28.01.2015 Views

Presentation - International Concrete Sustainability Conference

Presentation - International Concrete Sustainability Conference

Presentation - International Concrete Sustainability Conference

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1st international conference on concrete sustainability<br />

DUBAI, December 13-14, 2010<br />

A SUSTAINABLE CONCRETE WITH<br />

NATURAL POZZOLAN<br />

KHARCHI Fattoum<br />

Professor, Research Director<br />

Houari Boumediene University (USTHB)<br />

Civil Engineering Faculty,<br />

Built Environment Res.Lab.(LBE)<br />

BP 32 Bab Ezzouar, 16111Alger, Algeria<br />

E-mail: kharchifcong@yahoo.fr<br />

Tel & Fax: +213 24 72 24, +213 21 24 79 14<br />

Mobile: +213 555 41 60 43-Website: www.lbe.usthb.dz<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 1


Deterioration of the concrete<br />

Physical<br />

Chimical<br />

Structural loading<br />

Thermal shock<br />

Swelling<br />

Shrinkage<br />

Abrasion<br />

Leaching …<br />

Carbonation<br />

Alkali li - aggregate<br />

Ions chlorine Attack<br />

sulfatic Attack ...<br />

Expansion, Cracking, Alteration<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 2


Solutions: Supplementary cement<br />

materials: SF, FAsh …..<br />

Algeria: exist: laitier (washes of<br />

siderurgique gq industry) and natural<br />

pozzolan,<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 3


Effect of natural pozzolan on concrete<br />

resistance to sulfate attacks.<br />

Pozzolan is from the region of BENI SAF<br />

in the west of Algeria.<br />

The conference is organized in two parts<br />

1- Attacks mechanisms + effects on durability in<br />

general.<br />

2- Experimental program and results<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 4


Sulfate attack is a chemical aggression.<br />

Water presence<br />

Permeability concrete<br />

Sulfate ions SO 4 is associated to different<br />

cations depending of environment (soil,<br />

sea water…etc)<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 5


• SOILS gypsum (sulphate<br />

de calcium).<br />

gypsum not very soluble in water -------- slow attack<br />

• SEA WATER SEA, UNDERGROUND WATER<br />

Sulfates de magnesium (MgSO4)<br />

• ----------- the most agressive because very soluble in<br />

water , also (K2SO4 - Na2SO4).<br />

• AGRICULTURAL SOILS<br />

ammonium sulfates (NH4)2SO4<br />

also K2SO4, MgSO4)<br />

• CANALISATIONS: H 2 S (gas) react with aerial bacteria and<br />

product sulphates ion SO 4<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 6


sulphates attacks<br />

Internal<br />

External<br />

Gypseous or sulfurous Granulats<br />

Addition of gypsum to clinker<br />

Hydration reaction energy in massive<br />

concrete<br />

soils<br />

Under ground water and sea water<br />

Industrial pollution<br />

Bacteriological transformation<br />

Destructive expansion<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 7


sulfates Attack<br />

Characteristics of the concrete<br />

Environement<br />

Process of assessment of the aggression<br />

Transfer of the ions sulphate<br />

Chemical reactions between the<br />

controlled by the permeability and<br />

components of the cement and the<br />

diffusity of the material.<br />

SO<br />

2 -<br />

4 ions<br />

Expansion phenomenon<br />

Apparition of new crystalline phases<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 8


Schematic presentation of the attack to the sulphates<br />

Water<br />

Sulphate<br />

Environement<br />

External<br />

EAS<br />

High<br />

Permeability<br />

Pores, capillary<br />

High E/C, mauvaise cure<br />

Microcracking<br />

(structural loading,heat<br />

and cold, drying and<br />

watering cycles )<br />

AES : External Attack Sulphate<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 9


Chemical interactions<br />

I) Secondary gypsum formation<br />

Ionic substitution between the portlandite and the sulphates<br />

case of the sulphate of Na 2 SO 4 sodium<br />

Ca (OH) 2 + Na 2 SO 4<br />

+2H 2 O CaSO 4 .2H 2 O + 2NaOH<br />

(Secondary gypsum , expansion)<br />

II) Secondary ettringite it formation<br />

Starting from the residual anhydrous C3A<br />

C 3 A + 3CaSO 4 .2H 2 O +26H 2 O C 3 A.3CaSO 4 .32H 2 O<br />

(Ettringite, expansion)<br />

from hydrated aluminates (Monosulfoaluminates)<br />

C 3 A.Ca (OH) 2 .xH 2 O + 2Ca(OH) 2 +3SO 4 + 11H 2 O C 3 A.3CaSO 4 .32H 2 O<br />

(Ettringite, expansion)<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 10


Case of the magnesium sulphate MgSO 4<br />

1.Formation of expansive product<br />

Ca (OH) 2 + MgSO 4 CaSO 4 + Mg(OH) 2 (Brucite, weak solubility )<br />

C 3 A+3CaSO 4 .2H 2 O +26H 2 O C 3 A3CaSO A.3CaSO 4 .32H 2 O(Ettringite (Ettringite, expansion)<br />

Substitution of the Ca2+s ions by the Mg2+s ions in the C-S-H<br />

C-S-H + MgSO 4 CaSO 4 .2H 2 O+ (C , M)-S-H (weakly cohesive )<br />

Consequences are an expansion et cracking due to secondary ettringite and a resistance<br />

loss due to the consumption of CSH. The silicate of hydrated magnesium (Mg-S-H)<br />

formed doesn't have any binding properties, and therefore the hydrated becomes soft and<br />

disjointed<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 11


Primary ettringite = formed in begining cement hydration .<br />

Not nocive but indispensable to regulate cement prise.<br />

Secondary ettringite =Expansive,<br />

- molarvolumeisto3à8higher than primary ettringite<br />

molar volume.<br />

- crystallize in hard concrete<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 12


Experimental<br />

programm<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 13


The study was conducted on three types<br />

of concrete: an ordinary concrete BO, , a<br />

high performance concretes BHP (with<br />

superplastizer) and a concrete with<br />

pozzolan BHPZ. . Following parameters<br />

were studied:<br />

d<br />

Expansion, shrinkage, chloride<br />

penetration and strength, of concrete<br />

specimens immersed in the solution<br />

containing 5% NH4SO4 ammonium<br />

sulphate.<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 14


MATERIALS<br />

Cement : CEMII/A 42.5<br />

Surface spécifique ….3400-3650 cm 2 /g<br />

CaO SiO 2<br />

Al 2<br />

O<br />

3<br />

Chemical composition<br />

FeO 3<br />

MgO RI SO 3<br />

PAF<br />

minéralogy<br />

Composition<br />

Na 2O K 2<br />

O CaOl C 3<br />

S ßC 2<br />

S C 3<br />

A<br />

24.3<br />

59.8 16.9<br />

11.6<br />

60.88<br />

5.56 3.83 1.08 3.30 0.27 2.37 0.23 0.48 0.71<br />

6.56<br />

5 3 4 4<br />

Tab1: Chemical and minéralogy composition of the cement<br />

C 4<br />

A<br />

F<br />

Sand : Rolled siliceous sand of 3,5 mm maximum aggregate size.<br />

Density = 2, 60<br />

Aggregates : class 3/8 and 8/16 of silico-chaky chaky origin (carrer)<br />

Density = 2, 50<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 15


I.4) Natural pozzolan of volcanic origin.<br />

Density = 2, 65<br />

Specific surface = 9500 cm 2 /g<br />

L’indice d’activité de la pouzzolane utilisée a été déterminé selon<br />

la norme EN 450<br />

i = Rc (MZ25) / Rc (MZ0) = 0.82<br />

la pouzzolane étudiée est donc réactive<br />

Elément<br />

s<br />

SiO 2<br />

Al 2<br />

O 3<br />

Fe 2<br />

O<br />

3<br />

CaO MgO SO 3<br />

K 2<br />

O Na 2<br />

O P.A.F R.I<br />

% 44,95 16,91 9,47 14,59 3,76 0,20 1,35 1,34 4,30 0,56<br />

Tab2: Chemical composition of the pozzolan<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 16


Figure 4 : R.X.D analysis of pozzolan<br />

R X D results revealed the predominance of feldspars and<br />

pyroxene and a small amount of hematite and clay.<br />

Important quantity of portlandite developed during<br />

the cement hydration in concrete<br />

Pozzolanic reaction continuous by consumption of the portlandite<br />

liberated during the cement hydration in concrete<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 17


I.5) Reducing superplasticizer of water<br />

Superplasticiser : a local production, a high reducing water superplasticizer of the 3rd<br />

generation derived from polycarboxylates. the manufacturer’s use recommendations is 0, 5 to<br />

2% of the cement weight<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 18


II) Composition of the concretes<br />

Sand Gravel 3/8<br />

Gravel<br />

8/16<br />

Cement (C) Water (W) W/C<br />

763,5 137 837 425 212,5 0,5<br />

Tab5: Composition of the ordinary concrete in Kg /m3 (OC)<br />

Sand Gravel 3/8 Gravel 8/16 Cement C<br />

Water<br />

W<br />

W/C<br />

MF30<br />

763,5 137 837 425 107,66 0,3<br />

26,48 l<br />

28,33<br />

Kg<br />

Tab6: Composition of the HPC in Kg /m3 (HPC)<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 19


Sand Gravel 3/8 Gravel 8/16 PZ 5% C W W/C MF30<br />

763,5 137 837 21,25 403,75 107,66 0,3<br />

26,48 (l)<br />

28,33 (Kg)<br />

Tab7: Composition of the HPC with addition of pozzolan in Kg /m3 (HPCZ)<br />

II.1) Specimen preparation, curing and testing<br />

After mixing the concrete, the specimens were kept in the moulds and covered for<br />

24 hours in the air laboratory. After demoulding, the specimens were subjected<br />

to28 days of curing in water at 23 ± 2°C before being subjected to sulphate solutions.<br />

The concrete specimens were immersed in 5 % NH4SO4 ammonium sulphate<br />

which was renewed every 30 days.<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 20


II.2)Evolution of the mechanical resistances<br />

II.2.1)Compressive strength<br />

80<br />

Com mpression Strengh<br />

(MPa)<br />

60<br />

40<br />

20<br />

OC<br />

HPC<br />

HPCZ<br />

0<br />

1 2 3 4 5<br />

Age (days)<br />

Fig 13: Evolution of the compressive strength of different types of concrete in<br />

water<br />

80<br />

Compression Strengh<br />

(MPa)<br />

60<br />

40<br />

20<br />

OC<br />

HPC<br />

HPCZ<br />

0<br />

1 2 3 4 5<br />

Age (days)<br />

Fig 14: Evolution of the compressive strength of different types of concrete in<br />

sulphated solution<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 21


II.2.3) Permeability to the chloride ions<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 22


3500<br />

3000<br />

Charge<br />

(coulomb)<br />

2500<br />

2000<br />

BO<br />

BHP<br />

1500 BHPZ<br />

1000<br />

500<br />

0<br />

1 2 3 4<br />

Age (days)<br />

Charge passed in the concrete specimen kept in sulphate environment<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 23


One can note that the compressive and tensile strength of the concretes with<br />

additions of pozzolan are all superior to the ordinary concretes and high performance<br />

concretes without addition.<br />

The permeability to the chloride ions of the concretes with addition of pozzolan is<br />

lower to the ordinary concretes and high performance concretes without addition.<br />

II.2.4) Expansion<br />

015 0,15<br />

OC HPC HPCZ<br />

Expansion (%)<br />

0,1<br />

0,05<br />

0<br />

0 30 60 90 120 150 180<br />

Immersion period (days)<br />

Fig 19: Expansion of different kinds of concrete in the sulphated solution<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 24


The results show that the concretes undergo an expansion, nevertheless the<br />

one of the ordinary concrete is accentuated more that the one of the concretes<br />

with or without addition of pozzolan.<br />

The ordinary concrete with a W/C report = 0, 5, present a matrix very porous<br />

that facilitates the penetration of the solution charged of ions sulphate in its<br />

interior. These, in presence of aluminate anhydrous tricalcique of hydrates or of<br />

aluminized them hydrated react to form the secondary, chatty ettringite the<br />

expansion.<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 25


BO HPC HPCZ<br />

II.2.5) Skrinkage<br />

Autogenous skrinka age (m/m)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

15<br />

30<br />

45<br />

60<br />

75<br />

90<br />

105<br />

120<br />

135<br />

150<br />

165<br />

180<br />

Age (days)<br />

Fig 20: Autogenous skrinkage of different types of concrete<br />

300<br />

BO HPC HPCZ<br />

drying skrinka age (m/m)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1<br />

3<br />

4<br />

6<br />

7<br />

9<br />

10<br />

12<br />

13<br />

15<br />

16<br />

18<br />

0<br />

5<br />

0<br />

5<br />

0<br />

5<br />

0<br />

5<br />

0<br />

5<br />

0<br />

5<br />

0<br />

Age (days)<br />

Fig 21: Drying skrinkage of different types of concrete<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 26


BO HPC HPCZ<br />

450<br />

400<br />

Total skrinkage( (m/m)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

15<br />

30<br />

45<br />

60<br />

75<br />

90<br />

105<br />

120<br />

135<br />

150<br />

165<br />

180<br />

Age (days)<br />

Fig 22: Total skrinkage of different kinds of concrete.<br />

The skrinkage high performance concretes that they are with or without addition and<br />

having an W/C report = 0,3 are weaker than the one of the ordinary concrete prepared<br />

with an W/C report = 0,5.<br />

The natural pozzolan used for the confection the high performances concrete with<br />

addition (HPCZ) acts by its very advanced fineness, its latent property and by its heat of<br />

hydration. The effect combined of these three parameters generates a sensitive<br />

increase of the skrinkage to the first ages. To means term, the supplementary CSH<br />

descended of the reaction pouzzolanique generate a reduction of the distortion due to<br />

the skrinkage. Indeed, the dense structure of the concretes due to the reduction of the<br />

measurements and percentage of the pores prevents the migration of the water.<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 27


Conclusion<br />

.<br />

The addition of natural pozzolan in combination with an appropriate dosage of<br />

superplasticizer gave a high strength concrete(70 MPa). The experimental analysis of<br />

some aspect of sustainability showed thatt the concrete also has good performance with<br />

regard chlorides permeability and resistance to sulphates.<br />

2010 <strong>International</strong> <strong>Concrete</strong> <strong>Sustainability</strong> <strong>Conference</strong>, Dubai, UAE 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!