22.01.2015 Views

Information Theory for Molecular Communication ... - N3Cat - UPC

Information Theory for Molecular Communication ... - N3Cat - UPC

Information Theory for Molecular Communication ... - N3Cat - UPC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>In<strong>for</strong>mation</strong> <strong>Theory</strong> <strong>for</strong> <strong>Molecular</strong><br />

<strong>Communication</strong> in Nanonetworks<br />

Massimiliano Pierobon<br />

Georgia Institute of Technology<br />

maxp@gatech.edu


Towards an <strong>In<strong>for</strong>mation</strong> <strong>Theory</strong> <strong>for</strong><br />

<strong>Molecular</strong> <strong>Communication</strong><br />

• Physical Channel Model<br />

• How in<strong>for</strong>mation is transmitted, propagated and received<br />

when a molecular carrier is used<br />

• Noise Representation<br />

• How can be physically and mathematically expressed the<br />

noise affecting in<strong>for</strong>mation transmitted through molecular<br />

communication<br />

• <strong>In<strong>for</strong>mation</strong> Encoding/Decoding<br />

• How can in<strong>for</strong>mation be encoded <strong>for</strong> a proper transmission<br />

using molecular communication<br />

<strong>Molecular</strong><br />

Channel<br />

Capacity<br />

JMJM MP<br />

GaTech - <strong>UPC</strong><br />

2


Physical Channel Model: Molecule Diffusion<br />

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model<br />

<strong>for</strong> <strong>Molecular</strong> <strong>Communication</strong> in Nanonetworks,’’<br />

submitted <strong>for</strong> journal publication, March 2009.<br />

• Molecule Diffusion <strong>Communication</strong>: Exchange of in<strong>for</strong>mation encoded<br />

in the concentration variations of molecules.<br />

TN<br />

RN<br />

JMJM MP<br />

Emission<br />

process<br />

Diffusion<br />

process<br />

GaTech - <strong>UPC</strong><br />

Reception<br />

process<br />

3


Objective of the Physical Channel Model<br />

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model <strong>for</strong><br />

<strong>Molecular</strong> <strong>Communication</strong> in Nanonetworks,’’<br />

submitted <strong>for</strong> journal publication, March 2009.<br />

Derivation of DELAY and ATTENUATION<br />

as functions of the frequency and the transmission range<br />

• Non-linear attenuation with respect to the frequency<br />

• Distortion due to delay dispersion<br />

JMJM MP<br />

GaTech - <strong>UPC</strong><br />

4


Modeling Challenges <strong>for</strong> the Physical Channel<br />

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model <strong>for</strong> <strong>Molecular</strong><br />

<strong>Communication</strong> in Nanonetworks,’’<br />

submitted <strong>for</strong> journal publication, March 2009.<br />

• Transmitter<br />

• How chemical reactions allow the modulation of molecule concentrations as<br />

transmission signals<br />

• Propagation<br />

• How the “particle diffusion” controls the propagation of modulated<br />

concentrations<br />

• Receiver<br />

• How chemical reactions allow to sense the modulated molecule concentrations<br />

from the environment and translate them into received signals<br />

JMJM MP<br />

GaTech - <strong>UPC</strong><br />

5


Molecule Diffusion Channel Model<br />

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model<br />

<strong>for</strong> <strong>Molecular</strong> <strong>Communication</strong> in Nanonetworks,’’<br />

submitted <strong>for</strong> journal publication, March 2009.<br />

Transmitter Model<br />

• Design of a chemical actuator scheme (chemical<br />

transmitting antenna)<br />

• Analytical modeling of the chemical reactions involved in<br />

an actuator<br />

• Signal to be transmitted Modulated concentration<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 6


Molecule Diffusion Channel Model<br />

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model<br />

<strong>for</strong> <strong>Molecular</strong> <strong>Communication</strong> in Nanonetworks,’’<br />

submitted <strong>for</strong> journal publication, March 2009.<br />

Propagation Model<br />

• Solution of the diffusion physical laws (FICK’s First and Second<br />

Laws (1855), Relativistic Diffusion Process) in the presence of an<br />

external concentration modulation<br />

• Modulated concentration Space-time concentration evolution<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 7


Molecule Diffusion Channel Model<br />

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model<br />

<strong>for</strong> <strong>Molecular</strong> <strong>Communication</strong> in Nanonetworks,’’<br />

submitted <strong>for</strong> journal publication, March 2009.<br />

Receiver Model<br />

• Design of a chemical receptor scheme (chemical receiving antenna)<br />

• Analytical modeling of the chemical reactions involved in a<br />

receptor<br />

• Propagated modulated concentration Received signal<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 8


Conclusions<br />

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model<br />

<strong>for</strong> <strong>Molecular</strong> <strong>Communication</strong> in Nanonetworks,’’<br />

submitted <strong>for</strong> journal publication, March 2009.<br />

• A mathematical model <strong>for</strong> the physical molecular<br />

diffusion channel<br />

• Non-linear channel attenuation both in frequency<br />

and Tx-Rx range<br />

• Channel Tx-Rx delay varies in frequency <br />

dispersion phenomena when the signal propagates<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 9


Current Research<br />

• Noise incorporated into the channel model<br />

• Study of possible noise sources:<br />

• When in<strong>for</strong>mation modulates the molecule concentration<br />

• When in<strong>for</strong>mation is encoded into molecule chemical<br />

features (e.g., type, structure, polarization, etc.)<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 10


Noise Representation<br />

Molecule concentration modulation<br />

Nano<br />

mac<br />

1<br />

Diffusion Process<br />

Chemical change<br />

Brownian motion<br />

Nano<br />

mac<br />

3<br />

Nano<br />

mac<br />

2<br />

<strong>In<strong>for</strong>mation</strong> mixing<br />

Turbulence<br />

same molecule as<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 11


Noise Representation<br />

Molecule chemical feature encoding<br />

Nano<br />

mac<br />

1<br />

Extinction latency<br />

Cross-symbol<br />

interference<br />

Symbol<br />

Info<br />

0110<br />

0111<br />

Nano<br />

mac<br />

3<br />

Nano<br />

mac<br />

2<br />

Symbol usage<br />

desynchronizing<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 12


<strong>In<strong>for</strong>mation</strong> Encoding/Decoding<br />

• Concentration Modulation (e.g. Ca 2+ ion signaling)<br />

• <strong>In<strong>for</strong>mation</strong> Encoding Based on Chemical Features<br />

(e.g. pheromone communication)<br />

• Encapsulation of <strong>In<strong>for</strong>mation</strong> Carriers (e.g. DNA<br />

vesicle encapsulation, pollen/spores communication)<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 13


Future Research and Challenges<br />

• Properly model all the noise sources<br />

• <strong>In<strong>for</strong>mation</strong> encoding/decoding and modulation pattern<br />

• Channel Capacity computation<br />

• Channel multiple access problem<br />

• Addressing issue (routing problem)<br />

• Higher layers development<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 14


Thanks <strong>for</strong><br />

your attention<br />

“<strong>In<strong>for</strong>mation</strong> <strong>Theory</strong> <strong>for</strong> <strong>Molecular</strong><br />

<strong>Communication</strong> in Nanonetworks”<br />

Massimiliano Pierobon<br />

JMJM MP<br />

GaTech - <strong>UPC</strong> 15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!