23.01.2015 Views

t - Regional Climate Group

t - Regional Climate Group

t - Regional Climate Group

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Weather Generator<br />

Downscaling Summer School in Lodz, 21 June 2007<br />

Deliang Chen<br />

www.gvc2.gu.se/rcg/dc<br />

Professor of Physical Meteorology and<br />

August Röhss Chair in Physical Geography (Geoinformatics)<br />

Department of Earth Sciences<br />

Göteborg University, Sweden<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

1


Topics covered<br />

• Statistical downscaling: Techniques<br />

and methodologies<br />

• What is a Weather Generator (WG)<br />

• Two types of WG<br />

• How WG is used in downscaling<br />

• Suggested further readings<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

2


Acknowledgement<br />

• Some of the OHs appeared in my<br />

lectures are adopted from<br />

CCIS, Dr. Pierluigi Calanca and<br />

Dr. Rob Wilby.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

3


Temporal and spatial scales<br />

of climate<br />

(Global<br />

climate<br />

model)<br />

GCM<br />

RCM<br />

(<strong>Regional</strong><br />

climate<br />

model)<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

4


How to build the statistical model<br />

• Transfer functions: quantify relationship between large-scale<br />

climate (predictor) and local variables (predictand) by<br />

e.g. regression. Most often used for monthly temperature and<br />

precipitation.<br />

Related to Perfect Prognosis (PP) and Model Output Statistic<br />

(MOS) in numerical weather prediction.<br />

• Weather typing: relate a particular atmospheric state<br />

to a set of local climate variables<br />

(Lamb weather typing, Grosswetterlagen, others..)<br />

• Weather generators: generate realistic looking sequences<br />

of e.g. daily precipitation based on the large-scale<br />

atmospheric state<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

5


Statistical downscaling: methods<br />

• linear – in large majority of studies<br />

– regression<br />

– canonical correlation / covariance (SVD)<br />

analysis<br />

• nonlinear<br />

– neural networks<br />

– analog<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

6


Statistical downscaling:<br />

Reproduction of variance<br />

• underestimated variance in downscaled data<br />

• two ways of reproduction of variance<br />

– inflation (enhancement of anomalies by a<br />

constant factor)<br />

• physically questionable all forcing comes<br />

from large-scales<br />

– adding noise<br />

• white noise<br />

• regression residuals<br />

• noise with pre-specified statistical<br />

characteristics<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

7


Statistical downscaling:<br />

reproduction of variance<br />

observed<br />

downscaled: stddev = 58% obs<br />

downscaled inflated<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

8


Statistical downscaling:<br />

Reproduction of variance<br />

observed<br />

downscaled: stddev = 58% obs<br />

white noise<br />

downscaled with added white noise<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

9


Statististical downscaling:<br />

Reproduction of variance<br />

obs down infl<br />

added<br />

white n.<br />

correlation<br />

with OBS<br />

1.000 0.826 0.826 0.598<br />

autocorrel. 0.587 0.619 0.619 0.305<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

10


A successful statistical<br />

downscaling requires<br />

•A strong statistical relationship between local and<br />

large scale climate variables be established;<br />

•The statistical relationship should be physically<br />

interpretable and temporally stationary;<br />

•The large scale variables must be those that can be<br />

reliably produced by GCM;<br />

•Attempts should be made to understand the<br />

unexplained part by the statistical model and to<br />

assess/compensate its effect if possible.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

11


Added value of downscalings (SD,DD)<br />

120<br />

100<br />

80<br />

Hellstroem et al., 2001<br />

Vänersborg, One station in southern Sweden<br />

obs<br />

SDE<br />

DDE<br />

ECHA<br />

Precipitation (mm/month)<br />

60<br />

40<br />

20<br />

120<br />

100<br />

80<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

obs<br />

SDH<br />

DDH<br />

HadC<br />

60<br />

40<br />

20<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Month<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

b<br />

12


Differences between<br />

real world and GCM-world<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

13


Two extremes to categories of downscaling:<br />

• Transfer functions relating atmospheric forcing to target<br />

variable<br />

• Stochastic functions and pure weather generators<br />

For both: variance explained as a function of the large scale flow, residual<br />

variance can only be stochastically generated.<br />

For future climate, only change due to the signal contained in the GCM<br />

scale forcing can be accounted for …..<br />

Variance explained<br />

Synoptic Forcing<br />

Sub-grid scale forcings<br />

Synoptic scale<br />

Local scale<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

14


Transfer Functions<br />

Area<br />

Grid Box<br />

Select<br />

predictor<br />

variables<br />

Calibrate<br />

and verify<br />

model<br />

Predictor variables<br />

e.g., MSLP, 500, 700 hPa geopotential heights,<br />

zonal/meridional components of flow, areal T&P<br />

Transfer function<br />

e.g., Multiple linear regression, principal<br />

components analysis, canonical correlation<br />

analysis, artificial neural networks<br />

Extract<br />

predictor<br />

variables<br />

from GCM<br />

output<br />

Drive<br />

model<br />

Observed station data for<br />

predictand<br />

Site variables for<br />

future, e.g., 2050<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

15


Weather Typing<br />

Identify<br />

weather<br />

types<br />

Derive<br />

Observed<br />

weather<br />

variables<br />

Select<br />

classification<br />

scheme<br />

Relationships between<br />

weather type and local<br />

weather variables<br />

Pressure fields<br />

from GCM<br />

Calculate<br />

weather<br />

types<br />

Drive<br />

model<br />

Local weather<br />

variables for,<br />

say, 2050<br />

Statistically relate<br />

observed station or<br />

area-average<br />

meteorological data to<br />

a weather<br />

classification scheme.<br />

Weather classes may<br />

be defined objectively<br />

(e.g. by PCA, neural<br />

networks) or<br />

subjectively derived<br />

(e.g., Lamb weather<br />

types [UK], European<br />

Grosswetterlagen)<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

16


Weather Typing<br />

Fundamental Assumption<br />

the relationships between weather type and local<br />

climate variables will continue to be valid under<br />

future radiative forcing<br />

ADVANTAGES<br />

• founded on sensible physical linkages between<br />

climate on the large scale and weather on the local<br />

scale<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

17


Example: Investigate the link between circulation and<br />

winter temp. (1)<br />

(Chen, 2000: A monthly circulation climatotolgy for Sweden and its application to a winter<br />

temperature case study. Int. journal of Climatology 20, 1067-1076<br />

Approach: transfer function (multiple regression)<br />

Predictant=f(predictors)<br />

winter temp.<br />

circulation<br />

(strength of geostrophic flow<br />

and vorticity)<br />

T a =-3.48+0.079v+0.32V+0.17ξ<br />

circulation indices<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

18


Example 1: cont……<br />

How to quantify of atmospheric circulation<br />

Circulation indices and weather typing based on the system by Lamb<br />

ξ<br />

6 circulation indices:<br />

U<br />

V<br />

u: west-east geostr. wind<br />

v: north-south geostr. wind<br />

W: total geostr. wind<br />

ξ u<br />

: westerly shear vorticity<br />

ξ v<br />

: southerly shear vorticity<br />

ξ: total vorticity<br />

(after Chen and Li, 2003)<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

19


Example 1: cont……<br />

Temperature anomaly ( o C)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

January temperature in SW Sweden<br />

R=0.84<br />

N=122<br />

observation<br />

reconstruction<br />

-9<br />

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000<br />

Year<br />

Chen, 2000<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

20


General categories of methodologies<br />

Transfer Weather Stochastic conditioned Stochastic<br />

Function Typing on weather type<br />

Stochastic / weather generators calibrated on observed<br />

data, conditioned on atmospheric state.<br />

• Very effective at capturing high frequency variance,<br />

peaks and extremes<br />

• Requires long term data sets to effectively define<br />

stochastic characteristics<br />

• Question of stationarity<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

21


What is a WG<br />

WG is a and stochastic (based<br />

on observed probability)<br />

model of meteorological<br />

variables. It can generate<br />

unlimited length of data.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

22


The key problem->why WG<br />

Output of GCM<br />

~ 300 km<br />

~ 1 mo<br />

Ecosystem and other<br />

Impact models<br />

~ 1-10 km<br />

~ 1 h-1 day<br />

⇒ Disparity of spatial (and temporal) scales<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

23


Stochastic weather generators:<br />

basic idea<br />

given slow set of statistics (monthly means and<br />

standard deviations, Y, from downscaling),<br />

generate the high frequency variability of the<br />

weather (y) assuming auto- and cross correlation:<br />

⇒ y(t) = O T [Y, y(t-1)]<br />

where O T is the time operator.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

24


Matching the scales:<br />

two common approaches<br />

(i) nesting <strong>Regional</strong> <strong>Climate</strong> Models (RCMs,<br />

horizontal resolution Δx < 10 km) into GCMs.<br />

Advantage: mathematical description of system is<br />

basically preserved!<br />

However: CPU ~ 1/(Δx) 2 or even 1/(Δx) 3<br />

⇒ Running a RCM at Δx ~ 1 km requires<br />

10 4 to 10 6 as much CPU as at Δx ~ 100 km!<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

25


(ii) Statistical downscaling (space dimension) at<br />

low temporal resolution (say Δt ~ 1 mo),<br />

followed by stochastic generation of weather<br />

sequences (time dimension) at a fixed location.<br />

Advantage: computationally efficient<br />

⇒ large number of simulations feasible!<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

26


Key publications in the development of daily WG<br />

Site(s) Observation Source<br />

Brussels Wet and dry days tend to cluster Quetelet (1852)<br />

Kew, Aberdeen,<br />

Greenwich, Valencia<br />

Probability of a rain day is greater if the<br />

previous day was wet<br />

Rothamstead, UK; Wet and dry spell lengths have a geometric<br />

five Canadian cities distribution<br />

Tel Aviv<br />

Use of Markov chain to reproduce geometric<br />

distribution of wet and dry spell lengths<br />

Combined Markov occurrence model with<br />

exponential distribution for rainfall amounts<br />

USA<br />

Generation of max/min temperature, and<br />

solar radiation conditional on rain occurrence<br />

USA<br />

Multi-site generalization of daily stochastic<br />

precipitation model<br />

Newnham (1916);<br />

Besson (1924); Gold<br />

(1929); Cochran<br />

(1938)<br />

Williams (1952);<br />

Longley (1953)<br />

Gabriel and<br />

Neumann (1962)<br />

Todorovic and<br />

Woolhiser (1975)<br />

Richardson (1981)<br />

Bras and Rodriguez-<br />

Iturbe (1976)<br />

Source: Wilby<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

27


Precipitation occurrence process<br />

Most weather generators contain separate treatments of the<br />

precipitation occurrence and intensity processes.<br />

A first-order Markov chain for precipitation occurrence is fully<br />

defined by two conditional probabilities<br />

and<br />

p 01 = Pr{precipitation on day t | no precipitation on day t-1}<br />

p 11 = Pr{precipitation on day t | precipitation on day t-1}<br />

which are called transition probabilities.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

28


Precipitation occurrence processes (cont.)<br />

The transition probabilities for Cambridge, UK are as follows<br />

dry-to-wet (p 01 ) = 0.291<br />

wet-to-wet (p 11 ) = 0.654<br />

Therefore it follows (for a two state model) that<br />

dry-to-dry (p 00 ) = 1 - p 01 = 0.709<br />

wet-to-dry (p 10 ) = 1 - p 11 = 0.346<br />

This approach may be extended from a first-order to n th -order model<br />

by considering transitions that depend on states on days t-1, t-2…...t-n<br />

(as in Gregory et al., 1993).<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

29


Precipitation amount processes<br />

Daily precipitation amounts are typically strongly skewed to the right.<br />

The simplest reasonable model is the exponential distribution, as it<br />

requires specification of only one parameter, μ, and whose probability<br />

density function is:<br />

f(x)<br />

=<br />

1<br />

μ<br />

⎡− x<br />

exp⎢<br />

⎣ μ<br />

The two-parameter gamma distribution is another popular choice,<br />

defined by the shape α and scale parameter β:<br />

f(x)<br />

=<br />

⎤<br />

⎥<br />

⎦<br />

α-1<br />

( ) [ ]<br />

x<br />

β<br />

exp -<br />

βΓ( α)<br />

x<br />

β<br />

Most weather generators make the assumption that precipitation amounts on<br />

successive wet days are independent.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

30


Precipitation amount processes (cont.)<br />

January precipitation at<br />

Ithaca, New York 1900-<br />

1998 represented by<br />

three pdfs:<br />

• exponential<br />

•gamma<br />

• mixed exponential<br />

Source: Wilks and Wilby (1999)<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

31


Daily total (mm)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

Precipitation and its PDF<br />

[1] raw data<br />

20<br />

0<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

[2] empirical pdf<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 10 20 30 40 50<br />

Daily to tal (mm)<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

32


Other meteorological variables<br />

Condition the statistics of the daily variables (typically maximum/<br />

minimum temperatures and solar radiation) on occurrence of<br />

precipitation (a proxy for other processes such as cloud cover).<br />

In the classic WGEN model, multiple variables are modelled<br />

simultaneously with auto-regression:<br />

z<br />

() [ ] ( ) [ ] ()<br />

t<br />

=<br />

A z<br />

t<br />

- 1<br />

+<br />

Where z(t) are normally distributed values for today’s nonprecipitation<br />

variables, z(t-1) are corresponding values for the previous day, and [A]<br />

and [B] are K × K matrices of parameters, and ε(t) is white-noise forcing.<br />

B<br />

ε<br />

t<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

33


Other meteorological variables (cont.)<br />

The z(t) are transformed to weather variables dependent on rainfall<br />

occurrence:<br />

T<br />

k<br />

() t<br />

= {<br />

μ<br />

μ<br />

k,0<br />

k,1<br />

+ σ<br />

+ σ<br />

k,0<br />

k,1<br />

() t z () t<br />

k<br />

() t z () t<br />

k<br />

if day t is dry<br />

if day t is wet<br />

where each T k is any of the nonprecipitation variables, μ k,0 and σ k,0<br />

are its mean and standard deviation for dry days, and μ k,1 and σ k,1<br />

are its mean and standard deviation for wet days.<br />

Seasonal dependence of the means and standard deviations is<br />

usually achieved through Fourier harmonics (i.e., sine and cosines).<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

34


WG type I: Markov chain (transition probabilities)<br />

Source: Wilks and Wilby (1999)<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

35


WG type II: spell-lengths<br />

Source: Wilks and Wilby (1999)<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

36


The Richardson type WG<br />

Precipitation Process<br />

Occurrence Amount<br />

Non-precipitation variables<br />

Maximum temperature<br />

Minimum temperature<br />

Solar radiation<br />

Model calibration<br />

Synthetic data generation<br />

<strong>Climate</strong> scenarios<br />

<strong>Climate</strong> scenarios<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

37


Weather Generators<br />

Precipitation Process<br />

Occurrence<br />

Amount<br />

Non-precipitation variables<br />

Maximum temperature<br />

Minimum temperature<br />

Solar radiation<br />

LARS-WG:<br />

wet and<br />

dry spell<br />

length<br />

Model calibration<br />

Synthetic data generation<br />

<strong>Climate</strong> scenarios<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

38


One application of WG: Create<br />

data for unsampled sites<br />

Assumption: compared to a<br />

meteorological variable it self,<br />

parameters of a WG for that<br />

variable can be more accurately<br />

interpolated from the sampled<br />

sites.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

39


Spatial Downscaling with WG<br />

Calibrate weather<br />

generator using<br />

area-average<br />

weather<br />

Calibrate weather<br />

generator for each<br />

individual station<br />

within area<br />

Calculate changes<br />

in parameters from<br />

grid box data<br />

Area<br />

Area parameter set<br />

Station parameter set<br />

Grid Box<br />

Apply changes in<br />

parameters derived from<br />

difference between area<br />

and grid box parameter<br />

sets to individual station<br />

parameter files; generate<br />

synthetic data for<br />

scenario<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

40


Statistical spatial downscaling<br />

Source: Wilks (1999)<br />

Changes in station-series means<br />

and variances will be proportional to<br />

changes in the respective areaaverage<br />

(GCM grid) moments:<br />

μ<br />

down<br />

E S( T)<br />

E[ S( T)<br />

]<br />

station<br />

E S( T)<br />

=<br />

Tπ<br />

[ ]<br />

[ ]<br />

down<br />

GCMfuture<br />

GCMpresent<br />

where S(T) is the sum of T daily<br />

precipitation amounts,π is the<br />

unconditional probability of precipitation,<br />

and μ is the mean wet-day amount.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

41


Temporal Downscaling->high temporal<br />

resolution! – Use of monthly scenarios<br />

Observed station data<br />

WG<br />

Parameter file containing<br />

statistical characteristics<br />

of observed station data<br />

Monthly scenario<br />

information from<br />

GCM, RCM or SD<br />

Generate daily weather<br />

data corresponding to<br />

the monthly scenario<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

42


Weather Generators<br />

Fundamental Assumption<br />

The statistical correlations between climatic variables<br />

derived from observed data are assumed to be valid under a<br />

changed climate.<br />

Advantages<br />

• the ability to generate time series of<br />

unlimited length<br />

• opportunity to obtain representative<br />

weather time series in regions of data<br />

sparsity, by interpolating observed data<br />

• ability to alter the WG’s parameters in<br />

accordance with scenarios of future climate<br />

change - changes in variability as well<br />

mean changes<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

43


Weather Generators<br />

Disadvantages<br />

• seldom able to describe all aspects of<br />

climate accurately, especially persistent<br />

events, rare events and decadal- or centuryscale<br />

variations<br />

• designed for use, independently, at<br />

individual locations and few account for the<br />

spatial correlation of climate<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

44


NCC/RCG-WG<br />

• Version 1: released in April 2004 with<br />

parameters determined for 672 Chinese and<br />

300 Swedish rainfall stations. Precipitation<br />

only.<br />

• Version 2.0: released with parameters<br />

determined for 671 Chinese (temperature and<br />

precipitation) and 300 Swedish rainfall<br />

stations.<br />

• bcc.cma.gov.cn<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

45


Application of NCC/RCG-WG for China<br />

0.0~0.2<br />

Annual mean<br />

P(WD)<br />

0.3~0.5<br />

Annual mean P(WW)<br />

0.7~0.9<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

46


Application of NCC/RCG-WG for China<br />

0.60<br />

转 移 概 率 P(WD)<br />

转 移 概 率 (PWW)<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

0.90齐 齐 哈 尔 乌 鲁 木 齐 北 京 常 德 海 口<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

月 份<br />

月 份<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

齐 齐 哈 尔 乌 鲁 木 齐 北 京 常 德 海 口<br />

•Five stations are chosen<br />

to represent regional<br />

differences<br />

•For most months it is true<br />

that P(WW)> P(WD)<br />

•The seasonal cycle of<br />

P(WD) is relatively similar<br />

among different regions,<br />

while the seasonal cycle of<br />

P(WW)show greater<br />

difference.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

47


GAMMA distribution of daily precipitation<br />

The probability of daily precipitation may be<br />

described by a Gamma function:<br />

where<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

48


Two examples<br />

Beijing<br />

Haike<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

49


Two parameters of the GAMMA function<br />

ALPHA<br />

BETA<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

50.0<br />

月 份<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

40.0<br />

齐 齐 哈 尔 乌 鲁 木 齐 北 京 常 德 海 口<br />

30.0<br />

20.0<br />

10.0<br />

0.0<br />

月 份<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

The two parameters do<br />

not very much with<br />

the regions. This is<br />

especially true for<br />

ALPHA. -> great<br />

petential for<br />

accuarte spatial<br />

interpolations!!!<br />

齐 齐 哈 尔 乌 鲁 木 齐 北 京 常 德 海 口<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

50


<strong>Regional</strong> distribution of GAMMA parameters<br />

1~3<br />

>18<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

51


Simulated and observed monthly and<br />

annual mean rain rates<br />

3000<br />

2500<br />

2000<br />

y = 1.0004x<br />

R 2 = 0.9968<br />

Annual<br />

precipitation<br />

模 拟<br />

1500<br />

1000<br />

500<br />

700<br />

600<br />

500<br />

y = 0.9991x<br />

R 2 = 0.989<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

实 测<br />

模 拟 值<br />

400<br />

300<br />

200<br />

Monthly<br />

precipitation<br />

100<br />

0<br />

0 100 200 300 400 500 600 700<br />

实 测 值<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

52


Simulated and observed monthly mean rain days<br />

and mean annual number of days with precipitation<br />

rate greater than 20 mm/day<br />

30<br />

y = 1.0007x<br />

25<br />

R 2 = 0.9856<br />

模 拟 值<br />

20<br />

15<br />

monthly mean<br />

rain days<br />

10<br />

5<br />

30<br />

27<br />

24<br />

y = 0.9147x<br />

R 2 = 0.9826<br />

21<br />

0<br />

0 5 10 15 20 25 30<br />

实 测 值<br />

模 拟<br />

18<br />

15<br />

12<br />

Day number<br />

with P>20<br />

mm/day<br />

9<br />

6<br />

3<br />

0<br />

0 3 6 9 12 15 18 21 24 27 30<br />

实 测<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

53


Simulated and observed daily mean and<br />

standard deviation of precipitation<br />

模 拟 湿 日 平 均 降 水 量 (mm)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

y = 0.9995x<br />

R 2 = 0.9869<br />

Mean daily<br />

Precipitation<br />

50<br />

40<br />

y = 0.8505x<br />

R 2 = 0.9471<br />

0<br />

0 5 10 15 20 25 30<br />

实 测 湿 日 平 均 降 水 量 (mm)<br />

Standard<br />

deviation<br />

模 拟 湿 日 降 水 量 标 准 差<br />

30<br />

20<br />

10<br />

0<br />

0 10 20 30 40 50<br />

实 测 湿 日 降 水 量 标 准 差<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

54


Suggested Further Readings<br />

• IPCC TAR - Chapter 10 (www.ipcc.ch)<br />

• Richardson, C.W. (1981): Stochastic<br />

simulation of daily precipitation, temperature<br />

and solar radiation. Water Resources<br />

Research 17, 182-190.<br />

• Wilks, D.S. (1992): Adapting stochastic<br />

weather generation algorithms for climate<br />

change studies. Climatic Change 22, 67-84.<br />

• Wilks, D.S. and Wilby, R.L. (1999): The<br />

weather generation game: a review of<br />

stochastic weather models. Progress in<br />

Physical Geography 23, 329-357.<br />

Göteborg University http://www.gvc2.gu.se/rcg <strong>Regional</strong> <strong>Climate</strong> <strong>Group</strong><br />

55

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!