28.01.2015 Views

HPV-16 E6 and E7 protein T cell epitopes prediction analysis based ...

HPV-16 E6 and E7 protein T cell epitopes prediction analysis based ...

HPV-16 E6 and E7 protein T cell epitopes prediction analysis based ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Vaccine 31 (2013) 2289–2294<br />

Contents lists available at SciVerse ScienceDirect<br />

Vaccine<br />

jou rn al h om epa ge: www.elsevier.com/locate/vaccine<br />

<strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong> T <strong>cell</strong> <strong>epitopes</strong> <strong>prediction</strong> <strong>analysis</strong> <strong>based</strong> on<br />

distributions of HLA-A loci across populations: An in silico approach<br />

Yufeng Yao, Weiwei Huang, Xu Yang, Wenjia Sun, Xin Liu, Wei Cun, Yanbing Ma ∗<br />

Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious<br />

Diseases, Yunnan Engineering Research Center of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, China<br />

a r t i c l e i n f o<br />

Article history:<br />

Received 15 September 2012<br />

Received in revised form 6 February 2013<br />

Accepted 28 February 2013<br />

Available online 13 March 2013<br />

Keywords:<br />

Human papillomavirus (<strong>HPV</strong>)<br />

Human leukocyte antigen (HLA)<br />

T <strong>cell</strong> <strong>epitopes</strong><br />

Cytotoxic T lymphocytes (CTL)<br />

Cervical cancer<br />

In silico approach<br />

a b s t r a c t<br />

Human papillomavirus type <strong>16</strong> (<strong>HPV</strong>-<strong>16</strong>) is the most prevalent virus in human cervical cancers, as it<br />

is present in more than half of all cases. Many studies have found continued expression of <strong>E6</strong> <strong>and</strong> <strong>E7</strong><br />

<strong>protein</strong>s in the majority of cervical cancer cases, but not in normal tissues. These results indicated that<br />

the <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s could be ideal c<strong>and</strong>idate therapeutic vaccines against <strong>HPV</strong>-<strong>16</strong> infection <strong>and</strong> cervical<br />

cancer. Using the Immune Epitope Database Analysis Resource, cytotoxic T lymphocyte (CTL) <strong>epitopes</strong><br />

of the <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s were predicted according to worldwide frequency distributions of<br />

HLA-A alleles (HLA-A*01:01, -A*02:01, -A*02:06, -A*03:01, -A*11:01, -A*24:02, -A*26:01, -A*31:01 <strong>and</strong> -<br />

A*33:03). Our results predicted a total of 81 <strong>epitopes</strong> of <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> (n = 59) <strong>and</strong> <strong>E7</strong> (n = 22). Epitope cluster<br />

<strong>analysis</strong> showed that among the 20 clusters of <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong>, cluster 3 contained the most <strong>epitopes</strong> (10<br />

<strong>epitopes</strong>), which was represented by HLA-A*31:01 <strong>and</strong> -A*33:03. Of the 10 clusters of <strong>HPV</strong>-<strong>16</strong> <strong>E7</strong>, cluster<br />

3 contained the most <strong>epitopes</strong> (5 <strong>epitopes</strong>), which was represented by HLA-A*01:01 <strong>and</strong> -A*26:01. Our<br />

results indicated that the combination of <strong>epitopes</strong> FAFRDLCIVYR 52-62 of <strong>E6</strong> (HLA-A*02:06, HLA-A*31:01,<br />

<strong>and</strong> HLA-A*33:03), PYAVCDKCLKF 66-76 of <strong>E6</strong> (HLA-A*11:01 <strong>and</strong> HLA-A*24:02), HGDTPTLHEY 2-11 of <strong>E7</strong><br />

(HLA-A*01:01 <strong>and</strong> HLA-A*26:01), <strong>and</strong> YMLDLQPETT 11-20 of <strong>E7</strong> (HLA-A*02:01) could vaccinate >50% of all<br />

individuals worldwide. Our results propose CTL <strong>epitopes</strong> or combinations of them predicted in current<br />

study for c<strong>and</strong>idate therapeutic vaccines to effectively control <strong>HPV</strong>-<strong>16</strong> infection <strong>and</strong> development of<br />

cervical cancer.<br />

© 2013 Elsevier Ltd. All rights reserved.<br />

1. Introduction<br />

Human papillomavirus (<strong>HPV</strong>) has been identified as an etiological<br />

factor for several anogenital diseases, especially cervical cancer<br />

[1]. Of the >200 <strong>HPV</strong> genotypes, six ‘high-risk’ types of <strong>HPV</strong> (<strong>16</strong>, 18,<br />

31, 45, 52 <strong>and</strong> 58) are of particular importance, because they have<br />

been highly associated with over 80% of all cervical cancers [2–4]. Of<br />

these six high-risk types, <strong>HPV</strong> type <strong>16</strong> (<strong>HPV</strong>-<strong>16</strong>) is the most prevalent,<br />

being present in more than half of all cervical cancers [2–4]. In<br />

addition, <strong>HPV</strong>-<strong>16</strong> is also associated with precursors of high-grade<br />

squamous intraepithelial lesions [3,5].<br />

<strong>HPV</strong>-<strong>16</strong> carries two transforming oncogenes, <strong>E6</strong> <strong>and</strong> <strong>E7</strong>, whose<br />

expressed <strong>protein</strong>s interact with the p53 <strong>and</strong> retinoblastoma<br />

<strong>protein</strong>s, respectively [6–10]. Several studies have shown that continued<br />

expression of <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s is necessary for the growth<br />

<strong>and</strong> tumorogenicity of cervical carcinoma <strong>cell</strong>s [11,12]. Ideally, the<br />

<strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s could be used as c<strong>and</strong>idate therapeutic vaccines<br />

∗ Corresponding author at: Institute of Medical Biology, Chinese Academy of Medical<br />

Sciences & Peking Union Medical College, Kunming 650118, China.<br />

E-mail address: may@imbcams.com.cn (Y. Ma).<br />

against <strong>HPV</strong>-<strong>16</strong> infection <strong>and</strong> cervical cancer, because of the following<br />

two reasons [3]. First, continued expression of the <strong>E6</strong> <strong>and</strong><br />

<strong>E7</strong> <strong>protein</strong>s have been observed in the majority of cervical cancers<br />

[3], <strong>and</strong> second, <strong>E6</strong> <strong>and</strong> <strong>E7</strong> are critical for the induction <strong>and</strong> maintenance<br />

of <strong>cell</strong>ular transformation in <strong>HPV</strong>-infected <strong>cell</strong>s; hence, it<br />

is unlikely that the tumor <strong>cell</strong>s can escape immune attack through<br />

antigen loss [3]. Up to now, the <strong>E6</strong> <strong>and</strong> <strong>E7</strong> have been experimentally<br />

identified as target antigens by immune intervention protocols<br />

against cervical intraepithelial lesions <strong>and</strong> cervical cancer [13–15].<br />

CD4 <strong>and</strong>/or CD8 T <strong>cell</strong> responses play a vital role in controlling<br />

pathogenesis of <strong>HPV</strong> <strong>and</strong> associated cervical lesions in humans [<strong>16</strong>].<br />

Therefore, cytotoxic T lymphocytes (CTLs) are considered the major<br />

eradicators of both <strong>HPV</strong>-infected <strong>cell</strong>s <strong>and</strong> cervical cancer <strong>cell</strong>s<br />

through the adaptive immune response [17,18]. CTL peptide-<strong>based</strong><br />

immunotherapy for cervical cancer has been shown promising<br />

results using a liposomal delivery system in a murine model [19].<br />

In addition, the CTL <strong>epitopes</strong> (YMLDLQPETT) derived from the <strong>E7</strong><br />

<strong>protein</strong> presented by the human leukocyte antigen (HLA)-A*02:01<br />

has been used in clinical trials of <strong>E7</strong> peptide vaccination, in which<br />

most patients with high-grade cervical/vulvar dysplasia <strong>and</strong> cervical<br />

cancer had a detectable immune response in peripheral blood<br />

<strong>cell</strong>s [20–33]. Therefore, direct administration of peptides derived<br />

0264-410X/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.<br />

http://dx.doi.org/10.10<strong>16</strong>/j.vaccine.2013.02.065


2290 Y. Yao et al. / Vaccine 31 (2013) 2289–2294<br />

from <strong>HPV</strong> antigens provides a means of vaccination against <strong>HPV</strong><br />

infection <strong>and</strong> cervical cancer.<br />

The CTL <strong>epitopes</strong>, usually 8–11 amino acids in length, bind to<br />

the cleft of various human leukocyte antigen (HLA)-I molecules<br />

through features embedded in the peptide sequence <strong>and</strong>, more<br />

specifically, in anchor residues of HLA-I molecules [3]. However,<br />

a limitation of peptide-<strong>based</strong> vaccines is HLA-specificity, as HLA<br />

molecules are highly polymorphic. Therefore, it may be difficult to<br />

produce a peptide-<strong>based</strong> vaccine that is effective in patients with<br />

different HLA molecules, thus making it impractical for large-scale<br />

vaccination programs [3].<br />

In current study, <strong>based</strong> on the distribution characteristics of<br />

HLA-A across all populations, we predicted putative CTL <strong>epitopes</strong><br />

of <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s using immunoinformatic methods.<br />

Our results provide likely c<strong>and</strong>idate CTL <strong>epitopes</strong> or their combination<br />

for therapeutic vaccine development to effectively control<br />

<strong>HPV</strong>-<strong>16</strong>-induced development of cervical cancer.<br />

2. Methods<br />

2.1. <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong> sequence retrieval <strong>and</strong> <strong>analysis</strong><br />

The ID of the <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s were NC 001526 <strong>and</strong><br />

retrieved from the NCBI (http://www.ncbi.nlm.nih.gov/nuccore/<br />

NC 001526). The number of amino acids, molecular weights of <strong>protein</strong>s,<br />

isolectric points, <strong>and</strong> the percentages of strongly basic, acidic,<br />

hydrophobic <strong>and</strong> polar amino acids in the <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s<br />

was calculated using Lasergene 7.1 software (DNASTAR, Inc.,<br />

Madison, WI, USA).<br />

2.2. Retrieval <strong>and</strong> <strong>analysis</strong> of HLA alleles<br />

The average frequency of HLA alleles across all populations was<br />

retrieval from a previous study [34] <strong>and</strong> the major histocompatibility<br />

complex database (dbMHC) (http://www.ncbi.nlm.nih.gov/<br />

projects/gv/mhc/main.fcgicmd=init).<br />

2.3. Epitope <strong>prediction</strong><br />

CTL <strong>epitopes</strong> of the <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s were predicted<br />

<strong>based</strong> on HLA-A alleles using the Immune Epitope<br />

Database Analysis (IEDB) Resource (http://tools.immuneepitope.<br />

org/main/index.html). The IEDB site recommended selecting the<br />

default <strong>prediction</strong> method. Based on the availability of predictors<br />

<strong>and</strong> previously observed predictive performance, this selection<br />

uses the best possible method for a given MHC molecule. Currently,<br />

for peptide:MHC-I binding <strong>prediction</strong> for a given MHC molecule,<br />

IEDB recommends using the Consensus Method consisting<br />

of NetMHC (http://www.cbs.dtu.dk/services/NetMHC/), Stabilized<br />

Matrix Method (SMM; http://70.<strong>16</strong>7.3.42/smm/), <strong>and</strong> combinatorial<br />

peptide libraries (CombLib; http://www.mimotopes.com/<br />

peptideLibraries.asp) if any corresponding predictor is available<br />

for the molecule. Otherwise, NetMHCpan was used. For the IEDBrecommended<br />

method, a low percentile indicated strong binding<br />

to HLA molecules. A 1% percentile was used in the present study.<br />

2.4. Epitope cluster <strong>analysis</strong><br />

Based on sequence identity, the predicted <strong>epitopes</strong> were<br />

grouped into clusters <strong>based</strong> on Epitope Cluster Analysis (http://<br />

tools.immuneepitope.org/main/index.html). In the current study,<br />

a cluster was defined as a group of sequences that have a sequence<br />

similarity greater than an 80% minimum sequence identity threshold.<br />

Table 1<br />

Average frequency of HLA alleles (>3%) across all population samples.<br />

Allele Freq Freq<br />

Solberg et al. (2008) [34] dbMHC<br />

A*01:01 0.048 0.059<br />

A*02:01 0.153 0.143<br />

A*02:06 0.035 0.029<br />

A*03:01 0.043 0.048<br />

A*11:01 0.117 0.105<br />

A*24:02 0.188 0.185<br />

A*26:01 0.034 0.029<br />

A*31:01 0.041 0.035<br />

A*33:03 0.041 0.035<br />

0.699 0.668<br />

3. Results<br />

3.1. <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong> <strong>analysis</strong><br />

The number of amino acids, molecular weight of <strong>protein</strong>s, isoelectric<br />

points, <strong>and</strong> characteristics of amino acids of the <strong>HPV</strong>-<strong>16</strong><br />

<strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s are analyzed in current study. The <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong><br />

<strong>and</strong> <strong>E7</strong> <strong>protein</strong>s have molecular weights of 19.187 <strong>and</strong> 11.022 kDa,<br />

respectively. The percentage of strongly basic, acidic, hydrophobic<br />

<strong>and</strong> polar amino acids in the <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s were 18.4%<br />

<strong>and</strong> 5.1%, 10.8% <strong>and</strong> 19.45%, 23.4% <strong>and</strong> 27.6%, <strong>and</strong> 35.4% <strong>and</strong> 32.7%,<br />

respectively. There were significant differences in the percentages<br />

of strongly basic <strong>and</strong> acidic amino acids between the <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong><br />

<strong>and</strong> <strong>E7</strong> <strong>protein</strong>s (P = 0.002 <strong>and</strong> P = 0.054, respectively).<br />

3.2. HLA-A allele <strong>analysis</strong><br />

The average frequency of HLA alleles (>3%) across all population<br />

samples was obtained from previous studies [34] <strong>and</strong><br />

dbMHC. Nine HLA-A alleles (A*01:01, A*02:01, A*02:06, A*03:01,<br />

A*11:01, A*24:02, A*26:01, A*31:01 <strong>and</strong> A*33:03) were analyzed<br />

<strong>and</strong> their accumulative frequencies were 0.699 <strong>and</strong> 0.668, respectively<br />

(Table 1).<br />

3.3. Epitope <strong>prediction</strong><br />

A total of 81 <strong>epitopes</strong> of <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>HPV</strong>-<strong>16</strong> <strong>E7</strong> were<br />

predicted against the 9 alleles of the HLA-A loci (Tables 2 <strong>and</strong> 3).<br />

The number of <strong>epitopes</strong> represented by the <strong>E6</strong> <strong>protein</strong> (n = 59)<br />

comprised 72.8% (59/81) of all predicted <strong>epitopes</strong>. Only 27.2%<br />

of the predicted <strong>epitopes</strong> (22/81) were represented in the<br />

<strong>E7</strong> <strong>protein</strong> sequence. AFRDLCIVYR 53-62 , KFYSKISEYR 75-84 ,<br />

RCMSCCRSSR 142-153 , MSCCRSSRTR 144-153 <strong>and</strong> EVYDFAFR 48-55<br />

were the best for binding to the <strong>E6</strong> <strong>protein</strong> in terms of percentile<br />

(percentile = 0.1). On the other h<strong>and</strong>, TLGIVCPI 86-93 <strong>and</strong><br />

ETTDLYCY 18-25 were the best for binding to the <strong>E7</strong> <strong>protein</strong> in terms<br />

of percentile (percentile = 0.1). For the <strong>E6</strong> <strong>protein</strong>, HLA-A*31:01<br />

presented the most frequent <strong>epitopes</strong> (19/59), followed by A*33:03<br />

(17/59), A*01:01 (5/59), A*11:01, A*24:02 <strong>and</strong> A*26:01 (4/59),<br />

A*03:01 (3/59), A*02:06 (2/59), <strong>and</strong> A*02:01 (1/59). For the <strong>E7</strong> <strong>protein</strong>,<br />

HLA-A*11:01 presented the most frequent <strong>epitopes</strong> (<strong>16</strong>/61),<br />

followed by A*02:01 (6/22), A*01:01 <strong>and</strong> A*26:01 (5/22), A*03:01<br />

<strong>and</strong> A*11:01(2/22), A*02:06 <strong>and</strong> A*33:03 (1/22). Interestingly,<br />

there were no <strong>epitopes</strong> predicted for the <strong>HPV</strong>-<strong>16</strong> <strong>E7</strong> <strong>protein</strong><br />

presented by A*24:02 <strong>and</strong> A*31:01. However, for the <strong>E6</strong> <strong>protein</strong>,<br />

HLA-A*31:01 presented the most frequent <strong>epitopes</strong> (19/59). For<br />

both of the <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s, HLA-A*31:01 presented the most<br />

frequent <strong>epitopes</strong> (19/81), followed by A*33:03 (18/81), A*01:01<br />

(10/81), A*26:01 (9/81), A*02:01 (7/81), A*11:01(6/81), A*03:01<br />

(5/81), A*24:02 (4/81), <strong>and</strong> A*02:06 (3/81).


Y. Yao et al. / Vaccine 31 (2013) 2289–2294 2291<br />

Table 2<br />

Predicted <strong>epitopes</strong> of <strong>HPV</strong><strong>16</strong> <strong>E6</strong> against the nine alleles of HLA-A loci.<br />

No. Allele Start End Peptide length Sequence Method used Percentile rank<br />

001 HLA-A*01:01 92 99 8 GTTLEQQY NetMHCpan 0.7<br />

002 HLA-A*01:01 80 88 9 ISEYRHYCY Consensus (ANN,SMM) 0.2<br />

003 HLA-A*01:01 77 86 10 YSKISEYRHY Consensus (ANN,SMM) 0.15<br />

004 HLA-A*01:01 79 88 10 KISEYRHYCY Consensus (ANN,SMM) 0.75<br />

005 HLA-A*01:01 82 91 10 EYRHYCYSLY Consensus (ANN,SMM) 0.95<br />

006 HLA-A*02:01 18 25 8 KLPQLCTE SMM 1<br />

007 HLA-A*02:06 52 60 9 FAFRDLCIV Consensus (ANN,SMM) 0.7<br />

008 HLA-A*02:06 103 113 11 LCDLLIRCINC SMM 0.6<br />

009 HLA-A*03:01 34 41 8 ILECVYCK NetMHCpan 1<br />

010 HLA-A*03:01 106 115 10 LLIRCINCQK Consensus (ANN,SMM) 0.45<br />

011 HLA-A*03:01 89 99 11 SLYGTTLEQQY NetMHCpan 0.9<br />

012 HLA-A*11:01 68 75 8 AVCDKCLK NetMHCpan 0.4<br />

013 HLA-A*11:01 33 41 9 IILECVYCK Consensus (ANN,SMM) 0.65<br />

014 HLA-A*11:01 93 101 9 TTLEQQYNK Consensus (ANN,SMM) 0.2<br />

015 HLA-A*11:01 92 101 10 GTTLEQQYNK Consensus (ANN,SMM) 0.5<br />

0<strong>16</strong> HLA-A*24:02 38 45 8 VYCKQQLL NetMHCpan 1<br />

017 HLA-A*24:02 49 59 11 VYDFAFRDLCI NetMHCpan 0.7<br />

018 HLA-A*24:02 66 76 11 PYAVCDKCLKF NetMHCpan 1<br />

019 HLA-A*24:02 98 108 11 QYNKPLCDLLI NetMHCpan 0.8<br />

020 HLA-A*26:01 32 39 8 DIILECVY NetMHCpan 0.3<br />

021 HLA-A*26:01 48 55 8 EVYDFAFR NetMHCpan 0.9<br />

022 HLA-A*26:01 82 91 10 EYRHYCYSLY Consensus (ANN,SMM) 0.7<br />

023 HLA-A*26:01 29 39 11 TIHDIILECVY NetMHCpan 0.6<br />

024 HLA-A*31:01 55 62 8 RDLCIVYR NetMHCpan 0.9<br />

025 HLA-A*31:01 77 84 8 YSKISEYR NetMHCpan 0.9<br />

026 HLA-A*31:01 129 136 8 KQRFHNIR NetMHCpan 0.2<br />

027 HLA-A*31:01 131 138 8 RFHNIRGR NetMHCpan 0.5<br />

028 HLA-A*31:01 144 151 8 MSCCRSSR NetMHCpan 0.4<br />

029 HLA-A*31:01 143 151 9 CMSCCRSSR Consensus (ANN,SMM) 0.95<br />

030 HLA-A*31:01 8 17 10 MFQDPQERPR Consensus (ANN,SMM) 0.8<br />

031 HLA-A*31:01 53 62 10 AFRDLCIVYR Consensus (ANN,SMM) 0.1<br />

032 HLA-A*31:01 75 84 10 KFYSKISEYR Consensus (ANN,SMM) 0.1<br />

033 HLA-A*31:01 129 138 10 KQRFHNIRGR Consensus (ANN,SMM) 0.35<br />

034 HLA-A*31:01 142 151 10 RCMSCCRSSR Consensus (ANN,SMM) 0.1<br />

035 HLA-A*31:01 144 153 10 MSCCRSSRTR Consensus (ANN,SMM) 0.1<br />

036 HLA-A*31:01 145 154 10 SCCRSSRTRR Consensus (ANN,SMM) 1<br />

037 HLA-A*31:01 5 15 11 RTAMFQDPQER NetMHCpan 0.7<br />

038 HLA-A*31:01 37 47 11 CVYCKQQLLRR NetMHCpan 1<br />

039 HLA-A*31:01 52 62 11 FAFRDLCIVYR NetMHCpan 0.7<br />

040 HLA-A*31:01 138 148 11 RWTGRCMSCCR NetMHCpan 0.7<br />

041 HLA-A*31:01 143 153 11 CMSCCRSSRTR NetMHCpan 0.7<br />

042 HLA-A*31:01 144 154 11 MSCCRSSRTRR NetMHCpan 0.3<br />

043 HLA-A*33:03 8 15 8 MFQDPQER NetMHCpan 0.5<br />

044 HLA-A*33:03 48 55 8 EVYDFAFR NetMHCpan 0.1<br />

045 HLA-A*33:03 77 84 8 YSKISEYR NetMHCpan 0.5<br />

046 HLA-A*33:03 144 151 8 MSCCRSSR NetMHCpan 0.2<br />

047 HLA-A*33:03 76 84 9 FYSKISEYR NetMHCpan 0.4<br />

048 HLA-A*33:03 134 142 9 NIRGRWTGR NetMHCpan 0.6<br />

049 HLA-A*33:03 143 151 9 CMSCCRSSR NetMHCpan 0.2<br />

050 HLA-A*33:03 8 17 10 MFQDPQERPR NetMHCpan 0.5<br />

051 HLA-A*33:03 37 46 10 CVYCKQQLLR NetMHCpan 0.3<br />

052 HLA-A*33:03 53 62 10 AFRDLCIVYR NetMHCpan 0.6<br />

053 HLA-A*33:03 75 84 10 KFYSKISEYR NetMHCpan 0.2<br />

054 HLA-A*33:03 133 142 10 HNIRGRWTGR NetMHCpan 0.4<br />

055 HLA-A*33:03 144 153 10 MSCCRSSRTR NetMHCpan 0.5<br />

056 HLA-A*33:03 37 47 11 CVYCKQQLLRR NetMHCpan 0.9<br />

057 HLA-A*33:03 52 62 11 FAFRDLCIVYR NetMHCpan 0.2<br />

058 HLA-A*33:03 143 153 11 CMSCCRSSRTR NetMHCpan 0.8<br />

059 HLA-A*33:03 144 154 11 MSCCRSSRTRR NetMHCpan 0.2<br />

3.4. Epitopes cluster <strong>analysis</strong><br />

All of the predicted <strong>epitopes</strong> for <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> were grouped<br />

into 20 <strong>and</strong> 10 clusters (Tables 4 <strong>and</strong> 5), respectively. Among the<br />

20 <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> clusters, cluster 3 contained the most <strong>epitopes</strong> (10<br />

<strong>epitopes</strong>), which was represented by HLA-A*31:01 <strong>and</strong> 33:03. Of<br />

the 10 <strong>HPV</strong>-<strong>16</strong> <strong>E7</strong> clusters, cluster 3 contained the most <strong>epitopes</strong> (5<br />

<strong>epitopes</strong>), which was represented by HLA-A*01:01 <strong>and</strong> -A*26:01.<br />

4. Discussion<br />

The <strong>E6</strong> <strong>and</strong> <strong>E7</strong> onco<strong>protein</strong>s are major therapy targets for<br />

preventing the progression of persistent <strong>HPV</strong> infection to cancer<br />

<strong>and</strong> for treating cancers, as their expression is both necessary<br />

<strong>and</strong> sufficient for the maintenance of the transformed phenotype,<br />

ensuring retention of onco<strong>protein</strong> expression by the tumor<br />

[3,11,12]. In the present study, <strong>based</strong> on the <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong><br />

<strong>protein</strong> sequences, we predicted putative HLA-A-restricted CTL <strong>epitopes</strong><br />

using immunoinformatic methods.<br />

Modern immunoinformatic methodologies provide new strategies<br />

for the design <strong>and</strong> synthesis of antigen-specific epitopic<br />

therapeutic vaccines against viral or pathogenic infections [35,36].<br />

The <strong>epitopes</strong> predicted in the current study could eventually<br />

become therapeutic for <strong>HPV</strong> infection <strong>and</strong> cervical cancer, as <strong>epitopes</strong><br />

such as YMLDLQPETT 11-20 of <strong>E7</strong>, which were predicted in this<br />

study, have been reportedly used in clinical trials of <strong>E7</strong> peptide


2292 Y. Yao et al. / Vaccine 31 (2013) 2289–2294<br />

Table 3<br />

Predicted <strong>epitopes</strong> of <strong>HPV</strong><strong>16</strong> <strong>E7</strong> against the nine alleles of HLA-A locus.<br />

No. Allele Start End Peptide length Sequence Method used Percentile rank<br />

1 HLA-A*01:01 4 11 8 DTPTLHEY NetMHCpan 1<br />

2 HLA-A*01:01 18 25 8 ETTDLYCY NetMHCpan 0.4<br />

3 HLA-A*01:01 2 11 10 HGDTPTLHEY Consensus (ANN,SMM) 0.8<br />

4 HLA-A*01:01 19 28 10 TTDLYCYEQL Consensus (ANN,SMM) 1<br />

5 HLA-A*01:01 19 29 11 TTDLYCYEQLN NetMHCpan 1<br />

6 HLA-A*02:01 82 89 8 LLMGTLGI SMM 0.9<br />

7 HLA-A*02:01 83 90 8 LMGTLGIV SMM 0.3<br />

8 HLA-A*02:01 86 93 8 TLGIVCPI SMM 0.1<br />

9 HLA-A*02:01 11 19 9 YMLDLQPET Consensus (ANN,SMM, CombLib Sidney2008) 0.3<br />

10 HLA-A*02:01 11 20 10 YMLDLQPETT Consensus (ANN,SMM) 0.55<br />

11 HLA-A*02:01 59 69 11 CKCDSTLRLCV SMM 0.4<br />

12 HLA-A*02:06 77 86 10 RTLEDLLMGT Consensus (ANN,SMM) 1<br />

13 HLA-A*03:01 89 97 9 IVCPICSQK Consensus (ANN,SMM) 0.6<br />

14 HLA-A*03:01 88 97 10 GIVCPICSQK Consensus (ANN,SMM) 0.6<br />

15 HLA-A*11:01 89 97 9 IVCPICSQK Consensus (ANN,SMM) 0.55<br />

<strong>16</strong> HLA-A*11:01 88 97 10 GIVCPICSQK Consensus (ANN,SMM) 1<br />

17 HLA-A*26:01 4 11 8 DTPTLHEY NetMHCpan 0.2<br />

18 HLA-A*26:01 18 25 8 ETTDLYCY NetMHCpan 0.1<br />

19 HLA-A*26:01 4 12 9 DTPTLHEYM Consensus (ANN,SMM) 0.65<br />

20 HLA-A*26:01 18 26 9 ETTDLYCYE Consensus (ANN,SMM) 0.9<br />

21 HLA-A*26:01 18 28 11 ETTDLYCYEQL NetMHCpan 0.6<br />

22 HLA-A*33:03 56 66 11 TFCCKCDSTLR NetMHCpan 0.8<br />

Table 4<br />

Cluster <strong>analysis</strong> of all <strong>epitopes</strong> of <strong>HPV</strong><strong>16</strong> <strong>E6</strong> predicted.<br />

Cluster No. Number of <strong>epitopes</strong> in the cluster Epitope No. Epitope Sequence HLA alleles<br />

1 4 1 AFRDLCIVYR HLA-A*33:03<br />

2 FAFRDLCIVYR HLA-A*33:03<br />

3 RDLCIVYR HLA-A*31:01<br />

4 FAFRDLCIV HLA-A*02:06<br />

2 2 1 AVCDKCLK HLA-A*11:01<br />

2 PYAVCDKCLKF HLA-A*24:02<br />

3 7 1 CMSCCRSSR HLA-A*33:03<br />

2 CMSCCRSSRTR HLA-A*33:03<br />

3 MSCCRSSR HLA-A*33:03<br />

4 RCMSCCRSSR HLA-A*31:01<br />

5 MSCCRSSRTR HLA-A*33:03<br />

6 MSCCRSSRTRR HLA-A*33:03<br />

7 SCCRSSRTRR HLA-A*31:01<br />

4 3 1 CVYCKQQLLR HLA-A*33:03<br />

2 CVYCKQQLLRR HLA-A*33:03<br />

3 VYCKQQLL HLA-A*24:02<br />

5 2 1 DIILECVY HLA-A*26:01<br />

2 TIHDIILECVY HLA-A*26:01<br />

6 1 1 EVYDFAFR HLA-A*33:03<br />

7 1 1 EYRHYCYSLY HLA-A*26:01<br />

8 4 1 FYSKISEYR HLA-A*33:03<br />

2 KFYSKISEYR HLA-A*33:03<br />

3 YSKISEYR HLA-A*33:03<br />

4 YSKISEYRHY HLA-A*01:01<br />

9 4 1 GTTLEQQY HLA-A*01:01<br />

2 GTTLEQQYNK HLA-A*11:01<br />

3 SLYGTTLEQQY HLA-A*03:01<br />

4 TTLEQQYNK HLA-A*11:01<br />

10 2 1 HNIRGRWTGR HLA-A*33:03<br />

2 NIRGRWTGR HLA-A*33:03<br />

11 2 1 IILECVYCK HLA-A*11:01<br />

2 ILECVYCK HLA-A*03:01<br />

12 2 1 ISEYRHYCY HLA-A*01:01<br />

2 KISEYRHYCY HLA-A*01:01<br />

13 1 1 KLPQLCTE HLA-A*02:01<br />

14 3 1 KQRFHNIR HLA-A*31:01<br />

2 KQRFHNIRGR HLA-A*31:01<br />

3 RFHNIRGR HLA-A*31:01<br />

15 1 1 LCDLLIRCINC HLA-A*02:06<br />

<strong>16</strong> 1 1 LLIRCINCQK HLA-A*03:01<br />

17 3 1 MFQDPQER HLA-A*33:03<br />

2 MFQDPQERPR HLA-A*33:03<br />

3 RTAMFQDPQER HLA-A*31:01<br />

18 1 1 QYNKPLCDLLI HLA-A*24:02<br />

19 1 1 RWTGRCMSCCR HLA-A*31:01<br />

20 1 1 VYDFAFRDLCI HLA-A*24:02


Y. Yao et al. / Vaccine 31 (2013) 2289–2294 2293<br />

Table 5<br />

Cluster <strong>analysis</strong> of all <strong>epitopes</strong> of <strong>HPV</strong><strong>16</strong> <strong>E7</strong> predicted.<br />

Cluster No. Number of <strong>epitopes</strong> in the cluster Epitope No. Epitope Sequence HLA alleles<br />

1 1 1 CKCDSTLRLCV HLA-A*02:01<br />

2 3 1 DTPTLHEY HLA-A*26:01<br />

2 DTPTLHEYM HLA-A*26:01<br />

3 HGDTPTLHEY HLA-A*01:01<br />

3 5 1 ETTDLYCY HLA-A*26:01<br />

2 ETTDLYCYE HLA-A*26:01<br />

3 ETTDLYCYEQL HLA-A*26:01<br />

4 TTDLYCYEQL HLA-A*01:01<br />

5 TTDLYCYEQLN HLA-A*01:01<br />

4 2 1 GIVCPICSQK HLA-A*11:01<br />

2 IVCPICSQK HLA-A*11:01<br />

5 1 1 LLMGTLGI HLA-A*02:01<br />

6 1 1 LMGTLGIV HLA-A*02:01<br />

7 1 1 RTLEDLLMGT HLA-A*02:06<br />

8 1 1 TFCCKCDSTLR HLA-A*33:03<br />

9 1 1 TLGIVCPI HLA-A*02:01<br />

10 2 1 YMLDLQPET HLA-A*02:01<br />

2 YMLDLQPETT HLA-A*02:01<br />

vaccinations [20–33]. The majority of patients with high-grade cervical/vulvar<br />

dysplasia <strong>and</strong> cervical cancer had a detectable immune<br />

response after injection of the peptide <strong>E7</strong> 11-20 as therapeutic vaccine<br />

[20–33].<br />

The cluster <strong>analysis</strong> showed that cluster 1 of the <strong>E6</strong> predicted<br />

<strong>epitopes</strong> included 4 <strong>epitopes</strong>: AFRDLCIVYR 53-62 <strong>and</strong><br />

FAFRDLCIVYR 52-62 bound to HLA-A*33:03, RDLCIVYR 55-62 bound<br />

to HLA-A*31:01, <strong>and</strong> FAFRDLCIV 52-60 bound to HLA-A*02:06, as<br />

they have the common amino acid sequence, RDLCIV. We combined<br />

these 4 <strong>epitopes</strong> <strong>and</strong> our results indicated that the combined<br />

epitope FAFRDLCIVYR 52-62 could be presented by HLA-A*02:06,<br />

HLA-A*31:01, <strong>and</strong> HLA-A*33:03. Several previous studies have<br />

already proved that parts of the peptide <strong>E6</strong> FAFRDLCIVYR 52-62 have<br />

the antitumor effects [30,37]. These three HLA alleles were detected<br />

in 9.9–11.7% of individuals worldwide. As another example, there<br />

were 2 predicted <strong>epitopes</strong> for <strong>E6</strong> in cluster 2: AVCDKCLK 68-75<br />

<strong>and</strong> PYAVCDKCLKF 66-76 . Both were presented by HLA-A*11:01<br />

<strong>and</strong> HLA-A*24:02, which included 29.5–30.5% of all individuals<br />

worldwide. These results indicated that the combined epitope<br />

PYAVCDKCLKF 66-76 could be the first choice for producing therapeutic<br />

<strong>epitopes</strong> against <strong>HPV</strong> infection <strong>and</strong> cervical cancer, which<br />

were HLA-A*11:01 <strong>and</strong> HLA-A*24:02 alleles. Moreover parts of the<br />

epitope <strong>E6</strong> PYAVCDKCLKF 66-76 has already been identified in previous<br />

studies [38]. In addition, there were 3 predicted <strong>epitopes</strong><br />

for <strong>E7</strong> in cluster 2: DTPTLHEY 4-11 <strong>and</strong> DTPTLHEYM 4-12 bound to<br />

HLA-A*26:01, <strong>and</strong> HGDTPTLHEY 2-11 bound to HLA-A*01:01, which<br />

contained two HLA alleles that are common to 8.2-8.8% of all<br />

individuals worldwide. The combined <strong>epitopes</strong> HGDTPTLHEYM 2-12<br />

indicated the it could be presented by HLA-A*01:01 <strong>and</strong> HLA-<br />

A*26:01 <strong>and</strong> parts of the epitope <strong>E7</strong> HGDTPTLHEYM 2-12 has<br />

already been identified in previous studies [30]. The epitope of<br />

<strong>E7</strong> 11-20 is presented by HLA-A*02:01, which includes 14.3–15.3%<br />

of all individuals worldwide. As mentioned before, the antitumor<br />

effects of this epitope have been proved in many studies<br />

either in vitro or in vivo [20–33,13]. Therefore, the combined<br />

<strong>epitopes</strong> FAFRDLCIVYR 52-62 of the <strong>E6</strong> <strong>protein</strong> was presented<br />

by HLA-A*02:06, HLA-A*31:01, <strong>and</strong> HLA-A*33:03 (9.9–11.7%),<br />

PYAVCDKCLKF 66-76 of <strong>E6</strong> was presented by HLA-A*11:01 <strong>and</strong> HLA-<br />

A*24:02 (29.5–30.5%), HGDTPTLHEY 2-11 of <strong>E7</strong> was presented by<br />

HLA-A*01:01 <strong>and</strong> HLA-A*26:01 (8.2–8.8%), <strong>and</strong> YMLDLQPETT 11-20<br />

of <strong>E7</strong> was presented by HLA-A*02:01 (14.3%-15.3%), which occurs<br />

in over half of all individuals worldwide.<br />

Evasion of the host CTL response through mutation of key <strong>epitopes</strong><br />

is a major challenge to natural or therapeutic vaccine-induced<br />

immune control of <strong>HPV</strong>-<strong>16</strong> <strong>and</strong> treatment of cervical cancer. Therefore,<br />

we compared several most frequent variants of <strong>E6</strong> (Such as<br />

L83 V) <strong>and</strong> <strong>E7</strong> (Such as N29H) observed in some studies [39–41]<br />

<strong>and</strong> predicted the epitope combinations. We found the combined<br />

<strong>epitopes</strong> did not cover the major mutations in <strong>E6</strong> (Such as L83 V)<br />

<strong>and</strong> <strong>E7</strong> (Such as N29H). As a result, the epitope combinations we<br />

predicted might be feasible in therapeutic vaccines of <strong>HPV</strong>-<strong>16</strong>.<br />

Our results indicated the likeliness of c<strong>and</strong>idate CTL <strong>epitopes</strong><br />

to be used for production of therapeutic vaccines to effectively<br />

control <strong>HPV</strong>-<strong>16</strong> infections <strong>and</strong> cervical cancer development. The<br />

<strong>HPV</strong>-<strong>16</strong> predicted epitope vaccines <strong>based</strong> on the HLA-A distribution<br />

could cover most individuals worldwide <strong>and</strong> overcome the<br />

limitation of MHC-specificity. However, the method used in current<br />

study has only predicted the binding ability between <strong>epitopes</strong> <strong>and</strong><br />

specific MHC molecules, but the predicted <strong>epitopes</strong> for antitumor<br />

effects should also be proved using peptide-sensitized peripheral<br />

blood mononuclear <strong>cell</strong>s <strong>and</strong> isolated CD8 + CTL responses in vivo<br />

or in vitro. For example, YMLDLQPETT 11-20 of <strong>E7</strong> was presented by<br />

HLA-A*02:01 predicted in current study. Nevertheless, Riemer et al.<br />

found specific T <strong>cell</strong>s recognized <strong>and</strong> lysed <strong>E7</strong> 11-19 -loaded but not<br />

<strong>E7</strong> 11-20 -loaded target <strong>cell</strong>s. Interestingly, both <strong>epitopes</strong> bind well to<br />

HLA-A*02:01 [42]. Their data underscored the importance of precisely<br />

defining CTL <strong>epitopes</strong> on tumor <strong>cell</strong>s [42]. Despite several<br />

<strong>epitopes</strong> predicted in current study were proved to be antitumor<br />

<strong>epitopes</strong> [20–33,37,38,13,43,44], more experiments should be done<br />

to define the CTL <strong>epitopes</strong> in the future. This will help to explore the<br />

possibility of these <strong>epitopes</strong> for adaptive immunotherapy against<br />

<strong>HPV</strong>-<strong>16</strong> infections <strong>and</strong> cervical cancer.<br />

Acknowledgements<br />

Author contributions: Conceived <strong>and</strong> designed the experiments:<br />

MY <strong>and</strong> YY. Performed the HLA data <strong>analysis</strong>: LX <strong>and</strong> SW. Performed<br />

the immunoinformatic <strong>analysis</strong>: HW, YX, <strong>and</strong> CW. Wrote the paper:<br />

MY <strong>and</strong> YY.<br />

Funding: This work was supported by grant from PUMC talented<br />

youth project, Yunnan Provincial Science <strong>and</strong> Technology Department<br />

(2010ZC232), National Natural Science Foundation of China<br />

(30900798 <strong>and</strong> 31270030) <strong>and</strong> Fundamental Research Funds for<br />

the Central Universities (2012N08). The funders had no role in<br />

study design, data collection <strong>and</strong> <strong>analysis</strong>, decision to publish, or<br />

preparation of the manuscript.<br />

References<br />

[1] Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al.<br />

Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.<br />

J Pathol 1999;189(September (1)):12–9.


2294 Y. Yao et al. / Vaccine 31 (2013) 2289–2294<br />

[2] Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, et al. Prevalence<br />

of human papillomavirus in cervical cancer: a worldwide perspective. International<br />

biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer<br />

Inst 1995;87(June (11)):796–802.<br />

[3] Hung CF, Ma B, Monie A, Tsen SW, Wu TC. Therapeutic human papillomavirus<br />

vaccines: current clinical trials <strong>and</strong> future directions. Expert Opin Biol Ther<br />

2008;8(April (4)):421–39.<br />

[4] Crow JM. <strong>HPV</strong>: the global burden. Nature 2012;488(August (7413)):S2–3.<br />

[5] Sigurdsson K, Taddeo FJ, Benediktsdottir KR, Olafsdottir K, Sigvaldason H,<br />

Oddsson K, et al. <strong>HPV</strong> genotypes in CIN 2-3 lesions <strong>and</strong> cervical cancer: a<br />

population-<strong>based</strong> study. Int J Cancer 2007;121(December (12)):2682–7.<br />

[6] Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating<br />

epithelia. Microbiol Mol Biol Rev 2004;68(June (2)):362–72.<br />

[7] Munger K, Howley PM. Human papillomavirus immortalization <strong>and</strong> transformation<br />

functions. Virus Res 2002;89(November (2)):213–28.<br />

[8] Boyer SN, Wazer DE, B<strong>and</strong> V. <strong>E7</strong> <strong>protein</strong> of human papilloma virus-<strong>16</strong> induces<br />

degradation of retinoblastoma <strong>protein</strong> through the ubiquitin-proteasome<br />

pathway. Cancer Res 1996;56(October (20)):4620–4.<br />

[9] Crook T, Tidy JA, Vousden KH. Degradation of p53 can be targeted by <strong>HPV</strong> <strong>E6</strong><br />

sequences distinct from those required for p53 binding <strong>and</strong> trans-activation.<br />

Cell 1991;67(November (3)):547–56.<br />

[10] zur Hausen H. Papillomaviruses <strong>and</strong> cancer: from basic studies to clinical application.<br />

Nat Rev Cancer 2002;2(May (5)):342–50.<br />

[11] von Knebel Doeberitz M, Bauknecht T, Bartsch D, zur Hausen H. Influence of<br />

chromosomal integration on glucocorticoid-regulated transcription of growthstimulating<br />

papillomavirus genes <strong>E6</strong> <strong>and</strong> <strong>E7</strong> in cervical carcinoma <strong>cell</strong>s. Proc<br />

Natl Acad Sci U S A 1991;88(February (4)):1411–5.<br />

[12] von Knebel Doeberitz M, Oltersdorf T, Schwarz E, Gissmann L. Correlation<br />

of modified human papilloma virus early gene expression with altered<br />

growth properties in C4-1 cervical carcinoma <strong>cell</strong>s. Cancer Res 1988;48(July<br />

(13)):3780–6.<br />

[13] Liu DW, Yang YC, Lin HF, Lin MF, Cheng YW, Chu CC, et al. Cytotoxic T-<br />

lymphocyte responses to human papillomavirus type <strong>16</strong> E5 <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s<br />

<strong>and</strong> HLA-A*0201-restricted T-<strong>cell</strong> peptides in cervical cancer patients. J Virol<br />

2007;81(March (6)):2869–79.<br />

[14] Frazer IH, Quinn M, Nicklin JL, Tan J, Perrin LC, Ng P, et al. Phase 1 study<br />

of <strong>HPV</strong><strong>16</strong>-specific immunotherapy with <strong>E6</strong><strong>E7</strong> fusion <strong>protein</strong> <strong>and</strong> ISCOMA-<br />

TRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine<br />

2004;23(November (2)):172–81.<br />

[15] Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM,<br />

Vloon AP, et al. Phase I immunotherapeutic trial with long peptides spanning<br />

the <strong>E6</strong> <strong>and</strong> <strong>E7</strong> sequences of high-risk human papillomavirus <strong>16</strong> in end-stage<br />

cervical cancer patients shows low toxicity <strong>and</strong> robust immunogenicity. Clin<br />

Cancer Res 2008;14(January (1)):<strong>16</strong>9–77.<br />

[<strong>16</strong>] van der Burg SH, de Jong A, Welters MJ, Offringa R, Melief CJ. The status of<br />

<strong>HPV</strong><strong>16</strong>-specific T-<strong>cell</strong> reactivity in health <strong>and</strong> disease as a guide to <strong>HPV</strong> vaccine<br />

development. Virus Res 2002;89(November (2)):275–84.<br />

[17] Schwartz RH. T-lymphocyte recognition of antigen in association with gene<br />

products of the major histocompatibility complex. Annu Rev Immunol<br />

1985;3:237–61.<br />

[18] Bauer M, Wagner H, Lipford GB. <strong>HPV</strong> type <strong>16</strong> <strong>protein</strong> <strong>E7</strong> HLA-A2 binding<br />

peptides are immunogenic but not processed <strong>and</strong> presented. Immunol Lett<br />

2000;71(January (1)):55–9.<br />

[19] Chen W, Yan W, Huang L. A simple but effective cancer vaccine consisting of<br />

an antigen <strong>and</strong> a cationic lipid. Cancer Immunol Immunother 2008;57(April<br />

(4)):517–30.<br />

[20] Evans EM, Man S, Evans AS, Borysiewicz LK. Infiltration of cervical cancer tissue<br />

with human papillomavirus-specific cytotoxic T-lymphocytes. Cancer Res<br />

1997;57(July (14)):2943–50.<br />

[21] Fonteneau JF, Larsson M, Somersan S, S<strong>and</strong>ers C, Munz C, Kwok WW, et al.<br />

Generation of high quantities of viral <strong>and</strong> tumor-specific human CD4+ <strong>and</strong> CD8+<br />

T-<strong>cell</strong> clones using peptide pulsed mature dendritic <strong>cell</strong>s. J Immunol Methods<br />

2001;258(December (1–2)):111–26.<br />

[22] Jochmus I, Osen W, Altmann A, Buck G, Hofmann B, Schneider A, et al. Specificity<br />

of human cytotoxic T lymphocytes induced by a human papillomavirus type<br />

<strong>16</strong> <strong>E7</strong>-derived peptide. J Gen Virol 1997;78(July (Pt 7)):<strong>16</strong>89–95.<br />

[23] Kaufmann AM, Niel<strong>and</strong> J, Schinz M, Nonn M, Gabelsberger J, Meissner H, et al.<br />

<strong>HPV</strong><strong>16</strong> L1<strong>E7</strong> chimeric virus-like particles induce specific HLA-restricted T <strong>cell</strong>s<br />

in humans after in vitro vaccination. Int J Cancer 2001;92(April (2)):285–93.<br />

[24] Morishima S, Akatsuka Y, Nawa A, Kondo E, Kiyono T, Torikai H, et al. Identification<br />

of an HLA-A24-restricted cytotoxic T lymphocyte epitope from human<br />

papillomavirus type-<strong>16</strong> <strong>E6</strong>: the combined effects of bortezomib <strong>and</strong> interferongamma<br />

on the presentation of a cryptic epitope. Int J Cancer 2007;120(February<br />

(3)):594–604.<br />

[25] Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, et al. A phase I<br />

trial of a human papillomavirus (<strong>HPV</strong>) peptide vaccine for women with highgrade<br />

cervical <strong>and</strong> vulvar intraepithelial neoplasia who are <strong>HPV</strong> <strong>16</strong> positive.<br />

Clin Cancer Res 2000;6(September (9)):3406–<strong>16</strong>.<br />

[26] Ressing ME, Sette A, Br<strong>and</strong>t RM, Ruppert J, Wentworth PA, Hartman M, et al.<br />

Human CTL <strong>epitopes</strong> encoded by human papillomavirus type <strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong><br />

identified through in vivo <strong>and</strong> in vitro immunogenicity studies of HLA-A*0201-<br />

binding peptides. J Immunol 1995;154(June (11)):5934–43.<br />

[27] Ressing ME, van Driel WJ, Celis E, Sette A, Br<strong>and</strong>t MP, Hartman M, et al.<br />

Occasional memory cytotoxic T-<strong>cell</strong> responses of patients with human<br />

papillomavirus type <strong>16</strong>-positive cervical lesions against a human leukocyte<br />

antigen-A *0201-restricted <strong>E7</strong>-encoded epitope. Cancer Res 1996;56(February<br />

(3)):582–8.<br />

[28] Schreurs MW, Scholten KB, Kueter EW, Ruizendaal JJ, Meijer CJ, Hooijberg E.<br />

In vitro generation <strong>and</strong> life span extension of human papillomavirus type <strong>16</strong>-<br />

specific, healthy donor-derived CTL clones. J Immunol 2003;171(September<br />

(6)):2912–21.<br />

[29] Steller MA, Gurski KJ, Murakami M, Daniel RW, Shah KV, Celis E, et al. Cellmediated<br />

immunological responses in cervical <strong>and</strong> vaginal cancer patients<br />

immunized with a lipidated epitope of human papillomavirus type <strong>16</strong> <strong>E7</strong>. Clin<br />

Cancer Res 1998;4(September (9)):2103–9.<br />

[30] Kast WM, Br<strong>and</strong>t RM, Sidney J, Drijfhout JW, Kubo RT, Grey HM, et al. Role<br />

of HLA-A motifs in identification of potential CTL <strong>epitopes</strong> in human papillomavirus<br />

type <strong>16</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s. J Immunol 1994;152(April (8)):3904–12.<br />

[31] Nilges K, Hohn H, Pilch H, Neukirch C, Freitag K, Talbot PJ, et al. Human papillomavirus<br />

type <strong>16</strong> <strong>E7</strong> peptide-directed CD8+ T <strong>cell</strong>s from patients with cervical<br />

cancer are cross-reactive with the coronavirus NS2 <strong>protein</strong>. J Virol 2003;77(May<br />

(9)):5464–74.<br />

[32] Youde SJ, Dunbar PR, Evans EM, Fi<strong>and</strong>er AN, Borysiewicz LK, Cerundolo V, et al.<br />

Use of fluorogenic histocompatibility leukocyte antigen-A*0201/<strong>HPV</strong> <strong>16</strong> <strong>E7</strong><br />

peptide complexes to isolate rare human cytotoxic T-lymphocyte-recognizing<br />

endogenous human papillomavirus antigens. Cancer Res 2000;60(January<br />

(2)):365–71.<br />

[33] Youde SJ, McCarthy CM, Thomas KJ, Smith KL, Man S. Cross-typic specificity<br />

<strong>and</strong> immunotherapeutic potential of a human <strong>HPV</strong><strong>16</strong> <strong>E7</strong>-specific CTL line. Int J<br />

Cancer 2005;114(April (4)):606–12.<br />

[34] Solberg OD, Mack SJ, Lancaster AK, Single RM, Tsai Y, Sanchez-Mazas A, et al.<br />

Balancing selection <strong>and</strong> heterogeneity across the classical human leukocyte<br />

antigen loci: a meta-analytic review of 497 population studies. Hum Immunol<br />

2008;69(July (7)):443–64.<br />

[35] Cohen T, Moise L, Martin W, Groot ASD. Immunoinformatics: the next step in<br />

vaccine design. Infect Dis Inform 2010:223–44.<br />

[36] Tong JC, Ren EC. Immunoinformatics: current trends <strong>and</strong> future directions. Drug<br />

Discov Today 2009;14(July (13–14)):684–9.<br />

[37] Bourgault Villada I, Moyal Barracco M, Berville S, Bafounta ML, Longvert<br />

C, Premel V, et al. Human papillomavirus <strong>16</strong>-specific T <strong>cell</strong> responses<br />

in classic <strong>HPV</strong>-related vulvar intra-epithelial neoplasia. Determination of<br />

strongly immunogenic regions from <strong>E6</strong> <strong>and</strong> <strong>E7</strong> <strong>protein</strong>s. Clin Exp Immunol<br />

2010;159(January (1)):45–56.<br />

[38] Mizuuchi M, Hirohashi Y, Torigoe T, Kuroda T, Yasuda K, Shimizu Y, et al. Novel<br />

oligomannose liposome-DNA complex DNA vaccination efficiently evokes<br />

anti-<strong>HPV</strong> <strong>E6</strong> <strong>and</strong> <strong>E7</strong> CTL responses. Exp Mol Pathol 2012;92(February (1)):<br />

185–90.<br />

[39] Zehbe I, Voglino G, Delius H, Wil<strong>and</strong>er E, Tommasino M. Risk of cervical cancer<br />

<strong>and</strong> geographical variations of human papillomavirus <strong>16</strong> <strong>E6</strong> polymorphisms.<br />

Lancet 1998;352(October (9138)):1441–2.<br />

[40] Wu Y, Chen Y, Li L, Yu G, He Y, Zhang Y. Analysis of mutations in the <strong>E6</strong>/<strong>E7</strong><br />

oncogenes <strong>and</strong> L1 gene of human papillomavirus <strong>16</strong> cervical cancer isolates<br />

from China. The Journal of general virology 2006;87(May (Pt 5)):1181–8.<br />

[41] Gostout BS, Zanetta GM, Maleemonkol S, Kamat MR, McGovern RM, Persing DH.<br />

Differential distribution of sequence variations in <strong>HPV</strong>-<strong>16</strong> <strong>E6</strong>. Gynecol Oncol<br />

2000;79(October (1)):11–7.<br />

[42] Riemer AB, Keskin DB, Zhang G, H<strong>and</strong>ley M, Anderson KS, Brusic V, et al. A<br />

conserved <strong>E7</strong>-derived cytotoxic T lymphocyte epitope expressed on human<br />

papillomavirus <strong>16</strong>-transformed HLA-A2+ epithelial cancers. J Biol Chem<br />

2010;285(September (38)):29608–22.<br />

[43] Jang S, Kim YT, Chung HW, Lee KR, Lim JB, Lee K. Identification of novel<br />

immunogenic human leukocyte antigen-A 2402-binding <strong>epitopes</strong> of human<br />

papillomavirus type <strong>16</strong> <strong>E7</strong> for immunotherapy against human cervical cancer.<br />

Cancer 2012;118(April (8)):2173–83.<br />

[44] Davidson EJ, Boswell CM, Sehr P, Pawlita M, Tomlinson AE, McVey RJ, et al.<br />

Immunological <strong>and</strong> clinical responses in women with vulval intraepithelial<br />

neoplasia vaccinated with a vaccinia virus encoding human papillomavirus<br />

<strong>16</strong>/18 onco<strong>protein</strong>s. Cancer Res 2003;63(September (18)):6032–41.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!