28.01.2015 Views

Degenerate Whittaker functionals for real reductive groups

Degenerate Whittaker functionals for real reductive groups

Degenerate Whittaker functionals for real reductive groups

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> <strong>for</strong> <strong>real</strong> <strong>reductive</strong><br />

<strong>groups</strong><br />

Dmitry Gourevitch & Siddhartha Sahi<br />

Conference on L-functions, Jeju<br />

August 2012<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 1 / 14


<strong>Whittaker</strong> <strong>functionals</strong><br />

F: local field of char.0, G: <strong>reductive</strong> group over F.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 2 / 14


<strong>Whittaker</strong> <strong>functionals</strong><br />

F: local field of char.0, G: <strong>reductive</strong> group over F.<br />

M(G ): smooth admissible representations (of moderate growth).<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 2 / 14


<strong>Whittaker</strong> <strong>functionals</strong><br />

F: local field of char.0, G: <strong>reductive</strong> group over F.<br />

M(G ): smooth admissible representations (of moderate growth).<br />

Assume G quasisplit: fix Borel B = HN, n := Lie F (N).<br />

Define<br />

n ′ = [n, n] , v = n/n ′ , Ψ = v ∗ ⊂ n ∗<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 2 / 14


<strong>Whittaker</strong> <strong>functionals</strong><br />

F: local field of char.0, G: <strong>reductive</strong> group over F.<br />

M(G ): smooth admissible representations (of moderate growth).<br />

Assume G quasisplit: fix Borel B = HN, n := Lie F (N).<br />

Define<br />

n ′ = [n, n] , v = n/n ′ , Ψ = v ∗ ⊂ n ∗<br />

Ψ ←→ Lie algebra characters of n ←→ unitary group characters of N<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 2 / 14


<strong>Whittaker</strong> <strong>functionals</strong><br />

F: local field of char.0, G: <strong>reductive</strong> group over F.<br />

M(G ): smooth admissible representations (of moderate growth).<br />

Assume G quasisplit: fix Borel B = HN, n := Lie F (N).<br />

Define<br />

n ′ = [n, n] , v = n/n ′ , Ψ = v ∗ ⊂ n ∗<br />

Ψ ←→ Lie algebra characters of n ←→ unitary group characters of N<br />

Ψ ⊃ Ψ × := non-degenerate characters.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 2 / 14


<strong>Whittaker</strong> <strong>functionals</strong><br />

F: local field of char.0, G: <strong>reductive</strong> group over F.<br />

M(G ): smooth admissible representations (of moderate growth).<br />

Assume G quasisplit: fix Borel B = HN, n := Lie F (N).<br />

Define<br />

n ′ = [n, n] , v = n/n ′ , Ψ = v ∗ ⊂ n ∗<br />

Ψ ←→ Lie algebra characters of n ←→ unitary group characters of N<br />

Ψ ⊃ Ψ × := non-degenerate characters.<br />

For ψ ∈ Ψ, π ∈ M(G ) define<br />

Wh ∗ ψ(π) := Hom cts<br />

N (π, ψ), Ψ(π) := {ψ ∈ Ψ : Wh ∗ ψ(π) ̸= 0}<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 2 / 14


<strong>Whittaker</strong> <strong>functionals</strong><br />

F: local field of char.0, G: <strong>reductive</strong> group over F.<br />

M(G ): smooth admissible representations (of moderate growth).<br />

Assume G quasisplit: fix Borel B = HN, n := Lie F (N).<br />

Define<br />

n ′ = [n, n] , v = n/n ′ , Ψ = v ∗ ⊂ n ∗<br />

Ψ ←→ Lie algebra characters of n ←→ unitary group characters of N<br />

Ψ ⊃ Ψ × := non-degenerate characters.<br />

For ψ ∈ Ψ, π ∈ M(G ) define<br />

Wh ∗ ψ(π) := Hom cts<br />

N (π, ψ), Ψ(π) := {ψ ∈ Ψ : Wh ∗ ψ(π) ̸= 0}<br />

(Casselman) For any ψ ∈ Ψ × ,<br />

π ↦→ Whψ ∗ (π) is an exact functor.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 2 / 14


<strong>Whittaker</strong> <strong>functionals</strong><br />

F: local field of char.0, G: <strong>reductive</strong> group over F.<br />

M(G ): smooth admissible representations (of moderate growth).<br />

Assume G quasisplit: fix Borel B = HN, n := Lie F (N).<br />

Define<br />

n ′ = [n, n] , v = n/n ′ , Ψ = v ∗ ⊂ n ∗<br />

Ψ ←→ Lie algebra characters of n ←→ unitary group characters of N<br />

Ψ ⊃ Ψ × := non-degenerate characters.<br />

For ψ ∈ Ψ, π ∈ M(G ) define<br />

Wh ∗ ψ(π) := Hom cts<br />

N (π, ψ), Ψ(π) := {ψ ∈ Ψ : Wh ∗ ψ(π) ̸= 0}<br />

(Casselman) For any ψ ∈ Ψ × ,<br />

π ↦→ Whψ ∗ (π) is an exact functor.<br />

Theorem (Gelfand-Kazhdan, Shalika)<br />

For π ∈ Irr(G ), ψ ∈ Ψ × , dim Whψ ∗ (π) ≤ 1.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 2 / 14


Kostant’s theorem<br />

We say π is generic if ∃ψ ∈ Ψ × s.t. Wh ψ (π) ̸= 0.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 3 / 14


Kostant’s theorem<br />

We say π is generic if ∃ψ ∈ Ψ × s.t. Wh ψ (π) ̸= 0.<br />

Theorem (Kostant, Rodier)<br />

π is generic iff it is large.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 3 / 14


Kostant’s theorem<br />

We say π is generic if ∃ψ ∈ Ψ × s.t. Wh ψ (π) ̸= 0.<br />

Theorem (Kostant, Rodier)<br />

π is generic iff it is large.<br />

Theorem (Harish-Chandra, Howe)<br />

Near e ∈ G, the character distribution (asymptotically) equals to a linear<br />

combination of Fourier trans<strong>for</strong>ms of Haar measures of nilpotent coadjoint<br />

orbits.<br />

χ π ≈ ∑ a O F(µ O )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 3 / 14


Kostant’s theorem<br />

We say π is generic if ∃ψ ∈ Ψ × s.t. Wh ψ (π) ̸= 0.<br />

Theorem (Kostant, Rodier)<br />

π is generic iff it is large.<br />

Theorem (Harish-Chandra, Howe)<br />

Near e ∈ G, the character distribution (asymptotically) equals to a linear<br />

combination of Fourier trans<strong>for</strong>ms of Haar measures of nilpotent coadjoint<br />

orbits.<br />

χ π ≈ ∑ a O F(µ O )<br />

Define WF(π) = ∪{O | a O ̸= 0} ⊂ N , where N ⊂ g ∗ denotes the<br />

nilpotent cone.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 3 / 14


Kostant’s theorem<br />

We say π is generic if ∃ψ ∈ Ψ × s.t. Wh ψ (π) ̸= 0.<br />

Theorem (Kostant, Rodier)<br />

π is generic iff it is large.<br />

Theorem (Harish-Chandra, Howe)<br />

Near e ∈ G, the character distribution (asymptotically) equals to a linear<br />

combination of Fourier trans<strong>for</strong>ms of Haar measures of nilpotent coadjoint<br />

orbits.<br />

χ π ≈ ∑ a O F(µ O )<br />

Define WF(π) = ∪{O | a O ̸= 0} ⊂ N , where N ⊂ g ∗ denotes the<br />

nilpotent cone.<br />

π is called large if WF(π) = N .<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 3 / 14


Case of non-generic representations<br />

In the p-adic case, Moeglin and Waldspurger give a very general<br />

definition of degenerate <strong>Whittaker</strong> models and give a precise<br />

connection between their existence and the wave-front set WF(π).<br />

In the <strong>real</strong> case there is no full analog currently.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 4 / 14


Case of non-generic representations<br />

In the p-adic case, Moeglin and Waldspurger give a very general<br />

definition of degenerate <strong>Whittaker</strong> models and give a precise<br />

connection between their existence and the wave-front set WF(π).<br />

In the <strong>real</strong> case there is no full analog currently.<br />

Several authors (Matumoto, Yamashita, . . . ) consider generalized<br />

<strong>Whittaker</strong> <strong>functionals</strong> ∼ generic characters <strong>for</strong> smaller nilradicals<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 4 / 14


Case of non-generic representations<br />

In the p-adic case, Moeglin and Waldspurger give a very general<br />

definition of degenerate <strong>Whittaker</strong> models and give a precise<br />

connection between their existence and the wave-front set WF(π).<br />

In the <strong>real</strong> case there is no full analog currently.<br />

Several authors (Matumoto, Yamashita, . . . ) consider generalized<br />

<strong>Whittaker</strong> <strong>functionals</strong> ∼ generic characters <strong>for</strong> smaller nilradicals<br />

We consider degenerate <strong>functionals</strong> ∼ arbitrary characters of n.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 4 / 14


Main results<br />

From now on, let F = R.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 5 / 14


Main results<br />

From now on, let F = R.<br />

The finite group F G = Norm GC (G ) / (Z GC · G ) acts on M (G ).<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 5 / 14


Main results<br />

From now on, let F = R.<br />

The finite group F G = Norm GC (G ) / (Z GC · G ) acts on M (G ).<br />

For π ∈ M (G ) , define ˜π = ⊕ {π a : a ∈ F G }.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 5 / 14


Main results<br />

From now on, let F = R.<br />

The finite group F G = Norm GC (G ) / (Z GC · G ) acts on M (G ).<br />

For π ∈ M (G ) , define ˜π = ⊕ {π a : a ∈ F G }.<br />

Theorem (1)<br />

For π ∈ M (G ) we have<br />

Ψ(π) ⊂ WF(π) ∩ Ψ ⊂ Ψ ( ˜π) (1)<br />

Moreover if G = GL n (R) or if G is a complex group then ˜π = π and<br />

Ψ(π) = WF(π) ∩ Ψ (2)<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 5 / 14


Main results<br />

Theorem (2)<br />

The sets Ψ (π) and WF (π) determine one another if<br />

1 G = GL n (R) or GL n (C) or SL n (C) and π ∈ M (G )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 6 / 14


Main results<br />

Theorem (2)<br />

The sets Ψ (π) and WF (π) determine one another if<br />

1 G = GL n (R) or GL n (C) or SL n (C) and π ∈ M (G )<br />

2 G = Sp 2n (C) or O n (C) or SO n (C) and π is irreducible<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 6 / 14


Main results<br />

Theorem (2)<br />

The sets Ψ (π) and WF (π) determine one another if<br />

1 G = GL n (R) or GL n (C) or SL n (C) and π ∈ M (G )<br />

2 G = Sp 2n (C) or O n (C) or SO n (C) and π is irreducible<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 6 / 14


Main results<br />

Theorem (2)<br />

The sets Ψ (π) and WF (π) determine one another if<br />

1 G = GL n (R) or GL n (C) or SL n (C) and π ∈ M (G )<br />

2 G = Sp 2n (C) or O n (C) or SO n (C) and π is irreducible<br />

Key observation <strong>for</strong> the second statement:<br />

Theorem (3)<br />

Let O be a nilpotent orbit <strong>for</strong> a complex classical Lie algebra then O is<br />

uniquely determined by O ∩ Ψ.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 6 / 14


Uniqueness<br />

An analog of Shalika’s result would be uniqueness of ”minimally<br />

degenerate” <strong>Whittaker</strong> models. So far it is known only <strong>for</strong> GL n , both<br />

in <strong>real</strong> and p-adic cases.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 7 / 14


Uniqueness<br />

An analog of Shalika’s result would be uniqueness of ”minimally<br />

degenerate” <strong>Whittaker</strong> models. So far it is known only <strong>for</strong> GL n , both<br />

in <strong>real</strong> and p-adic cases.<br />

Let G be GL n (R) or GL n (C). For a partition λ of n let O λ denote<br />

the corresponding nilpotent orbit and ψ λ denote the corresponding<br />

character of N.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 7 / 14


Uniqueness<br />

An analog of Shalika’s result would be uniqueness of ”minimally<br />

degenerate” <strong>Whittaker</strong> models. So far it is known only <strong>for</strong> GL n , both<br />

in <strong>real</strong> and p-adic cases.<br />

Let G be GL n (R) or GL n (C). For a partition λ of n let O λ denote<br />

the corresponding nilpotent orbit and ψ λ denote the corresponding<br />

character of N.<br />

Theorem (Aizenbud-G-Sahi)<br />

Let π ∈ Ĝ be an irreducible unitary representation. Let λ be such that<br />

WF (π) = O λ . Then dim Wh ψλ (π) = 1.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 7 / 14


Uniqueness<br />

An analog of Shalika’s result would be uniqueness of ”minimally<br />

degenerate” <strong>Whittaker</strong> models. So far it is known only <strong>for</strong> GL n , both<br />

in <strong>real</strong> and p-adic cases.<br />

Let G be GL n (R) or GL n (C). For a partition λ of n let O λ denote<br />

the corresponding nilpotent orbit and ψ λ denote the corresponding<br />

character of N.<br />

Theorem (Aizenbud-G-Sahi)<br />

Let π ∈ Ĝ be an irreducible unitary representation. Let λ be such that<br />

WF (π) = O λ . Then dim Wh ψλ (π) = 1.<br />

In the p-adic case the analogous theorem was proven by Zelevinsky<br />

without the assumption that π is unitary. The proofs in both cases<br />

use ”derivatives”.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 7 / 14


Algebraic setting<br />

From now on, we let n, g, etc. denote complexified Lie algebras.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 8 / 14


Algebraic setting<br />

From now on, we let n, g, etc. denote complexified Lie algebras.<br />

Let K ⊂ G be maximal compact subgroup. A (g, K )-module is a<br />

complex vector space with compatible actions of g and K such that<br />

every vector is K-finite.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 8 / 14


Algebraic setting<br />

From now on, we let n, g, etc. denote complexified Lie algebras.<br />

Let K ⊂ G be maximal compact subgroup. A (g, K )-module is a<br />

complex vector space with compatible actions of g and K such that<br />

every vector is K-finite.<br />

Let HC(G ) denote the category of (g, K )-modules of finite length<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 8 / 14


Algebraic setting<br />

From now on, we let n, g, etc. denote complexified Lie algebras.<br />

Let K ⊂ G be maximal compact subgroup. A (g, K )-module is a<br />

complex vector space with compatible actions of g and K such that<br />

every vector is K-finite.<br />

Let HC(G ) denote the category of (g, K )-modules of finite length<br />

Theorem (Casselman-Wallach)<br />

The functor π ↦→ π K −finite is an equivalence of categories<br />

M(G ) ∼ = HC(G )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 8 / 14


Algebraic setting<br />

From now on, we let n, g, etc. denote complexified Lie algebras.<br />

Let K ⊂ G be maximal compact subgroup. A (g, K )-module is a<br />

complex vector space with compatible actions of g and K such that<br />

every vector is K-finite.<br />

Let HC(G ) denote the category of (g, K )-modules of finite length<br />

Theorem (Casselman-Wallach)<br />

The functor π ↦→ π K −finite is an equivalence of categories<br />

M(G ) ∼ = HC(G )<br />

For M ∈ HC(G ) and ψ ∈ Ψ C we define<br />

Wh ′ ψ(M) := Hom n (M, ψ), Ψ(M) := {ψ ∈ Ψ C | Wh ′ ψ(M) ̸= 0}<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 8 / 14


Algebraic setting<br />

From now on, we let n, g, etc. denote complexified Lie algebras.<br />

Let K ⊂ G be maximal compact subgroup. A (g, K )-module is a<br />

complex vector space with compatible actions of g and K such that<br />

every vector is K-finite.<br />

Let HC(G ) denote the category of (g, K )-modules of finite length<br />

Theorem (Casselman-Wallach)<br />

The functor π ↦→ π K −finite is an equivalence of categories<br />

M(G ) ∼ = HC(G )<br />

For M ∈ HC(G ) and ψ ∈ Ψ C we define<br />

Wh ′ ψ(M) := Hom n (M, ψ), Ψ(M) := {ψ ∈ Ψ C | Wh ′ ψ(M) ̸= 0}<br />

Kostant showed that π is generic iff π K −finite is generic, though<br />

dimensions of <strong>Whittaker</strong> spaces differ considerably.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 8 / 14


Associated varieties and our algebraic theorem<br />

Using PBW filtration, gr U(g) = Sym(g) = Pol(g ∗ )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 9 / 14


Associated varieties and our algebraic theorem<br />

Using PBW filtration, gr U(g) = Sym(g) = Pol(g ∗ )<br />

Using this, one can define<br />

AsV(M) ⊂ AnV(M) ⊂ N<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 9 / 14


Associated varieties and our algebraic theorem<br />

Using PBW filtration, gr U(g) = Sym(g) = Pol(g ∗ )<br />

Using this, one can define<br />

AsV(M) ⊂ AnV(M) ⊂ N<br />

Schmid and Vilonen proved that WF(π) and AsV(π K −finite )<br />

determine each other.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 9 / 14


Associated varieties and our algebraic theorem<br />

Using PBW filtration, gr U(g) = Sym(g) = Pol(g ∗ )<br />

Using this, one can define<br />

AsV(M) ⊂ AnV(M) ⊂ N<br />

Schmid and Vilonen proved that WF(π) and AsV(π K −finite )<br />

determine each other.<br />

Let pr n ∗ : g ∗ → n ∗ denote the natural projection (restriction to n).<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 9 / 14


Associated varieties and our algebraic theorem<br />

Using PBW filtration, gr U(g) = Sym(g) = Pol(g ∗ )<br />

Using this, one can define<br />

AsV(M) ⊂ AnV(M) ⊂ N<br />

Schmid and Vilonen proved that WF(π) and AsV(π K −finite )<br />

determine each other.<br />

Let pr n ∗ : g ∗ → n ∗ denote the natural projection (restriction to n).<br />

Theorem (0)<br />

For M ∈ HC we have Ψ(M) = pr n ∗(AsV (M)) ∩ Ψ.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 9 / 14


Idea of the proof<br />

Since n/[n, n] is commutative, from Nakayama’s lemma we have<br />

Ψ(M) = Supp(M/[n, n]M). Now, restriction to n corresponds to<br />

projection on n ∗ and quotient by [n, n] corresponds to intersection<br />

with Ψ = [n, n] ⊥ .<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 10 / 14


Idea of the proof<br />

Since n/[n, n] is commutative, from Nakayama’s lemma we have<br />

Ψ(M) = Supp(M/[n, n]M). Now, restriction to n corresponds to<br />

projection on n ∗ and quotient by [n, n] corresponds to intersection<br />

with Ψ = [n, n] ⊥ .<br />

However, in non-commutative situation one could even have<br />

V = [n, n]V . For example, let G = GL(3, R) and consider the<br />

identification of n with the Heisenberg Lie algebra 〈 x, d dx , 1〉 acting<br />

on V = C [x].<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 10 / 14


Idea of the proof<br />

Since n/[n, n] is commutative, from Nakayama’s lemma we have<br />

Ψ(M) = Supp(M/[n, n]M). Now, restriction to n corresponds to<br />

projection on n ∗ and quotient by [n, n] corresponds to intersection<br />

with Ψ = [n, n] ⊥ .<br />

However, in non-commutative situation one could even have<br />

V = [n, n]V . For example, let G = GL(3, R) and consider the<br />

identification of n with the Heisenberg Lie algebra 〈 x, d dx , 1〉 acting<br />

on V = C [x].<br />

Let b = h + n be the Borel subalgebra of g, let V be a b-module. We<br />

define the n-adic completion and Jacquet module as follows:<br />

( ) h-finite<br />

̂V = ̂V n = lim V /n i V , J (V ) = J b (V ) = ̂V n ←−<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 10 / 14


Sketch of the proof<br />

Define n ′ = [n, n] and CV = H 0 (n ′ , V ) = V /n ′ V .<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 11 / 14


Sketch of the proof<br />

Define n ′ = [n, n] and CV = H 0 (n ′ , V ) = V /n ′ V .<br />

(Nakayama) Ψ(M) = Supp v<br />

(CM) = AnV v (CM)<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 11 / 14


Sketch of the proof<br />

Define n ′ = [n, n] and CV = H 0 (n ′ , V ) = V /n ′ V .<br />

(Nakayama) Ψ(M) = Supp v<br />

(CM) = AnV v (CM)<br />

(Joseph+Gabber) AnV v (CM) = AnV v<br />

(ĈM<br />

)<br />

= AnV v (J (CM))<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 11 / 14


Sketch of the proof<br />

Define n ′ = [n, n] and CV = H 0 (n ′ , V ) = V /n ′ V .<br />

(Nakayama) Ψ(M) = Supp v<br />

(CM) = AnV v (CM)<br />

)<br />

(Joseph+Gabber) AnV v (CM) = AnV v<br />

(ĈM = AnV v (J (CM))<br />

(Easy) J(CM) ≈ C (JM) as b-modules.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 11 / 14


Sketch of the proof<br />

Define n ′ = [n, n] and CV = H 0 (n ′ , V ) = V /n ′ V .<br />

(Nakayama) Ψ(M) = Supp v<br />

(CM) = AnV v (CM)<br />

(Joseph+Gabber) AnV v (CM) = AnV v<br />

(ĈM<br />

)<br />

= AnV v (J (CM))<br />

(Easy) J(CM) ≈ C (JM) as b-modules.<br />

(Bernstein+Joseph)<br />

AnV v (J (CM)) = AsV v (C (JM)) = AsV n (JM) ∩ Ψ.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 11 / 14


Sketch of the proof<br />

Define n ′ = [n, n] and CV = H 0 (n ′ , V ) = V /n ′ V .<br />

(Nakayama) Ψ(M) = Supp v<br />

(CM) = AnV v (CM)<br />

(Joseph+Gabber) AnV v (CM) = AnV v<br />

(ĈM<br />

)<br />

= AnV v (J (CM))<br />

(Easy) J(CM) ≈ C (JM) as b-modules.<br />

(Bernstein+Joseph)<br />

AnV v (J (CM)) = AsV v (C (JM)) = AsV n (JM) ∩ Ψ.<br />

(Ginzburg+ENV) AsV n (JM) ⊃ AsV n (M) ∩ Ψ.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 11 / 14


Sketch of the proof<br />

Define n ′ = [n, n] and CV = H 0 (n ′ , V ) = V /n ′ V .<br />

(Nakayama) Ψ(M) = Supp v<br />

(CM) = AnV v (CM)<br />

(Joseph+Gabber) AnV v (CM) = AnV v<br />

(ĈM<br />

)<br />

= AnV v (J (CM))<br />

(Easy) J(CM) ≈ C (JM) as b-modules.<br />

(Bernstein+Joseph)<br />

AnV v (J (CM)) = AsV v (C (JM)) = AsV n (JM) ∩ Ψ.<br />

(Ginzburg+ENV) AsV n (JM) ⊃ AsV n (M) ∩ Ψ.<br />

(Casselman-Osborne+Gabber) AsV n (M) = pr n ∗(AsV g (M)).<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 11 / 14


Sketch of the proof<br />

Define n ′ = [n, n] and CV = H 0 (n ′ , V ) = V /n ′ V .<br />

(Nakayama) Ψ(M) = Supp v<br />

(CM) = AnV v (CM)<br />

(Joseph+Gabber) AnV v (CM) = AnV v<br />

(ĈM<br />

)<br />

= AnV v (J (CM))<br />

(Easy) J(CM) ≈ C (JM) as b-modules.<br />

(Bernstein+Joseph)<br />

AnV v (J (CM)) = AsV v (C (JM)) = AsV n (JM) ∩ Ψ.<br />

(Ginzburg+ENV) AsV n (JM) ⊃ AsV n (M) ∩ Ψ.<br />

(Casselman-Osborne+Gabber) AsV n (M) = pr n ∗(AsV g (M)).<br />

Thus Ψ(M) ⊃ pr n ∗(AsV g (M)) ∩ Ψ; other inclusion is easy.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 11 / 14


Proof of Theorem 3<br />

Proof.<br />

For GL (n, R) and SL (n, C) ∼ Jordan <strong>for</strong>m<br />

Orbits <strong>for</strong> Sp 2n (C) or O n (C) ∼ partitions satisfying certain<br />

conditions<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 12 / 14


Proof of Theorem 3<br />

Proof.<br />

For GL (n, R) and SL (n, C) ∼ Jordan <strong>for</strong>m<br />

Orbits <strong>for</strong> Sp 2n (C) or O n (C) ∼ partitions satisfying certain<br />

conditions<br />

An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 12 / 14


Proof of Theorem 3<br />

Proof.<br />

For GL (n, R) and SL (n, C) ∼ Jordan <strong>for</strong>m<br />

Orbits <strong>for</strong> Sp 2n (C) or O n (C) ∼ partitions satisfying certain<br />

conditions<br />

An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity<br />

For each partition λ and each k there is a partition µ ≤ λ, which<br />

meets Ψ and satisfies µ 1 + · · · + µ k = λ 1 + · · · + λ k<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 12 / 14


Proof of Theorem 3<br />

Proof.<br />

For GL (n, R) and SL (n, C) ∼ Jordan <strong>for</strong>m<br />

Orbits <strong>for</strong> Sp 2n (C) or O n (C) ∼ partitions satisfying certain<br />

conditions<br />

An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity<br />

For each partition λ and each k there is a partition µ ≤ λ, which<br />

meets Ψ and satisfies µ 1 + · · · + µ k = λ 1 + · · · + λ k<br />

Result <strong>for</strong> SO n (C) requires slight additional argument.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 12 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

2 F 4 (a 3 ) and C 3 (a 1 )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

2 F 4 (a 3 ) and C 3 (a 1 )<br />

For G = E 6 :<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

2 F 4 (a 3 ) and C 3 (a 1 )<br />

For G = E 6 :<br />

1 E 6 (a 1 ) and D 5<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

2 F 4 (a 3 ) and C 3 (a 1 )<br />

For G = E 6 :<br />

1 E 6 (a 1 ) and D 5<br />

2 D 4 (a 1 ) and A 3 + A 1<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

2 F 4 (a 3 ) and C 3 (a 1 )<br />

For G = E 6 :<br />

1 E 6 (a 1 ) and D 5<br />

2 D 4 (a 1 ) and A 3 + A 1<br />

For G = E 7 :<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

2 F 4 (a 3 ) and C 3 (a 1 )<br />

For G = E 6 :<br />

1 E 6 (a 1 ) and D 5<br />

2 D 4 (a 1 ) and A 3 + A 1<br />

For G = E 7 :<br />

1 E 7 (a 1 ) and E 7 (a 2 )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

2 F 4 (a 3 ) and C 3 (a 1 )<br />

For G = E 6 :<br />

1 E 6 (a 1 ) and D 5<br />

2 D 4 (a 1 ) and A 3 + A 1<br />

For G = E 7 :<br />

1 E 7 (a 1 ) and E 7 (a 2 )<br />

2 E 7 (a 3 ) and D 6<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

Fact<br />

Theorem 3 is false <strong>for</strong> every exceptional group.<br />

We list all orbits whose closures have the same intersection with Ψ.<br />

We follow Bala-Carter notation and we have underlined the special orbits.<br />

For G = G 2 : G 2 (a 1 ) and à 1<br />

For G = F 4 :<br />

1 F 4 (a 1 ) and F 4 (a 2 )<br />

2 F 4 (a 3 ) and C 3 (a 1 )<br />

For G = E 6 :<br />

1 E 6 (a 1 ) and D 5<br />

2 D 4 (a 1 ) and A 3 + A 1<br />

For G = E 7 :<br />

1 E 7 (a 1 ) and E 7 (a 2 )<br />

2 E 7 (a 3 ) and D 6<br />

3 E 6 (a 1 ) and E 7 (a 4 ).<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 13 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

For G = E 8 :<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 14 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

For G = E 8 :<br />

1 E 8 (a 1 ), E 8 (a 2 ), and E 8 (a 3 )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 14 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

For G = E 8 :<br />

1 E 8 (a 1 ), E 8 (a 2 ), and E 8 (a 3 )<br />

2 E 8 (a 4 ), E 8 (b 4 ) and E 8 (a 5 )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 14 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

For G = E 8 :<br />

1 E 8 (a 1 ), E 8 (a 2 ), and E 8 (a 3 )<br />

2 E 8 (a 4 ), E 8 (b 4 ) and E 8 (a 5 )<br />

3 E 7 (a 1 ), E 8 (b 5 ) and E 7 (a 2 )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 14 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

For G = E 8 :<br />

1 E 8 (a 1 ), E 8 (a 2 ), and E 8 (a 3 )<br />

2 E 8 (a 4 ), E 8 (b 4 ) and E 8 (a 5 )<br />

3 E 7 (a 1 ), E 8 (b 5 ) and E 7 (a 2 )<br />

4 E 8 (a 6 ) and D 7 (a 1 )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 14 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

For G = E 8 :<br />

1 E 8 (a 1 ), E 8 (a 2 ), and E 8 (a 3 )<br />

2 E 8 (a 4 ), E 8 (b 4 ) and E 8 (a 5 )<br />

3 E 7 (a 1 ), E 8 (b 5 ) and E 7 (a 2 )<br />

4 E 8 (a 6 ) and D 7 (a 1 )<br />

5 E 6 (a 1 ) and E 7 (a 4 )<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 14 / 14


Counterexamples <strong>for</strong> exceptional <strong>groups</strong><br />

For G = E 8 :<br />

1 E 8 (a 1 ), E 8 (a 2 ), and E 8 (a 3 )<br />

2 E 8 (a 4 ), E 8 (b 4 ) and E 8 (a 5 )<br />

3 E 7 (a 1 ), E 8 (b 5 ) and E 7 (a 2 )<br />

4 E 8 (a 6 ) and D 7 (a 1 )<br />

5 E 6 (a 1 ) and E 7 (a 4 )<br />

6 E 8 (a 7 ), E 7 (a 5 ), E 6 (a 3 ) + A 1 , and D 6 (a 2 ).<br />

Gourevitch-Sahi <strong>Degenerate</strong> <strong>Whittaker</strong> <strong>functionals</strong> August 2012 14 / 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!