26.01.2015 Views

The Handbook of GeoTest GeoBiax - The Laboratory of Geomaterials

The Handbook of GeoTest GeoBiax - The Laboratory of Geomaterials

The Handbook of GeoTest GeoBiax - The Laboratory of Geomaterials

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoTest</strong> <strong>GeoBiax</strong><br />

Georgopoulos Ioannis-Orestis 1<br />

Vardoulakis Ioannis 2<br />

October 6, 2005<br />

1 PhD Student, NTU Athens, Greece<br />

2 Pr<strong>of</strong>essor, NTU Athens, Greece


Nobody believes the numerical results, but the numerician himself.<br />

Everyone believes the experimental results, but the experimentalist.


To my beloved parents and sister<br />

Sarantos, Panoraia and Eleni


Contents<br />

Preface<br />

ix<br />

1 An overview <strong>of</strong> the Geobiaxial apparatus 1<br />

2 <strong>The</strong> Geobiaxial load frame 3<br />

2.1 Short Description <strong>of</strong> the frame . . . . . . . . . . . . . . . . . 3<br />

2.2 Overview <strong>of</strong> the frame controls . . . . . . . . . . . . . . . . . 3<br />

2.3 Transducers installed on the frame - External transducers . . 7<br />

2.3.1 Bongshin CRC-5t-External Load Cell . . . . . . . . . 7<br />

2.3.2 CDI Displacement Transducer . . . . . . . . . . . . . 11<br />

3 <strong>The</strong> GeoLab biaxial apparatus 13<br />

3.1 Base plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

3.2 Biaxial apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

3.2.1 Linear Voltage Displacement Transducers-RDP-D2-200A 17<br />

3.2.2 Cell - Pore Pressure lines . . . . . . . . . . . . . . . . 31<br />

3.2.3 Axial stress . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

3.2.4 Side rigid walls . . . . . . . . . . . . . . . . . . . . . . 51<br />

3.2.5 Biaxial sled . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.3 Biaxial cell house . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.4 Biaxial cell house lid . . . . . . . . . . . . . . . . . . . . . . . 70<br />

4 <strong>The</strong> VJ Tech volume change apparatus (VJT310/SN:0134) 73<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

4.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.3 Control Module Valve Positions . . . . . . . . . . . . . . . . . 75<br />

4.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

5 Triaxial and permeability control column - S5427B 81<br />

5.1 Functions <strong>of</strong> components and valves . . . . . . . . . . . . . . 81<br />

5.2 Sample Installation, Application <strong>of</strong> Cell Pressure . . . . . . . 84<br />

5.3 Filling the Burettes, Vacuum Saturation . . . . . . . . . . . . 85<br />

5.3.1 Filling the Cap Burettes . . . . . . . . . . . . . . . . . 85<br />

5.3.2 Filling the Pedestal Burettes . . . . . . . . . . . . . . 86<br />

i


5.4 Back Pressure Application, Degree <strong>of</strong> Saturation . . . . . . . 86<br />

5.5 Consolidation <strong>of</strong> Sample, Permeability Measurement . . . . . 87<br />

5.6 Shearing the Sample, Terminating the Test . . . . . . . . . . 88<br />

5.7 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br />

6 Acknowledgements 89


List <strong>of</strong> Figures<br />

1.1 <strong>The</strong> biaxial apparatus <strong>of</strong> <strong>Laboratory</strong> <strong>of</strong> <strong>Geomaterials</strong> in NTU<br />

Athens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

2.1 Side view <strong>of</strong> the Geobiaxial load frame . . . . . . . . . . . . . 4<br />

2.2 <strong>The</strong> Geobiaxial load frame . . . . . . . . . . . . . . . . . . . . 5<br />

2.3 Bongshin load cell calibration certificate . . . . . . . . . . . . 8<br />

2.4 Bongshin load cell calibration certificate . . . . . . . . . . . . 8<br />

2.5 Bongshin calibration certificate, 2004-12-23 . . . . . . . . . . 9<br />

2.6 Bongshin calibration certificate, 2005-02-18 . . . . . . . . . . 9<br />

2.7 Bongshin calibration certificate, 2005-04-06 . . . . . . . . . . 10<br />

2.8 Bongshin CRC-5t Load Cell . . . . . . . . . . . . . . . . . . . 10<br />

2.9 CDI external displacement transducer on the top <strong>of</strong> the biaxial<br />

cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

3.1 Top view <strong>of</strong> the biaxial apparatus base plate . . . . . . . . . . 14<br />

3.2 <strong>The</strong> biaxial apparatus base plate . . . . . . . . . . . . . . . . 14<br />

3.3 <strong>The</strong> Geobiax apparatus . . . . . . . . . . . . . . . . . . . . . 15<br />

3.4 Side and top view <strong>of</strong> the Geobiax apparatus . . . . . . . . . . 15<br />

3.5 Sketch <strong>of</strong> the Geobiax apparatus . . . . . . . . . . . . . . . . 16<br />

3.6 RDP-D2-200A displacement transducer cable plug . . . . . . 17<br />

3.7 Top view <strong>of</strong> the RDP-D2-200A displacement transducer with<br />

its mounting block . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

3.8 RDP-D2-200A-6136 calibration certificate . . . . . . . . . . . 19<br />

3.9 RDP-D2-200A-6136 calibration certificate, 2005-02-15 . . . . 19<br />

3.10 RDP-D2-200A-6136 transducer for sled movement . . . . . . 20<br />

3.11 RDP-D2-200A-6529 calibration certificate, 2005-02-15 . . . . 21<br />

3.12 RDP-D2-200A-6529 transducer for lateral displacement . . . 21<br />

3.13 RDP-D2-200A-6141 calibration certificate . . . . . . . . . . . 22<br />

3.14 RDP-D2-200A-6141 calibration certificate, 2005-02-15 . . . . 23<br />

3.15 RDP-D2-200A-6141 transducer for lateral displacement . . . 23<br />

3.16 RDP-D2-200A-6236 calibration certificate . . . . . . . . . . . 24<br />

3.17 RDP-D2-200A-6236 calibration certificate, 2005-02-15 . . . . 24<br />

3.18 RDP-D2-200A-6236 transducer for axial displacement . . . . 25<br />

3.19 RDP-D2-200A-6397 calibration certificate . . . . . . . . . . . 25<br />

iii


3.20 RDP-D2-200A-6397 calibration certificate, 2005-02-15 . . . . 26<br />

3.21 RDP-D2-200A-6397 transducer for axial displacement . . . . 26<br />

3.22 RDP-D2-200A-6528 calibration certificate . . . . . . . . . . . 27<br />

3.23 RDP-D2-200A-6528 calibration certificate, 2005-02-15 . . . . 28<br />

3.24 RDP-D2-200A-6528 transducer for lateral displacement . . . 28<br />

3.25 RDP-D2-200A-6527 calibration certificate . . . . . . . . . . . 29<br />

3.26 RDP-D2-200A-6527 calibration certificate, 2005-02-15 . . . . 29<br />

3.27 RDP-D2-200A-6527 transducer for lateral displacement . . . 30<br />

3.28 WF17060-SN780036 Cell pressure transducer calibration certificate<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

3.29 Cell Pressure Line . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

3.30 RS-T106377 Pedestal pressure transducer calibration certificate 34<br />

3.31 RS-T117884 Top cap pressure transducer calibration certificate 35<br />

3.32 RS Pressure Transducers specification spreadsheet . . . . . . 36<br />

3.33 Pore Pressure Line . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.34 External load cell installed in biaxial load frame . . . . . . . 37<br />

3.35 Pane cake load cell, LGP-310/SN:555328 . . . . . . . . . . . . 38<br />

3.36 Top and side view <strong>of</strong> biaxial top cap . . . . . . . . . . . . . . 38<br />

3.37 Subminiature load cell, LPM-510/SN:501319 (Channel-08),<br />

LPM-510/SN:532393 (Channel-09), LPM-510/SN:541590 (Channel-<br />

10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

3.38 Side and top view <strong>of</strong> the biaxial pedestal . . . . . . . . . . . . 39<br />

3.39 LPG310-555328-Pancake load cell spreadsheet . . . . . . . . . 41<br />

3.40 LPG310-555328-Pancake load cell calibration certificate . . . 42<br />

3.41 LGP310-555328 load cell calibration, 2005-02-18 . . . . . . . 43<br />

3.42 LPG310-555328-Pancake load cell . . . . . . . . . . . . . . . . 43<br />

3.43 LPM510-501319-Pancake load cell spreadsheet . . . . . . . . 45<br />

3.44 LPM510-501319-Pancake load cell calibration certificate . . . 46<br />

3.45 LPM510-501319 load cell calibration, 2005-02-18 . . . . . . . 47<br />

3.46 LPM510-501319-Pancake load cell . . . . . . . . . . . . . . . 47<br />

3.47 LPM510-532393-Pancake load cell spreadsheet . . . . . . . . 48<br />

3.48 LPM510-532393-Pancake load cell calibration certificate . . . 49<br />

3.49 LPM510-532393 load cell calibration, 2005-02-18 . . . . . . . 50<br />

3.50 LPM510-532393-Pancake load cell . . . . . . . . . . . . . . . 51<br />

3.51 LPM510-541590-Pancake load cell spreadsheet . . . . . . . . 52<br />

3.52 LPM510-541590-Pancake load cell calibration certificate . . . 53<br />

3.53 LPM510-541590 load cell calibration, 2005-02-18 . . . . . . . 54<br />

3.54 LPM510-541590-Pancake load cell . . . . . . . . . . . . . . . 55<br />

3.55 Side rigid walls <strong>of</strong> the biaxial apparatus . . . . . . . . . . . . 56<br />

3.56 Top and side view <strong>of</strong> the two rigid walls <strong>of</strong> the biaxial apparatus 56<br />

3.57 LPM510-501315-Pancake load cell spreadsheet . . . . . . . . 58<br />

3.58 LPM510-501315-Pancake load cell calibration certificate . . . 59<br />

3.59 LPM510-501315 load cell calibration, 2005-02-18 . . . . . . . 60<br />

3.60 LPM510-501315 load cell . . . . . . . . . . . . . . . . . . . . 60


3.61 LPM510-501311-Pancake load cell spreadsheet . . . . . . . . 61<br />

3.62 LPM510-501311-Pancake load cell calibration certificate . . . 62<br />

3.63 LPM510-501311 load cell calibration, 2005-02-18 . . . . . . . 63<br />

3.64 LPM510-501311 load cell . . . . . . . . . . . . . . . . . . . . 64<br />

3.65 LPM510-501316-Pancake load cell spreadsheet . . . . . . . . 65<br />

3.66 LPM510-501316-Pancake load cell calibration certificate . . . 66<br />

3.67 LPM510-501316 load cell calibration, 2005-02-18 . . . . . . . 67<br />

3.68 LPM510-501316 load cell . . . . . . . . . . . . . . . . . . . . 68<br />

3.69 Sled <strong>of</strong> the biaxial apparatus . . . . . . . . . . . . . . . . . . 69<br />

3.70 <strong>The</strong> GeoLab biaxial cell house . . . . . . . . . . . . . . . . . . 70<br />

3.71 <strong>The</strong> GeoLab biaxial cell house lid . . . . . . . . . . . . . . . . 71<br />

4.1 VJT volume change apparatus (photo taken from VJT web<br />

site) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.2 VJT volume change apparatus front panel, VJT310/SN:0134 75<br />

4.3 VJ Tech volume change apparatus displacement transducer<br />

reference manual, LSC-HS25-12071 . . . . . . . . . . . . . . . 77<br />

4.4 VJ Tech volume change apparatus displacement transducer<br />

calibration, 2004-05-25, LSC-HS25-12071 . . . . . . . . . . . . 77<br />

4.5 VJ Tech volume change apparatus displacement transducer<br />

calibration, 2004-06-15, LSC-HS25-12071 . . . . . . . . . . . . 78<br />

4.6 VJ Tech volume change apparatus displacement transducer<br />

calibration, 2005-02-15, LSC-HS25-12071 . . . . . . . . . . . . 78<br />

4.7 VJ Tech volume change apparatus displacement transducer,<br />

LSC-HS25-12071 . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

4.8 VJ Tech volume change apparatus, VJT310/SN:0134 . . . . . 79<br />

5.1 Triaxial and permeability control column - S5427B (Photo<br />

taken from Geotest web site . . . . . . . . . . . . . . . . . . . 82<br />

5.2 GeoLab triaxial and permeability control column - S5427B . 82


List <strong>of</strong> Tables<br />

2.1 Bongshin CRC-5t External Load Cell Calibration Table . . . 7<br />

3.1 RDP-D2-200A-6136 Calibration Table . . . . . . . . . . . . . 18<br />

3.2 RDP-D2-200A-6529 Calibration Table . . . . . . . . . . . . . 20<br />

3.3 RDP-D2-200A-6141 Calibration Table . . . . . . . . . . . . . 22<br />

3.4 RDP-D2-200A-6236 Calibration Table . . . . . . . . . . . . . 24<br />

3.5 RDP-D2-200A-6397 Calibration Table . . . . . . . . . . . . . 25<br />

3.6 RDP-D2-200A-6528 Calibration Table . . . . . . . . . . . . . 27<br />

3.7 RDP-D2-200A-6527 Calibration Table . . . . . . . . . . . . . 29<br />

3.8 WF17060-SN780036-Cell Pressure Transducer Calibration Table<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

3.9 RS-T106377-Pore Pressure (Pedestal) Transducer Calibration<br />

Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

3.10 RS-T117884-Pore Pressure (Top Cap) Transducer Calibration<br />

Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3.11 LGP310-Pancake Load Cell Calibration Table . . . . . . . . . 40<br />

3.12 LPM510-SN501319-Subminiature Load Cell Calibration Table 44<br />

3.13 LPM510-SN532393-Subminiature Load Cell Calibration Table 50<br />

3.14 LPM510-SN541590-Subminiature Load Cell Calibration Table 54<br />

3.15 LPM510-SN501315-Subminiature Load Cell Calibration Table 57<br />

3.16 LPM510-SN501311-Subminiature Load Cell Calibration Table 63<br />

3.17 LPM510-SN501316-Subminiature Load Cell Calibration Table 67<br />

4.1 LSC-HS25-12071 Calibration Table . . . . . . . . . . . . . . . 76<br />

vii


Preface<br />

One authority after another has simply evaded the task <strong>of</strong> experimental<br />

investigation by assuming that some <strong>of</strong> the elements affecting the stability<br />

<strong>of</strong> earthwork are so uncertain in their operation as to justify their rejection...<br />

As a matter <strong>of</strong> fact, although these uncertain elements are neglected in<br />

investigations, engineers in designing, and still more contractors in executing<br />

works, do not neglect them, nor could they do so without leading to a<br />

blameworthy waste <strong>of</strong> money in some instances, and to a discreditable failure<br />

in others. <strong>The</strong> result <strong>of</strong> the present want <strong>of</strong> experimental data is then simply<br />

that individual judgement has to be exercised in each instance without that<br />

aid from careful experimental investigation which in these times is enjoyed<br />

in almost every other branch <strong>of</strong> engineering... Sir Benjamin Baker, 1881:<br />

<strong>The</strong> Actual Lateral Pressure <strong>of</strong> Earthwork<br />

Unfortunately, the research activities in soil mechanics had one undesirable<br />

psychological effect. <strong>The</strong>y diverted the attention <strong>of</strong> many investigators<br />

and teachers from the manifold limitations imposed by nature on<br />

the application <strong>of</strong> mathematics to problems in earthwork engineering. As a<br />

consequence, more and ore emphasis has been placed on refinements in sampling<br />

and testing and on those very few problems that can be solved with<br />

accuracy. Yet, accurate solutions can be obtained only if the soil strata<br />

are practical homogeneous and continuous in horizontal directions... On<br />

the overwhelming majority <strong>of</strong> jobs no more than an approximate forcast is<br />

needed, and if such a forecast cannot be made by simple means it cannot be<br />

made at all. Karl Terzaghi and Ralph Peck, 1948: Preface to Soil Mechanics<br />

in Engineering Practice.<br />

ix


Chapter 1<br />

An overview <strong>of</strong> the<br />

Geobiaxial apparatus<br />

<strong>The</strong> biaxial apparatus is a plane-strain testing device that was developed<br />

by I. Vardoulakis and A. Drescher <strong>of</strong> the Department <strong>of</strong> Civil and Mining<br />

Engineering, University <strong>of</strong> Minnesota, with grants from the National Science<br />

Foundation (NFS) and the State <strong>of</strong> Minnesota.<br />

<strong>The</strong> investigation <strong>of</strong> the failure phenomena in soils requires adequate<br />

experimental techniques. <strong>The</strong> most common failure mechanism in soils is<br />

shear-band formation which cannot be properly investigated with the classical<br />

devices such as direct shear, simple shear and triaxial compression<br />

apparatus. <strong>The</strong> biaxial apparatus is designed to allow for free shear-band<br />

formation, since unconstrained formation <strong>of</strong> a planar shear-band is kinematically<br />

possible due to free moving <strong>of</strong> a bottom plate sliding on a linear<br />

bearing. More importantly, the biaxial device not only allows measurements<br />

<strong>of</strong> the stress-strain response prior to failure but also the stress-displacement<br />

characteristics <strong>of</strong> the localized zone. Thus, the biaxial apparatus combines<br />

the features <strong>of</strong> the triaxial and the direct shear apparatus by improving on<br />

their shortcomings.<br />

<strong>The</strong> soil specimen is a right rectangular prism with dimensions 140×40×<br />

80mm surrounded by a thin membrane. Two vertical rigid walls 80mm apart<br />

restrict the deformation <strong>of</strong> the specimen to plane-strain. <strong>The</strong> axial load is<br />

kinematically applied by an enlarged upper plate guided to prevent any tilt<br />

or eccentricity. <strong>The</strong> enlarged bottom plate is horizontally guided by a linear<br />

bearing parallel to the plane deformation. All surfaces in contact with the<br />

specimen are glass lined and lubricated to minimize friction: two porous<br />

stones centrally located in the upper and lower plates allow for drainage<br />

in drained tests and for pore pressure measurements in undrained tests.<br />

<strong>The</strong> assemblage is placed into a confining pressure cell (internal diameter<br />

D int = 350mm, external diameter D ext = 400mm, height H = 575mm), in<br />

a loading frame in order to apply the confining pressure up to σ 3 = 883kPa,<br />

1


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 1.1: <strong>The</strong> biaxial apparatus <strong>of</strong> <strong>Laboratory</strong> <strong>of</strong> <strong>Geomaterials</strong> in NTU<br />

Athens<br />

with a factor <strong>of</strong> safety 10:1 and to drive the top plate vertically, via a piston,<br />

which has a diameter <strong>of</strong> d piston = 28.58mm. Internally located load cells<br />

allow for measurement <strong>of</strong> the axial load, its eccentricity and the friction along<br />

the vertical side walls. LVDT displacement transducers monitor the axial<br />

and the lateral displacements <strong>of</strong> the specimen and the horizontal movement<br />

<strong>of</strong> the base; minimum <strong>of</strong> three LVDT’s is recommended, with the possibility<br />

to incorporate more for accurate lateral displacement measurements.<br />

2


Chapter 2<br />

<strong>The</strong> Geobiaxial load frame<br />

2.1 Short Description <strong>of</strong> the frame<br />

<strong>The</strong> Geotest S7520 Load Frame is a variable speed machine with a load<br />

capacity <strong>of</strong> 50kN (10.000lbs). <strong>The</strong> speed range is from 0.0000254mm/min<br />

(0.000001in/min) to 6.350000mm/min (0.250000in/min). <strong>The</strong> lower platen<br />

is 203.2mm (8in) hard coated aluminium with concentric circles for centering<br />

samples. <strong>The</strong> upper cross arm is high strength aluminium with a rifle<br />

bolt (quick adjust) feature allowing rapid height adjustment with built-in<br />

absolute leveling <strong>of</strong> crossbar. <strong>The</strong> center adjusting screw in crossbar has 3<br />

thread combinations to adapt to nearly all load cell and proving ring combinations.<br />

Other adapters can be furnished upon request. <strong>The</strong> gearbox is<br />

machined from high strength aluminium alloy and is fitted with very high<br />

quality gears and ball bearings to assure a smooth machine <strong>of</strong> long lasting<br />

quality. <strong>The</strong> main lifting spindle travels through a precision sleeve to eliminate<br />

any side movement <strong>of</strong> the lower platen. A special polyurethane bellows<br />

protects the lifting screw from contamination and seals in the lubrication for<br />

the life <strong>of</strong> the machine. <strong>The</strong> chassis is coated with durable powder coating<br />

which is baked on in special ovens to provide a long lasting scratch resistant<br />

surface that cleans easily. <strong>The</strong> tie rods are notched every 6 inches for the<br />

rifle bolt mechanism to function. <strong>The</strong>y are made from high strength aluminium<br />

with a hard coat anodized surface that is coated with the teflon for<br />

ease <strong>of</strong> operation. <strong>The</strong> upward or downward movement for the machine is<br />

protected from over travel by two switches to protect the unit from damage.<br />

2.2 Overview <strong>of</strong> the frame controls<br />

<strong>The</strong> above frame has eight controls:<br />

• ‘Power Switch’. This supplies the components with A/C power.<br />

3


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 2.1: Side view <strong>of</strong> the Geobiaxial load frame<br />

4


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 2.2: <strong>The</strong> Geobiaxial load frame<br />

5


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

• ‘Test’. This is a momentary contact switch that will start the machine<br />

going in an upward direction to compress the sample.<br />

• ‘Return’. This will lower the platen to prepare for the start <strong>of</strong> another<br />

test.<br />

• ‘Jog +’. This will allow the operator to raise the platen small amounts<br />

without changing other speeds that were preset.<br />

• ‘Jog -’. This will allow the operator to lower the platen small amounts<br />

without disturbing other settings.<br />

• ‘Stop’. This will stop the machine anytime during a movement taking<br />

place. This is used after a ‘Test’ or ‘Return’ move to enable the<br />

machine to change direction.<br />

• ‘Home’. This is used after the completion <strong>of</strong> a test to return the platen<br />

downward at the Highest rate <strong>of</strong> speed. It will go down until contacting<br />

a lower limit switch and at that time it will reverse and go up until<br />

it reaches the limit and then shuts <strong>of</strong>f. This allows a precise starting<br />

point for feature tests.<br />

• ‘Rate Control’. This is 6 digit thumb wheel switch used to adjust<br />

the speed <strong>of</strong> the machine. Imagine a decimal point to the left <strong>of</strong><br />

the 1st digit (on the left). <strong>The</strong> maximum rate is 6.350000mm/min<br />

(0.250000in/min). Any number higher than that will be rejected. <strong>The</strong><br />

lowest speed is 0.0000254mm/min (0.000001in/min). This setting has<br />

to be made before the ‘Test’ or ‘Return’ buttons are pressed.<br />

In the following pages, instructions for the biaxial assembly, drawings <strong>of</strong><br />

the biaxial frame and the P315X User Guide for the microstep power/drive/indexer<br />

installation and user reference manual are given.<br />

6


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator GIO & NITHE GIO GIO<br />

Place GeoLab GeoLab GeoLab<br />

Date 2004-12-23 2005-02-18 2005-04-06<br />

Time 11:20 13:50 19:10<br />

Maximum compressive load (kN) 50.0 50.0 50.0<br />

Calibration constant (kN/mV) 1.647 1.638 1.644<br />

Linearity 99.9632% 99.9458% 99.9957%<br />

Excitation voltage (V) 10.07 10.09 10.09<br />

Voltage Sensitivity (mV/V) 3.014 - 2.955<br />

Sampling rate (samples/sec) 1.000 1.000 1.000<br />

Temperature/Humidity 24.8 0 C/38% 23.3 0 C/31% 23.3 0 C/32%<br />

Table 2.1: Bongshin CRC-5t External Load Cell Calibration Table<br />

2.3 Transducers installed on the frame - External<br />

transducers<br />

<strong>The</strong> biaxial frame is also equipped with three externally installed transducers.<br />

One for measuring the axial force, a second one for measuring the axial<br />

displacement and a third measuring the volume change <strong>of</strong> the specimen.<br />

2.3.1 Bongshin CRC-5t-External Load Cell<br />

<strong>The</strong> Bongshin CRC-5t is an external compressive 50kN capacity load cell,<br />

installed on the upper cross arm, used for measuring the axial force applied<br />

by the piston <strong>of</strong> the biaxial apparatus to the specimen. <strong>The</strong> wiring connection<br />

<strong>of</strong> the transducer consists <strong>of</strong> a shielded four-cable wire, which ends to<br />

a 5 pin socket plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Blue = Excitation voltage −<br />

• Green = Output voltage +<br />

• Yellow = Output voltage −<br />

• Shield = Ground<br />

<strong>The</strong> specification spreadsheet and calibration certificate issued by the<br />

<strong>GeoTest</strong> is given in Figures 2.3 and 2.4, while the regular calibration sheets<br />

follow in Figure 2.5, Figure 2.6 and Figure 2.7.<br />

7


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 2.3: Bongshin load cell calibration certificate<br />

Figure 2.4: Bongshin load cell calibration certificate<br />

8


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> Load Cell BONGSHIN-CRC-5t, External Load Cell<br />

GeoLab-GIO & NITH-23 December 2004<br />

60,0<br />

Compressive Load [kN]<br />

50,0<br />

40,0<br />

30,0<br />

20,0<br />

y = 1,64593x + 0,68389<br />

R 2 = 0,99975<br />

10,0<br />

0,0<br />

0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0<br />

Voltage [mV]<br />

Figure 2.5: Bongshin calibration certificate, 2004-12-23<br />

Calibration <strong>of</strong> Load Cell BONGSHIN-CRC-5t, External Load Cell<br />

GeoLab-GIO & NITHE-18 February 2005<br />

25,0<br />

Compressive Load [kN]<br />

20,0<br />

15,0<br />

10,0<br />

y = 1,63776x + 0,59580<br />

R 2 = 0,99946<br />

5,0<br />

0,0<br />

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0<br />

Voltage [mV]<br />

Figure 2.6: Bongshin calibration certificate, 2005-02-18<br />

9


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> Load Cell BONGSHIN-CRC-5t, External Load Cell<br />

GeoLab-GIO - 06 April 2005<br />

60,0<br />

Compressive Load [kN]<br />

50,0<br />

40,0<br />

30,0<br />

20,0<br />

y = 1,64317x + 1,33511<br />

R 2 = 0,99996<br />

10,0<br />

0,0<br />

0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0<br />

Voltage [mV]<br />

Figure 2.7: Bongshin calibration certificate, 2005-04-06<br />

Figure 2.8: Bongshin CRC-5t Load Cell<br />

10


Model CR Series<br />

Compression Load Cell (200Kg ~ 20t)<br />

Canister Type<br />

PT1/2<br />

M<br />

70 40<br />

<strong>The</strong> CR ser ies load cells are designed for measuring<br />

compressive loads up to 20 tonnes are particulary suited for<br />

industial application where optimum precision is needed.<br />

Featuring high-alloy tool steel construction for excellent<br />

repeatability, the unique element design provides high<br />

rated output (3mV/V) with low deflection. It is recommended<br />

that the load cell should incorporate the flat, solid, machined<br />

bearing plate and mounting plate to provide the highest<br />

accuracy.<br />

- Hermetically sealed<br />

- Robust high capacity design<br />

- High rated output (3mV/V)<br />

SPECIFICATIONS<br />

MODEL CRU CRC CRD<br />

Rated capacity (R.C.)<br />

200, 500Kg,<br />

1, 2, 3, 5, 10, 20t<br />

Rated output (R.O.) 3mV/V ±0.1% 3mV/V ±0.2%<br />

Non-linearity


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 2.9: CDI external displacement transducer on the top <strong>of</strong> the biaxial<br />

cell<br />

2.3.2 CDI Displacement Transducer<br />

A 25mm-spindle CDI displacement transducer is installed on the top cap <strong>of</strong><br />

the biaxial cell. <strong>The</strong> transducer is used for monitoring the axial displacement<br />

<strong>of</strong> the specimen externally, and thus the measurement has restricted<br />

accuracy, as far as the axial deformation <strong>of</strong> the specimen is concerned.<br />

11


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

12


OPERATING MANUAL FOR<br />

LOGIC BASIC SERIES<br />

ELECTRONIC INDICATORS


Choice <strong>of</strong> Three Power Sources<br />

1. Batteries<br />

A set <strong>of</strong> two Manganese Dioxide Lithium batteries will operate this electronic<br />

indicator for approximately 250 hours <strong>of</strong> normal usage. Because milliamperehour<br />

ratings vary widely with manufacturers, normal usage time is very hard to<br />

predict. <strong>The</strong> lithium battery used in this indicator is an IEC standard, type<br />

CR2450. <strong>The</strong> indicators are shipped with the batteries not installed, and should<br />

not be installed until battery operation is desired.<br />

NOTE: This indicator has an ”AUTO-OFF” feature to conserve battery life. After<br />

10 minutes <strong>of</strong> ”no activity” (no key presses or spindle movement), the gage will<br />

turn itself <strong>of</strong>f. This feature may be disabled if continuous operation is desired; see<br />

”AUTO-OFF On/Off” instructions in this book.<br />

Installing Batteries<br />

Using a narrow screwdriver, gently pry under the tab on the left side <strong>of</strong> plastic<br />

bezel and slide out the battery tray as you turn the indicator face side down.<br />

Page 2


Insert two batteries, ”+” side up, into tray cavities, then slide the tray back into its<br />

bezel slot, taking care that the batteries stay in proper position.<br />

AC Adapter<br />

AC adapters (providing 9VDC at 30ma. maximum to the indicator from a 115 or<br />

230 VAC, 50/60 Hz line source) may be purchased from CDI. Although other 9V<br />

AC adapters with a 3/32” (2.5mm) mini-plug (center +) may be used, CDI<br />

adapters are recommended because they include current limiting to prevent<br />

damage from line fluctuations.<br />

For 115 V (USA) operation - Order CDI Part #G11-0012<br />

For 230 V (Europe) operation - Order CDI Part #G11-0014<br />

First insert the mini-plug into the socket on the lower left side <strong>of</strong> the bezel (see<br />

drawing on page 2), then plug the adapter into a wall outlet. After turning the<br />

indicator ”ON”, disable the ”AUTO-OFF” feature; see ”AUTO OFF On/Off” on<br />

page 6.<br />

2. Data I/O Connector<br />

Power also may be provided through the data I/O connector, for special fixturing<br />

or applications where the indicator is integrated with another piece <strong>of</strong> equipment<br />

A ripple-free 5 VDC (4.9 to 5. 7 V) regulated voltage source is required. CDI<br />

Cable #G13-0034 or a custom variation <strong>of</strong> another CDI data cable must be used.<br />

Contact CDI for full information.<br />

Page 3


Button Functions<br />

NOTE: Most functions are active on<br />

release <strong>of</strong> button(s).<br />

Key<br />

OFF<br />

Function Controlled<br />

– Press & Release: Turns indicator <strong>of</strong>f<br />

ON/CLR<br />

- Press & Release: Turns indicator on, or clears/resets indicator.<br />

With HOLD <strong>of</strong>f: Clears display to ”0”<br />

With MAX HOLD on: Clears display to spindle position, leaves<br />

HOLD on.<br />

-Press & Hold (For longer than 5 seconds): Enter/Exit display and<br />

key test mode.<br />

HOLD<br />

– Press & Release: Turns hold function on/<strong>of</strong>f and cancels last<br />

selection.<br />

2ND<br />

– Press & Hold (for more than 2 seconds until 2ND is displayed):<br />

Enables 2ND and 3RD functions such as TR REV (Travel<br />

Reverse), IN/MM and AUTO OFF.<br />

CHNG<br />

- Used with 2ND key to activate selectable resolution.<br />

Page 4


Display-Operating Prompts & Conditions<br />

Menu selection items under HOLD.<br />

AUTO-OFF is enabled to conserve<br />

battery life.<br />

Travel reversed; display<br />

counts DOWN with inward<br />

movement.<br />

Negative reading. No sign is<br />

displayed for positive<br />

readings.<br />

Indicator ready for 2ND or<br />

3RD function key entry<br />

sequences.<br />

Displays IN for English<br />

(inch), or MM for Metric<br />

measure units.<br />

Page 5


Operating Instructions<br />

To Turn<br />

AUTO OFF On/Off<br />

- Press and hold "2ND" until<br />

2ND appears at bottom <strong>of</strong><br />

display then release.<br />

- Press and release "OFF"<br />

within 3 seconds.<br />

NOTE: An hourglass appears at<br />

left side <strong>of</strong> display if 'AUTO<br />

OFF' is active.<br />

TO<br />

Clear Display …<br />

to zero<br />

- Press and release "ON/CLR".<br />

To Verify<br />

DATA I/0 FORMAT<br />

To view the current output format.<br />

- Press and release "2ND", until the 2ND appears in display, then "ON/CLR"<br />

and "2ND" in sequence. Format information is displayed for about 3 seconds,<br />

then indicator automatically returns to normal operation. Format information is<br />

displayed as:<br />

RS232 =rS232<br />

MTI compatible =SEr<br />

CDI mux BCD =Cdi<br />

Bypass =bP<br />

Page 6


To Use<br />

HOLD<br />

To select type <strong>of</strong> HOLD - Freeze, Minimum or Maximum:<br />

-Press and hold "HOLD" until cursor moves under desired type <strong>of</strong> hold; FRZ,<br />

MIN or MAX, then release.<br />

To turn HOLD On/Off:<br />

• Press and release "HOLD"<br />

• MAX HOLD - Holds and displays highest reading.<br />

• MIN HOLD - Holds and displays lowest reading.<br />

• FREEZE HOLD - Freezes display when "HOLD" button is pressed.<br />

NOTE: Pressing CLR button resets indicator to spindle position.<br />

To Change<br />

INCH/MILLIMETER<br />

To change from one to the other:<br />

- Press and hold "MOVE/2ND" until 2ND appears at bottom <strong>of</strong> display then<br />

release.<br />

- Press and release "TOL" within 3 seconds.<br />

NOTE: MM or IN will appear at bottom <strong>of</strong> display.<br />

To Turn<br />

INDICATOR ON<br />

Press "ON/CLR" and release when 'clr'<br />

appears on display<br />

To Turn<br />

INDICATOR OFF<br />

- Press and release "OFF"<br />

Page 7


TO<br />

Reset to DEFAULT<br />

A total reset: clears all user settings and returns to factory-set defaults.<br />

1. Press and hold "2ND" until 2ND appears at bottom <strong>of</strong> display, then release.<br />

2. Press and release "ON/CLR"<br />

within 3 seconds.<br />

3. Press and release "CHNG" within<br />

3 seconds.<br />

NOTE: Cannot be done if Lock<br />

feature is on.<br />

3<br />

To Change<br />

RESOLUTION<br />

-Press and hold "2ND" until 2ND appears at bottom <strong>of</strong> display then release.<br />

- Press and release "ON/CLR" within 3 seconds.<br />

- Press and release "HOLD" within 3 seconds.<br />

2 1<br />

Use "CHNG" key to step through available resolution selections:<br />

1 = .00005" (.001mm)<br />

2 = .0001" (.002mm)<br />

3 = .00025" (.005mm)<br />

4 = .0005" (.O1mm)<br />

5 = .001" (.02mm)<br />

Press and release "CHNG" and "2ND" simultaneously to save.<br />

Note: Only resolutions coarser than indicator resolution-as-purchased are<br />

available.<br />

Page 8


To Enter<br />

TEST MODE<br />

Press and hold (for more than 5 seconds) "ON/CLR" to enter 'display and key'<br />

test mode.<br />

To Exit<br />

TEST MODE<br />

Press and hold (for more than 5 seconds) "ON/CLR" to exit 'display and key' test<br />

mode.<br />

To Change<br />

TRAVEL DIRECTION<br />

- Press and hold "2ND" until 2ND appears at bottom <strong>of</strong> display then release.<br />

- Press and release "HOLD" within 3 seconds.<br />

Note: Arrow in upper right corner will show positive direction <strong>of</strong> spindle travel.<br />

NOTE: Most functions are active on release <strong>of</strong> key(s).<br />

Page 9


Internal Memory<br />

"LOGIC" Series indicators and remote displays include internal non-volatile<br />

memory to store all factory default and user settings. When the indicator is turned<br />

on, user settings and preset numbers will be the same as when the indicator was<br />

turned <strong>of</strong>f.<br />

NOTE: Many <strong>of</strong> the user settings are stored when the indicator is turned ‘Off’ by<br />

using the "OFF" key, or when the indicator turns itself <strong>of</strong>f (AUTO OFF). However,<br />

if the indicator is turned <strong>of</strong>f by removing power (by disconnecting the AC adapter<br />

or cutting power through the Data 1/0 connector), some or all <strong>of</strong> the user settings<br />

and/or changes may be lost!<br />

Page 10


Operating Precautions<br />

1. Do not use the bottom <strong>of</strong> the spindle stroke as a base <strong>of</strong> measurement<br />

reference, as it is protected with a rubber shock absorber to prevent shock to the<br />

internal mechanism. <strong>The</strong> spindle should be <strong>of</strong>fset .005”-.010" (.12 -.25 mm) from<br />

the bottom <strong>of</strong> travel.<br />

2. Use <strong>of</strong> CDI type MS-10 or similar sturdy stands or fixtures for indicator<br />

mounting, where the base plate and indicator are mounted to a common post, is<br />

highly recommended for accurate and repeatable readings. <strong>The</strong> indicator must<br />

be mounted with the spindle perpendicular to the reference or base plate. If the<br />

indicator is stem-mounted, protect the indicator from attempted rotation, and from<br />

being stuck or bumped, to prevent stem/case mechanical alignment damage. Do<br />

not over-tighten the mounting mechanism, and use clamp mounting rather than<br />

set screws if at all possible, to prevent damage to the stem.<br />

3. <strong>The</strong> bezel face can be rotated from its normal horizontal position for<br />

convenient viewing. Rotation is limited to 270 degrees and attempts to force it<br />

past its internal stop may damage the indicator.<br />

4. Frequently clean the spindle to prevent sluggish or sticky movement. Dry<br />

wiping with a lint-free cloth usually will suffice, but isopropyl alcohol may be used<br />

to remove gummy deposits. Do not apply any type <strong>of</strong> lubricant to the spindle.<br />

Spindle dust caps and spindle boots are available for operation in dirty or<br />

abrasive environments.<br />

1" Spindle dust cap - Order CDI Part #A21.0131<br />

l” Spindle boot - Order CDI Part #CD170-1<br />

Use a s<strong>of</strong>t cloth dampened with a mild detergent to clean the bezel and front face<br />

<strong>of</strong> the indicator. Do not use aromatic solvents as they may cause damage.<br />

5. Extremely high electrical transients - from nearby arc welders, SCR<br />

motor/lighting controls, radio transmitters, etc. - may cause malfunctions <strong>of</strong> the<br />

indicator's internal circuitry or 'ERROR 1' indications, even through the electronic<br />

design was created to minimize such problems. If at all possible, do not operate<br />

the indicator in plant areas subject to these transients. Turning the indicator 'OFF'<br />

for a few seconds, then back 'ON' from time-to-time may eliminate any problems.<br />

Also, use <strong>of</strong> an isolated AC line (for AC adapter operated indicators and AC<br />

powered remote displays), or an AC line filter - plus solid grounding <strong>of</strong> stands<br />

and fixtures - is recommended in these conditions.<br />

Page 11


Additional Display-Operating Prompts & Conditions<br />

FLASHING DIGIT or +/- sign - Digit or sign affected by ‘CHNG’ key when setting<br />

or changing preset numbers.<br />

FLASHING READING, with HIGH or LOW displayed Reading is out <strong>of</strong><br />

tolerance, to the high or low side.<br />

ERROR 1 - Spindle speed too fast, high electrical noise, etc.<br />

ERROR 2 - Counter overflow, i.e. counter number (spindle + preset number) out<br />

<strong>of</strong> counter range.<br />

ERROR 3 - Improper tolerance combination, i.e. both "HIGH" and 'LOW" set to<br />

'O' or same number, or "LOW' set to a higher number than 'HIGH'. Occurs only<br />

when 'TOL' is on.<br />

ERROR 4 - Display overflow, i.e. number too large to be properly displayed.<br />

Moving spindle to acceptable range eliminates error message.<br />

Page 12


Data Output<br />

'LOGIC' Series indicators and remote displays provide users with multiple data<br />

output formats. <strong>The</strong> cable attached to the indicator when it is turned on<br />

determines the output format in use. Cables for each format can be purchased<br />

from CDI. <strong>The</strong>se cables also provide remote control <strong>of</strong> 'ON/CLR' and 'HOLD'<br />

functions, plus +5v regulated power input. For special applications, an ERROR<br />

FLAG output and/or custom cables also can be provided; contact CDI for<br />

information.<br />

CAUTION: Use <strong>of</strong> cables other than those provided or approved by CDI can<br />

cause irreparable damage to the indicator or data output port, and such damage<br />

is not covered by the CDI Limited Warranty.<br />

Standard RS232 Format - Communications protocol is 1200 baud, no parity, 8<br />

data bits, 1 stop bit. RS232 can be read by any IBM PC-compatible computer,<br />

RS232 serial printer or other device, provided the device can be set to this<br />

protocol. A DB25 pin adapter may be necessary for non-standard devices.<br />

"WINDOWS" terminal and other communications s<strong>of</strong>tware, "WEDGE" s<strong>of</strong>tware,<br />

etc., may be used with this format.<br />

Cables Required:<br />

CDI #GO3-0018 - For IBM Compatible PC (CDI indicator to DB25F)<br />

CDI #GO3-0021 - For CDI serial printer types G19-0001/Gl9- 0002 & G19-0003<br />

(CDI indicator to DB25M)<br />

MITUTOYO Compatible Format - Use with MITUTOYO compatible printers,<br />

collection devices, etc.<br />

Cable Required:<br />

CDI #G03-0019 - CDI indicator to MTI 10 pin<br />

Page 13


CDI (Multiplexed BCD) Format - Furnished with pigtails one end.<br />

Cable Required:<br />

CDI #Gl3-0034 - Also may be used for remote control <strong>of</strong> 'ON/CLR' or 'HOLD'<br />

functions, or external power (+5V regulated) input. (CDI indicator to pigtail wires.)<br />

BYPASS FORMAT - Permits indicator to be used as a probe for the CDI remote<br />

display: bypasses 'raw' unprocessed signals from the detector system directly to<br />

the data output connector. In this operation mode, power for the indicator is<br />

supplied by the remote display.<br />

Cable Required:<br />

CDI #Gl3-0022 - CDI indicator to 6-pin DIN<br />

IMPORTANT- Indicator and remote display must be <strong>of</strong> same base resolution. If<br />

the two (2) are different base resolutions, you will experience compatibility<br />

problems.<br />

Page 14


Limited Warranty<br />

"PLUS SERIES" INDICATORS ARE WARRANTED FOR A PERIOD OF ONE<br />

YEAR AGAINST DEFECTIVE MATERIALS OR WORKMANSHIP. THIS<br />

WARRANTY DOES NOT APPLY TO PRODUCTS THAT ARE MISHANDLED,<br />

MISUSED, ETCHED, STAMPED, OR OTHERWISE MARKED OR DAMAGED,<br />

NOR DOES IT APPLY TO DAMAGE OR ERRONEOUS OPERATION CAUSED<br />

BY USER TAMPERING OR ATTEMPTS TO MODIFY THE INDICATOR. UNITS<br />

FOUND TO BE DEFECTIVE WITHIN THE WARRANTY PERIOD WILL BE<br />

REPAIRED OR REPLACED FREE OF CHARGE AT THE OPTION OF CDI. A<br />

NOMINAL CHARGE WILL BE MADE FOR NON-WARRANTY REPAIRS,<br />

PROVIDED THE UNIT IS NOT DAMAGED BEYOND REPAIR.<br />

CHICAGO DIAL INDICATOR CO., INC.<br />

1372 Redeker Road - Des Plaines, IL 60016<br />

Telephone: 847/827-7186<br />

FAX: 847/827-0478


Chapter 3<br />

<strong>The</strong> GeoLab biaxial<br />

apparatus<br />

In this Chapter a short description <strong>of</strong> the biaxial apparatus will be given.<br />

Behind the ‘term’ biaxial apparatus, four main parts are hidden: <strong>The</strong> base<br />

plate, the biaxial cell house, the apparatus itself and the lid.<br />

3.1 Base plate<br />

This is the lower plate <strong>of</strong> the biaxial apparatus. It is placed on the moving<br />

plate <strong>of</strong> the frame, and serves as a ‘datum’, on which the biaxial apparatus<br />

will be later on placed. <strong>The</strong> base plate has 18 openings, which serve for<br />

cable connections <strong>of</strong> submersible transducers (displacement transducers and<br />

load cells) as well as ports for cell and pore pressure. At the moment 14<br />

openings serve as connections to the internal transducers, while the other 3<br />

are used to connect the cell pressure line and the two pore pressure lines to<br />

the biaxial permeability panel (see Chapter 5). <strong>The</strong> last one is left free for<br />

any additional internal transducer. 7 RDP displacement transducers and 7<br />

submersible load cells are connected to the base pedestal via socket plugs.<br />

<strong>The</strong>se are 4-way socket plugs, firmly installed on the biaxial base plate. A<br />

set <strong>of</strong> nuts and ferrules is used so as to prevent the silicon oil leaking from<br />

the base plate. All submersible transducers are connected to these socket<br />

plugs, according to their corresponding number.<br />

3.2 Biaxial apparatus<br />

As already mentioned, a right prismatic specimen 140×40 × 80mm is tested<br />

under plane strain conditions. <strong>The</strong> biaxial apparatus is designed in such<br />

a way that it may allow for free shear band formation, and monitoring <strong>of</strong><br />

post-failure material behavior. <strong>The</strong> basic parts <strong>of</strong> the biaxial apparatus are<br />

the application and monitoring <strong>of</strong> the axial stress, the system <strong>of</strong> two rigid<br />

13


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.1: Top view <strong>of</strong> the biaxial apparatus base plate<br />

Figure 3.2: <strong>The</strong> biaxial apparatus base plate<br />

14


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.3: <strong>The</strong> Geobiax apparatus<br />

Figure 3.4: Side and top view <strong>of</strong> the Geobiax apparatus<br />

walls that restrict the deformation in the x 3 axis and the moving sled, which<br />

allows for the free shear band formation and post-failure monitoring.<br />

In the following, technical specifications concerning the biaxial apparatus<br />

are given. Moreover, the initial design and the patent documentation are<br />

also available.<br />

15


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.5: Sketch <strong>of</strong> the Geobiax apparatus<br />

16


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.6: RDP-D2-200A displacement transducer cable plug<br />

3.2.1 Linear Voltage Displacement Transducers-RDP-D2-200A<br />

<strong>The</strong> following displacement transducers are used for measuring the axial<br />

and lateral deformation <strong>of</strong> the specimen as well as the sled movement, after<br />

the initiation <strong>of</strong> the shear band. <strong>The</strong>re are 7 submersible RDP-D2-200A<br />

displacement transducers installed in the cell. <strong>The</strong> supply voltage may range<br />

from 6 to 12 Volts (regulated at 50mA) and gives at 6 Volts a nominal output<br />

<strong>of</strong> 0.16V/mm. In this case the supply voltage is regulated at 10 Volts DC.<br />

<strong>The</strong> wiring connection <strong>of</strong> the transducers consists <strong>of</strong> a shielded four-cable<br />

wire, which ends to a DIN 5-pole 240 0 socket plug. <strong>The</strong> wiring connections<br />

apply for all displacement transducers as follows:<br />

• Red = Excitation voltage +<br />

• Black = Excitation voltage −<br />

• White = Output voltage +<br />

• Green = Output voltage −<br />

• Shield = Ground<br />

RDP-D2-200A-6136 (Channel-01)<br />

<strong>The</strong> RDP-D2-200A-6136 is a linear displacement transducer used for measuring<br />

the horizontal movement <strong>of</strong> the sled inside the biaxial cell, as soon as<br />

the shear band forms (Channel 01).<br />

<strong>The</strong> calibration certificate issued by the company is given in Figure 3.8,<br />

while the regular calibration sheets follow in Figure 3.9<br />

17


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.7: Top view <strong>of</strong> the RDP-D2-200A displacement transducer with its<br />

mounting block<br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 11:50<br />

Maximum spindle (mm) 14.51<br />

Calibration constant (mm/mV) 3.742<br />

Linearity 99.9955%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 385<br />

Sampling rate (samples/sec) Datascan 7220<br />

Temperature/Humidity<br />

22.9 0 C/40%<br />

Table 3.1: RDP-D2-200A-6136 Calibration Table<br />

18


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.8: RDP-D2-200A-6136 calibration certificate<br />

Calibration <strong>of</strong> RDP-D2-200A-6136-Channel-01<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

16,00<br />

14,00<br />

12,00<br />

y = 3,74211x + 6,84198<br />

R 2 = 0,99996<br />

Displacement [mm]<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

0,00<br />

-2,000 -1,500 -1,000 -0,500 0,000 0,500 1,000 1,500 2,000<br />

Voltage [V]<br />

Figure 3.9: RDP-D2-200A-6136 calibration certificate, 2005-02-15<br />

19


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.10: RDP-D2-200A-6136 transducer for sled movement<br />

RDP-D2-200A-6529 (Channel-02)<br />

<strong>The</strong> RDP-D2-200A-6529 is a linear displacement transducer used for measuring<br />

the lateral deformation <strong>of</strong> the specimen inside the biaxial cell (Channel<br />

02).<br />

<strong>The</strong> regular calibration sheets follow in Figure 3.11<br />

RDP-D2-200A-6141 (Channel-03)<br />

<strong>The</strong> RDP-D2-200A-6141 is a linear displacement transducer used for measuring<br />

the lateral deformation <strong>of</strong> the specimen inside the biaxial cell (Chan-<br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 11:35<br />

Maximum spindle (mm) 14.51<br />

Calibration constant (mm/mV) 3.904<br />

Linearity 99.9796%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 357<br />

Sampling rate (samples/sec) Datascan 7220<br />

Temperature/Humidity<br />

22.8 0 C/40%<br />

Table 3.2: RDP-D2-200A-6529 Calibration Table<br />

20


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> RDP-D2-200A-6529-Channel-02<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

16,00<br />

14,00<br />

12,00<br />

y = 3,90448x + 7,68367<br />

R 2 = 0,99996<br />

Displacement [mm]<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

0,00<br />

-2,000 -1,500 -1,000 -0,500 0,000 0,500 1,000 1,500 2,000<br />

Voltage [V]<br />

Figure 3.11: RDP-D2-200A-6529 calibration certificate, 2005-02-15<br />

Figure 3.12: RDP-D2-200A-6529 transducer for lateral displacement<br />

21


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 11:35<br />

Maximum spindle (mm) 14.51<br />

Calibration constant (mm/mV) 3.715<br />

Linearity 99.9961%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 388<br />

Sampling rate (samples/sec) Datascan 7220<br />

Temperature/Humidity<br />

22.8 0 C/40%<br />

Table 3.3: RDP-D2-200A-6141 Calibration Table<br />

Figure 3.13: RDP-D2-200A-6141 calibration certificate<br />

nel 03).<br />

<strong>The</strong> calibration certificate issued by the company is given in Figure 3.13,<br />

while the regular calibration sheets follow in Figure 3.14<br />

RDP-D2-200A-6236 (Channel-04)<br />

<strong>The</strong> RDP-D2-200A-6236 is a linear displacement transducer used for measuring<br />

the axial deformation <strong>of</strong> the specimen inside the biaxial cell, on the<br />

top cap (Channel 04).<br />

<strong>The</strong> calibration certificate issued by the company is given in Figure 3.16,<br />

while the regular calibration sheets follow in Figure 3.17<br />

RDP-D2-200A-6397 (Channel-05)<br />

<strong>The</strong> RDP-D2-200A-6397 is a linear displacement transducer used for measuring<br />

the axial deformation <strong>of</strong> the specimen inside the biaxial cell, on the<br />

top cap (Channel 05).<br />

<strong>The</strong> calibration certificate issued by the company is given in Figure 3.19,<br />

while the regular calibration sheets follow in Figure 3.20<br />

22


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> RDP-D2-200A-6141-Channel-03<br />

GeoLab-GIO & NITHE-15 February 2004-DATASCAN 7220<br />

16,00<br />

14,00<br />

12,00<br />

y = 3,71473x + 6,83541<br />

R 2 = 0,99996<br />

Displacement [mm]<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

0,00<br />

-2,000 -1,500 -1,000 -0,500 0,000 0,500 1,000 1,500 2,000<br />

Voltage [V]<br />

Figure 3.14: RDP-D2-200A-6141 calibration certificate, 2005-02-15<br />

Figure 3.15: RDP-D2-200A-6141 transducer for lateral displacement<br />

23


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 13:25<br />

Maximum spindle (mm) 14.51<br />

Calibration constant (mm/mV) 3.995<br />

Linearity 99.9949%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 362<br />

Sampling rate (samples/sec) Datascan 7220<br />

Temperature/Humidity<br />

22.9 0 C/41%<br />

Table 3.4: RDP-D2-200A-6236 Calibration Table<br />

Figure 3.16: RDP-D2-200A-6236 calibration certificate<br />

Calibration <strong>of</strong> RDP-D2-200A-6236-Channel-04<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

16,00<br />

14,00<br />

12,00<br />

y = 3,99459x + 6,72407<br />

R 2 = 0,99995<br />

Displacement [mm]<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

0,00<br />

-2,000 -1,500 -1,000 -0,500 0,000 0,500 1,000 1,500 2,000<br />

Voltage [V]<br />

Figure 3.17: RDP-D2-200A-6236 calibration certificate, 2005-02-15<br />

24


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.18: RDP-D2-200A-6236 transducer for axial displacement<br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 13:25<br />

Maximum spindle (mm) 14.51<br />

Calibration constant (mm/mV) 3.897<br />

Linearity 99.9969%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 369<br />

Sampling rate (samples/sec) Datascan 7220<br />

Temperature/Humidity<br />

22.9 0 C/41%<br />

Table 3.5: RDP-D2-200A-6397 Calibration Table<br />

Figure 3.19: RDP-D2-200A-6397 calibration certificate<br />

25


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> RDP-D2-200A-6397-Channel-05<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

16,00<br />

14,00<br />

12,00<br />

y = 3,89697x + 6,78895<br />

R 2 = 0,99997<br />

Displacement [mm]<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

0,00<br />

-2,000 -1,500 -1,000 -0,500 0,000 0,500 1,000 1,500 2,000<br />

Voltage [V]<br />

Figure 3.20: RDP-D2-200A-6397 calibration certificate, 2005-02-15<br />

Figure 3.21: RDP-D2-200A-6397 transducer for axial displacement<br />

26


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 11:05<br />

Maximum spindle (mm) 14.51<br />

Calibration constant (mm/mV) 4.065<br />

Linearity 99.9977%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 355<br />

Sampling rate (samples/sec) Datascan 7220<br />

Temperature/Humidity<br />

22.8 0 C/40%<br />

Table 3.6: RDP-D2-200A-6528 Calibration Table<br />

Figure 3.22: RDP-D2-200A-6528 calibration certificate<br />

RDP-D2-200A-6528 (Channel-06)<br />

<strong>The</strong> RDP-D2-200A-6528 is a linear displacement transducer used for measuring<br />

the lateral deformation <strong>of</strong> the specimen inside the biaxial cell (Channel<br />

06).<br />

<strong>The</strong> calibration certificate issued by the company is given in Figure 3.22,<br />

while the regular calibration sheets follow in Figure 3.23<br />

RDP-D2-200A-6527 (Channel-07)<br />

<strong>The</strong> RDP-D2-200A-6527 is a linear displacement transducer used for measuring<br />

the lateral deformation <strong>of</strong> the specimen inside the biaxial cell (Channel<br />

07).<br />

<strong>The</strong> calibration certificate issued by the company is given in Figure 3.25,<br />

while the regular calibration sheets follow in Figure 3.26<br />

In the following, the technical references, manuals and calibration certificates<br />

<strong>of</strong> the RDP-D2-200A displacement transducers are given.<br />

27


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> RDP-D2-200A-6528-Channel-06<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

16,00<br />

14,00<br />

12,00<br />

y = 4,06525x + 7,17143<br />

R 2 = 0,99998<br />

Displacement [mm]<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

0,00<br />

-2,000 -1,500 -1,000 -0,500 0,000 0,500 1,000 1,500 2,000<br />

Voltage [V]<br />

Figure 3.23: RDP-D2-200A-6528 calibration certificate, 2005-02-15<br />

Figure 3.24: RDP-D2-200A-6528 transducer for lateral displacement<br />

28


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 12:20<br />

Maximum spindle (mm) 14.35<br />

Calibration constant (mm/mV) 4.127<br />

Linearity 99.9964%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 337<br />

Sampling rate (samples/sec) Datascan 7220<br />

Temperature/Humidity<br />

22.9 0 C/40%<br />

Table 3.7: RDP-D2-200A-6527 Calibration Table<br />

Figure 3.25: RDP-D2-200A-6527 calibration certificate<br />

Calibration <strong>of</strong> RDP-D2-200A-6527-Channel-07<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

16,00<br />

14,00<br />

12,00<br />

y = 4,12748x + 6,70747<br />

R 2 = 0,99996<br />

Displacement [mm]<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

0,00<br />

-2,000 -1,500 -1,000 -0,500 0,000 0,500 1,000 1,500 2,000<br />

Voltage [V]<br />

Figure 3.26: RDP-D2-200A-6527 calibration certificate, 2005-02-15<br />

29


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.27: RDP-D2-200A-6527 transducer for lateral displacement<br />

30


HOME DISPLACEMENT PRESSURE ACCELERATION CALIBRATION TECH SUPPORT<br />

INDEX LOAD ELECTRONICS TORQUE ANGLE CONTACT US<br />

D2 Spring Return DC LVDT Displacement Transducer<br />

Over Travel<br />

Unit Type Stroke Dim. L Dim. X Dia. D1 Weight Approx. Spring Force (Max)<br />

Inward Outward<br />

D2/100A ±2.5mm 70gms 120gms 5.5mm 4.5mm<br />

53.5mm 43mm 20.6mm<br />

D2/200A ±5mm 70gms 120gms 3mm 2mm<br />

<strong>The</strong> RDP Electronics D2 series are a dc LVDT transducer which makes them probably the most robust position<br />

sensor available. <strong>The</strong> term dc LVDT refers to a position sensor that has all the benefits <strong>of</strong> the LVDT<br />

measurement principle but has built-in dc to dc signal conditioning. Our dc LVDT displacement transducer<br />

units have no contact across the position sensor element ensuring very long life. <strong>The</strong> captive guided spring<br />

return dc LVDT displacement transducer units have an internal spring that pushes the armature (the moving<br />

part <strong>of</strong> the measurement sensor) to its outward position. <strong>The</strong> armature <strong>of</strong> the dc displacement transducer is<br />

guided in low friction bearings. This type <strong>of</strong> sensor is appropriate for applications where the part being<br />

measured may move well out <strong>of</strong> the range <strong>of</strong> the measurement sensor.<br />

RDP Electronics also manufacture ac sensors for use where the temperature or other environmental factors<br />

preclude the use <strong>of</strong> dc lvdt transducer units.<br />

Electrical Specification<br />

Supply<br />

Output<br />

Linearity (% error <strong>of</strong> full scale)<br />

Output load (recommended)<br />

Output ripple (filtered)<br />

Output bandwidth (Electrical)<br />

Output Impedance<br />

Zero Temperature Coefficient<br />

Span Temperature Coefficient<br />

Operating Temperature Range<br />

Electrical Termination<br />

Options & Accessories<br />

Transducer Probe tips<br />

MB01<br />

MB02<br />

Various Transducer Options<br />

6 to 12V regulated at 50mA<br />

0.16V/mm nominal (with 6V supply)<br />

±0.5% standard. 0.25% and 0.1% optional on some models.<br />

20k Ohms<br />

2mV rms at zero, 10mV rms at F.S.<br />

0 to 75Hz (filtered)<br />

100 Ohms (unfiltered output)<br />

±0.05% F.S./°C<br />

±0.02% F.S./°C<br />

-10°C to +50°C<br />

2m screened cable (Longer available to order)<br />

Replacement / alternative probe tips for our position sensors<br />

Mounting block for 20.6mm position sensors<br />

Mounting block for 8 or 9.5mm diameter position sensors<br />

Miscellaneous options for RDP position sensors<br />

Due to the RDP Electronics policy <strong>of</strong> on-going development, specifications may change without notice.<br />

Any modification may affect the specification <strong>of</strong> our equipment.


Document Reference:- www.rdpe.com/displacement/lvdt/general/d2-spring.htm, updated 20020419<br />

©RDP Electronics Ltd, Grove Street, Heath Town, Wolverhampton, WV10 0PY, United Kingdom.<br />

Tel +44 (0)1902 457512, Fax +44 (0)1902 452000, URL www.rdpe.com, e-mail (sales only) sales@rdpe.com,<br />

other departments mail@rdpe.com.


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITH<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 14:05<br />

Maximum pressure (kPa) 1.000<br />

Calibration constant (kPa/mV) 10.144<br />

Linearity 99.9998%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 9.771<br />

Sampling rate (samples/sec) DataScan 7220<br />

Temperature/Humidity<br />

22.9 0 C/41%<br />

Table 3.8: WF17060-SN780036-Cell Pressure Transducer Calibration Table<br />

3.2.2 Cell - Pore Pressure lines<br />

One cell pressure line is used to fill the cell with silicon oil. This is a noncorrosive<br />

and non-conductive material, used to apply the cell pressure. <strong>The</strong><br />

cell is filled from the bottom, via the base plate. A system <strong>of</strong> a pressure<br />

transducer with a de-airing block with two on-<strong>of</strong>f valves is installed on the<br />

base plate. On the other hand, the top cap as well as the pedestal <strong>of</strong> the<br />

specimen are connected to the biaxial permeability panel via two pressure<br />

lines. Two sets <strong>of</strong> de-airing blocks with on-<strong>of</strong>f valves and pressure transducers<br />

are also connected to the above two lines. Any silicon oil leakage is<br />

prevented from the cell via the openings that are used for the pore pressure<br />

lines, with the application <strong>of</strong> a set <strong>of</strong> nuts and ferrules.<br />

WF17060-SN780036-Cell Pressure Transducer<br />

<strong>The</strong> WF17060-SN780036 is a pressure transducer used for measuring the cell<br />

pressure <strong>of</strong> the biaxial cell. <strong>The</strong> wiring connection <strong>of</strong> the transducer consists<br />

<strong>of</strong> a shielded four-cable wire, which ends to a 5 pin socket plug (240 0 ). <strong>The</strong><br />

wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Green = Excitation voltage −<br />

• Blue = Output voltage +<br />

• Yellow = Output voltage −<br />

• Shield = Ground<br />

Calibration sheets <strong>of</strong> the above pressure transducer follow in Figure 3.28.<br />

31


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> Pressure Transducer WF17060-SN.780036 [Cell]<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

1.800<br />

1.600<br />

1.400<br />

1.200<br />

y = 10,12143x - 6,65321<br />

Pressure [kPa]<br />

1.000<br />

800<br />

600<br />

400<br />

y = 10,10330x - 7,40592<br />

R 2 = 0,99969<br />

R 2 = 1,00000<br />

200<br />

0<br />

-20,0 0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0<br />

-200<br />

Voltage [mV]<br />

Figure 3.28: WF17060-SN780036 Cell pressure transducer calibration certificate<br />

Figure 3.29: Cell Pressure Line<br />

32


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 14:05<br />

Maximum pressure (kPa) 1.000<br />

Calibration constant (kPa/mV) 9.997<br />

Linearity 99.9987%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 9.913<br />

Sampling rate (samples/sec) DataScan 7220<br />

Temperature/Humidity<br />

22.9 0 C/41%<br />

Table 3.9: RS-T106377-Pore Pressure (Pedestal) Transducer Calibration Table<br />

RS-T106377-Pore Pressure Transducer-Pedestal<br />

<strong>The</strong> RS-T106377 is a pressure transducer used for measuring the pore pressure<br />

<strong>of</strong> the specimen near the pedestal. <strong>The</strong> wiring connection <strong>of</strong> the transducer<br />

consists <strong>of</strong> a shielded four-cable wire, which ends to a 5 pin socket<br />

plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Blue = Excitation voltage +<br />

• Green = Excitation voltage -<br />

• Red = Output voltage +<br />

• Yellow = Output voltage -<br />

• Shield = Ground<br />

A typical specification spreadsheet for such RS pressure transducers is<br />

given in Figure 3.32, while in Figure 3.30 the regular calibration sheet is<br />

given.<br />

RS-T117884-Pore Pressure Transducer-Top Cap<br />

<strong>The</strong> RS-T117884 is a pressure transducer used for measuring the pore pressure<br />

<strong>of</strong> the specimen near the top cap. <strong>The</strong> wiring connection <strong>of</strong> the transducer<br />

consists <strong>of</strong> a shielded four-cable wire, which ends to a 5 pin socket<br />

plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Blue = Excitation voltage +<br />

• Green = Excitation voltage -<br />

• Red = Output voltage +<br />

33


Order Toll Free: 800 533-5823<br />

Clearco 20cSt. Pure<br />

Silicone Fluid<br />

Low Viscosity Silicone (CAS # 63148-62-9) INCI Name: Dimethicone<br />

Product<br />

Information<br />

Clearco Pure Silicone Fluid 20cSt is a low viscosity 100%<br />

Polydimethylsiloxane (CAS # 63148-62-9) that does not contain additives or<br />

solvents. This fluid is Chemically Inert to most materials including Rubber,<br />

Plastics and Metals. Clearco Pure Silicone 20cSt Fluid is <strong>The</strong>rmally Stable,<br />

showing excellent stability when exposed to low temperatures for long<br />

periods <strong>of</strong> time.<br />

A primary application is as a vehicle or ingredient in cosmetic and personal<br />

care product formulations. Clearco PSF-20cSt <strong>of</strong>fers high spreadability, low<br />

surface tension, subtle skin lubricity, and good leveling and easy rubout.<br />

Pure Silicone Fluid 20cSt is a low<br />

viscosity 100% silicone with a<br />

viscosity slightly higher than water.<br />

Other uses include Damping Fluid –Low Temperature Bath Fluid –Hydraulic<br />

Fluid – Mold Release Agent - Lubricant.<br />

SPECIFICATIONS<br />

Chemical Name Polydimethylsiloxane<br />

INCI/CTFA Name Dimethicone<br />

CAS # 63148-62-9<br />

Appearance<br />

Clear Liquid – Odorless<br />

& Tasteless<br />

Viscosity Class Low<br />

Non-Flammable Yes<br />

<strong>The</strong>rmally Stable Yes<br />

Availability 1 – 5 – 55 gallon drums<br />

Minimum Order 1 Gallon<br />

FEATURES<br />

• Low Viscosity<br />

• Excellent Lubrication<br />

• Non-Flammable<br />

• Excellent Low Temperature Performance<br />

• Pour Point: -85°F<br />

• Chemically Inert<br />

• High Compressibility<br />

• High Damping Action<br />

• High Oxidation Resistance<br />

cSt.<br />

Specific<br />

Gravity<br />

Retractive<br />

Index<br />

Pour<br />

Point<br />

°F<br />

Flash<br />

Point °F<br />

Open Cup<br />

TYPICAL PRODUCT DATA<br />

Surface<br />

Tension Dynes<br />

cm @ 25C<br />

<strong>The</strong>rmal<br />

Expansion<br />

cc/cc/C 0-150C<br />

<strong>The</strong>rmal<br />

Conductivity<br />

BTU<br />

Maximum<br />

Volatility %<br />

Wt<br />

5 0.916 1.397 -120° 277° 19.7 0.00105 0.067 90 0.36<br />

20 0.953 1.401 -85° 442° 20.8 0.00107 0.082 10 0.36<br />

50 0.963 1.402 -67° 588° 20.8 0.00106 0.087 0.5 0.36<br />

100 0.968 1.4030 -67° 604° 20.9 0.000925 0.090 0.5 0.36<br />

200 0.967 1.4031 -61° 575° 21.0 0.000925 0.090 0.5 0.36<br />

350 0.973 1.4032 -58° 637° 21.1 0.000925 0.092 0.5 0.36<br />

500 0.973 1.4033 -58° 662° 21.1 0.000925 0.092 0.5 0.36<br />

1,000 0.974 1.4035 -58° 658° 21.1 0.000925 0.092 0.5 0.36<br />

10,000 0.975 1,4035 -53° 601° 21.3 0.000925 0.090 2.0 0.36<br />

60,000 0.977 1.4035 -47° 601° 21.3 0.000925 0.090 2.0 0.36<br />

Specific Heat<br />

BTU/lb. F<br />

For More Information or To Request a Sample<br />

Contact:<br />

Clearco Products Co., Inc.<br />

3430 G. Progress Drive<br />

Bensalem, PA 19020<br />

Tel: 215 639-2640<br />

Fax: 215 639-2919<br />

Email: info@clearcoproducts.com<br />

Web: www.clearcoproducts.com


MATERIAL SAFETY DATA SHEET<br />

Product Identification: PURE SILICONE FLUID 20cSt<br />

CLEARCO PRODUCTS CO., INC<br />

Emergency Telephone Number<br />

3430-G PROGRESS DR CHEM-TEL: 1 (800) 255 3924<br />

BENSALEM, PA 19020<br />

Telephone: 1 (800) 533 5823<br />

Date Prepared: 03/22/04 nc<br />

----------------------------------------------------------------------------------------------------------------<br />

SECTION II HAZARDOUS INGREDIENTS/IDENTITY INFORMATION<br />

INGREDIENT<br />

DESCRIPTION<br />

% Weight CAS<br />

Number<br />

ACGIH<br />

PPM<br />

TLV<br />

MG/M3<br />

ACGIH<br />

PPM<br />

STEL<br />

MG/M3<br />

OSHA<br />

PPM<br />

PEL<br />

MG/M3<br />

SARA<br />

313<br />

Polydimethylsiloxane 100% 63148-62-9 N/E N/E N/E N/E N/E N/E N/E<br />

NFPA = National Fire Protection Association<br />

Flammability 1 Instability/Reactivity 0 Health 0<br />

----------------------------------------------------------------------------------------------------------------------------------------------<br />

SECTION III<br />

PHYSICAL/CHEMICAL CHARACTERISTICS<br />

Boiling Point >35°C / 95°F<br />

Specific Gravity (H2O=1) 0.95<br />

Vapor Pressure (25°C)<br />

Negligible.<br />

Vapor Density (Air = 1):<br />

Negligible.<br />

Evaporation Rate (EE=1) 214°F / 101.1°C (Closed Cup)<br />

LEL: No Data UEL: No Data<br />

Extinguishing Media: All standard firefighting media<br />

Special Fire Fighting Procedures: None Known<br />

----------------------------------------------------------------------------------------------------------------------------------------------------------------<br />

SECTION V - REACTIVITY DATA<br />

Stability:<br />

Conditions to Avoid:<br />

Hazard Polymerization:<br />

Incompatibilities:<br />

Hazardous Decomposition<br />

/Combustion:<br />

Stable<br />

None<br />

Will Not Occur<br />

None Known<br />

Carbon Monoxide, Carbon Dioxide, Silicone Dioxide & Formaldehyde


SECTION VI HEALTH HAZARD DATA<br />

Acute Signs/Effects <strong>of</strong> Overexposure:<br />

Eye Contact: May cause Mild Eye Irritation.<br />

Skin Contact: None Known.<br />

Inhalation: None Known.<br />

Ingestion:<br />

None Known.<br />

Medical Conditions Aggravated:<br />

None Known<br />

Other:<br />

None Known<br />

Chronic Effects <strong>of</strong> Overexposure: None Known<br />

Emergency and First Aid Procedures:<br />

Ingestion<br />

None Known<br />

Skin<br />

Wash with soap and water<br />

Inhalation<br />

None Known<br />

Eyes In case <strong>of</strong> contact, immediately flush eyes with plenty <strong>of</strong> water for at least 15 minutes and get medical attention if irritation<br />

persists.<br />

This product or one <strong>of</strong> its ingredients present 0.1% or more is not listed as a carcinogen or suspected carcinogen by NTP, IARC, or OSHA.<br />

----------------------------------------------------------------------------------------------------------------------------------------------------------------<br />

SECTION VII - PRECAUTIONS FOR SAFE HANDLING AND USE<br />

Spill Response: Wipe, scrape or soak up in an inert material and put in a container for disposal. Wash walking surfaces with detergent and water to<br />

reduce slipping hazard.<br />

Disposal Method: Disposal should be made in accordance with Federal, State and Local regulations. Incineration recommended in approved<br />

incinerator according to Federal, State, and Local regulations..<br />

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------<br />

SECTION VIII - PROTECTION AND PRECAUTIONS<br />

Ventilation:<br />

Respiratory Protection:<br />

Eye and Face Protection:<br />

Protective Gloves:<br />

Other Protective Equipment:<br />

None Known<br />

None Known<br />

Safety Glasses<br />

None Known<br />

None Known<br />

Precautions to be taken in Handling and Storage: None Known<br />

Engineering Controls:<br />

None Known<br />

-------------------------------------------------------------------------------------------------------------------------------------<br />

SECTION IX - DEPARTMENT OF TRANSPORTATION DATA<br />

DOT Proper Shipping Name:<br />

DOT Hazard Class:<br />

DOT Labels:<br />

UN/NA Number:<br />

Placards:<br />

Export:<br />

None<br />

None<br />

None<br />

None<br />

None<br />

None<br />

EPA Hazard Waste: None<br />

Sara Hazard Class:<br />

WHMIS Hazard Class: No Known WHMIS Class<br />

CPSC Classification<br />

None<br />

Transportation Class: None<br />

RID (OCTI) None<br />

ADR (ECE) None<br />

RAR (IATA) None<br />

-------------------------------------------------------------------------------------------------------------------------------------<br />

DISCLAIMER<br />

Information presented herein has been compiled from information provided to us by our suppliers and other sources considered to be dependable and<br />

are accurate and reliable to the best <strong>of</strong> our knowledge and belief but are not guaranteed to be so. We make no warranty as to the results to be obtained<br />

in using any material and since conditions <strong>of</strong> use are not under our control, we must necessarily disclaim all liability with respect to the use <strong>of</strong> any<br />

material supplied by us.


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> Pore Pressure Transducer<br />

RS-T106377 [Pedestal]<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

1.800<br />

1.600<br />

1.400<br />

1.200<br />

Pressure [kPa]<br />

1.000<br />

800<br />

600<br />

400<br />

y = 9,74542x + 3,76982<br />

R 2 = 0,99985<br />

y = 10,05333x + 0,29207<br />

R 2 = 0,99999<br />

200<br />

0<br />

-20,0 0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0<br />

-200<br />

Voltage [mV]<br />

Figure 3.30: RS-T106377 Pedestal pressure transducer calibration certificate<br />

• Yellow = Output voltage -<br />

• Shield = Ground<br />

A typical specification spreadsheet for such RS pressure transducers is<br />

given in Figure 3.32, while in Figure 3.31 the regular calibration sheet is<br />

given.<br />

34


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-15<br />

Time 14:05<br />

Maximum pressure (kPa) 1.000<br />

Calibration constant (kPa/mV) 9.971<br />

Linearity 99.9989%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 9.942<br />

Sampling rate (samples/sec) DataScan 7220<br />

Temperature/Humidity<br />

22.9 0 C/41%<br />

Table 3.10: RS-T117884-Pore Pressure (Top Cap) Transducer Calibration<br />

Table<br />

Calibration <strong>of</strong> Pore Pressure Transducer<br />

RS-T117884 [Top cap]<br />

GeoLab-GIO & NITHE-15 February 2005-DATASCAN 7220<br />

1.800<br />

1.600<br />

1.400<br />

1.200<br />

Pressure [kPa]<br />

1.000<br />

800<br />

600<br />

400<br />

y = 9,70351x + 2,79534<br />

R 2 = 0,99983<br />

y = 10,01093x + 0,10676<br />

R 2 = 0,99999<br />

200<br />

0<br />

-20,0 0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0<br />

-200<br />

Voltage [mV]<br />

Figure 3.31: RS-T117884 Top cap pressure transducer calibration certificate<br />

35


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.32: RS Pressure Transducers specification spreadsheet<br />

Figure 3.33: Pore Pressure Line<br />

36


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.34: External load cell installed in biaxial load frame<br />

In the following, the pressure transducers’ reference manuals and calibration<br />

certificates are presented.<br />

3.2.3 Axial stress<br />

A system <strong>of</strong> five load cells (one external and four internal) is used in order<br />

to measure with accuracy the axial load applied to the specimen during the<br />

test. <strong>The</strong> load cell configuration allows for the estimation <strong>of</strong> the friction<br />

between the piston and the cell bush. More importantly, the axial load<br />

eccentricity can also be estimated during the test. Due to the side walls,<br />

that restrict the deformation <strong>of</strong> the specimen in the x 3 axis, an estimation<br />

<strong>of</strong> the friction developed on the side walls can also be made.<br />

An external load cell <strong>of</strong> 50kN capacity is mounted on the biaxial load<br />

frame (Bongshin CRC-5t). This is used for external monitoring <strong>of</strong> the axial<br />

load. One internal pan cake load cell is installed in the top cap <strong>of</strong> the<br />

specimen (LGP 310). <strong>The</strong> difference between these two load cells gives the<br />

friction <strong>of</strong> the cell bush. On the other hand, three subminiature load cells<br />

are also installed under the pedestal <strong>of</strong> the specimen, in an angle <strong>of</strong> 120 0<br />

(LPM 510). <strong>The</strong> sum <strong>of</strong> these three subminiature load cells compared with<br />

the axial load coming from the pane cake load cell, installed on the top cap,<br />

gives the friction on the two side walls. Finally, the eccentricity <strong>of</strong> the axial<br />

load on the pedestal can be estimated from the three subminiature load<br />

cells.<br />

37


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.35: Pane cake load cell, LGP-310/SN:555328<br />

Figure 3.36: Top and side view <strong>of</strong> biaxial top cap<br />

38


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.37: Subminiature load cell, LPM-510/SN:501319 (Channel-08),<br />

LPM-510/SN:532393 (Channel-09), LPM-510/SN:541590 (Channel-10)<br />

Figure 3.38: Side and top view <strong>of</strong> the biaxial pedestal<br />

39


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-18<br />

Time 13:50<br />

Maximum compressive load (kN) 22.5<br />

Calibration constant (kN/mV) 0.738<br />

Linearity 99.9985%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 2.986<br />

Sampling rate (samples/sec) 1.000<br />

Temperature/Humidity<br />

23.3 0 C/31%<br />

Table 3.11: LGP310-Pancake Load Cell Calibration Table<br />

LGP310-Pancake Load Cell<br />

<strong>The</strong> LGP310-Pancake Load Cell is a 22.5kN submersible compressive load<br />

cell used for measuring the axial force applied by the piston <strong>of</strong> the biaxial<br />

apparatus to the specimen (Channel 14). <strong>The</strong> wiring connection <strong>of</strong> the<br />

transducer consists <strong>of</strong> a shielded four-cable wire, which ends to a 5 pin<br />

socket plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Black = Excitation voltage −<br />

• White = Output voltage +<br />

• Green = Output voltage −<br />

• Shield = Ground<br />

<strong>The</strong> specification spreadsheet and calibration certificate issued by the<br />

<strong>GeoTest</strong> is given in Figures 3.39 and 3.40, while the regular calibration<br />

sheet follows in Figure 3.41.<br />

LPM510-SN501319-Subminiature Load Cell<br />

<strong>The</strong> LPM510-SN501319-Subminiature Load Cell is a 2.25kN submersiblesubminiature<br />

compressive load cell used for measuring the axial force on the<br />

pedestal <strong>of</strong> the biaxial apparatus (Channel 08). <strong>The</strong> wiring connection <strong>of</strong><br />

the transducer consists <strong>of</strong> a shielded four-cable wire, which ends to a 5 pin<br />

socket plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Black = Excitation voltage −<br />

40


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

CERTIFICATE OF CALIBRATION<br />

Transducer Model: LGP 310<br />

Serial Number: 962518<br />

Capacity: 10000<br />

Calibration Date: 9/15/2003<br />

Excitation: 10<br />

Calibration Factor: 3.002<br />

Input Resistance: 389<br />

Output Resistance: 283<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Tension<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.195 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

(+)Excitation<br />

A&B<br />

BLACK<br />

(-) Excitation<br />

C&D<br />

WHITE<br />

(+)Signal<br />

F<br />

GREEN<br />

(-) Signal<br />

E<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 9/26/2003<br />

Re-Calibration Date: 1 year after Shipment Date<br />

Figure 3.39: LPG310-555328-Pancake load cell spreadsheet<br />

41


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.40: LPG310-555328-Pancake load cell calibration certificate<br />

42


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> Load Cell LGP310-555328-22,5kN-Channel-14<br />

GeoLab-GIO & NITHE-18 February 2005-PCI6024 E-Loading<br />

25,0<br />

20,0<br />

y = 0,73731x - 0,06177<br />

R 2 = 0,99999<br />

Compressive Load [kN]<br />

15,0<br />

10,0<br />

5,0<br />

0,0<br />

0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0<br />

Voltage [mV]<br />

Figure 3.41: LGP310-555328 load cell calibration, 2005-02-18<br />

Figure 3.42: LPG310-555328-Pancake load cell<br />

43


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-18<br />

Time 14:20<br />

Maximum compressive load (kN) 2.25<br />

Calibration constant (kN/mV) 0.125<br />

Linearity 99.9985%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 1.743<br />

Sampling rate (samples/sec) 1.000<br />

Temperature/Humidity<br />

23.4 0 C/31%<br />

Table 3.12: LPM510-SN501319-Subminiature Load Cell Calibration Table<br />

• White = Output voltage +<br />

• Green = Output voltage −<br />

• Shield = Ground<br />

<strong>The</strong> specification spreadsheet and calibration certificate issued by the<br />

<strong>GeoTest</strong> is given in Figures 3.43 and 3.44, while the regular calibration<br />

sheet follows in Figure 3.45.<br />

LPM510-SN532393-Subminiature Load Cell<br />

<strong>The</strong> LPM510-SN532393-Subminiature Load Cell is a 2.25kN submersiblesubminiature<br />

compressive load cell used for measuring the axial force on the<br />

pedestal <strong>of</strong> the biaxial apparatus (Channel 09). <strong>The</strong> wiring connection <strong>of</strong><br />

the transducer consists <strong>of</strong> a shielded four-cable wire, which ends to a 5 pin<br />

socket plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Black = Excitation voltage −<br />

• White = Output voltage +<br />

• Green = Output voltage −<br />

• Shield = Ground<br />

<strong>The</strong> specification spreadsheet and calibration certificate issued by the<br />

<strong>GeoTest</strong> is given in Figures 3.47 and 3.48, while the regular calibration<br />

sheet follows in Figure 3.49.<br />

44


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

CERTIFICATE OF CALIBRATION<br />

Transducer Model: LPM 510<br />

Serial Number: 966616<br />

Capacity: 100<br />

Calibration Date: 1/9/2004<br />

Excitation: 5<br />

Calibration Factor: 2.131<br />

Input Resistance: 354<br />

Output Resistance: 353<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Compression<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.491 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

BLACK<br />

WHITE<br />

GREEN<br />

(+)Excitation<br />

(-) Excitation<br />

(+)Signal<br />

(-) Signal<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 1/16/2004<br />

Re-Calibration Date: 1 year after Shipment Date<br />

Figure 3.43: LPM510-501319-Pancake load cell spreadsheet<br />

45


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.44: LPM510-501319-Pancake load cell calibration certificate<br />

46


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> Load Cell LPM510-501319-Channel-08<br />

GeoLab-GIO & NITHE-18 February 2005-PCI6024 E-Loading<br />

3,0<br />

Compressive Load [kN]<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

y = 0,12515x + 0,22027<br />

R 2 = 0,99927<br />

0,5<br />

0,0<br />

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5<br />

Voltage [mV]<br />

Figure 3.45: LPM510-501319 load cell calibration, 2005-02-18<br />

Figure 3.46: LPM510-501319-Pancake load cell<br />

47


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

CERTIFICATE OF CALIBRATION<br />

Transducer Model: LPM 510<br />

Serial Number: 966616<br />

Capacity: 100<br />

Calibration Date: 1/9/2004<br />

Excitation: 5<br />

Calibration Factor: 2.131<br />

Input Resistance: 354<br />

Output Resistance: 353<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Compression<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.491 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

BLACK<br />

WHITE<br />

GREEN<br />

(+)Excitation<br />

(-) Excitation<br />

(+)Signal<br />

(-) Signal<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 1/16/2004<br />

Re-Calibration Date: 1 year after Shipment Date<br />

Figure 3.47: LPM510-532393-Pancake load cell spreadsheet<br />

48


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.48: LPM510-532393-Pancake load cell calibration certificate<br />

49


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-18<br />

Time 14:20<br />

Maximum compressive load (kN) 2.25<br />

Calibration constant (kN/mV) 0.115<br />

Linearity 98.9874%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 1.663<br />

Sampling rate (samples/sec) 1.000<br />

Temperature/Humidity<br />

23.4 0 C/31%<br />

Table 3.13: LPM510-SN532393-Subminiature Load Cell Calibration Table<br />

Calibration <strong>of</strong> Load Cell LPM510-532393-Channel-09<br />

GeoLab-GIO & NITHE-18 February 2005-PCI6024 E-Loading<br />

2,5<br />

2,0<br />

Compressive Load [kN]<br />

1,5<br />

1,0<br />

0,5<br />

y = 0,11755x - 0,46710<br />

R 2 = 0,99699<br />

0,0<br />

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5<br />

Voltage [mV]<br />

Figure 3.49: LPM510-532393 load cell calibration, 2005-02-18<br />

50


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.50: LPM510-532393-Pancake load cell<br />

LPM510-SN541590-Subminiature Load Cell<br />

<strong>The</strong> LPM510-SN541590-Subminiature Load Cell is a 2.25kN submersiblesubminiature<br />

compressive load cell used for measuring the axial force on the<br />

pedestal <strong>of</strong> the biaxial apparatus (Channel 10). <strong>The</strong> wiring connection <strong>of</strong><br />

the transducer consists <strong>of</strong> a shielded four-cable wire, which ends to a 5 pin<br />

socket plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Black = Excitation voltage −<br />

• White = Output voltage +<br />

• Green = Output voltage −<br />

• Shield = Ground<br />

<strong>The</strong> specification spreadsheet and calibration certificate issued by the<br />

<strong>GeoTest</strong> is given in Figures 3.51 and 3.52, while the regular calibration<br />

sheet follows in Figure 3.53.<br />

3.2.4 Side rigid walls<br />

A system <strong>of</strong> two vertical side rigid walls restrict the lateral deformation <strong>of</strong> the<br />

specimen in the x 3 axis. Both rigid walls are equipped with a glass surface in<br />

51


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

CERTIFICATE OF CALIBRATION<br />

Transducer Model: LPM 510<br />

Serial Number: 966616<br />

Capacity: 100<br />

Calibration Date: 1/9/2004<br />

Excitation: 5<br />

Calibration Factor: 2.131<br />

Input Resistance: 354<br />

Output Resistance: 353<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Compression<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.491 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

BLACK<br />

WHITE<br />

GREEN<br />

(+)Excitation<br />

(-) Excitation<br />

(+)Signal<br />

(-) Signal<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 1/16/2004<br />

Re-Calibration Date: 1 year after Shipment Date<br />

Figure 3.51: LPM510-541590-Pancake load cell spreadsheet<br />

52


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.52: LPM510-541590-Pancake load cell calibration certificate<br />

53


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-18<br />

Time 14:20<br />

Maximum compressive load (kN) 2.25<br />

Calibration constant (kN/mV) 0.127<br />

Linearity 99.4367%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 1.734<br />

Sampling rate (samples/sec) 1.000<br />

Temperature/Humidity<br />

23.4 0 C/31%<br />

Table 3.14: LPM510-SN541590-Subminiature Load Cell Calibration Table<br />

Calibration <strong>of</strong> Load Cell LPM510-541590-Channel-10<br />

GeoLab-GIO & NITHE-18 February 2005-PCI6024 E-Loading<br />

3,5<br />

3,0<br />

Compressive Load [kN]<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

y = 0,12641x + 0,16395<br />

R 2 = 0,99606<br />

0,5<br />

0,0<br />

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5<br />

Voltage [mV]<br />

Figure 3.53: LPM510-541590 load cell calibration, 2005-02-18<br />

54


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.54: LPM510-541590-Pancake load cell<br />

order to minimize the friction. One <strong>of</strong> the two walls is transparent, so as to<br />

allow for visual monitoring <strong>of</strong> the shear band formation and evolution. <strong>The</strong><br />

other rigid wall is instrumented with three subminiature load cells. <strong>The</strong>se<br />

load cells measure the lateral stress σ 1 , the stress applied on the plane,<br />

where the deformation <strong>of</strong> the specimen is forbidden. <strong>The</strong> two rigid walls are<br />

firmly bolted on the pedestal via four bolts and are connected between each<br />

other via four rods. In this way, no lateral movement <strong>of</strong> the two side walls<br />

is allowed.<br />

LPM510-SN501315-Subminiature Load Cell<br />

<strong>The</strong> LPM510-SN501315-Subminiature Load Cell is a 2.25kN submersiblesubminiature<br />

compressive load cell used for measuring the axial force exerted<br />

by the specimen to the two rigid walls (Channel 11). <strong>The</strong> wiring connection<br />

<strong>of</strong> the transducer consists <strong>of</strong> a shielded four-cable wire, which ends to a 5<br />

pin socket plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Black = Excitation voltage −<br />

• White = Output voltage +<br />

• Green = Output voltage −<br />

55


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.55: Side rigid walls <strong>of</strong> the biaxial apparatus<br />

Figure 3.56: Top and side view <strong>of</strong> the two rigid walls <strong>of</strong> the biaxial apparatus<br />

56


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-18<br />

Time 15:10<br />

Maximum compressive load (kN) 2.25<br />

Calibration constant (kN/mV) 0.122<br />

Linearity 99.8513%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 1.894<br />

Sampling rate (samples/sec) 1.000<br />

Temperature/Humidity<br />

24.6 0 C/32%<br />

Table 3.15: LPM510-SN501315-Subminiature Load Cell Calibration Table<br />

• Shield = Ground<br />

<strong>The</strong> specification spreadsheet and calibration certificate issued by the<br />

<strong>GeoTest</strong> is given in Figures 3.57 and 3.58, while the regular calibration<br />

sheet follows in Figure 3.59.<br />

LPM510-SN501311-Subminiature Load Cell<br />

<strong>The</strong> LPM510-SN501311-Subminiature Load Cell is a 2.25kN submersiblesubminiature<br />

compressive load cell used for measuring the axial force exerted<br />

by the specimen to the two rigid walls (Channel 12). <strong>The</strong> wiring connection<br />

<strong>of</strong> the transducer consists <strong>of</strong> a shielded four-cable wire, which ends to a 5<br />

pin socket plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Black = Excitation voltage −<br />

• White = Output voltage +<br />

• Green = Output voltage −<br />

• Shield = Ground<br />

<strong>The</strong> specification spreadsheet and calibration certificate issued by the<br />

<strong>GeoTest</strong> is given in Figures 3.61 and 3.62, while the regular calibration<br />

sheet follows in Figure 3.63.<br />

LPM510-SN501316-Subminiature Load Cell<br />

<strong>The</strong> LPM510-SN501316-Subminiature Load Cell is a 2.25kN submersiblesubminiature<br />

compressive load cell used for measuring the axial force exerted<br />

by the specimen to the two rigid walls (Channel 13). <strong>The</strong> wiring connection<br />

57


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

CERTIFICATE OF CALIBRATION<br />

Transducer Model: LPM 510<br />

Serial Number: 966616<br />

Capacity: 100<br />

Calibration Date: 1/9/2004<br />

Excitation: 5<br />

Calibration Factor: 2.131<br />

Input Resistance: 354<br />

Output Resistance: 353<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Compression<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.491 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

BLACK<br />

WHITE<br />

GREEN<br />

(+)Excitation<br />

(-) Excitation<br />

(+)Signal<br />

(-) Signal<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 1/16/2004<br />

Re-Calibration Date: 1 year after Shipment Date<br />

Figure 3.57: LPM510-501315-Pancake load cell spreadsheet<br />

58


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.58: LPM510-501315-Pancake load cell calibration certificate<br />

59


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> Load Cell LPM510-501315-Channel-11<br />

GeoLab-GIO & NITHE-18 February 2005-PCI6024 E-Loading<br />

3,0<br />

2,5<br />

Compressive Load [kN]<br />

2,0<br />

1,5<br />

1,0<br />

y = 0,12155x - 0,26049<br />

R 2 = 0,99822<br />

0,5<br />

0,0<br />

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0<br />

Voltage [mV]<br />

Figure 3.59: LPM510-501315 load cell calibration, 2005-02-18<br />

Figure 3.60: LPM510-501315 load cell<br />

60


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

CERTIFICATE OF CALIBRATION<br />

Transducer Model: LPM 510<br />

Serial Number: 966616<br />

Capacity: 100<br />

Calibration Date: 1/9/2004<br />

Excitation: 5<br />

Calibration Factor: 2.131<br />

Input Resistance: 354<br />

Output Resistance: 353<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Compression<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.491 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

BLACK<br />

WHITE<br />

GREEN<br />

(+)Excitation<br />

(-) Excitation<br />

(+)Signal<br />

(-) Signal<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 1/16/2004<br />

Re-Calibration Date: 1 year after Shipment Date<br />

Figure 3.61: LPM510-501311-Pancake load cell spreadsheet<br />

61


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.62: LPM510-501311-Pancake load cell calibration certificate<br />

62


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-18<br />

Time 15:10<br />

Maximum compressive load (kN) 2.25<br />

Calibration constant (kN/mV) 0.126<br />

Linearity 99.9364%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 1.762<br />

Sampling rate (samples/sec) 1.000<br />

Temperature/Humidity<br />

23.6 0 C/32%<br />

Table 3.16: LPM510-SN501311-Subminiature Load Cell Calibration Table<br />

Calibration <strong>of</strong> Load Cell LPM510-501311-Channel-12<br />

GeoLab-GIO & NITHE-18 February 2005-PCI6024 E-Loading<br />

3,5<br />

3,0<br />

Compressive Load [kN]<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

y = 0,12664x + 0,04612<br />

R 2 = 0,99943<br />

0,5<br />

0,0<br />

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5<br />

Voltage [mV]<br />

Figure 3.63: LPM510-501311 load cell calibration, 2005-02-18<br />

63


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.64: LPM510-501311 load cell<br />

<strong>of</strong> the transducer consists <strong>of</strong> a shielded four-cable wire, which ends to a 5<br />

pin socket plug (240 0 ). <strong>The</strong> wiring connections are as follows:<br />

• Red = Excitation voltage +<br />

• Black = Excitation voltage −<br />

• White = Output voltage +<br />

• Green = Output voltage −<br />

• Shield = Ground<br />

<strong>The</strong> specification spreadsheet and calibration certificate issued by the<br />

<strong>GeoTest</strong> is given in Figures 3.65 and 3.66, while the regular calibration<br />

sheet follows in Figure 3.67.<br />

In the following, the subminiature load cells’ reference manuals and calibration<br />

certificates are given.<br />

64


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

CERTIFICATE OF CALIBRATION<br />

Transducer Model: LPM 510<br />

Serial Number: 966616<br />

Capacity: 100<br />

Calibration Date: 1/9/2004<br />

Excitation: 5<br />

Calibration Factor: 2.131<br />

Input Resistance: 354<br />

Output Resistance: 353<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Compression<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.491 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

BLACK<br />

WHITE<br />

GREEN<br />

(+)Excitation<br />

(-) Excitation<br />

(+)Signal<br />

(-) Signal<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 1/16/2004<br />

Re-Calibration Date: 1 year after Shipment Date<br />

Figure 3.65: LPM510-501316-Pancake load cell spreadsheet<br />

65


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.66: LPM510-501316-Pancake load cell calibration certificate<br />

66


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator<br />

GIO & NITHE<br />

Place<br />

GeoLab<br />

Date 2005-02-18<br />

Time 15:30<br />

Maximum compressive load (kN) 2.25<br />

Calibration constant (kN/mV) 0.122<br />

Linearity 99.9357%<br />

Excitation voltage (V) 10.09<br />

Voltage Sensitivity (mV/V) 1.888<br />

Sampling rate (samples/sec) 1.000<br />

Temperature/Humidity<br />

23.6 0 C/33%<br />

Table 3.17: LPM510-SN501316-Subminiature Load Cell Calibration Table<br />

Calibration <strong>of</strong> Load Cell LPM510-501316-Channel-13<br />

GeoLab-GIO & NITHE-18 February 2005-PCI6024 E-Loading<br />

3,0<br />

2,5<br />

Compressive Load [kN]<br />

2,0<br />

1,5<br />

1,0<br />

y = 0,12161x + 0,03771<br />

R 2 = 0,99923<br />

0,5<br />

0,0<br />

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0<br />

Voltage [mV]<br />

Figure 3.67: LPM510-501316 load cell calibration, 2005-02-18<br />

67


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.68: LPM510-501316 load cell<br />

68


COOPER INSTRUMENTS & SYSTEMS<br />

LOAD CELLS<br />

LGP 310 - PANCAKE LOAD CELL<br />

Low pr<strong>of</strong>ile “pancake” type cells are engineered to measure loads<br />

from 5 to 500,000 pounds. <strong>The</strong> tension/compression LGP 310<br />

is designed with a threaded hole running through the center <strong>of</strong><br />

the cell. <strong>The</strong> LGP 310 utilizes two stabilizing diaphragms, which are<br />

welded to the sensing member to reduce <strong>of</strong>f-center and side-loading<br />

effects. A load button may be desirable when using in compression or a<br />

pull plate when using in tension. This model must be used on a flat,<br />

smooth surface to achieve rated specifications. This unit can be hermetically<br />

sealed for added durability. Options available with this unit<br />

include: 0-5 Vdc, 4-20 ma output, fatigue rating, high/low temperature<br />

compensation and ultra precision accuracy.<br />

• LOW PROFILE<br />

• TENSION/COMPRESSION<br />

• WIDE CAPACITY RANGE<br />

• STAINLESS STEEL<br />

• ECONOMICALLY PRICED<br />

• 0-5 VDC OR 4-20 MA<br />

OPTION OUTPUT<br />

• 5 LB TO 500,000 LB<br />

SPECIFICATIONS<br />

LOAD RANGES: 5 lb to 500,000 lb<br />

LINEARITY:<br />

5 lb to 25 lb - ±0.2% FS<br />

50 lb to 500,000 lb - ±0.1% FS<br />

HYSTERESIS:<br />

5 lb to 25 lb - ±0.1% FS<br />

50 lb to 500,000 lb - ±0.08% FS<br />

REPEATABILITY: 5 lb to 25 lb - ±0.1%<br />

50 lb to 500,000 lb - ±0.03%<br />

MATERIAL:<br />

5 lb to 200,000 - lb, 17-4 PH S.S.<br />

300,000 lb to 500,000 lb 4340 Painted<br />

TEMP. RANGE: 60˚ to 160˚ F<br />

OUTPUT:<br />

5 to 25 LB - 2mv/v<br />

50 to 500,000 LB - 3mv/v<br />

BRIDGE RESISTANCE: 350 ohm<br />

EXCITATION:<br />

10 Vdc<br />

SAFE OVERLOAD: 50% Over Capacity<br />

DEFLECTION:<br />

.003" F.S.<br />

CONNECTOR (Not Incl.): 5 lb to 5000 lb - PTO6A-10-6S<br />

7500 lb to 500,000 lb -<br />

MS3106A-14S-6S<br />

G" K"<br />

AVAILABLE RANGES Dia Dia<br />

D" H" F" B.C. Thru T A" B" C"<br />

5; 10; 25 lb 2.50 .80 6 2.000 .19 1/4-28UNF .82 .75 1.25<br />

50; 100; 250; 500; 1000 lb 3.00 1.00 6 2.250 .28 3/8-24UNF .82 .75 1.25<br />

2000; 3000; 4000; 5000 lb 3.50 1.00 6 2.625 .34 1/2-20UNF .82 .75 1.25<br />

7500; 10,000; 15,000 lb 5.50 1.80 8 4.500 .40 1-14UNS 1.25 1.50 2.00<br />

20,000; 30,000; 50,000 lb 6.00 1.80 8 4.875 .53 1 1/2-12UN 1.25 1.50 2.00<br />

75,000; 100,000 lb 9.00 2.50 12 7.750 .66 2-12UN 1.25 1.50 2.00<br />

150,000; 200,000 lb 11.00 2.50 12 9.500 .78 2 1/2-12UN 1.25 1.50 2.00<br />

300,000; 400000; 500,000 lb 14.00 4.25 12 11.750 1.03 3 1/2-8UN 1.25 1.50 xxx<br />

*Stocked ranges are in bold type.<br />

xx “C” dimension varies on high ranges<br />

Bolt holes (K) are counter-bored for ranges 15,000 lb and below<br />

ALLOWABLE EXTRANEOUS FORCE WITHOUT DAMAGE<br />

Side Load Bending Torque Total<br />

(Lbs) (lb/in) (lb/in) Extran. Forces<br />

25; 50; 100; 250; 500 lb 50% 40% 25% 100%<br />

1000; 2000; 3000; 4000; 5000 lb 30% 25% 25% 100%<br />

10,000; 15,000; 20,000; 30,000; 50,000 lb 20% 20% 15% 100%<br />

100,000; 150;000; 200,000 lb 20% 20% 10% 100%<br />

300,000; 400,000; 500,000 20% 20% 10% 100%<br />

www.cooperinstruments.com<br />

1-800-344-3921<br />

sales@cooperinstruments.com<br />

Revised 04/22/02


CERTIFICATE OF CALIBRATION<br />

Transducer Model: LGP 310<br />

Serial Number: 962518<br />

Capacity: 10000<br />

Calibration Date: 9/15/2003<br />

Excitation: 10<br />

Calibration Factor: 3.002<br />

Input Resistance: 389<br />

Output Resistance: 283<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Tension<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.195 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

(+)Excitation<br />

A&B<br />

BLACK<br />

(-) Excitation<br />

C&D<br />

WHITE<br />

(+)Signal<br />

F<br />

GREEN<br />

(-) Signal<br />

E<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 9/26/2003<br />

Re-Calibration Date: 1 year after Shipment Date


COOPER INSTRUMENTS & SYSTEMS<br />

LOAD CELLS<br />

LPM 510 - SUBMINIATURE LOAD CELLS<br />

Models LPM 510 (compression only) and LPM 512 (tension/<br />

compression) subminiature load cells are designed to measure<br />

load ranges from 50 grams to 1000 pounds with a high<br />

frequency response rate. <strong>The</strong> subminiature dimensions, including<br />

diameters from 0.38" to 0.75" and Heights <strong>of</strong> 0.13" to 0.25" allow these<br />

units to be easily incorporated into systems having limited space. A<br />

small (1.0" long x 0.08" thick) circuit board is included in each load<br />

cell’s lead wire cable for temperature compensation.<br />

SPECIFICATIONS<br />

• TENSION/COMPRESSION<br />

• WAFER-THIN<br />

• UP TO 1000 LB<br />

• HIGH/LOW TEMP. OPTION<br />

• 50 GMS TO 1000 LB<br />

COMPRESSION ONLY<br />

LOAD RANGES:<br />

LINEARITY/HYSTERESIS:<br />

REPEATABILITY:<br />

MATERIAL:<br />

TEMPERATURE RANGE:<br />

OUTPUT:<br />

BRIDGE RESISTANCE:<br />

EXCITATION:<br />

SAFE OVERLOAD:<br />

CABLE:<br />

50 g to 1000 lb<br />

50 g to 500 g - ±0.5% F.S.<br />

1000 g to 1000 lb - ±0.25% F.S.<br />

±0.1% F.S.<br />

Stainless Steel<br />

60˚ to 160˚ F<br />

50 g - 5mv/v<br />

50 g to 500 g - 15mv/v<br />

1000 g 1.5mv/v<br />

510 to 1000 lb - 2mv/v<br />

50 g to 500 g - 500 ohm<br />

1000 g to 1000 lb - 350 ohm<br />

5 Vdc<br />

50% Over Capacity<br />

5 ft<br />

AVAILABLE RANGES D1" D2" H"<br />

50; 150; 250; 500; 1000 g<br />

5; 10; 25; 50 lb .38 .09 .13<br />

100; 250 lb .50 .12 .15<br />

500; 1000 lb .75 .25 .25<br />

*Bold type indicates load cells stocked for quick delivery<br />

LPM 512 - SUBMINIATURE LOAD CELL<br />

SPECIFICATIONS<br />

LOAD RANGES:<br />

LINEARITY:<br />

HYSTERESIS:<br />

REPEATABILITY:<br />

MATERIAL:<br />

TEMPERATURE RANGE:<br />

OUTPUT:<br />

BRIDGE RESISTANCE:<br />

EXCITATION:<br />

SAFE OVERLOAD:<br />

CABLE:<br />

50 g to 1000 lb<br />

±0.5% F.S.<br />

±0.5% F.S.<br />

±0.1% F.S.<br />

Stainless Steel<br />

60˚ to 160˚ F<br />

50 g to 500 g - 10mv/v<br />

1000 g to 1000 lb - 2mv/v<br />

50 g to 500 g - 500 ohm<br />

1000 g to 1000 lb - 350 ohm<br />

5 Vdc<br />

50% Over Capacity<br />

5 ft<br />

TENSION\COMPRESSION<br />

AVAILABLE RANGES D" T H" L" Q"<br />

50; 150; 250; 500; 1000 g .50 #4-40 UNC .29 .18 4<br />

5; 10; 25; 50; 100 lb .50 #4-40 UNC .29 .18 4<br />

250; 500; 1000 lb .75 1/4-28 UNF .38 .31 20<br />

Q - Max torque allowed inch-lbs<br />

www.cooperinstruments.com<br />

1-800-344-3921<br />

sales@cooperinstruments.com<br />

10/29/04


CERTIFICATE OF CALIBRATION<br />

Transducer Model: LPM 510<br />

Serial Number: 966616<br />

Capacity: 100<br />

Calibration Date: 1/9/2004<br />

Excitation: 5<br />

Calibration Factor: 2.131<br />

Input Resistance: 354<br />

Output Resistance: 353<br />

Temperature Range: 60-160<br />

LBS<br />

VDC<br />

MV/V Compression<br />

Ohms<br />

Ohms<br />

Degrees F<br />

An output <strong>of</strong> 1.491 MV/V is induced when<br />

a shunt resistor <strong>of</strong> 59K ohms is applied across (-) Excitation and (-) Signal.<br />

Special Instructions:<br />

Wiring Code<br />

RED<br />

BLACK<br />

WHITE<br />

GREEN<br />

(+)Excitation<br />

(-) Excitation<br />

(+)Signal<br />

(-) Signal<br />

This is to certify that the following instrument was calibrated using loading<br />

equipment traceable to NIST through one or more <strong>of</strong> standards. <strong>The</strong> unit was<br />

found to meet or exceed all published sales literature accuracy specifications.<br />

Date <strong>of</strong> Shipment: 1/16/2004<br />

Re-Calibration Date: 1 year after Shipment Date


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.69: Sled <strong>of</strong> the biaxial apparatus<br />

3.2.5 Biaxial sled<br />

<strong>The</strong> third main part <strong>of</strong> the biaxial apparatus is the sled, on which the<br />

pedestal is sat. <strong>The</strong> sled is able to freely slide along its axis, which allows for<br />

free shear band formation. <strong>The</strong> movement <strong>of</strong> the sled is monitored through<br />

a displacement transducer. <strong>The</strong> initiation <strong>of</strong> the shear band is marked by<br />

intense sled movement. <strong>The</strong> two axial displacement transducers combined<br />

with the sled displacement transducer allow for continuous monitoring <strong>of</strong><br />

the hodogragh <strong>of</strong> the shear band. <strong>The</strong> last, in combination with the shear<br />

band inclination, allows for the study <strong>of</strong> the material post-failure behavior.<br />

3.3 Biaxial cell house<br />

This is the cell, which houses the biaxial apparatus (see photo 3.70). It<br />

is made <strong>of</strong> plexiglass, capable <strong>of</strong> sustaining pressures up to 833kPa, with<br />

a factor <strong>of</strong> safety equal to 10. <strong>The</strong> internal diameter <strong>of</strong> the cell is D int =<br />

350mm, the external diameter D ext = 400mm and the height <strong>of</strong> the cell is<br />

equal to H = 575mm. <strong>The</strong> cell is also transparent so as to allow for visual<br />

contact with the specimen during the test. <strong>The</strong> watertightness <strong>of</strong> the cell<br />

is achieved with an O-ring, properly engraved in the base plate. Another<br />

O-ring is also installed on the lid.<br />

69


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.70: <strong>The</strong> GeoLab biaxial cell house<br />

3.4 Biaxial cell house lid<br />

<strong>The</strong> last part <strong>of</strong> the biaxial apparatus is the cell lid (see photo 3.71). This<br />

is the top cap <strong>of</strong> the cell, which is placed at the end, after the specimen<br />

has been properly placed in the apparatus. <strong>The</strong> lid is a plate made <strong>of</strong> steel,<br />

with four holes at its corners. Four steel rods pass through the base plate<br />

up to the lid. A set <strong>of</strong> nuts are used to tight the four rods. In this way<br />

watertightness <strong>of</strong> the biaxial cell is achieved. <strong>The</strong> cell lid has also a cell<br />

pressure line, connected to the biaxial permeability panel. <strong>The</strong> cell pressure<br />

is applied via compressed air, through the lid. A pressure gauge is also<br />

connected to the cell pressure line.<br />

A piston for the application <strong>of</strong> the deviatoric charging is also installed on<br />

the biaxial lid. It is able to slide without friction, while a bush is installed<br />

in the inner part <strong>of</strong> the piston to prevent any leakage <strong>of</strong> compressed air<br />

from cell. A mounting block for the installation <strong>of</strong> a displacement gauge or<br />

transducer is also installed on the piston.<br />

70


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 3.71: <strong>The</strong> GeoLab biaxial cell house lid<br />

71


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

72


Chapter 4<br />

<strong>The</strong> VJ Tech volume change<br />

apparatus<br />

(VJT310/SN:0134)<br />

4.1 Introduction<br />

Apart from the four displacement transducers, monitoring the lateral deformation<br />

<strong>of</strong> the specimen in the x 1 axis, the volume change <strong>of</strong> the specimen<br />

is also measured by a VJ Tech automatic volume change apparatus. This<br />

measurement, compared with the one <strong>of</strong> the four displacement transducers<br />

is a global one. <strong>The</strong> VJ Tech automatic volume change apparatus allows for<br />

two different methods <strong>of</strong> measuring diaphragm displacement. <strong>The</strong> apparatus<br />

has a piston area <strong>of</strong> 40.97cm 2 and a distance stroke <strong>of</strong> 25mm. <strong>The</strong> capacity<br />

<strong>of</strong> the standard unit is 100ml, while the overall dimensions <strong>of</strong> the apparatus<br />

are 220×170×350mm, weighting up to 8kgr. <strong>The</strong> apparatus consists <strong>of</strong> two<br />

chambers, which may sustain up to 1000kPa internal pore water pressure.<br />

<strong>The</strong> apparatus has two on-<strong>of</strong>f valves. A “Bypass” and “Volume Change”<br />

valve and a “Flow up” and “Flow down” valve. <strong>The</strong> first valve allows water<br />

bypass the apparatus (when in saturation) or measure the volume <strong>of</strong> the water<br />

expelled or sucked by the specimen (during the consolidation or drained<br />

compression/extension) while the second one selects whether water coming<br />

in or out <strong>of</strong> the specimen will be sent to the upper or lower chamber <strong>of</strong><br />

the volume change apparatus. <strong>The</strong> switching between the upper and lower<br />

chamber allows for infinite specimen volume change.<br />

<strong>The</strong> apparatus utilises an external measuring medium, either a linear<br />

strain transducer or digital dial gauge. <strong>The</strong> linear strain transducer is<br />

mounted by a bracket, which holds the transducer in place and monitors<br />

the vertical movement <strong>of</strong> the piston <strong>of</strong> the apparatus. <strong>The</strong> LSC-HS25-12071<br />

linear displacement transducer is used for this reason.<br />

73


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 4.1: VJT volume change apparatus (photo taken from VJT web site)<br />

4.2 Installation<br />

<strong>The</strong> back pressure line from the triaxial set-up should be connected to the<br />

right hand side <strong>of</strong> the reversing control module box, when viewed from the<br />

front. <strong>The</strong> left hand side connection on the control module box should be<br />

connected to the back pressure valve situated in the base <strong>of</strong> the triaxial cell.<br />

<strong>The</strong> linear strain transducer or digital dial gauge indicator should be<br />

mounted using the appropriate bracket so that its lower spindle end rests<br />

against the moving anvil protruding from the side <strong>of</strong> the volume change cell.<br />

<strong>The</strong> unit must be slowly filled using de-aired water by setting the left<br />

hand valve on the module, to the “Volume Change” position, as marked,<br />

and the lefthand valve to the “Flow up” position. Any entrapped air can<br />

then be bled from the unit by releasing the bleed cell valve located in the<br />

centre <strong>of</strong> the top <strong>of</strong> the cell chamber, as the de-aired water is fed into the<br />

cell. When water exudes from the bleed valve in the upper plate <strong>of</strong> the cell,<br />

tighten the screw to seal the upper chamber. It is then necessary to repeat<br />

the procedure from the lower chamber; the apparatus must be lifted <strong>of</strong>f the<br />

reversing control box and inverted to remove the air. It will be necessary<br />

to reverse the water flow direction <strong>of</strong> “Flow down” using the flow valve, in<br />

order to fill both sides <strong>of</strong> the apparatus.<br />

After removing the air, it is advisable to leave the apparatus overnight,<br />

or at least eight hours, with an internal pressure <strong>of</strong> approximately 700kPa.<br />

This will allow any remaining trapped air to be absorbed into the solution.<br />

After this period, the apparatus should be carefully flushed out using new de-<br />

74


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 4.2: VJT volume change apparatus front panel, VJT310/SN:0134<br />

aired water, and thus displacing the aerated water. This flushing procedure<br />

must be carried out in both upper and lower chambers. It may be necessary<br />

to repeat this procedure once more, if any signs <strong>of</strong> air pockets occur during<br />

the first two days <strong>of</strong> operation.<br />

4.3 Control Module Valve Positions<br />

<strong>The</strong> reversing control module VJT310 has the following controls and operating<br />

positions. <strong>The</strong>se are two valves. <strong>The</strong> one on the left hand side <strong>of</strong> the box<br />

which has two positions: “Volume Change” and “Bypass” (see Figure 4.2).<br />

<strong>The</strong> other valve is situated on the righthand side <strong>of</strong> the box and has two<br />

positions: “Flow up” and “Flow down”. In order to bypass the automatic<br />

volume change apparatus, the lefthand side valve must be in the “Bypass”<br />

position, which will allow the water to flow directly through the triaxial cell<br />

without going through the volume change apparatus. To measure the actual<br />

volume change, the lefthand side valve must be set to the “Volume Change”<br />

position and the righthand side either to “Flow up” or “Flow down” positions.<br />

If during a test the apparatus is nearing its maximum volume change<br />

(100ml), the range <strong>of</strong> the apparatus can be increased by changing the flow<br />

direction using the righthand side valve.<br />

4.4 Calibration<br />

<strong>The</strong> VJT310 is easily calibrated, whether using the linear strain transducer<br />

or the digital dial gauge. Both devices measure from zero to full scale<br />

electrically and do not have a centre zero point. Thus the user can calibrate<br />

the device from zero to 100ml in engineering units. <strong>The</strong> transducer and<br />

the dial gauge should be connected to the appropriate readout device which<br />

should be switched on at least 12 hours before attempting the calibration.<br />

75


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Operator GIO GIO GIO<br />

Place GeoLab GeoLab GeoLab<br />

Date 2004-05-25 2004-06-15 2005-02-15<br />

Time 08:41 15:25 09:15<br />

Maximum spindle - 25.90mm 25.95mm<br />

Calibration constant 0.390mm/mV 0.389mm/mV 0.391mm/mV<br />

Linearity 99.9997% 99.9997% 99.9999%<br />

Excitation voltage 10.00Volts 10.11Volts 10.09Volts<br />

Voltage Sensitivity 6.41mV/V 6.59mV/V 6.55mV/V<br />

Sampling rate - 1.000samples/sec -<br />

Temperature - 22.5 0 C<br />

Humidity - 35.5%<br />

Table 4.1: LSC-HS25-12071 Calibration Table<br />

<strong>The</strong> LSC-HS25-12071 used as the displacement gauge <strong>of</strong> the apparatus<br />

has a maximum spindle <strong>of</strong> 25.8mm and its volt sensitivity (5.21V excitation<br />

voltage) is 6.7mV/V (Calibration 1997-09-16, WF). Figures 4.3, 4.4 and 4.5<br />

show the reference manual and calibration sheets <strong>of</strong> the above mentioned<br />

displacement transducer. Table 4.1 summarises the calibration constants.<br />

<strong>The</strong> wiring connection <strong>of</strong> the transducer consists <strong>of</strong> a shielded four-cable<br />

wire, which ends to a 5 pin socket plug (240 0 ). <strong>The</strong> wiring connection <strong>of</strong> the<br />

displacement transducer follows the below mentioned cabling: excitation<br />

voltage + (red), excitation voltage − (yellow), output voltage + (green),<br />

output voltage − (blue) and ground (shield).<br />

At the end <strong>of</strong> this section, technical reference, calibration certificate and<br />

invoices <strong>of</strong> the VJT Automatic Volume Change Apparatus are given.<br />

76


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 4.3: VJ Tech volume change apparatus displacement transducer reference<br />

manual, LSC-HS25-12071<br />

Calibration <strong>of</strong> LSC HS25/12071<br />

GeoLab-GIO-25 March 2004-PCI 6024E<br />

30,0<br />

Displacement [mm]<br />

20,0<br />

10,0<br />

y = 0,38971x - 0,64866<br />

R 2 = 1,00000<br />

0,0<br />

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0<br />

Voltage [mV]<br />

Figure 4.4: VJ Tech volume change apparatus displacement transducer calibration,<br />

2004-05-25, LSC-HS25-12071<br />

77


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Calibration <strong>of</strong> LSC HS25/12071<br />

GeoLab-GIO-15 June 2004-PCI 6024E<br />

30,0<br />

Displacement [mm]<br />

20,0<br />

10,0<br />

y = 0,38864x + 0,24046<br />

R 2 = 1,00000<br />

0,0<br />

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0<br />

Voltage [mV]<br />

Figure 4.5: VJ Tech volume change apparatus displacement transducer calibration,<br />

2004-06-15, LSC-HS25-12071<br />

Calibration <strong>of</strong> LSC HS25/12071<br />

GeoLab-GIO-15 February 2005-DATASCAN 7220<br />

30,0<br />

Displacement [mm]<br />

20,0<br />

10,0<br />

y = 0,39070x + 0,30740<br />

R 2 = 1,00000<br />

0,0<br />

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0<br />

Voltage [mV]<br />

Figure 4.6: VJ Tech volume change apparatus displacement transducer calibration,<br />

2005-02-15, LSC-HS25-12071<br />

78


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 4.7: VJ Tech volume change apparatus displacement transducer,<br />

LSC-HS25-12071<br />

Figure 4.8: VJ Tech volume change apparatus, VJT310/SN:0134<br />

79


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

80


NEOTEK<br />

M e as uring &<br />

Te s ti n g S ys t em s<br />

Yπ' οψιν κ.<br />

ΓΕΩΡΓΟΠΟΥΛΟΣ ΙΩΑΝ-ΟΡΕΣΤ.<br />

E. M. ΠOΛYTEXNEIO<br />

ΣEMΦE<br />

TOMEAΣ MHXANIKHΣ<br />

ΥΠΟΨΗΦΙΟΣ ∆Ι∆ΑΚΤΟΡΑΣ<br />

THΛ 210 7721373<br />

210 7721374<br />

FAX 210 7721302<br />

ΘEMA<br />

ΣΥΣΚΕΥΗ ΜΕΤΑΒΟΛΗΣ ΟΓΚΟΥ<br />

ΠPOΣΦOPA<br />

Nο: 4 - 9028 - 4954<br />

17 Φεβ 2005<br />

1.<br />

2.<br />

HP. ΠOΛYTEXNEIOY 5,<br />

αα<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

ZΩΓPAΦOY-AΘHNA<br />

10.<br />

157 73<br />

ΣXETIKA<br />

Eχουµε την ευχαριστηση να σας προσφερουµε τα ακολουθα ειδη που πιστευουµε οτι καλυπτουν τις απαιτησεις σας:<br />

ΠOΣ ΠEPIΓPAΦH MONA∆A ΣYNOΛO<br />

1 ΣΥΣΚΕΥΗ ΜΕΤΑΒΟΛΗΣ ΟΓΚΟΥ, ως συνηµµένη αναλυτική προσφορά. 1 582.10<br />

1 582.10<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Xρονος Παραδοσης: 5-10 ηµερες απο ληψεως της παραγγελιας, ΣYNOΛO 1 582.10<br />

εκτος απο περιπτωσεις ανωτερας βιας.<br />

0.00<br />

0.00<br />

Tοπος Παραδοσης: AΘHNA<br />

ΣYNOΛO 1 582.10<br />

Προελευση: AΓΓΛIA<br />

ΦΠA 18% 284.78<br />

Πληρωµη: 0 % Προκαταβολη µε την παραγγελια<br />

100 % τοις µετρητοίς εντός 30 ηµερών. ΣYNOΛO ΕΥΡΩ<br />

1 866.88<br />

Iσοτιµία σε ∆PAXMEΣ µε<br />

ΦΠA<br />

636 139<br />

Eγκατασταση:<br />

Iσχυς: 30 ηµερες.<br />

Kρατησεις<br />

∆εν απαιτειται. Oποιαδήποτε τεχνική συµβουλή<br />

παρέχεται ∆ΩPEAN<br />

Κρατήσεις περιλαµβάνονται.<br />

1. Oι παραγγελιες επιβεβαιωνονται εγγραφως<br />

2. Tα ειδη θα πρεπει να αποθηκευθουν ασφαλως µεχρι την παραλαβη των<br />

και να παραληφθουν εντος 10 ηµερων.<br />

3. Oι τιµες ισχυουν για το συνολο των προσφεροµενων ανα<br />

ειδος µοναδων. Mερικος επιµερισµος µονον κατοπιν συµφωνιας.<br />

4. Tα ειδη συνηθως καλυπτονται απο εγγυηση καλης λειτουργιας 12<br />

µηνων απο την παραδοση. Aναλυτικοι οροι Eγγυησης διατιθενται<br />

απο την Eταιρια µας.<br />

5. Oι όροι πληρωµής ισχύουν και για την παραγγελία, εκτός αν δηλωθεί<br />

διαφορετικά.<br />

6. Tα είδη παραµένουν στην κυριότητά µας µέχρι τελικής εξόφλησης.<br />

E10.01,1<br />

Προµηθευτης:<br />

VJT - IMPACT<br />

Eιµαστε στη διαθεσή σας για οποιαδηποτε<br />

συµπληρωµατικη πληροφορια ή διευκρινιση<br />

χρειαστειτε και σας ευχαριστουµε για το<br />

ενδιαφερον σας στα προϊοντα µας.<br />

NEOTEK O.E. Π.Ξύστρης & Σια<br />

Eλ. Bενιζέλου 105<br />

N. Σµύρνη 17122, AΘHNA<br />

τηλ: 210-9341533 & 9359142<br />

φαξ: 210-9359778<br />

Παν. Nικολακόπουλος<br />

4-9028- 4954---------


NEOTEK<br />

M easuring &<br />

Te sti n g S ys t em s<br />

2<br />

ΑΝΑΛΥΤΙΚΗ ΠΡΟΣΦΟΡΑ ΣΕ ΕΥΡΩ ΓΙΑ ΠΑΡΑ∆ΟΣΗ ΩΣ ΠΡΩΤΗ ΣΕΛΙ∆Α<br />

Hµ/νια 17-2-2005<br />

Nο.: 4- 9028 - 4954<br />

EI∆OΣ KΩ∆IKOΣ ΠEPIΓPAΦH<br />

MONA∆A Ποσ<br />

01.00 VOLUME CHANGE APPARATUS<br />

ΠΡΟΜΗΘΕΥΤΗΣ VJT<br />

ΣYNOΛO<br />

01.01 VJT0300 Auto Volume Change<br />

1 487.50 1 1 487.50<br />

01.02 Bracket for LSCT<br />

94.60 1 94.60<br />

ΣYNOΛO EI∆OYΣ 1 ANEY ΦΠA, EYPΩ:<br />

1 582.10<br />

02.00 ΕΝΑΛΛΑΚΤΙΚΑ:<br />

VOLUME CHANGE APPARATUS<br />

ΠΡΟΜΗΘΕΥΤΗΣ IMPACT<br />

02.01 SL780 VOLUME CHANGE AUTOMATIC 100CC<br />

865.33 0.00<br />

02.02 SL781 CHANGEOVER VALVE ASSEMBLY<br />

718.67 0.00<br />

02.03 SL727 BRACKET LSCT INSTEAD OF GAUGE<br />

82.13 0.00<br />

ΣYNOΛO EI∆OYΣ 2 ANEY ΦΠA, EYPΩ:<br />

0.00<br />

Eιδη µε µηδενικη ποσοτητα δεν περιλαµβανονται στο αθροισµα<br />

ΓENIKO ΣYNOΛO EYPΩ:<br />

1 582.10<br />

OI ΓENIKOI OPOI ΠOY ∆IEΠOYN THN ΠAPOYΣA<br />

ΠPOΣΦOPA ∆I∆ONTAI ΣTHN ΣYNOΠTIKH MAΣ<br />

ΠPOΣΦOPA ΠOY AΠOTEΛEI ANAΠOΣΠAΣTO<br />

MEPOΣ THΣ ΠAPOYΣHΣ<br />

NEOTEK O.E. Π.Ξύστρης & Σια<br />

Eλ. Bενιζέλου 105<br />

N. Σµύρνη 17122, AΘHNA<br />

τηλ: 210-9341533 & 9359142<br />

φαξ: 210-9359778


NEOTEK<br />

M e as uring &<br />

Te s ti n g S ys t em s<br />

Yπ' οψιν κ.<br />

ΓΕΩΡΓΟΠΟΥΛΟΣ ΙΩΑΝ-ΟΡΕΣΤ.<br />

E. M. ΠOΛYTEXNEIO<br />

ΣEMΦE<br />

TOMEAΣ MHXANIKHΣ<br />

ΥΠΟΨΗΦΙΟΣ ∆Ι∆ΑΚΤΟΡΑΣ<br />

THΛ 210 7721373<br />

210 7721374<br />

FAX 210 7721302<br />

ΘEMA<br />

ΕΡΓΑΣΤΗΡΙΑΚΟΣ ΕΞΟΠΛΙΣΜΟΣ<br />

ΠPOΣΦOPA<br />

Nο: 4 - 9028 - 5009<br />

07 Iουν 2005<br />

1.<br />

2.<br />

HP. ΠOΛYTEXNEIOY 5,<br />

αα<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

ZΩΓPAΦOY-AΘHNA<br />

10.<br />

157 73<br />

ΣXETIKA<br />

Eχουµε την ευχαριστηση να σας προσφερουµε τα ακολουθα ειδη που πιστευουµε οτι καλυπτουν τις απαιτησεις σας:<br />

ΠOΣ ΠEPIΓPAΦH MONA∆A ΣYNOΛO<br />

1 VJT0300 Auto Volume Change 1 862.35<br />

1 862.35<br />

1 VJT0284 LSCT Mounting Block 118.44<br />

118.44<br />

1 107100 STALC3 Submersible Triaxial Load Cell 50kN 1 330.25<br />

1 330.25<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Xρονος Παραδοσης: 30-45 ηµερες απο ληψεως της παραγγελιας, ΣYNOΛO 3 311.04<br />

εκτος απο περιπτωσεις ανωτερας βιας.<br />

0.00<br />

0.00<br />

Tοπος Παραδοσης: AΘHNA<br />

ΣYNOΛO 3 311.04<br />

Προελευση: AΓΓΛIA<br />

ΦΠA 19% 629.10<br />

Πληρωµη: 0 % Προκαταβολη µε την παραγγελια<br />

100 % τοις µετρητοίς εντός 30 ηµερών. ΣYNOΛO ΕΥΡΩ<br />

3 940.14<br />

Eγκατασταση:<br />

Iσχυς: 30 ηµερες.<br />

Kρατησεις<br />

∆εν απαιτειται. Oποιαδήποτε τεχνική συµβουλή<br />

παρέχεται ∆ΩPEAN<br />

Κρατήσεις περιλαµβάνονται.<br />

1. Oι παραγγελιες επιβεβαιωνονται εγγραφως<br />

2. Tα ειδη θα πρεπει να αποθηκευθουν ασφαλως µεχρι την παραλαβη των<br />

και να παραληφθουν εντος 10 ηµερων.<br />

3. Oι τιµες ισχυουν για το συνολο των προσφεροµενων ανα<br />

ειδος µοναδων. Mερικος επιµερισµος µονον κατοπιν συµφωνιας.<br />

4. Tα ειδη συνηθως καλυπτονται απο εγγυηση καλης λειτουργιας 12<br />

µηνων απο την παραδοση. Aναλυτικοι οροι Eγγυησης διατιθενται<br />

απο την Eταιρια µας.<br />

5. Oι όροι πληρωµής ισχύουν και για την παραγγελία, εκτός αν δηλωθεί<br />

διαφορετικά.<br />

6. Tα είδη παραµένουν στην κυριότητά µας µέχρι τελικής εξόφλησης.<br />

E10.01,1<br />

Προµηθευτης:<br />

VJT - APPLIED<br />

Eιµαστε στη διαθεσή σας για οποιαδηποτε<br />

συµπληρωµατικη πληροφορια ή διευκρινιση<br />

χρειαστειτε και σας ευχαριστουµε για το<br />

ενδιαφερον σας στα προϊοντα µας.<br />

NEOTEK O.E. Π.Ξύστρης & Σια<br />

Eλ. Bενιζέλου 105<br />

N. Σµύρνη 17122, AΘHNA<br />

τηλ: 210-9341533 & 9359142<br />

φαξ: 210-9359778<br />

Παν. Nικολακόπουλος<br />

4-9028- 5009--------ΓΕΩΡΓΟΠΟΥΛΟΣ ΙΩΑΝ-ΟΡΕΣΤ.--


NEOTEK<br />

M e as uring &<br />

Te s ti n g S ys t em s<br />

Yπ' οψιν κ.<br />

ΓΕΩΡΓΟΠΟΥΛΟΣ ΙΩΑΝ-ΟΡΕΣΤ.<br />

E. M. ΠOΛYTEXNEIO<br />

ΣEMΦE<br />

TOMEAΣ MHXANIKHΣ<br />

ΥΠΟΨΗΦΙΟΣ ∆Ι∆ΑΚΤΟΡΑΣ<br />

THΛ 210 7721373<br />

210 7721374<br />

FAX 210 7721302<br />

ΘEMA<br />

ΠPOΣΦOPA<br />

Nο: 4 - 9028 - 4950<br />

17 Φεβ 2005<br />

SUBMERSIBLE LOAD CELL & VOLUME CHANGE<br />

1.<br />

2.<br />

HP. ΠOΛYTEXNEIOY 5,<br />

αα<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

ZΩΓPAΦOY-AΘHNA<br />

10.<br />

157 73<br />

ΣXETIKA<br />

Eχουµε την ευχαριστηση να σας προσφερουµε τα ακολουθα ειδη που πιστευουµε οτι καλυπτουν τις απαιτησεις σας:<br />

ΠOΣ ΠEPIΓPAΦH MONA∆A ΣYNOΛO<br />

1 SUBMERSIBLE LOAD CELLS & VOLUME CHANGE, ως συνηµµένη<br />

5 760.00<br />

αναλυτική προσφορά.<br />

5 760.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Xρονος Παραδοσης: 30 ηµερες απο ληψεως της παραγγελιας, ΣYNOΛO 5 760.00<br />

εκτος απο περιπτωσεις ανωτερας βιας.<br />

0.00<br />

0.00<br />

Tοπος Παραδοσης: AΘHNA<br />

ΣYNOΛO 5 760.00<br />

Προελευση: AΓΓΛIA<br />

ΦΠA 18% 1 036.80<br />

Πληρωµη: 0 % Προκαταβολη µε την παραγγελια<br />

100 % τοις µετρητοίς εντός 30 ηµερών. ΣYNOΛO ΕΥΡΩ<br />

6 796.80<br />

Iσοτιµία σε ∆PAXMEΣ µε<br />

ΦΠA<br />

2 316 010<br />

Eγκατασταση:<br />

Iσχυς: 30 ηµερες.<br />

Kρατησεις<br />

∆εν απαιτειται. Oποιαδήποτε τεχνική συµβουλή<br />

παρέχεται ∆ΩPEAN<br />

Κρατήσεις περιλαµβάνονται.<br />

1. Oι παραγγελιες επιβεβαιωνονται εγγραφως<br />

2. Tα ειδη θα πρεπει να αποθηκευθουν ασφαλως µεχρι την παραλαβη των<br />

και να παραληφθουν εντος 10 ηµερων.<br />

3. Oι τιµες ισχυουν για το συνολο των προσφεροµενων ανα<br />

ειδος µοναδων. Mερικος επιµερισµος µονον κατοπιν συµφωνιας.<br />

4. Tα ειδη συνηθως καλυπτονται απο εγγυηση καλης λειτουργιας 12<br />

µηνων απο την παραδοση. Aναλυτικοι οροι Eγγυησης διατιθενται<br />

απο την Eταιρια µας.<br />

5. Oι όροι πληρωµής ισχύουν και για την παραγγελία, εκτός αν δηλωθεί<br />

διαφορετικά.<br />

6. Tα είδη παραµένουν στην κυριότητά µας µέχρι τελικής εξόφλησης.<br />

E10.01,1<br />

Προµηθευτης:<br />

∆ΙΑΦΟΡΟΙ<br />

Eιµαστε στη διαθεσή σας για οποιαδηποτε<br />

συµπληρωµατικη πληροφορια ή διευκρινιση<br />

χρειαστειτε και σας ευχαριστουµε για το<br />

ενδιαφερον σας στα προϊοντα µας.<br />

NEOTEK O.E. Π.Ξύστρης & Σια<br />

Eλ. Bενιζέλου 105<br />

N. Σµύρνη 17122, AΘHNA<br />

τηλ: 210-9341533 & 9359142<br />

φαξ: 210-9359778<br />

Παν. Nικολακόπουλος<br />

4-9028- 4950---------


NEOTEK<br />

M easuring &<br />

Te sti n g S ys t em s<br />

2<br />

ΑΝΑΛΥΤΙΚΗ ΠΡΟΣΦΟΡΑ ΣΕ ΕΥΡΩ ΓΙΑ ΠΑΡΑ∆ΟΣΗ ΩΣ ΠΡΩΤΗ ΣΕΛΙ∆Α<br />

Hµ/νια 17-2-2005<br />

Nο.: 4- 9028 - 4950<br />

EI∆OΣ KΩ∆IKOΣ ΠEPIΓPAΦH<br />

MONA∆A Ποσ<br />

01.00 SUBMERSIBLE LOAD CELL 50kN<br />

ΠΡΟΜΗΘΕΥΤΗΣ WYKEHAM FARRANCE<br />

ΣYNOΛO<br />

01.01 17120A01 Submersible load cell 50kN<br />

2 900.00 1 2 900.00<br />

02.00 ΕΝΑΛΛΑΚΤΙΚΗ Α'<br />

SUBMERSIBLE LOAD CELL 50kN<br />

ΠΡΟΜΗΘΕΥΤΗΣ IMPACT<br />

ΣYNOΛO EI∆OYΣ 1 ANEY ΦΠA, EYPΩ:<br />

2 900.00<br />

02.01 SL745 LOAD CELL SUMBERSIBLE 50KN<br />

1 452.00 0.00<br />

03.00 ΕΝΑΛΛΑΚΤΙΚΗ Β'<br />

SUBMERSIBLE LOAD CELL 50kN<br />

ΠΡΟΜΗΘΕΥΤΗΣ APPLIED<br />

ΣYNOΛO EI∆OYΣ 2 ANEY ΦΠA, EYPΩ:<br />

03.01 107100 STALC3 Triaxial Load Cell 50kN<br />

1 101.31 0.00<br />

04.00 VOLUME CHANGE APPARATUS<br />

ΠΡΟΜΗΘΕΥΤΗΣ WYKEHAM FARRANCE<br />

ΣYNOΛO EI∆OYΣ 3 ANEY ΦΠA, EYPΩ:<br />

0.00<br />

0.00<br />

04.01 17044 Volume Change Apparatus 100cc capacity, complete with change over valves 1 760.00 1 1 760.00<br />

04.02 17015 Linear Strain Transducer 25mm travel, 2 metre cable. Mounting bracket<br />

1 045.00 1 1 045.00<br />

available separately<br />

04.03 17051 Mounting Bracket for strain transducer<br />

55.00 1 55.00<br />

ΣYNOΛO EI∆OYΣ 4 ANEY ΦΠA, EYPΩ:<br />

2 860.00<br />

05.00 ΕΝΑΛΛΑΚΤΙΚΗ Α'<br />

VOLUME CHANGE APPARATUS<br />

ΠΡΟΜΗΘΕΥΤΗΣ VJT<br />

05.01 VJT0300A Automatic Volume Change, complete with LSCT transducer and bracket 2 381.79 0.00<br />

ΣYNOΛO EI∆OYΣ 5 ANEY ΦΠA, EYPΩ:<br />

0.00<br />

OI ΓENIKOI OPOI ΠOY ∆IEΠOYN THN ΠAPOYΣA<br />

ΠPOΣΦOPA ∆I∆ONTAI ΣTHN ΣYNOΠTIKH MAΣ<br />

ΠPOΣΦOPA ΠOY AΠOTEΛEI ANAΠOΣΠAΣTO<br />

MEPOΣ THΣ ΠAPOYΣHΣ<br />

NEOTEK O.E. Π.Ξύστρης & Σια<br />

Eλ. Bενιζέλου 105<br />

N. Σµύρνη 17122, AΘHNA<br />

τηλ: 210-9341533 & 9359142<br />

φαξ: 210-9359778


ΑΝΑΛΥΤΙΚΗ ΠΡΟΣΦΟΡΑ ΣΕ ΕΥΡΩ ΓΙΑ ΠΑΡΑ∆ΟΣΗ ΩΣ ΠΡΩΤΗ ΣΕΛΙ∆Α 3<br />

Hµ/νια 17-2-2005 Nο.: 4- 9028 - 4950<br />

EI∆OΣ KΩ∆IKOΣ ΠEPIΓPAΦH<br />

MONA∆A Ποσ ΣYNOΛO<br />

06.00 ΕΝΑΛΛΑΚΤΙΚΗ Β'<br />

VOLUME CHANGE APPARATUS<br />

ΠΡΟΜΗΘΕΥΤΗΣ IMPACT<br />

06.01 SL780 VOLUME CHANGE AUTOMATIC 100CC<br />

786.66 0.00<br />

06.02 SL781 CHANGEOVER VALVE ASSEMBLY<br />

653.34 0.00<br />

06.03 SL722 TRANSDUCER 25MM TRAVEL + DIN<br />

997.34 0.00<br />

06.04 SL727 BRACKET LSCT INSTEAD OF GAUGE<br />

74.66 0.00<br />

ΣYNOΛO EI∆OYΣ 6 ANEY ΦΠA, EYPΩ:<br />

0.00<br />

Eιδη µε µηδενικη ποσοτητα δεν περιλαµβανονται στο αθροισµα<br />

ΓENIKO ΣYNOΛO EYPΩ:<br />

5 760.00<br />

NEOTEK O.E. Π.Ξύστρης & Σια, Eλ. Bενιζέλου 105, N. Σµύρνη 17122, AΘHNA<br />

τηλ: 210-9341533 & 9359142 # φαξ: 210-9359778 # AΦM 091695973 ∆OY N.ΣMYPNHΣ # www.neotek.gr


SOIL AND ROCK<br />

TESTING<br />

Pressure Transducers<br />

VJ Tech pressure transducers are very stable and accurate providing<br />

reliable data for both soils and concrete tests.<br />

A de-airing block is available for use with VJ Tech pressure<br />

transducers, part number VJT0280.<br />

ORDERING INFORMATION AND SPECIFICATIONS<br />

Part No. VJT0250 VJT0255 VJT0319 VJT0320<br />

Range 10 Bar 25 Bar 350 Bar 700 Bar<br />

Output<br />

100mV<br />

Combined non-liearity,<br />

hysteresis & repeatability error ±0.2% full scale ±0.25% full scale ±0.2% full scale ±0.2% full scale<br />

Excitation<br />

10V DC<br />

Zero setting ±3mV ±3mV ±3mV ±3mV<br />

Span setting ±3mV ±3mV ±3mV ±3mV<br />

Operating temperature -40 to +90ºC -40 to +125ºC -40 to +90ºC -40 to +90ºC<br />

-10 to +50ºC -10 to +50ºC -10 to +50ºC<br />

(compensated) (compensated) (compensated)<br />

Pressure Connection 1 ⁄4 inch BSP male 1 ⁄4 inch BSP male 1 ⁄4 inch BSP female 1 ⁄4 inch BSP female<br />

Construction Stainless Steel ingress Single piece Stainless Steel ingress Stainless Steel ingress<br />

protected to IP65 stainless steel protected to IP65 protected to IP65<br />

Height 85mm 102mm 66mm 66mm<br />

Diameter 18mm 27mm 30mm 30mm<br />

Weight 150g 150g 200g 200g<br />

350 and 700 Bar pressure transducers are for use with concrete<br />

compression machines and the DHR2000 digital readout unit.<br />

Automatic Volume Change Transducer<br />

<strong>The</strong> VJ Tech designed automatic volume change unit is used with our<br />

triaxial cells for continuous and precise measurement <strong>of</strong> volume<br />

change during a test.<strong>The</strong> top chamber has an initial capacity <strong>of</strong><br />

100ml. When used in conjunction with the changeover valve box, this<br />

capacity becomes unlimited.<br />

or sent to a data logger.This permits the accurate determination <strong>of</strong><br />

volume change within the soil sample and can also be used in<br />

permeability testing.<br />

<strong>The</strong> changing volume within the cylinder moves a piston, connected<br />

to a transducer or dial gauge. Resulting data can either be recorded<br />

ORDERING INFORMATION<br />

VJT0310<br />

VJT0310D-MIT<br />

VJT0310A<br />

VJT0301<br />

VJT0300<br />

VJT0300D-MIT<br />

VJT0300A<br />

Top Chamber<br />

Top Chamber with digital dial gauge<br />

Top Chamber with LSCT transducer<br />

Changeover Valve Box only<br />

Top Chamber and Changeover Valve Box only<br />

Automatic Volume Change complete with<br />

digital dial gauge<br />

Automatic Volume Change complete with<br />

LSCT transducer and bracket<br />

SPECIFICATIONS<br />

Part No VJT0310 VJT0310D-MIT VJT0310A VJT0300 VJT0300D-MIT VJT0300A<br />

Capacity 100ml Unlimited<br />

Accuracy<br />

>±0.05ml<br />

Dimensions (L x W x H) 180 x 180 x 240mm 210 x 270 x 360mm<br />

Weight 4.7kg 8kg<br />

www.vjtech.co.uk VJ Tech • Building Better Technology 21


Transducers and Accessories<br />

VJ Tech supply a range <strong>of</strong> analogue and digital transducers from some<br />

<strong>of</strong> the worlds leading manufacturers. All <strong>of</strong> which work seamlessly<br />

with the full complement <strong>of</strong> our data logging acquisition systems.<br />

Types <strong>of</strong> transducer available from VJ Tech<br />

• Displacement (LSCT)<br />

• Displacement (digital dial gauge)<br />

• Pressure<br />

• Load Cells, both submersible and external Z-Beam and<br />

S-Beam types<br />

• Load rings with both mechanical and digital dial gauges<br />

Refer to the advanced testing section for details <strong>of</strong> specialised testing<br />

transducers.<br />

All VJ Tech transducers are supplied with a 2m cable and plug.<br />

Quoted values are typical and subject to calibration.<br />

Displacement Transducers (LSCT)<br />

Our linear displacement transducers give infinite resolution and<br />

excellent linearity. <strong>The</strong>y are <strong>of</strong> rugged construction with low voltage<br />

and current consumption.<br />

ORDERING INFORMATION AND SPECIFICATIONS<br />

Part No. VJT0270 VJT0271 VJT0272<br />

Range 10mm 25mm 50mm<br />

Resolution<br />

Non linearity (best fit)<br />

Excitation<br />

Infinite<br />

0.1% <strong>of</strong> full scale<br />

2 to 10V, AC or DC<br />

Rated (F.S.) Output 5.3mV/V 7mV/V 3.6mV/V<br />

Spring force 250g 250g 300g<br />

Operating temperature<br />

-10 to +60ºC<br />

Construction<br />

Stainless steel<br />

Weight 140g 150g 200g<br />

Displacement Digital Dial Guages<br />

VJ Tech <strong>of</strong>fers accurate and reliable digital dial gauges which are<br />

simple to use yet have many features such as a large LCD display,<br />

imperial/metric conversion, direction change, zero setting and on/<strong>of</strong>f.<br />

<strong>The</strong> 50mm digital dial gauge also features a background colour change<br />

to the LCD display for Go/No Go determination. All digital dial gauges<br />

are powered by battery when used with VJ Tech data logging systems.<br />

ORDERING INFORMATION AND SPECIFICATIONS<br />

Part No. Resolution Range Accuracy<br />

VJT0105-MIT 0.001mm 0 - 12.5mm 0.003mm<br />

VJT0110-MIT 0.001mm 0 - 25mm 0.003mm<br />

VJT0111-MIT 0.01mm 0 - 25mm 0.02mm<br />

VJT0115-MIT 0.001mm/0.01mm 0 - 50mm 0.006mm<br />

(switchable)<br />

Mechanical Dial Gauges are available as alternatives for manual tests.<br />

VJT0105-MIT<br />

VJT0110-MIT<br />

ORDERING INFORMATION AND SPECIFICATIONS<br />

Part No. Divisions Range Rotation<br />

VJT0105-M 0.002mm 0 - 12mm clockwise<br />

VJT0105-MAC 0.002mm 0 - 12mm anti-clockwise<br />

VJT0107-M 0.0001 inch 0 - 0.5 inch clockwise<br />

VJT0107-MAC 0.0001 inch 0 - 0.5 inch anti-clockwise<br />

VJT0110-M 0.01mm 0 - 25mm clockwise<br />

VJT0109-M 0.001 inch 0 - 1 inch clockwise<br />

VJT0115-M 0.01mm 0 - 50mm clockwise<br />

VJT0115-MAC 0.01mm 0 - 50mm anti-clockwise<br />

VJT0100<br />

Brake Attachment for dial gauges<br />

Other ranges are available on request from VJ Tech.<br />

VJT0115-MIT<br />

VJT0111-MIT<br />

20<br />

VJ Tech • Building Better Technology<br />

www.vjtech.co.uk


Chapter 5<br />

Triaxial and permeability<br />

control column - S5427B<br />

<strong>The</strong> control column is designed to provide a simple but yet high quality and<br />

relatively inexpensive means to control cell and back pressure and to keep<br />

track <strong>of</strong> saturate movement for single unit triaxial or flexible wall permeability<br />

cell. All the basic elements, (regulators, valves, burettes and gauges)<br />

necessary to accomplish the above tasks are built in as permanent components.<br />

Others such as pore pressure transducers and pressure cartridge are<br />

portable items. <strong>The</strong>y can be easily connected only for the time they are<br />

needed, so that they can serve as a number <strong>of</strong> units, helping to reduce cost<br />

without compromising quality.<br />

A pressure source such as an air compressor <strong>of</strong> sufficient capacity to<br />

give at least 5psi higher pressure than the maximum anticipated lateral<br />

(cell) pressure must be available. If vacuum saturation is desired, a vacuum<br />

source should also be available. Some systems (excluding this one) use<br />

a venturi tube (referred as vacuum generator) to obtain vacuum from a<br />

pressure source. We consider that method to be extremely inefficient as it<br />

takes large quantities <strong>of</strong> air or compressed gas to obtain moderate vacuums.<br />

It is more desirable to have a small vacuum pump.<br />

Note that all components such as valves, regulators, burettes, gauges<br />

and connections are numbered on the schematic and are referred to by that<br />

number in the operating instructions.<br />

<strong>The</strong> instructions are broken down into the following sections:<br />

5.1 Functions <strong>of</strong> components and valves<br />

<strong>The</strong> Main Supply Pressure Valve (1) is on the middle <strong>of</strong> the middle <strong>of</strong> the rear<br />

top surface at the base. Its function is to provide a convenient way to shut <strong>of</strong>f<br />

the supply pressure regulators, when the equipment is not in use to prevent<br />

pressure loss by the normal bleed <strong>of</strong> the regulators. <strong>The</strong> Pressure Supply<br />

81


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Figure 5.1: Triaxial and permeability control column - S5427B (Photo taken<br />

from Geotest web site<br />

Figure 5.2: GeoLab triaxial and permeability control column - S5427B<br />

82


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

Connector (2) is on the middle <strong>of</strong> the rear top surface <strong>of</strong> the base, to provide<br />

an easy connection to the compressor. <strong>The</strong> Cell Pressure Regulator is an air<br />

pressure regulator, hooked up in series with the low back pressure regulator,<br />

so that it will automatically correct any changes <strong>of</strong> the back pressure to<br />

keep a set effective confining pressure constant during conditioning <strong>of</strong> the<br />

sample. Supply pressure must be at least 5 psi higher than the output <strong>of</strong> this<br />

regulator for proper operation. <strong>The</strong> output pressure is increased by turning<br />

the control knob clockwise, and decreased by counter clockwise. Minimum<br />

output is about 1.5 psi, when no back pressure is connected to it. When<br />

back pressure is connected to it, the minimum output will equal the back<br />

pressure. Change the output <strong>of</strong> the regulator only when sufficient supply<br />

pressure is available to it and set it minimum output only after back pressure<br />

is removed from the system. A Digital Pressure Gauge is used to display<br />

accurately all available pressures by switching valve No.22 to corresponding<br />

position. To extend battery life the gauge will automatically shut <strong>of</strong>f itself in<br />

5 minutes after the last turn on. In other case an analog pressure gauge may<br />

be installed. <strong>The</strong> Low Back Pressure Regulator will automatically change<br />

the output <strong>of</strong> the cell and high back pressure regulators, but will not be<br />

affected by changes <strong>of</strong> the output <strong>of</strong> these regulators. <strong>The</strong> output pressure<br />

from this regulator cannot be higher than the output <strong>of</strong> the cell pressure<br />

regulator. <strong>The</strong> regulator output should be set to minimum before shutting<br />

<strong>of</strong>f supply valve No.1. <strong>The</strong> High Back Pressure Regulator is the same as<br />

the cell pressure regulator. It will work only if valve No.1 is open and<br />

the cell pressure regulator is in operation. <strong>The</strong> output pressure from this<br />

regulator can not be higher than output from the cell pressure regulator. A<br />

valve, called Selector Valve for Pedestal is used to select low or high back<br />

pressure, vacuum or vent applied at the pedestal. <strong>The</strong> Filling Valve is used<br />

to let saturation water in or out <strong>of</strong> the pedestal burettes. On the other hand,<br />

the Burette Selector Valve for Pedestal allows to switch between small and<br />

large burettes. <strong>The</strong> Small Burette for Pedestal has a capacity <strong>of</strong> 3.0ml.<br />

Each 0.1ml is numbered. Each line between numbers represents 0.01ml.<br />

<strong>The</strong> Large Burette for Pedestal is approximately 40.0ml capacity. Each<br />

ml is numbered. Each line between numbers represents 0.1ml. When the<br />

Saturation Valve for Pedestal has its handle in the vertical position and the<br />

arrow <strong>of</strong> the valve is pointing to Saturation, it is open. It is closed when the<br />

handle is in the horizontal position. <strong>The</strong> Bulkhead Connector for Pedestal<br />

is located on the right side <strong>of</strong> the panel. It is used for tubing connection to<br />

pedestal saturate connector on the cell base. <strong>The</strong> above description stands<br />

also for the top cap (Selector Valve for Cap, Filling Valve, Burette Selector<br />

Valve for Cap, Large Burette for Cap, Small Burette or Cap, Saturation<br />

Valve for Cap, Bulkhead Connector for Cap). <strong>The</strong> Bulkhead Connector for<br />

Cell Pressure is located on the right side <strong>of</strong> the panel. It is used for tubing<br />

connection to the top <strong>of</strong> the cell. Finally, the Selector Valve for Pressure<br />

Gauge is used to connect the digital or analog pressure gauge to measure<br />

83


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

low and high back pressures, cell and supply pressures, while the Bulkhead<br />

Connector for Vacuum is located on the back topside <strong>of</strong> the base mount.<br />

<strong>The</strong> outside vacuum source shall be connected to this fitting.<br />

5.2 Sample Installation, Application <strong>of</strong> Cell Pressure<br />

1. Disconnect cell pressure line from top <strong>of</strong> cell and remove cell top together<br />

with cell wall. Leave guide post, which also serves as dial indicator<br />

rest, in place. If the cell wall is stuck to the ‘O’ ring on the base,<br />

push down on the cell top a couple <strong>of</strong> times to break free the ‘O’ ring.<br />

2. Place porous plate, filter paper (if used) and sample on pedestal.<br />

3. Install membrane. To obtain a good seal, we suggest applying some<br />

vaseline on the ‘O’ ring <strong>of</strong> the cap and pedestal before placing the<br />

membrane. Install porous plate, filter paper and cap on the top <strong>of</strong><br />

the sample, and roll membrane up on cap. <strong>The</strong> heavier wall ‘O’ rings<br />

should always be installed on the cap and pedestal (covered by membrane)<br />

but the thinner ‘O’ ring is installed above and below this ‘O’<br />

ring on top <strong>of</strong> membrane.<br />

4. Connect the two pore lines to the cap. Tighten nuts by wrench with<br />

moderate force.<br />

5. Place cell wall together with cell top on base. Guide hole, <strong>of</strong> course,<br />

should be lined up with guide post. For triaxial cell the piston rod<br />

must be pulled up all the way and locked in place. For permeability<br />

check, check axial strain pin before pushing cell wall down over ‘O’<br />

ring seal on base. Change the extension <strong>of</strong> the pin by adding one or<br />

more extensions if necessary.<br />

6. Pass the three tie rods through the holes in the cell top and screw<br />

them into the base. Be careful not to drop the rods because that would<br />

damage the threads. Tighten the rods by hand. <strong>The</strong> rods should screw<br />

in with a little force if they are vertical. If they are difficult to turn,<br />

check vertical alignment and turn cell slightly if needed. For the last<br />

1/8 ′ , screw the rods alternately so that the cell top will be pulled down<br />

evenly.<br />

7. Fill cell with silicon oil. Leave about 1/4 ′ air under top plate. Loosen<br />

locking collar <strong>of</strong> the piston rod for triaxial cell; bring the rod in contact<br />

with the cap and lock again. For permeability cell, take a reading <strong>of</strong><br />

sample length with the portable dial indicator if desired.<br />

84


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

8. Connect bulkhead fitting No.21 (on side <strong>of</strong> panel) to the top <strong>of</strong> cell.<br />

Use a wrench to tighten nut to the fitting with moderate force.<br />

9. Connect bulkhead fittings No.12 to bulkhead on the cell base labeled<br />

‘Pedestal saturate’, and bulkhead No.19 to bulkhead labeled ‘Cap Saturate’<br />

on the cell base. It is very important to match the above 3<br />

fittings to their mates on the cell.<br />

10. Apply cell pressure. Check that the cell pressure regulator is in minimum<br />

setting (Turn all the way counter clockwise and then clockwise<br />

about a quarter turn). Open main supply valve No.1. Turn on digital<br />

or analog pressure gauge and turn selector valve No.22 into cell<br />

position. Set cell pressure to 5 psi.<br />

5.3 Filling the Burettes, Vacuum Saturation<br />

Note: <strong>The</strong> procedure to fill the burettes is the same regardless if it is done<br />

before or during the test, provided that the sequence <strong>of</strong> steps are followed<br />

as given below:<br />

5.3.1 Filling the Cap Burettes<br />

1. Close ‘Saturation’ valve No.18.<br />

2. Turn selector valve No.13 into ‘Vacuum’ position.<br />

3. Connect vacuum source to bulkhead fitting No.23.<br />

4. Submerge end <strong>of</strong> saturation tubing into pool <strong>of</strong> suitable water.<br />

5. Turn selector No.15 into large burette position.<br />

6. Partially open valve No.14 to let water slowly fill large burette. Do<br />

not fill burette higher than zero mark. Close valve No.14.<br />

7. To fill small burette (step 1-4 is done) turn selector No.15 into small<br />

burette position.<br />

8. Crack valve No.14 slightly, to let water slowly fill small burette. Do<br />

not fill burette higher than zero mark. Close valve No.14.<br />

9. Put selector valve No.13 into required position (high <strong>of</strong> low back pressure)<br />

10. You may open saturation valve No.18. You may shut <strong>of</strong>f vacuum.<br />

85


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

5.3.2 Filling the Pedestal Burettes<br />

1. Close ‘Saturation’ valve No.11.<br />

2. Turn selector valve No.6 into ‘Vacuum’ position.<br />

3. Connect vacuum source to bulkhead fitting No.23.<br />

4. Submerge end <strong>of</strong> saturation tubing into pool <strong>of</strong> suitable water.<br />

5. Turn selector No.8 into large burette position.<br />

6. Partially open valve No.14 to let water slowly fill large burette. Do<br />

not fill burette higher than zero mark. Close valve No.14.<br />

7. To fill small burette (step 1-4 is done) turn selector No.8 into small<br />

burette position.<br />

8. Crack valve No.14 slightly, to let water slowly fill small burette. Do<br />

not fill burette higher than zero mark. Close valve No.14.<br />

9. Put selector valve No.6 into required position (high <strong>of</strong> low back pressure)<br />

10. You may open saturation valve No.11. You may shut <strong>of</strong>f vacuum.<br />

Full saturation <strong>of</strong> the sample can be reached much faster and at lower<br />

back pressure if vacuum is employed initially. <strong>The</strong> permissible level <strong>of</strong> vacuum,<br />

however, should be determined by sample conditions and at the intended<br />

final effective confining pressure. Generally, the sum <strong>of</strong> the already<br />

applied cell pressure (5 psi) and vacuum should not exceed the final effective<br />

confining pressure.<br />

5.4 Back Pressure Application, Degree <strong>of</strong> Saturation<br />

1. Turn both cap and pedestal selector valves No.6 and No.13 to low<br />

back pressure turn selector valve No.22 into low back pressure position.<br />

Take a reading <strong>of</strong> both the cap and pedestal burettes. Check that both<br />

saturation valves No.11 and No.18 are open.<br />

2. Set low back pressure to 5 psi. Turn selector valve No.22 into cell<br />

position to see if cell pressure is now 10 psi.<br />

3. <strong>The</strong> sample will be taking water, the progress <strong>of</strong> which can be followed<br />

by taking readings <strong>of</strong> the burette at suitable time intervals. When no<br />

more change (or very little) is observed raise back pressure another<br />

5 psi step and do as above. <strong>The</strong> elapsed time between increments<br />

depends entirely on the permeability <strong>of</strong> the sample.<br />

86


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

4. It will be observed that the amount <strong>of</strong> water taken by the sample<br />

and the time required to reach equilibrium will be less and less at<br />

each successive back pressure increment. When the water intake will<br />

become less than one ml for a 5 psi increment one may change over to<br />

small burette <strong>of</strong> the pedestal to take accurate readings in much shorter<br />

time than one could <strong>of</strong> the large burette. When less than 0.1 ml change<br />

is observed to reach equilibrium for a 5 psi increment, saturation may<br />

be considered very close to 100%. With initial vacuum saturation this<br />

should happen in less than five steps. To check B parameter, if desired,<br />

see instruction supplied wit the portable pore pressure transducer.<br />

5.5 Consolidation <strong>of</strong> Sample, Permeability Measurement<br />

1. Consolidate the sample with the required effective confining pressure<br />

(effective confining pressure equals cell pressure minus back pressure).<br />

Make sure that there is enough room in both burettes for expected<br />

drain. Take readings <strong>of</strong> both burettes at convenient time intervals.<br />

When draining is slowed down sufficiently, change to small burette to<br />

see clearly when consolidation is complete.<br />

2. Close both saturation valves No.11 and 18.<br />

3. Turn pedestal selector valve No.6 into high back pressure position.<br />

4. Read low back pressure on digital or analog gauge<br />

5. Turn selector valve No.22 into high back pressure position and set<br />

high back pressure regulator output to required value, which is low<br />

back pressure plus desired head. (Each psi above back pressure equals<br />

70.29 cm water head). Raise effective confining pressure with the same<br />

value.<br />

6. Open both saturation valves No.11 and 18. Take readings <strong>of</strong> burettes<br />

at suitable time intervals. For samples with low permeability, switch<br />

to small burette for much faster reading <strong>of</strong> equal accuracy.<br />

7. After permeability has been determined, close both saturation valves<br />

No.11 and 18, turn pedestal selector valve to low back pressure and<br />

then open both saturation valves No.11 and 18.<br />

8. You may determine permeability again with a higher confining pressure<br />

as above.<br />

87


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

5.6 Shearing the Sample, Terminating the Test<br />

When the sample has been consolidated at the final effective confining pressure,<br />

and all permeability measurements are completed, the test is ended<br />

for the permeability cell. Proceed to section ‘Termination’ to terminate the<br />

test. For triaxial test the sample is ready to be sheared.<br />

1. Place the cell onto the platform <strong>of</strong> the loading frame. Be careful not<br />

to crimp the saturation lines.<br />

2. Install dial indicator onto the piston rod. Bring reaction bar close<br />

to contact with the top <strong>of</strong> piston and line them up. Move platform<br />

upward to make contact, stop and then release piston lock and take a<br />

reading <strong>of</strong> axial load display. Set desired strain rate and start again.<br />

Read axial load display. This is the load necessary to move the piston<br />

against the cell pressure and should be considered as ‘zero’ load. Let<br />

the platform rise until the load display starts to increase. Stop again.<br />

Read axial deformation display. <strong>The</strong> movement up to this point equals<br />

the axial consolidation <strong>of</strong> the sample due to the effective confining<br />

pressure.<br />

3. For drained test you may start again without doing anything other<br />

than reading the burettes. If no recorder is used, than <strong>of</strong> course, it is<br />

necessary to read and write down also the axial load end deformation<br />

at suitable time intervals. Be sure to stop before all the free length <strong>of</strong><br />

piston is used.<br />

4. For undrained test, connect pore pressure transducer to bulkhead fitting<br />

on the cell base marked pedestal purge. See instruction for pore<br />

pressure transducer.<br />

5. Close both cap and pedestal saturation valves No.11 and 18 and proceed<br />

with loading.<br />

5.7 Termination<br />

1. Reduce low back pressure regulator’ s output to minimum. Close can<br />

and pedestal saturating valves No.11 and 18.<br />

2. Reduce high back pressure regulator’ s output to minimum.<br />

3. Reduce cell pressure to minimum and drain silicon oil from cell, and<br />

then close main supply valve No.1.<br />

4. Retract loading platform: remove axial dial indicator if it was installed<br />

onto the cell;remove the cell from the platform; disconnect cell pressure<br />

line from top <strong>of</strong> the cell. Dismount cell and remove the sample.<br />

88


Chapter 6<br />

Acknowledgements<br />

<strong>The</strong> first author would like to acknowledge the European Research Training<br />

Program RTN-DIGA (HPRN-CT-2002-00220) for its financial support<br />

during his nine months training period (15-01-2003/31-10-2003) in Institut<br />

National Polytechnique de Grenoble, as well as the financial support <strong>of</strong><br />

Alexandros S. Onasis Foundation, through its three years PhD scholarship.<br />

89


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

90


Bibliography<br />

[1] Formation <strong>of</strong> shear bands in sand bodies as a bifurcation problem, Vardoulakis,<br />

I., Goldscheider, M. and Gudehus, G. Int. J. Num. Anal.<br />

Meth. Geomechanics, Vol.2, 99-128.<br />

[2] Shear band inclination and shear modulus <strong>of</strong> sand in biaxial tests, Vardoulakis,<br />

I. and Goldscheider, M. Int. J. Num. Anal. Meth. Geomechanics,<br />

Vol.4, 103-119.<br />

[3] Biaxial apparatus for testing shear bands in soils. Goldscheider, M. and<br />

Vardoulakis, I. 10 th Int. Conf. Soil Mech. Found. Engng., Stockholm,<br />

1981, Vol. 4/61, 819-824, A.A. Balkema, Rotterdam.<br />

[4] Imperfection sensitivity <strong>of</strong> the biaxial test on dry sand. Vardoulakis, I.,<br />

Graf, B. IUTAM conf. on Deformation and Failure <strong>of</strong> Granular Materials,<br />

Delft 1982, 485-492, A.A. Balkema, Rotterdam.<br />

[5] Calibration <strong>of</strong> constitutive models for granular materials using data<br />

from biaxial experiments. Vardoulakis, I., Graf, B. Géotechnique, Vol.<br />

35, 299-317.<br />

[6] <strong>The</strong> thickness <strong>of</strong> shear bands in granular materials. Muhlhaus, H.B.<br />

and Vardoulakis, I. Géotechnique, Vol. 4, 37, 271-283.<br />

[7] Developement <strong>of</strong> Biaxial Apparatus for testing Frictional and Cohesive<br />

Granular Media. NSF Report, National Science Foundation, Washington,<br />

DC, 1988.<br />

[8] A Biaxial Apparatus for Testing Soils. Drescher, A., Vardoulakis, I.<br />

and Han, C. Geotechnical Testing Journal, GTJODJ, Vol. 13, No. 3,<br />

September 1990, pp. 226-234.<br />

[9] Bifurcation Analysis in Geomechanics, I. Vardoulakis and J. Sulem,<br />

Blackie Academic and Pr<strong>of</strong>essional.<br />

[10] Experimental Soil Mechanics, Jean-Pierre Bardet, Prentice Hall.<br />

[11] <strong>The</strong> Measurment <strong>of</strong> Soil Properties in the Triaxial test, 2nd ed., Bishop,<br />

A. W. and D. J. Henkel, Edward Arnold, London, pp.228.<br />

91


<strong>The</strong> <strong>Handbook</strong> <strong>of</strong> <strong>GeoBiax</strong><br />

[12] Manual <strong>of</strong> Soil <strong>Laboratory</strong> Testing, Volume 3: Effective Stress Tests,<br />

John Wiley & Sons, New York, Head K. H, 1986.<br />

[13] Localization <strong>of</strong> Deformation in Sand. Chunhua, H. Ph.D <strong>The</strong>sis, Department<br />

<strong>of</strong> Civil and Mineral Engineering, University <strong>of</strong> Minnesota,<br />

Minneapolis, Minnesota, April 1991.<br />

[14] An Introduction to Geotechnical Enginnering, Prentice Hall, Englewood<br />

Cliffs, NJ, Holtz, R. D. and W.D. Kovacs, 1981.<br />

[15] Soil Mechanics, SI Version, John Wiley & Sons,Lambe, T. W. and R.V.<br />

Whitman, 1979.<br />

[16] Use <strong>of</strong> backpressure to increase degree <strong>of</strong> saturation <strong>of</strong> triaxial test<br />

specimens, Proceedings <strong>of</strong> the ASCE Research Conference on Shear<br />

Strenght <strong>of</strong> Cohesive Soils, Boulder, CO, pp.819 − 836.<br />

92

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!