27.01.2015 Views

ENE 104 Electric Circuit Theory - staff.kmutt.ac.th - kmutt

ENE 104 Electric Circuit Theory - staff.kmutt.ac.th - kmutt

ENE 104 Electric Circuit Theory - staff.kmutt.ac.th - kmutt

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ENE</strong> <strong>104</strong><br />

<strong>Electric</strong> <strong>Circuit</strong> <strong>Theory</strong><br />

Lecture 10:<br />

AC Power <strong>Circuit</strong> Analysis<br />

Week #11 : Dejwoot KHAWPARISUTH<br />

http://web<strong>staff</strong>.<strong>kmutt</strong>.<strong>ac</strong>.<strong>th</strong>/~dejwoot.kha/


<strong>ENE</strong> <strong>104</strong><br />

Objectives : Ch11<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 2<br />

Week #11<br />

• <strong>th</strong>e instantaneous power<br />

• <strong>th</strong>e average power<br />

• <strong>th</strong>e rms value of a time-varying waveform<br />

• complex power: average and re<strong>ac</strong>tive power<br />

• <strong>th</strong>e power f<strong>ac</strong>tor, how to improve.


<strong>ENE</strong> <strong>104</strong><br />

AC <strong>Circuit</strong> Power Analysis<br />

Week #11<br />

Instantaneous Power:<br />

p t = v t i(t)<br />

Page 3<br />

<strong>th</strong>e device is a resistor:<br />

p t = i 2 t R = v2 t<br />

R<br />

<strong>th</strong>e device is entirely inductive:<br />

p t = Li t<br />

di t<br />

dt<br />

= 1 v(t) t<br />

v t ′ d<br />

L −∞<br />

t ′<br />

<strong>th</strong>e device is entirely cap<strong>ac</strong>itive:<br />

p t = Cv t<br />

dv t<br />

dt<br />

= 1 i(t) t<br />

i t ′ d<br />

C −∞<br />

t ′


<strong>ENE</strong> <strong>104</strong><br />

Instantaneous Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 4<br />

Week #11<br />

Consider <strong>th</strong>e series RL circuit,<br />

i t = V 0<br />

R<br />

1 − e−Rt L u(t)<br />

The total power delivered by <strong>th</strong>e source<br />

p t = v t i t = V 0 2<br />

R<br />

1 − e−Rt L u(t)


<strong>ENE</strong> <strong>104</strong><br />

Instantaneous Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 5<br />

Week #11<br />

Consider <strong>th</strong>e series RL circuit,<br />

i t = V 0<br />

R<br />

1 − e−Rt L u(t)<br />

The power delivered to <strong>th</strong>e resistor is<br />

p R t = i 2 t R = V 0 2<br />

R (1 − e−Rt L ) 2 u(t)


<strong>ENE</strong> <strong>104</strong><br />

Instantaneous Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 6<br />

Week #11<br />

Consider <strong>th</strong>e series RL circuit,<br />

i t = V 0<br />

R<br />

1 − e−Rt L u(t)<br />

to determine <strong>th</strong>e power absorbed by <strong>th</strong>e inductor, first<br />

Then,<br />

v L (t) = L di(t)<br />

dt<br />

= V 0 e −Rt L u t + LV 0<br />

R<br />

= V 0 e −Rt L u t<br />

p L (t) = v L t i(t) = V 0 2<br />

−Rt L du(t)<br />

1 − e<br />

dt<br />

R e−Rt L (1 − e −Rt L ) 2 u(t)


<strong>ENE</strong> <strong>104</strong><br />

Instantaneous Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 7<br />

Week #11<br />

Consider <strong>th</strong>e series RL circuit,<br />

p t = p R t + p L (t)


<strong>ENE</strong> <strong>104</strong><br />

Instantaneous Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 8<br />

Week #11<br />

Power Due to Sinusoidal Excitation:<br />

<strong>th</strong>e response is<br />

Where<br />

i( t)<br />

I cos( t<br />

)<br />

m<br />

I<br />

m<br />

<br />

R<br />

2<br />

V<br />

m<br />

<br />

2<br />

L<br />

2<br />

tan 1<br />

L<br />

R


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.1<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 9<br />

Week #11<br />

A current source of 12cos(2000t) A., a 200-ohm<br />

resistor, and a 0.2-H inductor are in parallel.<br />

Assume steady-state conditions exist. At t = 1ms.,<br />

find <strong>th</strong>e power being absorbed by <strong>th</strong>e<br />

(a) resistor<br />

(b) inductor<br />

(c) sinusoidal source


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.1<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 10<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Average Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 11<br />

Week #11<br />

P <br />

For Periodic Waveforms:<br />

t<br />

2<br />

1<br />

t<br />

1<br />

t<br />

2<br />

<br />

t<br />

1<br />

p(<br />

t)<br />

dt<br />

f<br />

( t)<br />

f ( t T)<br />

P<br />

1<br />

<br />

1<br />

T<br />

t<br />

1<br />

T<br />

<br />

t<br />

1<br />

p(<br />

t)<br />

dt<br />

t<br />

T<br />

x<br />

1<br />

P <br />

x<br />

p(<br />

t)<br />

dt<br />

T<br />

t<br />

x


<strong>ENE</strong> <strong>104</strong><br />

Average Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 12<br />

Week #11<br />

For Periodic Waveforms:<br />

P<br />

<br />

1<br />

nT<br />

t<br />

x<br />

nT<br />

<br />

t<br />

x<br />

p(<br />

t)<br />

dt<br />

n<br />

1,2,3,...<br />

P<br />

<br />

2<br />

1 nT<br />

nT<br />

<br />

nT<br />

2<br />

p(<br />

t)<br />

dt<br />

P<br />

<br />

lim<br />

n<br />

1<br />

nT<br />

nT<br />

2<br />

<br />

nT<br />

2<br />

p(<br />

t)<br />

dt


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 13<br />

Week #11<br />

find <strong>th</strong>e average power delivered to a resistor R<br />

by <strong>th</strong>e periodic sawtoo<strong>th</strong> current waveform<br />

Im i(<br />

t)<br />

t,<br />

0 t T<br />

T<br />

Im i( t)<br />

( t T),<br />

T t 2T<br />

T<br />

p(<br />

t)<br />

<br />

v(<br />

t)<br />

i(<br />

t)<br />

<br />

i<br />

2<br />

( t)<br />

R<br />

<br />

v<br />

2<br />

( t)<br />

R


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 14<br />

Week #11<br />

Im i(<br />

t)<br />

t,<br />

0 t T<br />

T<br />

Im i( t)<br />

( t T),<br />

T t 2T<br />

T<br />

1 2 2<br />

p(<br />

t)<br />

ImRt<br />

,<br />

2<br />

T<br />

0 t T<br />

1 2<br />

2<br />

p(<br />

t)<br />

ImR(<br />

t T)<br />

,<br />

2<br />

T<br />

T t 2T<br />

P<br />

<br />

1<br />

T<br />

T<br />

<br />

0<br />

2<br />

I R<br />

2<br />

T<br />

t<br />

dt<br />

<br />

1<br />

3<br />

I<br />

m 2<br />

2<br />

m<br />

R


<strong>ENE</strong> <strong>104</strong><br />

Average Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 15<br />

Week #11<br />

In <strong>th</strong>e Sinusoidal Steady State<br />

v( t)<br />

V<br />

cos( t<br />

)<br />

m<br />

i( t)<br />

I cos( t<br />

)<br />

<strong>th</strong>e instantaneous power is<br />

m<br />

Or<br />

p( t)<br />

VmI<br />

m<br />

cos( t<br />

)cos(<br />

t<br />

)<br />

1<br />

1<br />

p( t)<br />

VmI<br />

m<br />

cos( )<br />

VmI<br />

m<br />

cos(2t<br />

<br />

)<br />

2<br />

2<br />

P 1<br />

<br />

m<br />

cos( )<br />

2<br />

V I m<br />

By inspection:


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 16<br />

Week #11<br />

Given <strong>th</strong>e time-domain voltage<br />

V.,<br />

find bo<strong>th</strong> <strong>th</strong>e average power and an expression for <strong>th</strong>e<br />

instantaneous power <strong>th</strong>at result when <strong>th</strong>e corresponding<br />

phasor voltage V = 4 0 o V. is applied <strong>ac</strong>ross an<br />

impedance Z = 2 60 o ohm.<br />

v<br />

<br />

4cos<br />

t<br />

/ 6<br />

<br />

Sol:


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 17<br />

Week #11<br />

v<br />

<br />

<br />

4cos<br />

t<br />

/<br />

6<br />

V. V = 4 0 o V.<br />

Z = 2 60 o ohm.<br />

Sol:<br />

The phasor current is V/Z = 2 -60 o<br />

So <strong>th</strong>e average power is:<br />

P<br />

<br />

<br />

i<br />

1<br />

VmI<br />

m<br />

cos( )<br />

2<br />

1<br />

(4)(2)cos(60)<br />

<br />

2<br />

<br />

2cos<br />

t<br />

/ 6 60<br />

2W


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 18<br />

Week #11<br />

v<br />

4cos<br />

t / 6<br />

i 2cos<br />

t / 6 60<br />

<br />

<strong>th</strong>e instantaneous power is:<br />

p(<br />

t)<br />

<br />

<br />

<br />

VmI<br />

m<br />

cos( t<br />

<br />

)cos( t<br />

)<br />

1<br />

1<br />

VmI<br />

m<br />

cos( )<br />

VmI<br />

m<br />

cos(2t<br />

<br />

)<br />

2<br />

2<br />

t<br />

t<br />

t<br />

8cos( )cos( 60)<br />

2 4cos( 60)<br />

6 6<br />

3


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 19<br />

Week #11<br />

t<br />

p( t)<br />

2 4cos( 60)<br />

3<br />

v<br />

4cos<br />

t / 6<br />

i 2cos<br />

t / 6 60


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.2<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 20<br />

Week #11<br />

115<br />

45<br />

<br />

Given <strong>th</strong>e phasor voltage V =<br />

V. <strong>ac</strong>ross<br />

an impedance Z = 16.26 19.3 o ohm., obtain an<br />

expression for <strong>th</strong>e instantaneous power, and compute<br />

<strong>th</strong>e average power if = 50 rad/s.<br />

<br />

2<br />

Sol:<br />

p( t)<br />

VmI<br />

m<br />

cos( t<br />

)cos(<br />

t<br />

)<br />

1<br />

1<br />

p( t)<br />

VmI<br />

m<br />

cos( )<br />

VmI<br />

m<br />

cos(2t<br />

<br />

)<br />

2<br />

2


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.2<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 21<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Average Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 22<br />

Week #11<br />

Absorbed by an Ideal Resistor:<br />

Or<br />

P<br />

R<br />

<br />

1<br />

V<br />

2<br />

P<br />

R<br />

m<br />

I<br />

<br />

m<br />

1<br />

2<br />

cos(0)<br />

I<br />

2<br />

m<br />

R<br />

<br />

<br />

1<br />

2<br />

2<br />

Vm<br />

2R<br />

V<br />

m<br />

I<br />

m<br />

Absorbed by Purely Re<strong>ac</strong>tive Elements:<br />

P x<br />

0


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 23<br />

Week #11<br />

Find <strong>th</strong>e average power being delivered to an<br />

impedance Z L = 8-j11 ohm. by a current I = 5 20 o A.<br />

Sol:<br />

P<br />

R<br />

<br />

1 2<br />

I R<br />

2<br />

m<br />

<br />

2<br />

1<br />

2<br />

5 8100<br />

W.


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.3<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 24<br />

Week #11<br />

Calculate <strong>th</strong>e average power delivered to <strong>th</strong>e<br />

impedance 6∠25°Ω by <strong>th</strong>e current I = 2 + j5 A.


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.4<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 25<br />

Week #11<br />

Compute <strong>th</strong>e average power delivered to e<strong>ac</strong>h of <strong>th</strong>e<br />

passive elements.<br />

Sol:


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.4<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 26<br />

Week #11<br />

For <strong>th</strong>e circuit in <strong>th</strong>e figure below, compute <strong>th</strong>e<br />

average power delivered to e<strong>ac</strong>h of <strong>th</strong>e passive<br />

elements. Verify your answer by computing <strong>th</strong>e<br />

power delivered by <strong>th</strong>e two sources.


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.4<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 27<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.4<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 28<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Maximum Power Transfer:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 29<br />

Week #11<br />

An independent voltage source in series wi<strong>th</strong> an<br />

impedance Z <strong>th</strong> delivers a maximum average power<br />

to <strong>th</strong>at load impedance Z L which is <strong>th</strong>e conjugate of<br />

Z <strong>th</strong> , or Z L =Z * <strong>th</strong>


<strong>ENE</strong> <strong>104</strong><br />

Example 11.5:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 30<br />

Week #11<br />

If we are assured <strong>th</strong>at <strong>th</strong>e voltage source is delivering<br />

maximum average power to <strong>th</strong>e unknown impedance,<br />

what is its value<br />

Sol:<br />

Z<br />

*<br />

Z 500 3<br />

<strong>th</strong><br />

j


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.5<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 31<br />

Week #11<br />

If <strong>th</strong>e 30-mH inductor of Example 11.5 is<br />

repl<strong>ac</strong>ed wi<strong>th</strong> a 10-μF cap<strong>ac</strong>itor, what is <strong>th</strong>e<br />

value of <strong>th</strong>e inductive component of <strong>th</strong>e<br />

unknown impedance Z if it is known <strong>th</strong>at Z is<br />

absorbing maximum power


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.5<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 32<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Average Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 33<br />

Week #11<br />

For Nonperiodic Function: for example<br />

i( t)<br />

sin t sin<br />

t<br />

<strong>th</strong>e average power delivered to a 1 ohm resistor:<br />

P<br />

<br />

<br />

1<br />

lim<br />

<br />

1 1<br />

<br />

2 2<br />

<br />

<br />

2<br />

<br />

<br />

2<br />

(sin<br />

1<br />

2<br />

t<br />

<br />

Watt<br />

sin<br />

2<br />

t<br />

<br />

2sin<br />

t<br />

sin t)<br />

dt


<strong>ENE</strong> <strong>104</strong><br />

Average Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 34<br />

Week #11<br />

For<br />

i( t)<br />

Im<br />

1<br />

cos 1t<br />

Im2<br />

cos 2t<br />

...<br />

<br />

I<br />

mN<br />

cos t<br />

N<br />

<strong>th</strong>e average power delivered to a resistor R:<br />

P<br />

<br />

1<br />

2<br />

<br />

I<br />

2<br />

m<br />

2<br />

1<br />

Im2<br />

...<br />

<br />

I<br />

2<br />

mN<br />

R


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.6<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 35<br />

Week #11<br />

A voltage source v s is connected <strong>ac</strong>ross a 4-Ω<br />

resistor. Find <strong>th</strong>e average power absorbed by<br />

<strong>th</strong>e resistor if v s equals (a) 8sin200t (b)<br />

8sin200t − 6cos⁡(200t − 45°) V. (c) 8sin200t −<br />

4sin100t V. (d) 8sin200t − 6 cos 200t − 45° −<br />

5sin100t + 4 V.


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.6<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 36<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Effective Values:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 37<br />

Week #11<br />

If <strong>th</strong>e resistor received <strong>th</strong>e<br />

same average power in part<br />

(a) and (b), <strong>th</strong>en <strong>th</strong>e effective<br />

value of i(t) is equal to I eff ,<br />

and <strong>th</strong>e effective value of v(t)<br />

is equal to V eff


<strong>ENE</strong> <strong>104</strong><br />

Effective Values:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 38<br />

Week #11<br />

of a Periodic Waveform:<br />

<strong>th</strong>e average power delivered<br />

to <strong>th</strong>e resistor,<br />

P<br />

<br />

1<br />

T<br />

<br />

T<br />

0<br />

i<br />

<br />

<strong>th</strong>e power delivered by <strong>th</strong>e<br />

direct current is:<br />

2<br />

dt<br />

R<br />

T<br />

<br />

T<br />

0<br />

i<br />

2<br />

dt<br />

P<br />

<br />

I<br />

2<br />

eff<br />

R


Effective Values:<br />

Page 39<br />

of a Periodic Waveform:<br />

R<br />

T<br />

<br />

T<br />

0<br />

i<br />

2<br />

dt<br />

<br />

I<br />

2<br />

eff<br />

R<br />

we get<br />

I<br />

eff<br />

<br />

1<br />

T<br />

<br />

T<br />

0<br />

i<br />

2<br />

dt<br />

<strong>ENE</strong> <strong>104</strong><br />

note: <strong>th</strong>e effective value is<br />

often called <strong>th</strong>e root-meansquare<br />

value, or simply <strong>th</strong>e<br />

rms value.<br />

AC <strong>Circuit</strong> Power Analysis<br />

Week #11


Effective Values:<br />

Page 40<br />

of a sinusoidal Waveform:<br />

i( t)<br />

I cos( t<br />

)<br />

m<br />

I<br />

eff<br />

<br />

1<br />

T<br />

<br />

T<br />

0<br />

i<br />

2<br />

dt<br />

which has a period<br />

<strong>ENE</strong> <strong>104</strong><br />

to obtain <strong>th</strong>e effective value<br />

I<br />

eff<br />

<br />

<br />

I<br />

1<br />

T<br />

m<br />

<br />

T<br />

0<br />

I<br />

<br />

2<br />

2<br />

m<br />

<br />

2<br />

<br />

0<br />

cos<br />

[<br />

2<br />

1<br />

2<br />

<br />

AC <strong>Circuit</strong> Power Analysis<br />

( t<br />

)<br />

dt<br />

1<br />

2<br />

cos(2t<br />

<br />

2<br />

)] dt<br />

Week #11


Effective Values:<br />

Page 41<br />

of a sinusoidal Waveform<br />

i( t)<br />

I cos( t<br />

)<br />

m<br />

I<br />

eff<br />

<br />

1<br />

T<br />

<br />

T<br />

0<br />

i<br />

2<br />

dt<br />

<strong>ENE</strong> <strong>104</strong><br />

I<br />

I<br />

eff<br />

eff<br />

<br />

<br />

<br />

<br />

I<br />

I<br />

I<br />

1<br />

T<br />

m<br />

m<br />

m<br />

2<br />

<br />

T<br />

0<br />

I<br />

2<br />

m<br />

2<br />

<br />

<br />

2<br />

0<br />

<br />

[ t]<br />

4<br />

cos<br />

<br />

<br />

[<br />

2<br />

<br />

0<br />

2<br />

1<br />

2<br />

AC <strong>Circuit</strong> Power Analysis<br />

( t<br />

)<br />

dt<br />

<br />

1<br />

2<br />

cos(2t<br />

<br />

2<br />

)] dt<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Effective Values:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 42<br />

Week #11<br />

Use of RMS Values to<br />

Compute Average Power<br />

I<br />

eff<br />

<br />

I<br />

m<br />

2<br />

P<br />

<br />

1<br />

2<br />

I<br />

2<br />

m<br />

R<br />

<br />

I<br />

2<br />

eff<br />

R<br />

<br />

V<br />

2<br />

eff<br />

R<br />

P<br />

<br />

1<br />

2<br />

V<br />

m<br />

I<br />

m<br />

cos( )<br />

V<br />

eff<br />

I<br />

eff<br />

cos( )


<strong>ENE</strong> <strong>104</strong><br />

Effective Values:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 43<br />

Week #11<br />

wi<strong>th</strong> Multiple-Frequency<br />

<strong>Circuit</strong>s<br />

I<br />

eff<br />

<br />

I<br />

m<br />

2<br />

P<br />

<br />

<br />

2 2<br />

I1 eff<br />

I2eff<br />

...<br />

I<br />

2<br />

Neff<br />

R<br />

I<br />

eff<br />

<br />

I<br />

<br />

I<br />

<br />

<br />

2 2<br />

2<br />

1 eff 2eff<br />

...<br />

Neff<br />

I


<strong>ENE</strong> <strong>104</strong><br />

Effective Values: Example<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 44<br />

Week #11<br />

Ex22 Page 384: find <strong>th</strong>e effective value of:<br />

I<br />

eff<br />

<br />

1<br />

T<br />

<br />

T<br />

0<br />

i<br />

2<br />

dt


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.7<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 45<br />

Week #11<br />

Calculate <strong>th</strong>e effective value of e<strong>ac</strong>h of <strong>th</strong>e<br />

periodic voltages: (a) 6cos25t; (b) 6cos25t +<br />

4sin⁡(25t + 30°) V. (c) 6cos25t + 5cos 2 (25t) V.<br />

(d) 6cos25t + 5sin30t + 4 V.


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.7<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 46<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.7<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 47<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.7<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 48<br />

Week #11


Apparent power and Power f<strong>ac</strong>tor:<br />

Page 49<br />

The sinusoidal voltage<br />

v<br />

V<br />

m<br />

cos( t<br />

)<br />

<strong>ENE</strong> <strong>104</strong><br />

is applied to <strong>th</strong>e network and <strong>th</strong>e resultant<br />

sinusoidal current is<br />

<strong>th</strong>e average power delivered to <strong>th</strong>e network<br />

P <br />

1<br />

V<br />

2<br />

m<br />

<strong>th</strong>e apparent power:<br />

I<br />

m<br />

<strong>th</strong>e power f<strong>ac</strong>tor:<br />

cos( <br />

i<br />

<br />

eff I eff<br />

I<br />

I eff eff<br />

AC <strong>Circuit</strong> Power Analysis<br />

m<br />

cos( t<br />

)<br />

)<br />

Veff<br />

Ieff<br />

cos( )<br />

V<br />

PF <br />

V P<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 50<br />

Week #11<br />

Calculate values for <strong>th</strong>e average power delivered<br />

to e<strong>ac</strong>h of <strong>th</strong>e two loads, <strong>th</strong>e apparent power<br />

supplied by <strong>th</strong>e source, and <strong>th</strong>e power f<strong>ac</strong>tor of<br />

<strong>th</strong>e combined load.


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 51<br />

Week #11<br />

Calculate values<br />

for <strong>th</strong>e average<br />

power delivered<br />

to e<strong>ac</strong>h of <strong>th</strong>e two<br />

loads, <strong>th</strong>e<br />

apparent power<br />

supplied by <strong>th</strong>e<br />

source, and <strong>th</strong>e<br />

power f<strong>ac</strong>tor of<br />

<strong>th</strong>e combined<br />

load.<br />

P<br />

V<br />

eff<br />

I<br />

eff<br />

cos( angV angI)<br />

PF <br />

V I eff eff<br />

P<br />

V I eff eff


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 52<br />

Week #11<br />

<br />

I 60 0<br />

<br />

<br />

12<br />

53.13<br />

A rms<br />

S<br />

(2 j1)<br />

(1 j5)<br />

.<br />

P<br />

S<br />

<br />

<br />

<br />

V<br />

eff<br />

I<br />

eff<br />

(60) (12)cos[0 <br />

432 W.<br />

cos( angV angI)<br />

( 53.1)]


<strong>ENE</strong> <strong>104</strong><br />

AC <strong>Circuit</strong> Power Analysis<br />

Week #11<br />

Example:<br />

<strong>th</strong>e apparent power<br />

supplied by <strong>th</strong>e source:<br />

Page 53<br />

V<br />

eff<br />

I<br />

eff<br />

<br />

( 60) (12)<br />

720 VA.<br />

<strong>th</strong>e power f<strong>ac</strong>tor of <strong>th</strong>e<br />

combined load.<br />

PF<br />

<br />

P<br />

V I eff eff<br />

<br />

432<br />

(60) (12)<br />

P (12) 2 2<br />

<br />

0.6<br />

P (12) 2 1


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.8<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 54<br />

Week #11<br />

For <strong>th</strong>e circuit of <strong>th</strong>e figure below, determine <strong>th</strong>e<br />

power f<strong>ac</strong>tor of <strong>th</strong>e combined loads if Z L = 10Ω.


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.8<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 55<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Complex Power:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 56<br />

Week #11<br />

<strong>th</strong>e average power,<br />

P<br />

<br />

V I eff eff<br />

cos( )<br />

express as,<br />

P<br />

V<br />

eff<br />

I<br />

eff<br />

Re<br />

<br />

j(<br />

<br />

)<br />

<br />

j<br />

j <br />

*<br />

e Re V e I e Re V I <br />

eff<br />

eff<br />

eff<br />

eff<br />

<strong>th</strong>e complex power,<br />

S<br />

V<br />

eff<br />

I<br />

V<br />

I<br />

e<br />

* j(<br />

)<br />

eff eff eff<br />

<br />

P<br />

<br />

jQ<br />

Q<br />

<br />

V I eff eff<br />

sin( )


<strong>ENE</strong> <strong>104</strong><br />

Power Measurement:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 57<br />

Week #11<br />

The complex power<br />

delivered to several<br />

interconnected loads is<br />

<strong>th</strong>e sum of <strong>th</strong>e complex<br />

power delivered to<br />

e<strong>ac</strong>h of <strong>th</strong>e individual<br />

loads.<br />

S = VI * = V(I 1 +I 2 ) * = V(I 1* +I 2* ) = VI 1* +VI 2<br />

*


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 58<br />

Week #11<br />

An industrial consumer<br />

is operating a 50-kW<br />

induction motor at a<br />

lagging PF of 0.8. The<br />

source voltage is 230<br />

Vrms. In order to obtain<br />

lower electrical rates,<br />

<strong>th</strong>e customer wishes to<br />

raise <strong>th</strong>e PF to 0.95<br />

lagging. Specify a<br />

suitable solution.


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 59<br />

Week #11<br />

A purely re<strong>ac</strong>tive load must be added to <strong>th</strong>e<br />

system, in parallel, since <strong>th</strong>e supply voltage must<br />

not change.<br />

The complex power supplied to <strong>th</strong>e motor must<br />

have a real part of 50-kW and an angle of<br />

cos -1 (0.8)=36.9 o<br />

50 36.9<br />

Hence, S 1 <br />

0.8<br />

50 j37.<br />

5<br />

kVA


<strong>ENE</strong> <strong>104</strong><br />

AC <strong>Circuit</strong> Power Analysis<br />

Week #11<br />

Example:<br />

S 1 =<br />

50<br />

36.9<br />

0.8<br />

To <strong>ac</strong>hieve a PF of 0.95, <strong>th</strong>e total complex power<br />

must become:<br />

S<br />

50 1<br />

<br />

0.95<br />

50 <br />

cos<br />

j16.<br />

43<br />

Thus <strong>th</strong>e corrective load is<br />

<br />

50<br />

<br />

(0.95)<br />

kVA<br />

j37.<br />

5<br />

kVA<br />

Page 60<br />

S 2 =<br />

<br />

j21.<br />

07<br />

kVA


<strong>ENE</strong> <strong>104</strong><br />

Example:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 61<br />

Week #11<br />

S 2 =<br />

<br />

j21.<br />

07<br />

kVA<br />

We select a phase angle of 0 o for <strong>th</strong>e voltage<br />

source, and <strong>th</strong>e current drawn by Z 2 is<br />

Or<br />

Therefore,<br />

* S2<br />

j21070<br />

I2 j91.6<br />

A.<br />

V 230<br />

I j91.6<br />

.<br />

2<br />

A<br />

Z<br />

V 230<br />

2. 51<br />

I j91.6<br />

j<br />

2 2


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.9<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 62<br />

Week #11<br />

Find <strong>th</strong>e complex power<br />

absorbed by <strong>th</strong>e<br />

(a) 1-ohm R<br />

(b) -j10 C<br />

(c) 5+j10 Z<br />

(d) source


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.9<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 63<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.9<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 64<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.9<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 65<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.10<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 66<br />

Week #11<br />

A 440-Vrms source supplies power to a load<br />

Z L = 10 + j2⁡Ω <strong>th</strong>rough a transmission line<br />

having a total resistance of 1.5Ω. Find (a) <strong>th</strong>e<br />

average and apparent power supplied to <strong>th</strong>e<br />

load; (b) <strong>th</strong>e average and apparent power lost in<br />

<strong>th</strong>e transmission line; (c) <strong>th</strong>e average and<br />

apparent power supplied by <strong>th</strong>e source; (d) <strong>th</strong>e<br />

power f<strong>ac</strong>tor at which <strong>th</strong>e source operates.


<strong>ENE</strong> <strong>104</strong><br />

Pr<strong>ac</strong>tice: 11.10<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 67<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Example: Final 2/47<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 68<br />

Week #11<br />

จากวงจรตามรูป ให้หา<br />

1) <strong>th</strong>e average power ที่จ่ายโดย แหล่งจ่าย (source)<br />

2) ค่า power f<strong>ac</strong>tor ที่แหล่งจ่าย (source)<br />

3) ขนาดของ ตัวเก็บประจุ (cap<strong>ac</strong>itor) ที่เมื่อน าไปต่อ<br />

ขนานกับ แหล่งจ่าย ท าให้ค่า power f<strong>ac</strong>tor = 1<br />

4 ohm<br />

120 Vrms 60Hz<br />

j16 ohm<br />

12 ohm


<strong>ENE</strong> <strong>104</strong><br />

Example: Final 2/47<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 69<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Example: Final 2/47<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 70<br />

Week #11<br />

4 ohm<br />

120 Vrms 60Hz<br />

j16 ohm<br />

12 ohm


<strong>ENE</strong> <strong>104</strong><br />

Example: Final 2/47<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 71<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Ex:<br />

Page 72<br />

5 Ω<br />

1 µF<br />

50 µH<br />

V g<br />

7.5 Ω<br />

Find <strong>th</strong>e average power, <strong>th</strong>e re<strong>ac</strong>tive power,<br />

and <strong>th</strong>e apparent power supplied by <strong>th</strong>e voltage<br />

source in <strong>th</strong>e circuit if v g = 50 cos 10 5 t V.


<strong>ENE</strong> <strong>104</strong><br />

Ex:<br />

Page 73<br />

5 Ω<br />

1 µF<br />

50 µH<br />

V g<br />

7.5 Ω


<strong>ENE</strong> <strong>104</strong><br />

Summary:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 74<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Hw:<br />

AC <strong>Circuit</strong> Power Analysis<br />

Page 75<br />

Week #11


<strong>ENE</strong> <strong>104</strong><br />

Reference:<br />

<strong>Circuit</strong> Analysis and <strong>Electric</strong>al Engineering<br />

Page 76<br />

W.H. Hayt, Jr., J.E. Kemmerly, S.M. Durbin, Engineering <strong>Circuit</strong> Analysis, Six<strong>th</strong> Edition.<br />

Copyright ©2002 McGraw-Hill. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!