24.01.2015 Views

slides - Brainmapping.ORG

slides - Brainmapping.ORG

slides - Brainmapping.ORG

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction to MRI<br />

Daniel B. Ennis, Ph.D.<br />

Requirements for MRI<br />

UCLA – Radiology – DCVI<br />

Requirements for MRI<br />

Dipoles to Images<br />

• NMR Active Nuclei<br />

– e.g. 1 H in H20<br />

• Cryogen<br />

– Liquid He and N2<br />

• Magnetic Field (B0)<br />

– Polarizer<br />

• RF System (B1)<br />

– Exciter<br />

• Coil<br />

– Receiver<br />

• Gradients (GX, GY, GZ)<br />

– Spatial Encoding Y-grad X-grad<br />

Cryostat<br />

Z-grad<br />

Body Coil (B1)<br />

Main Coil (B0)<br />

µ Magnetic Moment<br />

M z<br />

M xy<br />

S (t)<br />

⇥<br />

S k<br />

I ( x)<br />

Bulk Magnetization<br />

Transverse Magnetization<br />

Received Signal<br />

k-space signal<br />

Image<br />

} B 0<br />

} B 1<br />

} Coil<br />

} Gradients<br />

} FFT<br />

Radiology<br />

Image Adapted From: http://www.ee.duke.edu/~jshorey<br />

Radiology


Dipoles to Images<br />

Main Field – B0<br />

µ Magnetic Moment<br />

M z<br />

M xy<br />

S (t)<br />

⇥<br />

S k<br />

I ( x)<br />

Bulk Magnetization<br />

Transverse Magnetization<br />

Received Signal<br />

k-space signal<br />

Image<br />

} B 0<br />

} B 1<br />

} Coil<br />

} Gradients<br />

} FFT<br />

Radiology<br />

Main Field (B0) - Principles<br />

Magnetic Dipoles & Larmor<br />

• B0 is a strong magnetic field<br />

– 1.5T, 3.0T, 7.0T, etc.<br />

– Z-oriented<br />

B 0 = B 0 k<br />

• B0 forces M to precess<br />

– Larmor Equation<br />

• B0 generates M<br />

– More B0, more M<br />

⇥ =<br />

M =<br />

B<br />

NX<br />

total<br />

n=1<br />

µ n<br />

Radiology<br />

Radiology<br />

Movie from Don Plewes


Bulk Magnetization<br />

Zeeman Splitting<br />

M =<br />

NX<br />

total<br />

n=1<br />

µ n<br />

N<br />

S<br />

N<br />

S<br />

S<br />

N<br />

S<br />

N<br />

N<br />

S<br />

N<br />

S<br />

N<br />

N<br />

S<br />

S<br />

N<br />

N<br />

S<br />

N<br />

S<br />

N<br />

S<br />

S<br />

N N<br />

N<br />

E =+ 1 N N N<br />

2<br />

B 0<br />

E = 1 2<br />

B 0<br />

N<br />

S S<br />

N N<br />

S S<br />

S<br />

N<br />

S<br />

N<br />

S<br />

N<br />

S S<br />

S<br />

N<br />

S<br />

N<br />

S<br />

B 0 is o<br />

B 0 is on<br />

}<br />

}<br />

Radiology<br />

Ntotal=0.24x10 23 spins in a 2x2x10mm voxel<br />

Radiology<br />

N = Spin-Up State, Low Energy<br />

N = Spin-Down State, High Energy<br />

N<br />

S<br />

N<br />

S<br />

Zeeman Splitting<br />

N N ⇥<br />

⇥ hB 0<br />

N total 2KT<br />

= 42.58 ⇤ 10 6 Hz/T<br />

h = 6.6 ⇤ 10 34 J · s [Planck’ Constant]<br />

T = 300K (room temperature)<br />

K = 1.38 ⇤ 10 23 J/K [Boltzmann Constant]<br />

B 0 = 1.5T<br />

RF Pulses – B1<br />

N ⇥ N ⇤<br />

⌅ 42.58 ⇤ 106 · 6.6 ⇤ 10 34 · 1.5<br />

N total 2 · 1.38 ⇤ 10 23 · 300<br />

Radiology<br />

⌅ 4.5 ⇤ 10 6<br />

~4.5ppm @ 1.5T<br />

09


Dipoles to Images<br />

B1 Field - RF Pulse<br />

µ Magnetic Moment<br />

M z<br />

M xy<br />

S (t)<br />

⇥<br />

S k<br />

I ( x)<br />

Bulk Magnetization<br />

Transverse Magnetization<br />

Received Signal<br />

k-space signal<br />

Image<br />

} B 0<br />

} B 1<br />

} Coil<br />

} Gradients<br />

} FFT<br />

• B1 is a<br />

– radiofrequency (RF)<br />

• 42.58MHz/T (63MHz at 1.5T)<br />

– short duration pulse (~0.1 to 5ms)<br />

– small amplitude<br />


Dipoles to Images<br />

Coils<br />

µ Magnetic Moment<br />

M z<br />

M xy<br />

S (t)<br />

⇥<br />

S k<br />

I ( x)<br />

Bulk Magnetization<br />

Transverse Magnetization<br />

Received Signal<br />

k-space signal<br />

Image<br />

} B 0<br />

} B 1<br />

} Coil<br />

} Gradients<br />

} FFT<br />

13<br />

Radiology<br />

Coils<br />

Faraday’s Law of Induction<br />

“The induced electromotive force or EMF in any closed circuit is equal to<br />

the time rate of change of the magnetic flux through the circuit.”<br />

--http://en.wikipedia.org/wiki/Faraday's_law_of_induction<br />

Time-varying<br />

Magnetic Field<br />

Loop of<br />

Wire<br />

Voltage<br />

Radiology<br />

Radiology


NMR Signal Detection<br />

8-Channel Head Coil<br />

Each coil element has a unique sensitivity profile.<br />

• Coil only detects Mxy<br />

• Coil does not detect Mz<br />

• Coil must be properly oriented<br />

Faraday’s Law<br />

of Induction<br />

✓<br />

V (t) / sin<br />

M xy<br />

Radiology<br />

Radiology<br />

Dipoles to Images<br />

Gradients – Gx, Gy, & Gz<br />

µ Magnetic Moment<br />

M z<br />

M xy<br />

S (t)<br />

⇥<br />

S k<br />

I ( x)<br />

Bulk Magnetization<br />

Transverse Magnetization<br />

Received Signal<br />

k-space signal<br />

Image<br />

} B 0<br />

} B 1<br />

} Coil<br />

} Gradients<br />

} FFT<br />

17<br />

Radiology


Gradients<br />

MRI Instrumentation<br />

• Gradients are a:<br />

– Small<br />


X-Gradients<br />

X+Z-Gradients<br />

Z<br />

Z<br />

Z<br />

Radiology<br />

X<br />

B 0 B 0 B 0 B 0 + B 0<br />

Radiology<br />

X<br />

X<br />

X+Z-Gradients<br />

Possible Slice<br />

Spin Isochromat<br />

Group of spins with<br />

the same resonance<br />

frequency.<br />

k-space<br />

Z<br />

Radiology<br />

X<br />

24


What is k-space<br />

1D k-space<br />

• Spatial Frequency Mapping<br />

– Each echo measures some of the spatial<br />

frequencies that comprise the object<br />

– k-space has units of cm -1 or mm -1<br />

– Audio signals have units of Hertz (s -1 )<br />

• A line of k-space is filled by an echo<br />

• 2D FT of k-space produces the image<br />

time<br />

-orspace<br />

Any signal/image can be decomposed into a<br />

summation of sine waves of appropriate amplitude.<br />

Radiology<br />

Radiology<br />

1D k-space<br />

1D k-space<br />

time<br />

-orspace<br />

time<br />

-orspace<br />

Any signal/image can be decomposed into a<br />

summation of sine waves of appropriate amplitude.<br />

Any signal/image can be decomposed into a<br />

summation of sine waves of appropriate amplitude.<br />

Radiology<br />

Radiology


1D k-space<br />

1D k-space<br />

time<br />

-orspace<br />

time<br />

-orspace<br />

Any signal/image can be decomposed into a<br />

summation of sine waves of appropriate amplitude.<br />

Any signal/image can be decomposed into a<br />

summation of sine waves of appropriate amplitude.<br />

Radiology<br />

Radiology<br />

Fourier Representation<br />

What is k-space<br />

k-space<br />

image space<br />

time<br />

-orspace<br />

➠ FFT<br />

FFT<br />

➠<br />

low<br />

frequency<br />

high<br />

k-space is the raw data collected by the scanner.<br />

Radiology


Center<br />

What is k-space<br />

Contrast<br />

What is k-space<br />

➠ FFT<br />

Edges<br />

Edges<br />

Contrast<br />

Information<br />

➠ FFT<br />

Points in k-space represent different patterns in an image.<br />

Radiology<br />

Radiology<br />

k-space<br />

k-space spikes<br />

image space<br />

k-space and Field of View<br />

ky<br />

kx<br />

FFT ➠<br />

➠ FFT<br />

ky<br />

FOV =<br />

1 k<br />

kx<br />

FFT ➠<br />

A k-space spike creates a banding artifact.<br />

Radiology<br />

Radiology<br />

Uniformly skipping lines in k-space causes aliasing.


k-space and Resolution<br />

ky<br />

kx<br />

FFT ➠<br />

ky<br />

Image Contrast<br />

kx<br />

FFT ➠<br />

Radiology<br />

Acquiring fewer phase encodes decreases resolution.<br />

34<br />

Why Image Contrast<br />

Why Image Contrast<br />

Visual Area<br />

of the Thalamus<br />

Optic<br />

nerve<br />

Optic<br />

chiasm<br />

Optic<br />

tract<br />

Retina<br />

Visual Cortex<br />

The human visual system is more sensitive<br />

to contrast than absolute luminance.<br />

Radiology<br />

Radiology


1952 Nobel Prize in Physics<br />

“for their development of new methods for nuclear magnetic<br />

precision measurements and discoveries in connection therewith“<br />

Bloch Equations with Relaxation<br />

Felix Bloch<br />

b. 23 Oct 1905<br />

d. 10 Sep 1983<br />

Edward Purcell<br />

b. 30 Sep 1912<br />

d. 07 Mar 1997<br />

DCVI<br />

Bloch Equations<br />

d M ~<br />

dt = M ~ ⇥ B ~ Mxî+M yĵ (M z M 0 ) ˆk + Dr 2 M ~<br />

T 2 T 1<br />

{<br />

Precession<br />

• Precession<br />

{<br />

Transverse<br />

Relaxation<br />

{<br />

– Magnitude of ~M unchanged<br />

~M<br />

Longitudinal<br />

Relaxation<br />

– Phase (rotation) of changes due to<br />

• Relaxation<br />

– T1 changes are slow O(100ms)<br />

– T2 changes are fast O(10ms)<br />

– Magnitude of M can be ZERO<br />

• Diffusion<br />

– Spins are thermodynamically driven to<br />

exchange positions.<br />

{<br />

~B<br />

Diffusion<br />

DCVI<br />

Longitudinal & Transverse Relaxation<br />

M z (t) =M 0 z e<br />

Radiology<br />

{<br />

Initial Condition<br />

t<br />

T 1 + M 0<br />

⇣1 e<br />

M xy (t) =M 0 xye t/T 2<br />

{<br />

Initial Condition<br />

Return to Equilibrium<br />

General solutions to the Bloch equations with relaxation<br />

in the rotating frame during free precession.<br />

⌘<br />

t<br />

T 1<br />

{<br />

Return to Equilibrium


T1 & T2 Relaxation<br />

T1 and T2 Values @ 1.5T<br />

M 0 xy<br />

M 0<br />

Tissue T1 [ms] T2 [ms]<br />

gray matter 925 100<br />

white matter 790 92<br />

A.U.<br />

Mz<br />

Mxy<br />

muscle 875 47<br />

fat 260 85<br />

kidney 650 58<br />

liver 500 43<br />

M 0 z<br />

CSF 2400 180<br />

Time [ms]<br />

Radiology<br />

Radiology<br />

T1 Relaxation<br />

T1 Relaxation<br />

• Longitudinal or spin-lattice relaxation<br />

• Typically, (10s ms)


T2 Relaxation<br />

• Transverse or spin-spin relaxation<br />

– Molecular interaction causes spin dephasing<br />

• Typically, T2


T2 * Relaxation<br />

T2 * Relaxation<br />

1<br />

T ⇤ 2<br />

1<br />

T ⇤ 2<br />

= 1 T 2<br />

+ 1 T 0 2<br />

Irreversible<br />

Losses<br />

Reversible<br />

Losses<br />

Irreversible<br />

Losses<br />

Reversible<br />

Losses<br />

Radiology<br />

= 1 T 2<br />

+ B 0<br />

Radiology<br />

1<br />

T ⇤ 2<br />

T2 * Relaxation<br />

= 1 T 2<br />

+ 1 T 0 2<br />

Irreversible<br />

Losses<br />

Reversible<br />

Losses<br />

+ 1<br />

T D 2<br />

Irreversible<br />

Losses<br />

+ ···<br />

Percent Signal [a.u.]<br />

100<br />

75<br />

50<br />

25<br />

T2 * vs T2<br />

T2 – 125ms<br />

T2 * – 90ms<br />

T2*


What are echoes<br />

What are echoes<br />

• Two-sided NMR signals<br />

– First half from re-focusing<br />

– Second half from de-phasing<br />

• Spin Echoes<br />

– Arise from multiple RF-pulses<br />

• Gradient Echoes<br />

– Arise from magnetic field gradient reversal<br />

• Line of k-space<br />

48<br />

Radiology<br />

Why echoes<br />

Pulse Sequences<br />

• Free Induction Decay<br />

– NMR signal immediate after an RF pulse<br />

– Signal decays rapidly<br />

• T2 * (


Pulse Sequence Definitions<br />

• TR - Repetition Time<br />

– Duration of basic pulse sequence repeating block<br />

– At least one echo acquired per TR<br />

• TE - Echo Time<br />

– Time from excitation to the maximum of the echo<br />

Spin Echo Imaging<br />

Radiology<br />

51<br />

Spin Echo<br />

Spin Echo<br />

• Advantages<br />

– All spins within voxel rephased<br />

• Insensitive to off-resonance<br />

– B0 inhomogeneity<br />

– Intravoxel Chemical shift signal loss<br />

– Susceptibility<br />

– Great for T1, T2, ρ contrast<br />

• Not T2*<br />

– High SNR<br />

• Disadvantages<br />

– TR can be long<br />

– SAR can be high<br />

RF<br />

Signal<br />

90°<br />

Some T2* signal losses are reversible.<br />

Radiology<br />

Radiology


Spin Echo<br />

Spin Echo<br />

RF<br />

90°<br />

180°<br />

RF<br />

90°<br />

180°<br />

TE<br />

Signal<br />

Signal<br />

Radiology<br />

Radiology<br />

Spin Echo<br />

Spin Echo - Contrast<br />

RF<br />

90°<br />

180°<br />

TR<br />

RF<br />

90°<br />

180°<br />

TR<br />

Signal<br />

TE<br />

Signal<br />

e<br />

t<br />

T ⇤ 2<br />

TE<br />

e<br />

t<br />

T 2<br />

Radiology<br />

Radiology


Spin Echo<br />

Spin Echo - Refocusing<br />

RF<br />

90°<br />

180°<br />

TR<br />

TE<br />

Signal<br />

Radiology<br />

How do you adjust the TR<br />

How do you adjust the TE<br />

Radiology<br />

http://en.wikipedia.org/wiki/File:HahnEcho_GWM.gif<br />

Spin Echo Contrast<br />

Spin Echo Parameters<br />

Spin Density Short Long<br />

T1-Weighted Short Intermediate<br />

T2-Weighted Intermediate Long<br />

A Echo / ⇢<br />

⇣<br />

⌘<br />

1 e TR/T 1<br />

e TE/T 2<br />

Spin Echo Contrast<br />

Spin Echo Parameters<br />

Spin Density 10-30ms >2000ms<br />

T1-Weighted 10-30ms 450-850ms<br />

T2-Weighted >60ms >2000ms<br />

ρ<br />

T2<br />

Long<br />

TR<br />

Short<br />

T1<br />

X<br />

Radiology<br />

Radiology<br />

Short<br />

TE<br />

Long<br />

Images Courtesy of Mark Cohen


Spin Echo - Contrast<br />

Spin Echo - Variable TE T2 Contrast<br />

TE=13ms TE=26ms TE=53ms<br />

Radiology<br />

http://en.wikipedia.org/wiki/File:HahnEcho_GWM.gif<br />

Radiology<br />

TE=106ms TE=145ms TE=172ms<br />

Fast Spin Echo<br />

Fast Spin Echo<br />

180°<br />

180° 180°<br />

90°<br />

• Advantages<br />

RF<br />

GSlice<br />

– Turbo factor accelerates imaging<br />

– Can be used with 2D slice interleaving<br />

– Allows T2 weighted imaging in a breath hold<br />

• Disadvantages<br />

GPhase<br />

GReadout<br />

Signal<br />

Echo-1<br />

T2-decay<br />

Echo-2 Echo-3<br />

– High turbo factors (ETL>4):<br />

• Blur images<br />

• Alter image contrast<br />

– Fat & Water are both bright on T2-weighted<br />

• Water/CSF T2 is long<br />

• Repeated 180s reduce spin-spin interaction<br />

– This lengthens the moderate T2 of fat<br />

– SAR can be high<br />

Radiology<br />

Radiology


Inversion Recovery<br />

Inversion Recovery<br />

• Key Features<br />

– Signal Preparation Block<br />

• 180° RF Inversion Pulse<br />

• TI – Inversion Time [ms]<br />

– Signal Measurement Block<br />

• Spin Echo or Gradient Echo<br />

• Signal during imaging is dependent on<br />

– T1 and TI<br />

• TR is typically long (>2000ms)<br />

– Better for 2D sequences<br />

• Can null a single T1 species if<br />

– TI=ln(2)T1=0.69T1<br />

• Can be used for quantitative T1 mapping<br />

62<br />

Radiology<br />

Inversion Pulses<br />

Inversion Recovery<br />

Radiology<br />

Radiology


Radiology<br />

180°<br />

Inversion Recovery<br />

Contrast<br />

180°<br />

Contrast<br />

Relax<br />

Imaging<br />

TI<br />

TR<br />

Radiology<br />

180°<br />

Inversion Recovery<br />

TE<br />

180°<br />

90°<br />

180°<br />

Contrast<br />

TR<br />

TI<br />

Relax<br />

Contrast<br />

Radiology<br />

180°<br />

Inversion Recovery<br />

180°<br />

90°<br />

180°<br />

TR<br />

TI<br />

Mz<br />

Contrast<br />

Relax<br />

TE<br />

Contrast<br />

Radiology<br />

180°<br />

Inversion Recovery<br />

180°<br />

90°<br />

180°<br />

TR<br />

TI<br />

Mz<br />

Contrast<br />

Relax<br />

TE<br />

Contrast


Basic Gradient Echo Sequence<br />

RF<br />

e<br />

t<br />

T ⇤ 2<br />

Gradient Echo Imaging<br />

Slice<br />

Select<br />

Phase<br />

Encode<br />

Free Induction Decay (FID)<br />

Freq.<br />

Encode<br />

68<br />

Radiology<br />

Basic Gradient Echo Sequence<br />

Basic Gradient Echo Sequence<br />

e<br />

t<br />

T ⇤ 2<br />

RF<br />

RF<br />

Slice<br />

Select<br />

Free Induction Decay (FID)<br />

Slice<br />

Select<br />

Gradient Echo!<br />

Phase<br />

Encode<br />

Phase<br />

Encode<br />

Freq.<br />

Encode<br />

Freq.<br />

Encode<br />

Radiology<br />

Radiology


Basic Gradient Echo Sequence<br />

TR<br />

TE<br />

RF<br />

Basic Gradient Echo Sequence<br />

TR<br />

TE<br />

RF<br />

Slice<br />

Select<br />

Phase<br />

Encode<br />

Slice<br />

Select<br />

Phase<br />

Encode<br />

Wasted<br />

Time<br />

Freq.<br />

Encode<br />

Freq.<br />

Encode<br />

Radiology<br />

Radiology<br />

Gradient Echo + Spoiling<br />

RF Phase<br />

Cycling<br />

RF<br />

Slice<br />

Select<br />

Spoiler<br />

Gradient<br />

Spoiler<br />

Gradient<br />

Gradient Echoes & Contrast<br />

Phase<br />

Encode<br />

Freq.<br />

Encode<br />

Radiology


Spoiled Gradient Echo Contrast<br />

T2*-weighted Gradient Echo Imaging<br />

Axial Shoulder<br />

Axial Shoulder<br />

Gradient Echo Parameters<br />

Type of Contrast TE TR Flip Angle<br />

Spin Density Short Long Small<br />

T1-Weighted Short Intermediate Large<br />

T2 * -Weighted Intermediate Long Small<br />

Radiology<br />

A echo / ⇢ 1 e TR/T 1<br />

1 cos ↵e TR/T 1<br />

sin ↵e TE/T⇤ 2<br />

Contrast adjusted by changing TR, flip angle, and TE.<br />

Radiology<br />

TE=9ms<br />

TE=30ms<br />

Susceptibility Weighting (darker with longer TE)<br />

Bright fluid signal (long T2* is brighter with longer TE)<br />

Radiology<br />

Spoiled GRE & Ernst Angle<br />

Ernst = arccos<br />

e TR<br />

T 1<br />

⇥<br />

Produces the largest MRI signal for a given TR and T1.<br />

Tissue T1 [ms] T2 [ms]<br />

muscle 875 47<br />

fat 260 85<br />

MRI Signal [A.U.]<br />

Radiology<br />

Spoiled GRE & Ernst Angle<br />

Fat<br />

Muscle<br />

Contrast<br />

10° 20° 30° 40° 50° 60° 70° 80° 90°<br />

Flip Angle


Spoiled GRE & Ernst Angle<br />

90°<br />

180°<br />

Spin Echo EPI<br />

90°<br />

1° 5° 10° 20°<br />

High Muscle Signal<br />

High Fat Signal<br />

RF<br />

GSlice<br />

GPhase<br />

TE<br />

TR<br />

30° 45° 60° 90°<br />

Highest Contrast<br />

GReadout<br />

Signal<br />

T2*-decay<br />

Off Resonance Effects Accumulate<br />

Radiology<br />

Radiology<br />

Spin Echo EPI<br />

• Advantages<br />

– Can acquire data in a “single shot”<br />

– Can be used with 2D slice interleaving<br />

– Allows fast T2 * weighted imaging<br />

• Disadvantages<br />

– Single Shot EPI<br />

• Ghosting<br />

• Blur images<br />

• Image distortion<br />

• Alter image contrast<br />

– Multi-shot EPI<br />

• Slower than single shot<br />

– Faster than SE<br />

• Applications<br />

– DWI, Perfusion, fMRI<br />

µ Magnetic Moment<br />

M z<br />

M xy<br />

S (t)<br />

⇥<br />

S k<br />

I ( x)<br />

Dipoles to Images<br />

Bulk Magnetization<br />

Transverse Magnetization<br />

Received Signal<br />

k-space signal<br />

Image<br />

} B 0<br />

} B 1<br />

} Coil<br />

} Gradients<br />

} FFT<br />

Radiology<br />

Radiology


Thanks<br />

Daniel B. Ennis, Ph.D.<br />

ennis@ucla.edu<br />

310.206.0713 (Office)<br />

http://ennis.bol.ucla.edu<br />

Peter V. Ueberroth Bldg.<br />

Suite 1417, Room C<br />

10945 Le Conte Avenue<br />

UCLA – Radiology – DCVI

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!