>mula: C 20<br />

H 28<br />

O 4<br />

• Identified groups:<br />

• Alkene C=C-H 6.08 ppm<br />

• Aldehyde CHO 9.73 ppm<br />

• 3 Methyl groups CH 3<br />

1.04 ppm<br />

CH 3<br />

0.98 ppm<br />

CH 3<br />

0.82 ppm<br />

• isopropyl group (2.34 ppm) coupl<strong>in</strong>g to the first 2 Me’s<br />

Additional <strong>in</strong><strong>for</strong>mation:<br />

• AB sp<strong>in</strong> sytem<br />

• No aromatics<br />

19<br />

20<br />

5


13<br />

C <strong>in</strong><strong>for</strong>mation: chemical shift + multiplicity<br />

1<br />

J CH correlation: multiplicity edited HSQC<br />

HSQCEDETGP<br />

DEPT-135 type <strong>in</strong>fo <strong>in</strong> an <strong>in</strong>verse experiment<br />

aldehyde (folded)<br />

H 2<br />

C-O-<br />

Source:<br />

21<br />

ppm<br />

200 150 100 50 0<br />

E. Breitmaier:<br />

Structure Elucidation by <strong>NMR</strong> <strong>in</strong> Organic Chemistry, John Wiley & Sons<br />

22<br />

alkene<br />

1<br />

J CH correlation: multiplicity edited HSQC<br />

HSQCEDETGP<br />

<strong>in</strong>tegral: 2H’s <strong>in</strong>tegral: 7H’s<br />

Long range correlation: HMBC<br />

HMBCGP<br />

Isopropyl<br />

4 x CH 2<br />

-groups<br />

3 Me-groups<br />

4 x CH<br />

Solvent<br />

<strong>in</strong>fo from edited HSQC:<br />

2 different C’s<br />

aldehyde<br />

23<br />

24<br />

6


13<br />

C and group mapp<strong>in</strong>g: HSQC + HMBC<br />

HSQCEDETGP + HMBCGP<br />

13<br />

C Mapp<strong>in</strong>g: HSQC + HMBC (aliphatic 13 C’s)<br />

HSQCEDETGP + HMBCGP<br />

C-3<br />

alkene<br />

C-2<br />

quaternary<br />

alkene<br />

quaternary carbon C-6<br />

CH-9<br />

CH-8<br />

CH-7<br />

1 H <strong>in</strong>tegration: 1H rather than 3H<br />

Solvent<br />

aliphatic<br />

CHO-1<br />

CH 2<br />

-5<br />

quaternary carbon C-4<br />

O bound C’s<br />

25<br />

26<br />

13<br />

C Mapp<strong>in</strong>g: HSQC + HMBC (aliphatic 13 C’s)<br />

HSQCEDETGP + HMBCGP<br />

13<br />

C and group mapp<strong>in</strong>g: HSQC + HMBC<br />

HSQCEDETGP + HMBCGP<br />

CH 3<br />

-18<br />

C-3<br />

alkene<br />

CH 3<br />

-16<br />

folded aldehyde<br />

CH 3<br />

-17<br />

C-2<br />

quaternary<br />

alkene<br />

CH 2<br />

-12<br />

CH-14<br />

CH 2<br />

-13<br />

CH 2<br />

-15<br />

CH-11<br />

CH 2<br />

-10<br />

real peak-<br />

COOH-19<br />

CHO-1<br />

13<br />

C count: 18… but: C 20<br />

H 28<br />

O 4<br />

possibly overlooked someth<strong>in</strong>g<br />

27<br />

13<br />

C count STILL only: 19… but: C 20<br />

H 28<br />

O 4<br />

possibly overlooked 2 peaks close together = 13 C observe<br />

28<br />

7


Dr. Vatchar<strong>in</strong>’s compound: 13 C chemical shift<br />

C13CPD: 1 night on 600ug on a 400MHz 1.7mm probe<br />

Aldehyde (no ketone, see HSQC)<br />

COOH<br />

does not show up<br />

well - too broad!<br />

Alkene (ed-HSQC)<br />

too big <strong>for</strong> junk<br />

possibly quart. C<br />

(see HMBC)<br />

the 3 Methyl<br />

groups (HSQC)<br />

Dr. Vatchar<strong>in</strong>’s compound: 13 C chemical shift<br />

C13CPD: 1 night on 600ug on a 400MHz 1.7mm probe<br />

C-20<br />

C-4<br />

CH 2<br />

-5<br />

CH 2<br />

-5 C-6<br />

(we know these are two from ed-HSQC)<br />

CH 2<br />

-12<br />

CH-11<br />

CH-8 CH-9<br />

CH<br />

CH-7<br />

2<br />

-10<br />

29<br />

Solvent: MeOD<br />

30<br />

Number (arbitrary)<br />

13 C shift<br />

1 J CH Attached 1 H shift<br />

Group type<br />

Number (arbitrary)<br />

13 C shift<br />

1 J CH Attached 1 H shift<br />

Group type<br />

1<br />

206.0<br />

9.75<br />

-CHO (Aldehyde)<br />

1<br />

206.0<br />

9.75<br />

-CHO (Aldehyde)<br />

2<br />

148.0<br />

--<br />

Alkene Cq=C<br />

2<br />

148.0<br />

--<br />

Alkene Cq=C<br />

3<br />

130.5<br />

6.08<br />

Alkene C=C-H<br />

3<br />

130.5<br />

6.08<br />

Alkene C=C-H<br />

4<br />

74.0<br />

--<br />

Cq<br />

4<br />

74.0<br />

--<br />

Cq<br />

5<br />

66.5<br />

3.90, 3.50<br />

-H 2 C-O (gem<strong>in</strong>al AB)<br />

5<br />

66.5<br />

3.90, 3.50<br />

-H 2 C-O (gem<strong>in</strong>al AB)<br />

6<br />

59.0<br />

--<br />

Cq<br />

6<br />

59.0<br />

--<br />

Cq<br />

7<br />

46.9<br />

2.53<br />

CH<br />

7<br />

46.9<br />

2.53<br />

CH<br />

8<br />

9<br />

10<br />

11<br />

41.3<br />

41.2<br />

31.8<br />

31.1<br />

List of identified groups = C 20<br />

H 28<br />

O 4<br />

COOH<br />

2.07<br />

1.81<br />

2.05, 1.24<br />

2.10<br />

CH<br />

CH<br />

CH 2<br />

CH<br />

8<br />

9<br />

10<br />

11<br />

List of identified groups = C 20<br />

H 28<br />

O 4<br />

COOH<br />

41.3<br />

2.07<br />

41.2<br />

1.81<br />

Σ Oxygens = 4, OK!<br />

31.8<br />

2.05, 1.24<br />

Σ Protons 31.1 = 27… 2.10<br />

CH<br />

CH<br />

CH 2<br />

CH<br />

12<br />

29.2<br />

1.91, 1.23<br />

CH 2<br />

12<br />

29.2<br />

1.91, 1.23<br />

CH 2<br />

13<br />

14<br />

15<br />

28.0<br />

27.5<br />

26.2<br />

2.00, 1.72<br />

2.35<br />

1.92, 0.98<br />

CH 2<br />

CH (isopropyl)<br />

CH 2<br />

13<br />

14<br />

15<br />

28.0<br />

2.00, 1.72<br />

27.5<br />

2.35<br />

⇒1H possibly OH<br />

26.2<br />

1.92, 0.98<br />

CH 2<br />

CH (isopropyl)<br />

CH 2<br />

16<br />

22.1<br />

0.97<br />

CH 3 (isopropyl)<br />

16<br />

22.1<br />

0.97<br />

CH 3 (isopropyl)<br />

17<br />

20.6<br />

1.04<br />

CH 3 (isopropyl)<br />

17<br />

20.6<br />

1.04<br />

CH 3 (isopropyl)<br />

18<br />

16.9<br />

0.82<br />

CH 3<br />

18<br />

16.9<br />

0.82<br />

CH 3<br />

19<br />

176.5<br />

--<br />

19<br />

176.5<br />

--<br />

31 20<br />

66.5<br />

--<br />

Cq<br />

32 20<br />

66.5<br />

--<br />

Cq<br />

8


Identification of gem<strong>in</strong>al CP’s <strong>in</strong> DQF-COSY<br />

COSYDQFPHSW: 5h on 600ug on a 400MHz 1.7mm probe (512 td)<br />

Identification of sp<strong>in</strong> systems TOCSY<br />

MLEVPHSW: 1h on 600ug on a 400MHz 1.7mm probe<br />

C 15 H 2<br />

34<br />

C 13 H 2<br />

C 10 C<br />

H 12 H 2<br />

2<br />

HO-C 5 H 2<br />

C=C 3 H<br />

C 7 H C 12 H 2<br />

C 7 H<br />

isopropyl<br />

C 14 H C 16 H 3 C 17 H 3<br />

33<br />

C 12 H 2<br />

TopSp<strong>in</strong>: Peak annotation and l<strong>in</strong>ked cursors<br />

Analysis → Peak pick<strong>in</strong>g → Manual peak pick<strong>in</strong>g / Arrange w<strong>in</strong>dows<br />

Identification of Fragments: HMBC<br />

HMBCGP: a long night on 0.6mg on a 400MHz 1.7mm probe<br />

C=C 3 H<br />

C 16 H 3<br />

C 14 H (isopropyl)<br />

C 7 H<br />

Cq 6<br />

C 5 H<br />

Cq 4<br />

…only 2 J CH , 3 J CH<br />

sometimes 4 J CH<br />

Cq 2 =<br />

C 19 (COOH)<br />

35<br />

36<br />

9


TopSp<strong>in</strong>: Peak annotations / l<strong>in</strong>ked w<strong>in</strong>dows<br />

Analysis → Peak pick<strong>in</strong>g → Manual peak pick<strong>in</strong>g / Arrange w<strong>in</strong>dows<br />

TopSp<strong>in</strong>: Peak annotation and l<strong>in</strong>ked cursors<br />

Analysis → Peak pick<strong>in</strong>g → Manual peak pick<strong>in</strong>g / Arrange w<strong>in</strong>dows<br />

Also use COSY <strong>in</strong><strong>for</strong>mation<br />

<strong>in</strong> overlapped regions<br />

37<br />

38<br />

<strong>NMR</strong> Standard parameter-set:<br />

rpar …<br />

PROTON<br />

C13CPD, C13DEPT135<br />

High Res. MS, Elemental Analysis<br />

(MW and DBE)<br />

1<br />

H <strong>NMR</strong><br />

(<strong>in</strong>tegrals, 1 H <strong>in</strong>fo: some functional groups)<br />

13<br />

C <strong>NMR</strong>, DEPT<br />

( 13 C <strong>in</strong>fo: some functional groups and features)<br />

L<strong>in</strong>k<strong>in</strong>g the fragments HMBC / H2BC<br />

Heteronuclear 2-bond correlations<br />

• enhancement of correlations over two bonds<br />

• suppress<strong>in</strong>g correlations over more bonds<br />

HSQCEDETGPSI (TS)<br />

INVIEDETGPSISW (XW)<br />

COSYGPSW, COSYDFGPPHSW<br />

HMBCGP (TS)<br />

INV4GPLPLRNDSW (XW)<br />

MLEVPHSW<br />

(DQF)COSY + (ed)HSQC<br />

(fragments, 13 C multiplicity)<br />

HMBC + TOCSY “new” experiment:<br />

(connect<strong>in</strong>g the dots, 13 C <strong>in</strong>fo) H2BC<br />

ROESYPHSW + roesyph.2<br />

<strong>for</strong> up to 400MHz<br />

NOESYPHSW<br />

<strong>for</strong> 500MHZ and up<br />

39<br />

ROESY / NOESY<br />

(stereochemistry)<br />

3rd order low-pass J filter <strong>for</strong> correlat<strong>in</strong>g 1 H and 13 C nuclei<br />

via 1 J CH and 1 H- 1 H coupl<strong>in</strong>gs. No 2 J CH <strong>in</strong>volved!<br />

Nils T. 40Nyberg, Jens Ø. Duus, Ole W. Sorensen J. Am. Chem. Soc. 127 6154-6155 (2005)<br />

10


2-Bond correlation – so what<br />

HSQCGP: and change pulseprogram to: h2bccteal3<br />

C 14 H (isopropyl)<br />

C 14 H-C 17 H<br />

C 14 H-C 16 H<br />

covalent bond!<br />

• Overlay HMBC / H2BC<br />

• Dist<strong>in</strong>guish between<br />

2 bond and 3 bond CP<br />

• Observe 2 bond CP<br />

even when they are<br />

miss<strong>in</strong>g <strong>in</strong> HMBC<br />

(vanish<strong>in</strong>g 2 J CH )<br />

2-Bond correlation – so what<br />

HSQCGP: and change pulseprogram to: h2bccteal3<br />

C 12 H<br />

covalent bond!<br />

• Step through HSQC and<br />

H2BC overlaid<br />

like through a COSY<br />

• Start from HSQC CP and<br />

use H2BC CP as relay<br />

po<strong>in</strong>ts<br />

• No correlation to<br />

quaternary carbons<br />

C 7 H<br />

C 7 H-C 12 H<br />

Nils T. 41Nyberg, Jens Ø. Duus, Ole W. Sorensen J. Am. Chem. Soc. 127 6154-6155 (2005)<br />

Nils T. 42Nyberg, Jens Ø. Duus, Ole W. Sorensen J. Am. Chem. Soc. 127 6154-6155 (2005)<br />

Some fragments of C 20 H 28 O 4<br />

Putt<strong>in</strong>g together the fragments of C 20 H 28 O 4<br />

O<br />

OH<br />

19<br />

*<br />

*<br />

OH<br />

5<br />

20<br />

4<br />

*<br />

*<br />

13<br />

*<br />

9<br />

*<br />

8<br />

11<br />

CH 3<br />

18<br />

15<br />

10<br />

• Application of the rule <strong>for</strong> double-bond equivalents (DBE):<br />

2a<br />

+ 2 + d − b 2*20 + 2 − 28<br />

CaHbOc<br />

N DBE =<br />

=<br />

= 7<br />

d<br />

2<br />

2<br />

H 316 C<br />

14<br />

H 317 C<br />

*<br />

3<br />

2<br />

*<br />

*<br />

6<br />

*<br />

CH 3<br />

12<br />

1<br />

O<br />

H<br />

*<br />

7 *<br />

* *<br />

• 3 DBE’s are used by: CHO, COOH and C=C<br />

⇒ 4 r<strong>in</strong>g closures are left <strong>for</strong> C 20 H 28 O 4<br />

43<br />

44<br />

11


The structure of C 20 H 28 O 4 :<br />

… after quite some detective work …<br />

<strong>NMR</strong> Standard parameter-set:<br />

rpar …<br />

PROTON<br />

High Res. MS, Elemental Analysis<br />

(MW and DBE)<br />

1<br />

H <strong>NMR</strong><br />

(<strong>in</strong>tegrals, 1 H <strong>in</strong>fo: some functional groups)<br />

OH<br />

OH<br />

5<br />

20<br />

13<br />

H<br />

9<br />

11<br />

CH 3<br />

18<br />

C13CPD, C13DEPT135<br />

13<br />

C <strong>NMR</strong>, DEPT<br />

( 13 C <strong>in</strong>fo: some functional groups and features)<br />

45<br />

H C 3<br />

16<br />

14<br />

H C 3<br />

17<br />

19<br />

O<br />

2<br />

3<br />

4<br />

7<br />

6<br />

12<br />

8<br />

H<br />

1<br />

O<br />

H<br />

15<br />

10<br />

HSQCEDETGPSI (TS)<br />

INVIEDETGPSISW (XW)<br />

COSYGPSW, COSYDFGPPHSW<br />

HMBCGP (TS)<br />

INV4GPLPLRNDSW (XW)<br />

MLEVPHSW<br />

ROESYPHSW + roesyph.2<br />

<strong>for</strong> up to 400MHz<br />

NOESYPHSW<br />

<strong>for</strong> 500MHZ and up<br />

46<br />

(DQF)COSY + (ed)HSQC<br />

(fragments, 13 C multiplicity)<br />

HMBC + TOCSY “new” experiment:<br />

(connect<strong>in</strong>g the dots, 13 C <strong>in</strong>fo) H2BC<br />

ROESY / NOESY<br />

(stereochemistry)<br />

ROESY / NOESY <strong>for</strong> stereochemistry<br />

cross peak<br />

<strong>in</strong>tensity<br />

with respect<br />

to<br />

diagonal peak<br />

-0.2<br />

1.0 ω 0 τ 1.0<br />

c<br />

ω 0 τ c<br />

molecule size: ← sm<strong>all</strong>er larger → ← sm<strong>all</strong>er larger →<br />

temperature: ← higher lower → ← higher lower →<br />

47<br />

ω 0<br />

τ c<br />

NOESY<br />

0.5<br />

= spectrometer frequency<br />

-0.2<br />

ROESY<br />

positive<br />

= rotational correlation time<br />

(proportional to molecular size, temperature dependent)<br />

negative<br />

ROESY spectrum <strong>for</strong> stereochemistry<br />

ROESYPHSW: 4h on ca. 0.6mg on a 400MHz 1.7mm MicroProbe<br />

48<br />

C 18 H3 --- C 10 Ha<br />

the CH 3 group C 18 and<br />

Ha on C 10 are on the same side<br />

…<br />

C 18 H3 --- C 10 Ha<br />

12


The absolute Stereochemistry of C 20 H 28 O 4 :<br />

Some HMBC correlations <strong>in</strong> C 20 H 28 O 4 :<br />

OH<br />

OH<br />

5<br />

20<br />

13<br />

H<br />

9<br />

11<br />

CH 3<br />

18<br />

OH<br />

OH<br />

5<br />

20<br />

13<br />

H<br />

9<br />

11<br />

CH 3<br />

18<br />

H C 3<br />

16<br />

14<br />

H C 3<br />

17<br />

19<br />

O<br />

2<br />

3<br />

4<br />

7<br />

6<br />

12<br />

8<br />

H<br />

1<br />

O<br />

H<br />

15<br />

10<br />

H C 3<br />

16<br />

14<br />

H C 3<br />

17<br />

19<br />

O<br />

2<br />

3<br />

4<br />

7<br />

6<br />

12<br />

8<br />

H<br />

1<br />

O<br />

H<br />

15<br />

10<br />

also<br />

4<br />

J CH coupl<strong>in</strong>gs<br />

are observable!<br />

49<br />

50<br />

Thank you very much …<br />

Dr. Vatchar<strong>in</strong><br />

Lukas Oberer<br />

Sandra Loss, Matthias Pelz<strong>in</strong>g<br />

www.bruker-biosp<strong>in</strong>.com<br />

51<br />

52<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!