22.01.2015 Views

Maximizing Secondary Wet Weather Treatment Capacity at ... - pncwa

Maximizing Secondary Wet Weather Treatment Capacity at ... - pncwa

Maximizing Secondary Wet Weather Treatment Capacity at ... - pncwa

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Maximizing</strong> <strong>Secondary</strong> <strong>Wet</strong> <strong>We<strong>at</strong>her</strong><br />

<strong>Capacity</strong> <strong>at</strong> the Columbia Boulevard<br />

Wastew<strong>at</strong>er <strong>Tre<strong>at</strong>ment</strong> Plant<br />

Adrienne Menniti 1 , Bruce Johnson 1 , Glen Daigger 1 ,<br />

Samuel Jeyanayagam 1 , Lynne Chicoine 1 , Paul Suto 2 , Vu<br />

Han 2 , Chris Selker 2 , Mike Stebbins 2 , Mike Ciolli 2<br />

1. CH2M HILL <br />

2. City of Portland Bureau of Environmental Services


Portland Rain Fall P<strong>at</strong>terns<br />

70<br />

60<br />

We don’t get more total rain than other ciBes…. <br />

Yearly Total Rainfall (in)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

New York, NY Miami, FL Boise, ID Se<strong>at</strong>tle, WA Portland, OR<br />

Average from 1971-­‐2000 d<strong>at</strong>a from NOAA <br />

2


Portland Rainfall P<strong>at</strong>terns<br />

180<br />

We get lower intensity rain more oLen <br />

150<br />

Annual Days of Rain<br />

120<br />

90<br />

60<br />

30<br />

0<br />

New York, NY Miami, FL Boise, ID Se<strong>at</strong>tle, WA Portland, OR<br />

Average from 1981-­‐2010, d<strong>at</strong>a from NOAA <br />

3


Portland Rainfall P<strong>at</strong>terns<br />

Plant Influent Flow (mgd)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Seasonal we<strong>at</strong>her paRerns transl<strong>at</strong>e to highly <br />

variable influent flows all winter long <br />

0<br />

12/25/2008 4/28/2009 8/30/2009 1/1/2010 5/5/2010 9/6/2010<br />

D<strong>at</strong>e<br />

4


Columbia Boulevard WWTP<br />

Largest wastew<strong>at</strong>er tre<strong>at</strong>ment plant in Oregon<br />

– Average Winter Flow = 90 mgd<br />

Serves 614,000 people<br />

Discharges to the Columbia River<br />

Recent CSO storage improvements covey more<br />

wet we<strong>at</strong>her flows to tre<strong>at</strong>ment plant, increasing<br />

peak flow from 300 mgd to 450 mgd<br />

5


Columbia Boulevard WWTP<br />

Dry <strong>We<strong>at</strong>her</strong> <strong>Tre<strong>at</strong>ment</strong> Train<br />

8 Parallel <br />

Aera8on Basins <br />

8 Square <br />

<strong>Secondary</strong> Clarifiers <br />

Permit <br />

Limits Monthly (mg/L) Weekly (mg/L) <br />

BOD 30 45 <br />

TSS 30 45 <br />

Includes sodium hypochlorite disinfec8on <br />

Headworks <br />

Dry <strong>We<strong>at</strong>her</strong> <br />

Primary Clarifiers <br />

6


Columbia Boulevard WWTP<br />

<strong>Wet</strong> <strong>We<strong>at</strong>her</strong> <strong>Tre<strong>at</strong>ment</strong> Train<br />

The wet we<strong>at</strong>her primary clarifiers also provide storage for excess wet we<strong>at</strong>her flow <br />

during small rain events <br />

<strong>Wet</strong> <strong>We<strong>at</strong>her</strong> <br />

Chemically Enhanced <br />

Primary Clarifiers <br />

Permit <br />

Limits Monthly (mg/L) Weekly (mg/L) <br />

BOD 45 65 <br />

TSS 45 65 <br />

<strong>Wet</strong> <strong>We<strong>at</strong>her</strong> <br />

Screening Facility <br />

Headworks <br />

Includes sodium hypochlorite disinfec8on<br />

7 <br />

<br />

7


CBWTP Aims to Maximizes Flow Receiving <strong>Secondary</strong><br />

<strong>Tre<strong>at</strong>ment</strong><br />

300<br />

Influent Flow<br />

<strong>Secondary</strong> Flow<br />

250<br />

Plant is regularly pushing<br />

secondary tre<strong>at</strong>ment capacity<br />

to achieve this goal<br />

Flow (mgd)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

12/25/2008 4/28/2009 8/30/2009 1/1/2010 5/5/2010 9/6/2010<br />

D<strong>at</strong>e<br />

8


Challenges to <strong>Maximizing</strong> <strong>Secondary</strong> <strong>Tre<strong>at</strong>ment</strong><br />

1. High historical SVI values<br />

600<br />

500<br />

Design SVI = 200 mL/g<br />

SVI (mL/g)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

12/25/2008 4/28/2009 8/30/2009 1/1/2010 5/5/2010 9/6/2010<br />

D<strong>at</strong>e<br />

9


Challenges to <strong>Maximizing</strong> <strong>Secondary</strong> <strong>Tre<strong>at</strong>ment</strong><br />

2. Lack of Autom<strong>at</strong>ion in <strong>Secondary</strong> Process (wasting, DO control)<br />

600<br />

SVI (mL/g)<br />

500<br />

400<br />

300<br />

200<br />

Extreme SVI excursion caused<br />

by manual wasting approach.<br />

Plant over wasted during a<br />

strong rain event, washing out<br />

selector.<br />

100<br />

0<br />

12/25/2008 4/28/2009 8/30/2009 1/1/2010 5/5/2010 9/6/2010<br />

D<strong>at</strong>e<br />

10


Challenges to <strong>Maximizing</strong> <strong>Secondary</strong> <strong>Tre<strong>at</strong>ment</strong><br />

3. Lack of <strong>Wet</strong> <strong>We<strong>at</strong>her</strong> Oper<strong>at</strong>ing Modes<br />

All the g<strong>at</strong>es along the old complete mix<br />

distribution channel must be opened manually<br />

to step feed flow on current basins<br />

11


Challenges to <strong>Maximizing</strong> <strong>Secondary</strong> <strong>Tre<strong>at</strong>ment</strong><br />

4. Poor clarifier design and performance<br />

Shallow (12.5 ft deep), square, peripheral-feed, peripheral-withdraw<br />

Effluent <br />

Feed <br />

12


Project Goals<br />

1. Maximize peak flow tre<strong>at</strong>ed through secondary<br />

process<br />

Provide wet we<strong>at</strong>her oper<strong>at</strong>ing modes<br />

2. Maintain stable oper<strong>at</strong>ion during all flow conditions<br />

Maintain well settling sludge across all oper<strong>at</strong>ing modes, provide<br />

tools to address settleability issues<br />

3. Simple oper<strong>at</strong>ion and intuitive control<br />

Decision to shift oper<strong>at</strong>ing mode is intuitive, solutions are simple<br />

and robust to oper<strong>at</strong>e<br />

4. Improve secondary clarifier performance<br />

Use CFD to evalu<strong>at</strong>e potential clarifier improvements<br />

13


Project Goals<br />

1. Maximize peak flow tre<strong>at</strong>ed through secondary<br />

process<br />

Provide wet we<strong>at</strong>her oper<strong>at</strong>ing modes<br />

14


Two Types of <strong>Wet</strong> <strong>We<strong>at</strong>her</strong> Events<br />

1. Several small to moder<strong>at</strong>e rain events with dry we<strong>at</strong>her in between<br />

400<br />

Influent Flow<br />

Plant Influent Flow (mgd)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

5/12 5/17 5/22 5/27 6/1 6/6 6/11 6/16<br />

Time (days)<br />

15


Two Types of <strong>Wet</strong> <strong>We<strong>at</strong>her</strong> Events<br />

2. Long rain events th<strong>at</strong> fills the CSO storage tunnels<br />

300<br />

Influent Flow<br />

Plant Influent Flow (mgd)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Completion of CSO storage tunnel project<br />

in Nov. 2011 increased peak and dur<strong>at</strong>ion<br />

0<br />

3/28 3/29 3/30 3/31 4/1 4/2<br />

Time (days)<br />

16


Two <strong>Wet</strong> <strong>We<strong>at</strong>her</strong> Oper<strong>at</strong>ing Modes<br />

Step feed is the normal oper<strong>at</strong>ing mode<br />

RAS<br />

1 2 3 4 5 6 7<br />

65% 35%<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

Aerobic RAS Storage<br />

Primary Effluent<br />

Pipe Bridge<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic<br />

<strong>Wet</strong> we<strong>at</strong>her maximum month tre<strong>at</strong>ment capacity = 98 mgd<br />

with 40% clarifier der<strong>at</strong>ing factor<br />

17


Two <strong>Wet</strong> <strong>We<strong>at</strong>her</strong> Oper<strong>at</strong>ing Modes<br />

<strong>Wet</strong> <strong>We<strong>at</strong>her</strong> Step feed is provided for use during small to medium rain events<br />

• Constant flow maintained to zone 1<br />

• Remaining flow pushed to zone 6<br />

• Avoids an oper<strong>at</strong>ing mode shift for typical rain events<br />

RAS<br />

Adjustable set point<br />

1 2 3 4 5 6 7<br />

Remaining Flow<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

Aerobic RAS Storage<br />

Primary Effluent<br />

Pipe Bridge<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic<br />

<strong>Wet</strong> we<strong>at</strong>her maximum month tre<strong>at</strong>ment capacity = 110 mgd<br />

with 40% clarifier der<strong>at</strong>ing factor<br />

18


Two <strong>Wet</strong> <strong>We<strong>at</strong>her</strong> Oper<strong>at</strong>ing Modes<br />

Step feed with RAS Storage is provided for use during large rain events<br />

• Upstream feed point shifted to zone 2<br />

• Provides storage of RAS to protect inventory from washout<br />

• Further reduces clarifier solids loading r<strong>at</strong>e<br />

RAS<br />

1 2 3 4 5 6 7<br />

65% 35%<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

Aerobic RAS Storage<br />

Primary Effluent<br />

Pipe Bridge<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic<br />

<strong>Wet</strong> we<strong>at</strong>her maximum month tre<strong>at</strong>ment capacity = 116 mgd<br />

with 40% clarifier der<strong>at</strong>ing factor<br />

19


Project Goals<br />

1. Maximize peak flow tre<strong>at</strong>ed through secondary<br />

process<br />

Provide wet we<strong>at</strong>her oper<strong>at</strong>ing modes<br />

2. Maintain stable oper<strong>at</strong>ion during all flow conditions<br />

Maintain well settling sludge across all oper<strong>at</strong>ing modes, provide<br />

tools to address settleability issues<br />

20


Maintain Well Settling Sludge<br />

Two types of selectors provided:<br />

Anaerobic selector <strong>at</strong> Zones 1 and 2<br />

Aerobic selector <strong>at</strong> Zone 6<br />

RAS<br />

1 2 3 4 5 6 7<br />

65% 35%<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

Aerobic RAS Storage<br />

Primary Effluent<br />

Encourages PAO growth to<br />

remove soluble BOD<br />

anaerobically.<br />

Pipe Bridge<br />

Small, baffled zone cre<strong>at</strong>es<br />

high F:M, encouraging rapid<br />

uptake and storage of soluble<br />

BOD by heterotrophs<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic<br />

21


Maintain Well Settling Sludge<br />

Autom<strong>at</strong>ed SRT control incorpor<strong>at</strong>ed into design to avoid<br />

washing out anaerobic selector<br />

RAS<br />

TSS Probe<br />

RAS BOX<br />

WAS<br />

TSS Probe<br />

TSS Probe<br />

RAS<br />

1 2 3 4 5 6 7<br />

65% 35%<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

TSS Probe<br />

TSS Probe<br />

Aerobic RAS Storage<br />

Primary Effluent<br />

Pipe Bridge<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic<br />

22


Provide Tools for Sludge Settleability Control<br />

Highly oxygen<strong>at</strong>ed wet we<strong>at</strong>her flows can disrupt the anaerobic zone<br />

RAS<br />

1 2 3 4 5 6 7<br />

65% 35%<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

Aerobic RAS Storage<br />

Primary Effluent<br />

Anaerobic/aerobic swing zone<br />

maintains sufficient anaerobic<br />

SRT under these conditions<br />

Pipe Bridge<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic<br />

23


Provide Tools for Sludge Settleability Control<br />

Influent VFAs can decrease during wet we<strong>at</strong>her making<br />

selector difficult to maintain<br />

RAS<br />

1 2 3 4 5 6 7<br />

65% 35%<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

Aerobic RAS Storage<br />

Primary Effluent<br />

Pipe Bridge<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic RAS storage zone can be<br />

intermittently aer<strong>at</strong>ed to increase VFA<br />

production during long rain events<br />

Thanks to Dr. David Stensel for this idea!<br />

Aerobic<br />

24


Project Goals<br />

1. Maximize peak flow tre<strong>at</strong>ed through secondary<br />

process<br />

Provide wet we<strong>at</strong>her oper<strong>at</strong>ing modes<br />

2. Maintain stable oper<strong>at</strong>ion during all flow conditions<br />

Maintain well settling sludge across all oper<strong>at</strong>ing modes, provide<br />

tools to address settleability issues<br />

3. Simple oper<strong>at</strong>ion and intuitive control<br />

Decision to shift oper<strong>at</strong>ing mode is intuitive, solutions are simple<br />

and robust to oper<strong>at</strong>e<br />

25


Decision to Shift Oper<strong>at</strong>ing Mode is Intuitive<br />

During wet we<strong>at</strong>her events, plant staff set flow r<strong>at</strong>e to secondary process<br />

Plant Influent<br />

<strong>Secondary</strong> Influent<br />

400<br />

350<br />

300<br />

Flow (mgd)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

MLSS Inventory<br />

Time (days)<br />

<strong>Secondary</strong> Process BOD Loading<br />

26


Decision to Shift Oper<strong>at</strong>ing Mode is Intuitive<br />

The maximum flow r<strong>at</strong>e to Zone 1 is also an oper<strong>at</strong>or set point. Excess flow is<br />

autom<strong>at</strong>ically directed to Zone 6 of each basin.<br />

So, oper<strong>at</strong>ors don’t need to initi<strong>at</strong>e the change to wet we<strong>at</strong>her step feed.<br />

Shift to Step Feed with RAS Storage is manually initi<strong>at</strong>ed but<br />

autom<strong>at</strong>ically executed<br />

RAS<br />

Adjustable set point<br />

1 2 3 4 5 6 7<br />

Remaining Flow<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

Aerobic RAS Storage<br />

Primary Effluent<br />

Pipe Bridge<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic<br />

27


Additional Tools to Maximize <strong>Secondary</strong> <strong>Tre<strong>at</strong>ment</strong><br />

Instrument<strong>at</strong>ion provided for SRT and stepfeed control allows tracking of<br />

clarifier solids loading r<strong>at</strong>e<br />

Channel Flow<br />

Meter<br />

RAS<br />

TSS Probe<br />

1 2 3 4 5 6 7<br />

65% 35%<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

RAS<br />

1 2 3 4<br />

5<br />

6<br />

7<br />

To <strong>Secondary</strong><br />

Clarifiers<br />

Channel Flow<br />

Meter<br />

Primary Effluent<br />

Channel Flow<br />

Meter<br />

Pipe Bridge<br />

TSS Probe<br />

Aerobic RAS Storage<br />

Anaerobic<br />

Anaerobic/aerobic swing<br />

Aerobic<br />

Long term experience may allow an autom<strong>at</strong>ed control str<strong>at</strong>egy to adjust the<br />

secondary process flow based on clarifier solids loading r<strong>at</strong>e<br />

28


Project Goals<br />

1. Maximize peak flow tre<strong>at</strong>ed through secondary<br />

process<br />

Provide wet we<strong>at</strong>her oper<strong>at</strong>ing modes<br />

2. Maintain stable oper<strong>at</strong>ion during all flow conditions<br />

Maintain well settling sludge across all oper<strong>at</strong>ing modes, provide<br />

tools to address settleability issues<br />

3. Simple oper<strong>at</strong>ion and intuitive control<br />

Decision to shift oper<strong>at</strong>ing mode is intuitive, solutions are simple<br />

and robust to oper<strong>at</strong>e<br />

4. Improve secondary clarifier performance<br />

Use CFD to evalu<strong>at</strong>e potential clarifier improvements<br />

29


Clarifier Assessment Approach<br />

1. Use historical d<strong>at</strong>a to understand clarifier<br />

performance<br />

2. Perform clarifier stress testing to calibr<strong>at</strong>e CFD<br />

model<br />

3. Use CFD to determine clarifier failure mechanism<br />

4. Evalu<strong>at</strong>e potential improvements using CFD<br />

30


Clarifier <strong>Capacity</strong> Analysis Based on Historical D<strong>at</strong>a<br />

March 2010 Rain Event Allowed Historical Stress Testing<br />

<strong>Secondary</strong> Flow R<strong>at</strong>e <br />

Blanket Depth <br />

<strong>Secondary</strong> Flow R<strong>at</strong>e (MGD)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Peak flow event provided consistent<br />

secondary flow for 3 days<br />

3/26/2010 3/27/2010 3/28/2010 3/29/2010 3/30/2010 3/31/2010 4/1/2010 4/2/2010 4/3/2010<br />

Blanket Depth (ft)<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Clarifier blanket meters show a strong<br />

increase in blanket depth during storm<br />

3/26/2010 3/27/2010 3/28/2010 3/29/2010 3/30/2010 3/31/2010 4/1/2010 4/2/2010 4/3/2010<br />

31


Clarifier <strong>Capacity</strong> Analysis Based on Historical D<strong>at</strong>a<br />

March 2010 Rain Event Allowed Historical Stress Testing<br />

7.0<br />

15 3/27/2010 3/28/2010 3/29/2010 3/30/2010 3/31/2010 4/1/2010<br />

3/27/2010 SVI = 205 mL/g<br />

6.0<br />

Blanket Depth (ft)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0<br />

Clarifier SLR (ppd/sf)<br />

32


Clarifier <strong>Capacity</strong> Analysis Based on Historical D<strong>at</strong>a<br />

March 2010 Rain Event Allowed Historical Stress Testing<br />

7.0<br />

6.0<br />

3/27/2010 SVI = 205 mL/g<br />

3/28/2010 SVI = 202 mL/g<br />

15 3/27/2010 3/28/2010 3/29/2010 3/30/2010 3/31/2010 4/1/2010<br />

Blanket Depth (ft)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0<br />

Clarifier SLR (ppd/sf)<br />

33


Clarifier <strong>Capacity</strong> Analysis Based on Historical D<strong>at</strong>a<br />

March 2010 Rain Event Allowed Historical Stress Testing<br />

7.0<br />

6.0<br />

15 3/27/2010 3/28/2010 3/29/2010 3/30/2010 3/31/2010 4/1/2010<br />

3/27/2010 SVI = 205 mL/g<br />

3/28/2010 SVI = 202 mL/g<br />

Blanket Depth (ft)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0<br />

Clarifier SLR (ppd/sf)<br />

34


Clarifier <strong>Capacity</strong> Analysis Based on Historical D<strong>at</strong>a<br />

March 2010 Rain Event Allowed Historical Stress Testing<br />

7.0<br />

6.0<br />

15 3/27/2010 3/28/2010 3/29/2010 3/30/2010 3/31/2010 4/1/2010<br />

3/27/2010 SVI = 205 mL/g<br />

3/28/2010 SVI = 202 mL/g<br />

3/29/2010 SVI = 213 mL/g<br />

Blanket Depth (ft)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

Solids flux analysis - the clarifiers failed <strong>at</strong> a<br />

point 40% less than the theoretical capacity<br />

1.0<br />

0.0<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0<br />

Clarifier SLR (ppd/sf)<br />

35


Clarifier Failure Mechanism<br />

Failure exacerb<strong>at</strong>ed <strong>at</strong> high SVI because the sludge blanket is less dense<br />

At failure, dispersed layer extends<br />

throughout clarifier and outlet<br />

arrangement carries TSS over weir<br />

` <br />

The turbulence<br />

cre<strong>at</strong>es a dispersed<br />

sludge layer above<br />

the thick blanket <strong>at</strong><br />

high flows<br />

Influent flow jets into<br />

the sludge blanket<br />

36


Clarifier Failure Mechanism<br />

Also used CFD to define clarifier capacity<br />

Effluent TSS (mg/L)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Solids flux analysis with CFD results - the<br />

clarifiers failed <strong>at</strong> a point 20% less than the<br />

theoretical capacity<br />

The design is flexible enough to<br />

accommod<strong>at</strong>e higher clarifier capacity<br />

0<br />

10 12 14 16 18 20 22<br />

Clarifier Solids Loading R<strong>at</strong>e (ppd/sf)<br />

37


Clarifier Improvements<br />

Examined Modified Baffle Design<br />

Original baffle arrangement<br />

Modified baffle arrangement<br />

Effluent <br />

Effluent <br />

Avoids upflow<br />

cre<strong>at</strong>ed by inlet<br />

Feed <br />

Feed <br />

Protects sludge<br />

blanket from influent<br />

energy<br />

38


Clarifier Improvements<br />

Failure mechanism the same with modified baffle<br />

Effluent TSS (mg/L)<br />

180<br />

150<br />

120<br />

90<br />

60<br />

Original Baffle<br />

Modified Baffle<br />

Modified baffle doesn’t increase capacity, it reduces the<br />

severity of clarifier failure<br />

No modific<strong>at</strong>ions to secondary clarifiers in<br />

this project<br />

30<br />

0<br />

Pre-failure<br />

At failure<br />

39


Conclusion<br />

1. Project is currently under construction and will come<br />

online by June of 2014<br />

2. CFD helped us understand clarifier failure mechanism<br />

but no cost effective improvements found<br />

3. <strong>Wet</strong> we<strong>at</strong>her flows receiving secondary tre<strong>at</strong>ment will<br />

be maximized by:<br />

– Incorpor<strong>at</strong>ing step feed for normal oper<strong>at</strong>ion and two wet we<strong>at</strong>her<br />

oper<strong>at</strong>ing modes<br />

– Addressing sludge settleability issues and providing tools to<br />

maintain well settling sludge<br />

– Implementing a high degree of autom<strong>at</strong>ion to accommod<strong>at</strong>e the<br />

highly dynamic winter time flows and simplify tre<strong>at</strong>ment plant<br />

oper<strong>at</strong>ion<br />

40


Thank You!<br />

Questions<br />

Contact InformaBon <br />

adrienne.menniti@ch2m.com


St<strong>at</strong>e Point Analysis to Define Clarifier <strong>Capacity</strong><br />

Solids Loading R<strong>at</strong>e <br />

30<br />

25<br />

= 25.9 ppd/L 2 20<br />

Slope = -­‐ RAS r<strong>at</strong>e = 40 MGD <br />

15<br />

10<br />

Depends on SVI <br />

Mass Flux R<strong>at</strong>e, lbs/day/ft2<br />

5<br />

Slope = overflow r<strong>at</strong>e = 1,000 gpd/<br />

L 2 <br />

SVI = 205 mL/g <br />

Ideal Clarifier <br />

Q inf = 125 MGD <br />

MLSS = 2,350 mg/L <br />

SVI = 205 mL/g <br />

RAS = 40 MGD <br />

SLR = 25.9 ppd/L 2 <br />

0<br />

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000<br />

Concentr<strong>at</strong>ion, mg/L<br />

30<br />

25<br />

Solids flux analysis - the clarifiers failed <strong>at</strong> a<br />

point 40% less than the theoretical capacity<br />

20<br />

15<br />

= 15.2 ppd/L 2 <br />

Solids Loading R<strong>at</strong>e <br />

Mass Flux R<strong>at</strong>e, lbs/day/ft2<br />

10<br />

5<br />

40% deraBng <br />

Q inf = 125 MGD <br />

MLSS = 1,380 mg/L <br />

SVI = 205 mL/g <br />

RAS = 40 MGD <br />

SLR = 15.2 ppd/L 2 <br />

0<br />

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000<br />

Concentr<strong>at</strong>ion, mg/L

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!