27.01.2015 Views

Localization of Distributed Fiber Sensor Employing a Sub-Ring

Localization of Distributed Fiber Sensor Employing a Sub-Ring

Localization of Distributed Fiber Sensor Employing a Sub-Ring

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

is<br />

B<br />

LB<br />

0 B+LB 1 B<br />

LB<br />

is<br />

LB<br />

B<br />

0 B<br />

378<br />

JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, VOL. 6, NO. 4, DECEMBER 2008<br />

n=0<br />

Using DC filter, the AC element <strong>of</strong> output is<br />

CW<br />

Coupler CCW<br />

ZB<br />

0 B=0<br />

1 ⎛<br />

2 ⎞<br />

Pn( τ ) = I0<br />

cos (<br />

n n) (<br />

n<br />

)<br />

n ⎜θτ + δ −θτ −δn<br />

− π⎟. (3)<br />

9× 2 ⎝ 3 ⎠<br />

CW<br />

CCW<br />

CW<br />

CCW<br />

Fig. 2. Equivalent light path.<br />

L<br />

Vibration point<br />

n=1<br />

Vibration point<br />

2LB<br />

3. <strong>Localization</strong> Theory<br />

The power <strong>of</strong> SLD is expressed as I, as the −3P PdB 3×3<br />

coupler’s effects, both clockwise and counter clockwise<br />

beams’ intensities are 1/3IB0B, IB0B=α I (α is the turndown<br />

ratio <strong>of</strong> 3×3 coupler). The vibration position is at either side<br />

<strong>of</strong> the middle point zB0B=0, and causes a phase difference θBtB<br />

to both the clockwise (CW) and counterclockwise (CCW)<br />

light beams. Because those two lights pass the vibration<br />

point at different time and the 3×3 coupler introduces a<br />

2/3 π phase difference, the interference light is a time<br />

variant. Firstly, the CW light passes through 2×2 coupler<br />

and will pass it n times, so the intensity transmits in sensing<br />

1<br />

fiber is I<br />

1 0<br />

; then the CCW light passes through 2×2<br />

9 2 n +<br />

×<br />

coupler after sensing fiber, the outputting light intensity is<br />

1<br />

I<br />

1 0<br />

too, which travels n times in delay fiber. When<br />

9 2 n +<br />

×<br />

the lights are with the same n interfere, the power range <strong>of</strong><br />

1<br />

sensor output is<br />

0<br />

9 2 I and changes with the phase<br />

×<br />

n<br />

difference. It can be expressed as follows:<br />

1 2<br />

Pn( τ ) I0<br />

1 cos ⎛<br />

⎞<br />

= + θτ (<br />

n<br />

δn) θτ (<br />

n<br />

δ )<br />

n ⎜ + − −<br />

n<br />

− π⎟<br />

9× 2 ⎝ 3 ⎠ . (1)<br />

In (1),<br />

⎧ L0 + nL1<br />

τ<br />

n<br />

= t −<br />

⎪ 2c<br />

⎨<br />

L1<br />

(2)<br />

⎪ z<br />

z0<br />

+ n<br />

n<br />

δ<br />

2<br />

⎪ n<br />

= =<br />

⎩ c c<br />

where LB0 Bis the fiber ring length, LB1B the delay fiber length,<br />

and ZBnB the distance from vibration point to the middle <strong>of</strong><br />

the sensing loop.<br />

n=2<br />

Vibration point<br />

LB0 B+2LB<br />

Z<br />

ZB<br />

1 B=ZB 0 B+LB 1/<br />

B ZB2B=ZB0B+LB1 ZB<br />

1 B=0<br />

ZB<br />

2 B=0<br />

[2]<br />

It is supposed that θ() t = Acos(2 π ft)<br />

, the<br />

amplitude A and vibration frequency f affect the power<br />

output totally. As the 2/3 π phase difference and the<br />

amplitude <strong>of</strong> θ () t are small enough, the AC power has<br />

good linearity, and it can be predigested as<br />

where<br />

( )<br />

P() τ ∝ Kcos θτ ( + δ) −θτ ( − δ ) (4)<br />

n n n n n<br />

K<br />

1<br />

.<br />

= I0<br />

9 × 2 n<br />

n<br />

n<br />

As well known, triangle function can be written equally as<br />

p ( τ ) ∝ − 2Ksin(2 π fτ )sin(2 π fδ<br />

) . (5)<br />

n<br />

In this expression, sensor output is changed with time<br />

variant τ<br />

n<br />

, and its scope is related to both vibration<br />

frequency and position. We handle with the scope<br />

coefficients <strong>of</strong> P ( τ ) 0 , P () τ 1 , and P ( ) 2<br />

τ , so it is equal to<br />

⎧ ⎛ z0<br />

⎞<br />

⎪P0( τ) ∝− 2Ksin(2 π fδ0) =−2Ksin⎜2π<br />

f<br />

c<br />

⎟<br />

⎪<br />

⎝ ⎠<br />

⎪ 1 1 ⎛ z0 + L1/2⎞<br />

⎨P1( τ) ∝− Ksin(2 π fδ1) =− Ksin 2 f<br />

2 2<br />

⎜ π<br />

c<br />

⎟<br />

⎪<br />

⎝<br />

⎠<br />

⎪<br />

⎪ 1 1 ⎛ z0 + L1<br />

⎞<br />

P2() τ ∝− Ksin(2 π fδ2) =− Ksin 2 π f .<br />

⎪ 8 8<br />

⎜<br />

c<br />

⎟<br />

⎩<br />

⎝ ⎠<br />

(6)<br />

Then it is supposed that<br />

z0<br />

L1<br />

A = 2π<br />

f , B = 2π<br />

f , (7)<br />

c<br />

2c<br />

so the scope <strong>of</strong> output will be written as<br />

⎧<br />

⎪P0<br />

∝−2Ksin<br />

A<br />

⎪ 1<br />

⎨P1<br />

∝− Ksin( A+<br />

B)<br />

(8)<br />

⎪ 2<br />

⎪ 1<br />

P2<br />

∝− Ksin( A+<br />

2 B).<br />

⎪⎩ 8<br />

Let us do division as follows:<br />

D = 4P P = cos B+ ctan Asin<br />

B (9)<br />

1 1 0<br />

D = 16P P = cos 2B+ ctan Asin 2B<br />

(10)<br />

2 2 0<br />

⎛ L1 ⎞ D2<br />

+ 1<br />

cos B = cos⎜π<br />

f<br />

c<br />

⎟=<br />

⎝ ⎠ 2D<br />

2<br />

⎛ z<br />

0 ⎞ 2D1 −D2<br />

−1<br />

ctan A= ctan ⎜2π<br />

f<br />

c<br />

⎟=<br />

⎝ ⎠ 4 D − ( D + 1)<br />

1<br />

2 2<br />

1 2<br />

(11)<br />

(12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!