13.11.2012 Views

Vertically Loaded Plate Anchors for Deepwater Applications

Vertically Loaded Plate Anchors for Deepwater Applications

Vertically Loaded Plate Anchors for Deepwater Applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Vertically</strong> <strong>Loaded</strong> <strong>Plate</strong> <strong>Anchors</strong><br />

<strong>for</strong> <strong>Deepwater</strong> <strong>Applications</strong><br />

Don Murff<br />

OTRC, Texas A&M University, USA<br />

Mark Randolph, Sarah Elkhatib<br />

COFS, University of Western Australia<br />

Harry Kolk<br />

Fugro Engineers, The Netherlands<br />

Rod Ruinen<br />

Vryhof <strong>Anchors</strong>, The Netherlands<br />

Pål Strøm<br />

det Norske Veritas, Norway<br />

Colin Thorne<br />

University of Sydney, Australia<br />

Project sponsored by<br />

American Petroleum<br />

Institute<br />

&<br />

Deepstar Project<br />

Undertaken jointly by<br />

OTRC, NGI and COFS<br />

+ volunteers!


<strong>Vertically</strong> <strong>Loaded</strong> <strong>Anchors</strong><br />

Bruce DENNLA Vryhof Stevmanta


Motivation <strong>for</strong> the Study<br />

Seabottom<br />

Mudline Force


Phase I - Data Collection<br />

• Identify and collect relevant references<br />

• Develop a collection of prediction methods<br />

• Create a database of VLA test data and<br />

applications


Phase II - Evaluate Current Practice<br />

• Industry prediction exercise of hypothetical<br />

(idealized) case studies.<br />

• Industry prediction exercise of actual case<br />

studies.<br />

• Numerical studies of anchor per<strong>for</strong>mance under<br />

multi-axial loading and comparison with industry<br />

prediction methods.


• References<br />

Phase I Results<br />

– More than 80 references collected<br />

• Prediction Methods<br />

– Several existing methods were documented <strong>for</strong> analysis of anchor<br />

line behavior, installation, and holding capacity.<br />

– Methodologies ranged from strictly empirical to advanced numerical<br />

methods.<br />

• A database of VLA applications and experiments was<br />

compiled, including:<br />

– Offshore field experiments<br />

– Onshore field or laboratory experiments<br />

– Full scale applications


Year<br />

1995<br />

1996<br />

1998<br />

1999<br />

1999<br />

2000<br />

2002<br />

2003<br />

2004<br />

Field & Type<br />

Nkossa FSO<br />

Liuhua 11-1<br />

Voador P27 Semi-FPU<br />

Marlim South EPS<br />

FPSO-II<br />

Roncador P36 Semi-FPU<br />

Marlim P40 Semi-FPU<br />

Roncador FPSO<br />

Fluminese FPSO<br />

Marlim FPSO<br />

Field <strong>Applications</strong><br />

Location<br />

Gulf of Guinea<br />

South China Sea<br />

Offshore Brazil<br />

Offshore Brazil<br />

Offshore Brazil<br />

Offshore Brazil<br />

Offshore Brazil<br />

Offshore Brazil<br />

Offshore Brazil<br />

Water<br />

depth<br />

(m)<br />

1125<br />

310<br />

530<br />

1215<br />

1350<br />

1080<br />

1150 to<br />

1475<br />

700<br />

1210<br />

Anchor type<br />

SBM ‘Mag’<br />

Bruce FFTS Mk4<br />

Stevmanta<br />

Bruce DENNLA<br />

Stevmanta<br />

Stevmanta<br />

Stevmanta<br />

Stevmanta<br />

Stevmanta<br />

Fluke<br />

area<br />

(m 2 )<br />

16.4<br />

11<br />

10<br />

13<br />

13<br />

14<br />

11<br />

13<br />

Operator<br />

Elf<br />

Amoco<br />

Petrobras<br />

Petrobras<br />

Petrobras<br />

Petrobras<br />

Petrobras<br />

Shell<br />

Petrobras


Industry Prediction Exercise<br />

Hypothetical Cases<br />

B<br />

H<br />

D 1<br />

C<br />

D<br />

θ f<br />

D 2<br />

Idealized Drag Anchor Geometry<br />

Case 1 Base case<br />

Case 2 Vary anchor weight (weight x 2)<br />

Case 3 Vary anchor line diameter (diameter x 2)<br />

Case 4 Vary fluke shank angle (decrease from 50 to 35 degrees)<br />

Case 5 Vary shank cross-section (increase cross-section area x 2.25)<br />

Case 6 Vary fluke aspect ratio (change fluke area from a 2:1 rectangle to a square)<br />

Case 7 Vary soil profile (change from linear increase with depth to uni<strong>for</strong>m strength)<br />

G<br />

CG<br />

E<br />

θ 1<br />

A<br />

F


Comparisons Among Predictors<br />

Base Case<br />

Shackle Load, KN<br />

Shackle Depth, m<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Drag Distance, m<br />

0 100 200 300 400 500 600<br />

Predictor 1<br />

Predictor 2<br />

Predictor 3<br />

Predictor 4<br />

Predictor 5<br />

0 100 200 300 400 500 600<br />

Drag Distance, m<br />

Predictor 1<br />

Predictor 2<br />

Predictor 3<br />

Predictor 4<br />

Predictor 5


Comparisons Among Cases<br />

Predictor 3<br />

Shackle Load, KN<br />

Shackle Depth, m<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Drag Distance, m<br />

0 100 200 300 400 500<br />

Case 1<br />

Case 2<br />

Case 3<br />

Case 4<br />

Case 5<br />

Case 6<br />

Case 7<br />

0 100 200 300 400 500<br />

Drag Distance, m<br />

Case 1<br />

Case 2<br />

Case 3<br />

Case 4<br />

Case 5<br />

Case 6<br />

Case 7


Shackle Load, KN<br />

Predicted Depth, m<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Case<br />

1<br />

Case<br />

1<br />

Parameter Effects Among Predictors<br />

Case<br />

2<br />

Case<br />

2<br />

Case<br />

3<br />

Case<br />

3<br />

Case<br />

4<br />

Case<br />

4<br />

Case<br />

5<br />

Case<br />

5<br />

Case<br />

6<br />

Case<br />

6<br />

Case<br />

7<br />

Case<br />

7<br />

Case<br />

1. Base<br />

2. Vary<br />

weight<br />

3. Vary line<br />

diameter<br />

4. Vary flukeshank<br />

angle<br />

5. Vary shank<br />

cross-section<br />

6. Vary fluke<br />

aspect ratio<br />

7. Vary soil<br />

profile<br />

Parameter<br />

Mean<br />

COV<br />

Mean<br />

COV<br />

Mean<br />

COV<br />

Mean<br />

COV<br />

Mean<br />

COV<br />

Mean<br />

COV<br />

Mean<br />

COV<br />

Depth<br />

ratio<br />

z/z case1<br />

1<br />

0<br />

1.00<br />

0.006<br />

0.54<br />

0.036<br />

0.38<br />

0.26<br />

1.06<br />

0.035<br />

1.13<br />

0.27<br />

0.49<br />

0.049<br />

Shank<br />

<strong>for</strong>ce<br />

ratio<br />

T/T case1<br />

1<br />

0<br />

1.01<br />

0.007<br />

0.57<br />

0.040<br />

0.29<br />

0.31<br />

1.20<br />

0.065<br />

1.15<br />

0.27<br />

0.26<br />

0.204<br />

Mudline<br />

<strong>for</strong>ce<br />

ratio<br />

T/T case1<br />

1<br />

0<br />

1.01<br />

0.008<br />

0.58<br />

0.033<br />

0.28<br />

0.32<br />

1.19<br />

0.062<br />

1.17<br />

0.28<br />

0.27<br />

0.193


Simulation Results vs Design Chart Predictions<br />

Design Chart Equation <strong>for</strong> Soft Clay<br />

0.<br />

92<br />

T hc = 48W<br />

1.<br />

53<br />

W = 2. 31 A<br />

T = 13<br />

As<br />

nhc<br />

u<br />

T h c =<br />

103. 7<br />

A<br />

where T hc = anchor holding capacity (kN); W = anchor weight (kN); and A= fluke area (m 2 )<br />

Base Case Capacity by Chart: 864 kN<br />

Capacity by Simulation:<br />

Mean = 2985 kN with range of 1963 kN to 3811 kN<br />

<strong>Plate</strong> Uplift Capacity <strong>for</strong> Normal Loading<br />

At 20 m depth T nhc = 1755 kN Per<strong>for</strong>mance Ratio = 1755/864 = 2.0<br />

At 50 m depth T nhc = 4390 kN Per<strong>for</strong>mance Ratio = 4390/2985 = 1.5<br />

1.<br />

41


Location<br />

Operator<br />

Water depth<br />

Anchor type<br />

Weight<br />

Fluke area<br />

Industry Prediction Exercise<br />

Case Histories<br />

Case 1<br />

Gulf of Mexico<br />

Omega<br />

Marine<br />

Unknown<br />

Vryhof Stevpris<br />

68.6 kN<br />

9 m 2<br />

Case 2<br />

Gulf of Mexico<br />

Aker Maritime JIP<br />

91m<br />

Bruce DENNLA<br />

12.7 kN<br />

5 m 2<br />

Case 3<br />

Gulf of Mexico<br />

Aker Maritime JIP<br />

91 m<br />

Vryhof Stevmanta<br />

31.6 kN<br />

5 m 2<br />

Case 4<br />

Centrifuge UWA<br />

(80g)<br />

COFS<br />

NA<br />

Based on Stevpris<br />

373 kN<br />

(prototype)<br />

21 m 2


Results of the Case Studies Prediction Exercise<br />

Mudline Load, KN<br />

Shackle Depth, m<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Drag Distance, m<br />

0 50 100 150 200 250<br />

Predictor 2<br />

Predictor 3<br />

Predictor 4<br />

Predictor 5<br />

Measured<br />

0 50 100 150 200 250<br />

Drag Distance, m<br />

Predictor 2<br />

Predictor 3<br />

Predictor 4<br />

Predictor 5<br />

Measured<br />

Mudline Load, KN<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 10 20 30 40<br />

Depth, m<br />

Predictor 2<br />

Predictor 3<br />

Predictor 4<br />

Predictor 5<br />

Measured


Drag =<br />

Empirical Method Predictions<br />

vs Field Measurements<br />

Case<br />

1<br />

2<br />

3<br />

Quantity<br />

Measured<br />

Chart<br />

Measured<br />

Chart<br />

Measured<br />

Chart<br />

49. 4<br />

A<br />

0.<br />

48<br />

Drag<br />

distance (m)<br />

75<br />

141<br />

77<br />

102<br />

77<br />

110<br />

M u d l i n e C a p a c i t y =<br />

Penetration<br />

depth (m)<br />

21.3<br />

27.7<br />

21<br />

20.1<br />

24.0<br />

21.6<br />

Depth =<br />

103. 7<br />

A<br />

Mudline load<br />

(kN)<br />

1.<br />

41<br />

1983<br />

2260<br />

1445<br />

886<br />

1053<br />

1089<br />

9. 7<br />

A<br />

0.<br />

48


Advanced Numerical Analysis


Advanced Numerical Analysis of Anchor<br />

Capacity Under Multi- Axial Loading<br />

Global finite element mesh<br />

Finite element mesh<br />

detail near plate anchor<br />

Model properties<br />

Soil: linear elastic, Tresca plastic<br />

E/s u = 500<br />

υ = 0.49<br />

<strong>Plate</strong>: rigid body<br />

Interface: τ max = αs u<br />

α varied from 0 to 1<br />

<strong>Plate</strong> geometry & loading<br />

t<br />

M<br />

F n<br />

L<br />

F s


Analysis Results - Capacity Factors <strong>for</strong> Pure<br />

Normal, Shear & Moment Loading<br />

Aspect<br />

ratio<br />

L/t = 7<br />

L/t = 20<br />

Value<br />

of α<br />

0<br />

0.2<br />

0.4<br />

0.6<br />

0.8<br />

1<br />

Bonded<br />

Bonded<br />

N n<br />

11.15<br />

11.24<br />

11.32<br />

11.39<br />

11.45<br />

11.49<br />

11.58<br />

11.33<br />

F<br />

⎛ + ⎞<br />

= max<br />

t 1 α<br />

N<br />

n<br />

n = 3π<br />

+ 2 ⎜α<br />

+ ⎟<br />

Lsu<br />

L ⎝ 2 ⎠<br />

FE Results UB Approximations (α = 1)<br />

N s<br />

2.10<br />

2.58<br />

3.04<br />

3.50<br />

3.95<br />

4.36<br />

4.49<br />

3.21<br />

N m<br />

1.48<br />

1.56<br />

1.61<br />

1.63<br />

1.65<br />

1.67<br />

1.74<br />

1.71<br />

Aspect<br />

ratio, L/t<br />

F<br />

t<br />

N s max ⎛ ⎞<br />

s = = 2⎜α<br />

+<br />

N t i p ⎟ ≈ 2α<br />

+ 15<br />

Ls<br />

u ⎝<br />

L ⎠<br />

6<br />

7<br />

8<br />

9<br />

10<br />

15<br />

20<br />

t<br />

L<br />

12.39<br />

12.23<br />

12.11<br />

12.03<br />

11.96<br />

11.91<br />

11.75<br />

11.67<br />

Upper Bound Analytical Approximations (after O’Neill et al, 2003)<br />

5<br />

N n<br />

N s<br />

5.00<br />

4.50<br />

4.14<br />

3.88<br />

3.67<br />

3.50<br />

3.00<br />

2.75<br />

N m<br />

1.63<br />

1.61<br />

1.60<br />

1.60<br />

1.59<br />

1.59<br />

1.58<br />

1.57<br />

⎡ 2<br />

M<br />

⎛ ⎞<br />

⎤<br />

= max π<br />

t<br />

N<br />

m = ⎢1<br />

+ ⎜ ⎟ ⎥<br />

2<br />

L<br />

s 2 ⎢⎣<br />

⎝<br />

L<br />

u<br />

⎠ ⎥⎦


Load Interactions & the Generalized Model<br />

Parallel, Parellel, Ns, N or Moment, Nm, factor<br />

s , or Moment, Nm , factor<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Normal-parallel<br />

Normal-moment<br />

L/t = = 7, 7, fully rough<br />

0 2 4 6 8 10 12<br />

Normal capacity factor, Nn Nn Bransby and O’Neill (1999) equation with exponents from least squares fit of<br />

FEM results.<br />

1<br />

3.<br />

68<br />

1.<br />

37<br />

3.<br />

74<br />

⎛<br />

⎡<br />

⎤1.<br />

22<br />

F ⎞ ⎛ ⎞ ⎛ ⎞<br />

=<br />

⎢<br />

+<br />

⎥<br />

⎜<br />

n<br />

M<br />

F<br />

f ⎟ +<br />

−1<br />

= 0<br />

max ⎢<br />

⎜<br />

⎟<br />

⎜<br />

s<br />

⎟<br />

⎝<br />

F<br />

n ⎠<br />

max<br />

max ⎥<br />

⎣<br />

⎝<br />

M ⎠ ⎝<br />

F<br />

s ⎠<br />

⎦<br />

F n<br />

M<br />

F s<br />

F n


Parallel Capacity Factor, N sN<br />

s<br />

5.00<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

FEM Results vs Generalized Model<br />

0 5 10 15<br />

Normal Capacity Factor, Nn Nn Parallel Capacity Capacity Factor, N sNs<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

FEM-COFS,L/t=7<br />

Eqs. Failure 2-5, fn, L/t=7 L/t = 7<br />

FEM-OTRC, L/t=10<br />

Eqs. Failure 2-5, fn, L/t=10 L/t = 10<br />

Failure Eqs. 2-5,L/t=7 fn, L/t = 7<br />

FEM-COFS, L/t=7<br />

Failure Eqs. 2-5, fn, L/t=6 L/t = 6<br />

FEM-OTRC, L/t=6<br />

Moment Capacity Factor, N mNm<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0 0.5 1 1.5 2<br />

Moment Capacity Factor, NmNm<br />

2<br />

1<br />

0<br />

0 5 10 15<br />

Normal Capacity Capacity Factor, Factor, NnNn<br />

FEM-COFS, L/t=7<br />

Failure Eqs. 2-5, fn, L/t L/t=7 = 7<br />

FEM- OTRC, L/t=6<br />

Failure Eqs. 2-5, fn, L/t L/t=6 = 6


Predicted Load Interactions<br />

Normalised Resultant resultant Force/LWSu <strong>for</strong>ce, F/Asu 14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

N n = 11.49<br />

t<br />

Centroid<br />

0 20 40 60 80<br />

L<br />

Load Inclination from Vertical, Degrees<br />

b<br />

b/L=0<br />

b/L=0.1<br />

b/L=0.2<br />

b/L=0.3<br />

b/L=0.4<br />

b/L=0.5<br />

Load inclination from vertical, θ (deg)<br />

θ<br />

F<br />

N s = 4.36


Interpretation of Hypothetical Study Results<br />

c<br />

m d<br />

Fluke<br />

θ f<br />

d<br />

f bn<br />

f bs<br />

f dn<br />

f ds<br />

e<br />

b<br />

Shackle<br />

Shank<br />

a<br />

Direction of travel<br />

F<br />

η<br />

λ


Hypothetical Predictions Compared<br />

to The Failure Function<br />

Failure Function Function<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-10 -5 0 5 10<br />

Force Angle with Shank, Degrees<br />

Inferred from Hypothetical<br />

Data<br />

Inferred from Hypothetical<br />

Data, No moment<br />

Failure function


Summary and Conclusions<br />

Hypothetical Studies<br />

• Predictions among five models were qualitatively similar.<br />

• Parameters with greatest effects are:<br />

– Anchor line diameter<br />

– Fluke-shank angle<br />

– Fluke aspect ratio<br />

– Soil strength profile<br />

• Model predictions <strong>for</strong> depth and load<br />

>> empirical chart predictions.


Summary and Conclusions<br />

Field Studies<br />

• Model predictions matched measurements well (with<br />

model adjustments).<br />

• <strong>Plate</strong> anchors showed a linear depth vs drag distance.<br />

• Linear load vs depth behavior predicted well by models.<br />

• Chart predictions compared well with measurements<br />

but….<br />

– field anchors may not have been dragged sufficiently far to<br />

maximize capacity.


Summary and Conclusions<br />

FEM Studies<br />

• FEM studies were carried out to assess load coupling<br />

– Strongest coupling is between normal load and moment.<br />

– FEM results agree well with upper bound analytical results.<br />

• The FEM load interaction results gave an excellent fit to<br />

the Bransby-O’Neill yield equation.<br />

• FEM results were compared with inferred load capacities<br />

from the hypothetical studies concluding that:<br />

– A Priori prediction of anchor trajectories is subject to significant<br />

uncertainty; and<br />

– With calibration to specific situations the simplified methods can<br />

work well.


Acknowledgements<br />

• API Advisory Committee and Chairman Phillipe Jeanjean<br />

• Deepstar Joint Industry Project<br />

• U.S. Minerals Management Service<br />

• Australian Research Council’s Research Centre’s<br />

Program

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!