28.01.2015 Views

Comparative Genomics - Medical College of Wisconsin

Comparative Genomics - Medical College of Wisconsin

Comparative Genomics - Medical College of Wisconsin

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Medical</strong> <strong>College</strong> <strong>of</strong> <strong>Wisconsin</strong><br />

Physiogenomics <strong>of</strong> Stressors in Derived Consomic Rats<br />

<strong>Comparative</strong> <strong>Genomics</strong><br />

Annotating Rat Complex Disease<br />

Physiology on to the Human Genome


Physiological <strong>Genomics</strong><br />

• The rat has centuries <strong>of</strong> physiological data<br />

• The technology <strong>of</strong> the last two decades<br />

has resulted in vast genomic data<br />

• The merging <strong>of</strong> the two is critical to<br />

developing better models for<br />

understanding complex human disease


What makes a good disease model<br />

1. Characteristics <strong>of</strong> the clinical picture<br />

No model can match the complete clinical picture,<br />

as no single patient reflects the entire clinical<br />

spectrum.<br />

2. Inbred (homozygous through-out the genome)<br />

Reduced heterogeneity: genetics and etiology<br />

3. Physiologically and pathologically well characterized.<br />

4. “Natural” disease alleles.


Goal for Animal Models<br />

Phenotype<br />

Genotype


<strong>Comparative</strong> <strong>Genomics</strong> Approach<br />

• Choose model system that reflects<br />

aspects <strong>of</strong> clinical picture<br />

• Good systems biology<br />

• Mapping <strong>of</strong> trait to the model organism<br />

genome<br />

• Identify syntenic region in human<br />

• Follow up candidate gene/region in<br />

populations<br />

• Follow up disease mechanism in model


LOD<br />

Map<br />

Animal model<br />

Linkage analysis<br />

Controlled genetic background<br />

Controlled environment<br />

Controlled experimental setting<br />

Identification <strong>of</strong> homologous region<br />

CA<br />

Animal<br />

Human<br />

CA<br />

Association analysis in human


Animal Models


Human vs. Animal Model Hypertension<br />

Human<br />

SHR<br />

Dahl-S<br />

SHRSP<br />

GH<br />

FHH<br />

LH


TPR<br />

X<br />

cardiac output<br />

Arterial Pressure<br />

(MAP, SBP, DBP, HR)<br />

blood volume<br />

( •body wt.; HCT)<br />

sodium balance<br />

Vessels<br />

(structure & function)<br />

Likely determinant phenotype:<br />

•blood lipids<br />

(TG/LDL/HDL)<br />

• ∆MAP/vasc. reactivity<br />

(AII, NE, Ach, L-NAME)<br />

•microvessel density<br />

•aorta & heart weight<br />

Kidney<br />

(structure & function)<br />

Likely determinant phenotype:<br />

•pressure-natriuresis<br />

(∆MAP/∆salt; 24h UNaV)<br />

•GFR (C creat<br />

); U prot<br />

•renal blood flow<br />

• ∆ RVR (vasc. reactivity)<br />

•kidney weight & histology<br />

Neuroendocrine<br />

(sympathetic/hormones/<br />

paracrines)<br />

Likely determinant phenotype:<br />

•renin activity<br />

•vasopressin<br />

• ∆ MAP/HR with startle<br />

• ∆ HR/∆ salt


Cross<br />

SS<br />

BN Control<br />

F1<br />

Intercross


Blood Pressure Phenotype QTL


Cluster Analysis <strong>of</strong> overlapping QTLs


Consomic for BN<br />

SS/MCW<br />

BN<br />

SS/MCW<br />

Chr. 3<br />

BN<br />

SS/MCW<br />

BN<br />

SS/MCW<br />

Chr. 1<br />

BN<br />

SS/MCW<br />

Chr. 4<br />

BN<br />

SS/MCW<br />

Chr. 2<br />

Chr. 5


Using Consomics to Generate Congenics<br />

BN<br />

SS/MCW<br />

SS/MCW<br />

x<br />

Chr. 1 Chr. 1<br />

F1<br />

F2


Genome Structure <strong>of</strong> Congenic Strain<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 X<br />

A genome:<br />

B genome:


Applications <strong>of</strong> Congenic Strains<br />

• Tool for Physiological <strong>Genomics</strong>:<br />

– Simple comparison: 2X2 study design<br />

– Investigate gene-gene interaction: designer congenics<br />

– Lead compound screening<br />

• Tool for Positional Cloning:<br />

– Reduce trait to a single gene model<br />

– Interval reduction to narrow the genomic region <strong>of</strong><br />

interest


Phenotype<br />

Genotype


Evolutionary Conservation <strong>of</strong> Genomes<br />

• Many genes have been conserved with respect to<br />

function and sequence across evolution<br />

• Genome organization also tends to be conserved<br />

across relatively close species, i.e. large<br />

segments <strong>of</strong> chromosomes have remained intact<br />

in closely related species<br />

• Genome organization and gene order is relatively<br />

well conserved in mammalian species<br />

• Mapped, orthologous genes allow for the<br />

identification <strong>of</strong> conserved segments and the<br />

generation <strong>of</strong> comparative maps


Requirements<br />

<strong>Comparative</strong> <strong>Genomics</strong> (and Model<br />

Organism research in general) requires the<br />

ability to translate information obtained in<br />

one organism to application in another<br />

organism(s). This achieved by having<br />

common frames <strong>of</strong> reference (connections)<br />

between these organisms.


<strong>Comparative</strong> Mapping<br />

• Chromosome Painting<br />

• Cytogenetic Mapping<br />

• Genetic Mapping<br />

• RH Mapping<br />

• Sequence Comparisons<br />

Low Resolution<br />

High Resolution


Chromosome Painting<br />

Grützner, et al., 1999


<strong>Comparative</strong> Mapping by FISH<br />

Grützner, et al., 1999


Genetic Map - Backbone


Radiation Hybrid Mapping<br />

• Map markers based upon presence/absence in<br />

radiation hybrid cell line<br />

• Map non-polymorphic markers<br />

• Map integration within and between species<br />

• Map potential candidate genes


<strong>Comparative</strong><br />

Map <strong>of</strong> RNO19<br />

with RH<br />

backbone<br />

VCMAPs


Expanded <strong>Comparative</strong><br />

Map Information


http://rgd.mcw.edu/VCMAP/


RAT GENOME SEQUENCING PROJECT<br />

Baylor <strong>College</strong> <strong>of</strong> Medicine<br />

NHGRI/NHLBI<br />

Richard Gibbs<br />

UBC<br />

Rob Holt<br />

Celera<br />

Shaying Zhao<br />

TIGR<br />

Pieter de Jong<br />

CHO<br />

Robert Weiss<br />

Univ Utah


Sequence Analysis Through SAAAP<br />

D1Rat118<br />

D1Rat86<br />

1 QTL Region<br />

~20 Mbp<br />

Initial<br />

55 BACs<br />

GenBank<br />

Trace DB<br />

HTGS<br />

DB EST<br />

Assembled<br />

Contigs


Rat<br />

A Representative Homologue Annotation


VCMap Report <strong>of</strong> Marker D10S1753


Human-Rat<br />

<strong>Comparative</strong><br />

Sequence<br />

Analysis


38,39,40,41<br />

11,15,16,17,19<br />

21,23-25<br />

29,30,31,32,37<br />

33,34,35,36<br />

28<br />

44,45,46<br />

49,50,51,52<br />

11,15,16,17,19<br />

21,23-25<br />

49, 50,51,52<br />

26,27<br />

Krushkal et al.<br />

12,13,14,18<br />

20,22,25<br />

12,13,14,18<br />

20,22,25<br />

Mansfield et al.<br />

Chr.1 Chr.2 Chr.3 Chr.4


SNP identification using sequencing technology


LOD<br />

QTL mapping<br />

Map<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 X<br />

Congenic<br />

SS<br />

Expression pr<strong>of</strong>iling<br />

Screen BACs:<br />

Sequencing<br />

Physiological<br />

Experiments<br />

Test as disease marker<br />

Refined phenotyping: Clinic


General Microarray Methodology<br />

mRNA from<br />

‘Control’ tissue<br />

mRNA from<br />

‘Diseased’ tissue<br />

Single-stranded cDNA<br />

labeled with two fluorescent<br />

dyes (RT) (Cy3/Cy5)<br />

Slide stamped<br />

with cDNA clones<br />

Add equal amounts <strong>of</strong><br />

fluorescently labeled<br />

cDNAs to microarray<br />

Expression<br />

Level<br />

Scan and<br />

Quantitate


Microarray Data: Rat Kidney Congenic (Cy3) vs. ACI (Cy5)<br />

9216 cDNA


Microarray <strong>of</strong> FHH vs. ACI using Reciprocal Cy3/Cy5 Labelin<br />

ACI = Cy3 (red)<br />

FHH = Cy5 (green)


Rat<br />

<strong>Comparative</strong><br />

Map<br />

Human<br />

Genetic Map RH Map<br />

RH Map<br />

Genetic Map<br />

Microarray<br />

Data<br />

QTLs<br />

QTLs


PGA Members<br />

• <strong>Genomics</strong> - Howard Jacob, Ph.D.<br />

– Pierre Dumas, Ph.D.<br />

– Kathleen Kennedy, Jo Handley, Mike<br />

Tschannen<br />

– Sheri Jene, Janet Gell-R<strong>of</strong>kahr, Nadia<br />

Barreto<br />

• Bioinformatics - Peter Tonellato, Ph.D.<br />

– Zhitao Wang<br />

– Michael Thomas, Ph.D.<br />

– Zhanchi Wang<br />

– Qunli Cheng<br />

• Research Services - Andrew Greene, Ph.D.<br />

– Greg McQuestion, Michael Kloehn<br />

– David Eick, Bonnie Pfau-Wentworth<br />

– Kevin Wollenzien, Glenn Slocum<br />

• Education - Anne Kwitek-Black, Ph.D.<br />

– Rebecca Bosque<br />

• PGA coordinator - Julie Messinger, M.S.<br />

• Administration - Jane Brennan-Nelson<br />

– Diane Kelley<br />

• Phenotyping - Allen Cowley, Jr. Ph.D.<br />

• Mary Pat Kunert, RN, Ph.D.<br />

• Mindy Dwinell, Ph.D.<br />

– John Baker, M.D.<br />

– Michael Bregantini, Lawrence<br />

Clowry<br />

– Bernadette Cabigas, Jess Powlas<br />

– Jenny Hogan, Andrea Trevett<br />

– Jennifer Labecki<br />

– Christopher Dawson, Ph.D.<br />

– Hubert Forster, Ph.D.<br />

– William Hutchins, Jessica Laessig<br />

– Candace Jones<br />

– Julian Lombard, Ph.D.<br />

– David Mattson, Ph.D.<br />

– Kirkwood Pritchard, Ph.D.<br />

– Richard Roman, Ph.D.-Quality<br />

Control<br />

– Meredith Skelton, M.S.<br />

– Janelle Yarina, Alison Kriegel


Acknowledgments<br />

Director <strong>of</strong> BRC<br />

•Peter Tonellato<br />

Assistant Pr<strong>of</strong>essors<br />

•Simon Twigger<br />

Collaborators<br />

Janan Eppig and MGD team<br />

Greg Schuler and NCBI team<br />

Val Sheffield and UI team<br />

Students<br />

•Roumyana Kirova<br />

Pr<strong>of</strong>essional Staff<br />

•Dan Chen<br />

•Jian Liu<br />

•Nathan Pedretti<br />

•Mary Shimoyama<br />

•Zhitao Wang<br />

•Hai Ping Xia


The Jacob Lab Team<br />

• Nadia Barreto<br />

• Gretta Borchardt<br />

• Rebecca Bosque<br />

• Ulrich Broeckel<br />

• Danilo Carlos<br />

• Kendall Choate<br />

• Patricia Corat<br />

• Pierre Dumas<br />

• Jeffrey Eckert<br />

• Thomas Feroah<br />

• Jo Gullings-Handley<br />

• Jennifer Holland<br />

• Howard Jacob<br />

• Sheri Jene<br />

• Michael Jensen-Seaman<br />

• Joseph Johnnie<br />

• Kathleen Kennedy<br />

• Shehnaz Khan<br />

• Beth Konicek<br />

• Rachel Kraemer<br />

• Michelle Feldmann• Anne Kwitek<br />

• Lorie Figie • Angela Lemke<br />

• Jacob Frautschi • Diane Linzmeier<br />

• Li Gao<br />

• Michelle Lombard<br />

• Diana Maas<br />

• Rebecca Majewski<br />

• Nasuh Malas<br />

• Dan Maloney<br />

• Karen Maresso<br />

• Andrea Matter<br />

• Julia Messinger<br />

• Kimberly Orlebeke<br />

• Lisa Philips<br />

• Nancy Schlick<br />

• Jennifer Tackes<br />

• Michael Tschannen<br />

• Jaime Wendt Andrae<br />

• Carrie Wheeldon

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!