23.01.2015 Views

l1-magic : Recovery of Sparse Signals via Convex Programming

l1-magic : Recovery of Sparse Signals via Convex Programming

l1-magic : Recovery of Sparse Signals via Convex Programming

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Appendix<br />

A<br />

l 1 minimization with equality constraints<br />

When x, A and b are real, then (P 1 ) can be recast as the linear program<br />

∑<br />

min u i subject to x i − u i ≤ 0<br />

x,u<br />

i<br />

−x i − u i ≤ 0,<br />

Ax = b<br />

which can be solved using the standard primal-dual algorithm outlined in Section 2.1 (again,<br />

see [2, Chap.11] for a full discussion). Set<br />

f u1;i := x i − u i<br />

f u2;i := −x i − u i ,<br />

with λ u1;i, λ u2;i the corresponding dual variables, and let f u1 be the vector (f u1;1 . . . f u1;N ) T<br />

(and likewise for f u2 , λ u1 , λ u2 ). Note that<br />

( )<br />

δi<br />

∇f u1;i = ,<br />

−δ i<br />

( ) −δi<br />

∇f u2;i = ,<br />

−δ i<br />

∇ 2 f u1;i = 0, ∇ 2 f u2;i = 0,<br />

where δ i is the standard basis vector for component i. Thus at a point (x, u; v, λ u1 , λ u2 ), the<br />

central and dual residuals are<br />

( ) −Λu1 f<br />

r cent =<br />

u1<br />

− (1/τ)1,<br />

−Λ u2 f u2<br />

( )<br />

λu1 − λ<br />

r dual =<br />

u2 + A T v<br />

,<br />

1 − λ u1 − λ u2<br />

and the Newton step (5) is given by:<br />

⎛<br />

⎝ Σ ⎞ ⎛<br />

1 Σ 2 A T<br />

Σ 2 Σ 1 0 ⎠ ⎝ ∆x ⎞ ⎛<br />

∆u⎠ = ⎝ w ⎞ ⎛<br />

⎞<br />

−1<br />

1 (−1/τ) · (−fu 1<br />

+ fu −1<br />

2<br />

) − A T v<br />

w 2<br />

⎠ := ⎝ −1 − (1/τ) · (fu −1<br />

1<br />

+ fu −1<br />

2<br />

) ⎠ ,<br />

A 0 0 ∆v w 3 b − Ax<br />

with<br />

Σ 1 = Λ u1 F −1<br />

u 1<br />

− Λ u2 Fu −1<br />

2<br />

, Σ 2 = Λ u1 Fu −1<br />

1<br />

+ Λ u2 Fu −1<br />

2<br />

,<br />

(The F • , for example, are diagonal matrices with (F • ) ii = f •;i , and f −1<br />

•;i<br />

we can eliminate<br />

and solve<br />

Σ x = Σ 1 − Σ 2 2Σ −1<br />

1 ,<br />

∆x = Σ −1<br />

x (w 1 − Σ 2 Σ −1<br />

1 w 2 − A T ∆v)<br />

∆u = Σ −1<br />

1 (w 2 − Σ 2 ∆x),<br />

−AΣ −1<br />

1 AT ∆v = w 3 − A(Σ −1<br />

x w 1 − Σ −1<br />

x Σ 2 Σ −1<br />

1 w 2).<br />

= 1/f •;i.) Setting<br />

This is a K×K positive definite system <strong>of</strong> equations, and can be solved using conjugate gradients.<br />

Given ∆x, ∆u, ∆v, we calculate the change in the inequality dual variables as in (4):<br />

∆λ u1 = Λ u1 Fu −1<br />

1<br />

(−∆x + ∆u) − λ u1 − (1/τ)fu −1<br />

1<br />

∆λ u2 = Λ u2 Fu −1<br />

2<br />

(∆x + ∆u) − λ u2 − (1/τ)fu −1<br />

2<br />

.<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!