28.01.2015 Views

Download (1152Kb)

Download (1152Kb)

Download (1152Kb)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

EPA Perspectives on<br />

Nanoinformatics: Prioritization<br />

Based on Potential for<br />

Exposure and Toxicity<br />

Sumit Gangwal, Ph.D.<br />

R. Judson, A. Wang, K. Houck, E. Cohen Hubal<br />

EPA National Center for Computational Toxicology (NCCT)<br />

The views expressed in this presentation are those of the author(s) and do not<br />

necessarily reflect the views or policies of the U.S. Environmental Protection Agency.<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

Nanoinformatics 2010 workshop<br />

Nov. 4


Overview<br />

• Incorporating nanomaterials into ToxCast project TM<br />

– EPA nanomaterial research strategy<br />

– ToxCast project<br />

– Comptox toxicity and exposure research on nanomaterials<br />

• Databases and tools developed by CompTox<br />

– ACToR<br />

– ToxMiner<br />

– ExpoCast DB and exposure data curation<br />

– Virtual Tissue Knowledgebase (VT-KB)<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

1


EPA nanomaterial research strategy<br />

• Four main research themes:<br />

– Identifying sources, fate, transport, and<br />

exposure<br />

Comptox<br />

– Understanding human health and<br />

ecological effects to inform risk<br />

assessments and test methods<br />

– Developing risk assessment<br />

approaches<br />

– Preventing and mitigating risks<br />

June 2009<br />

http://www.epa.gov/nanoscience/files/<br />

nanotech_research_strategy_final.pdf<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

2


Many nanomaterials to evaluate,<br />

but limited time and resources<br />

• Toxicity and exposure research<br />

is challenged to keep up with<br />

development of novel<br />

nanomaterials and applications<br />

• Assesment of nanomaterial<br />

(NM) like chemicals is typically<br />

case-by-case<br />

Case-by-case examples:<br />

Comprehensive Environmental<br />

Assessment approach;<br />

Life cycle assessment;<br />

State of Science Review<br />

Comprehensive Environmental<br />

Assessment Approach<br />

CNT<br />

Ag<br />

TiO 2<br />

ZnO<br />

SiO 2<br />

CeO 2<br />

• Prioritization of research and<br />

screening level assessment of<br />

NMs are needed.<br />

Screening level assessment:<br />

ToxCast TM : Bioactivity profiling +<br />

exposure potential<br />

(EPA Comptox)<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

3


EPA working on larger problem<br />

for chemicals<br />

Too Many Chemicals Too Little Data (%)<br />

9912<br />

60<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

IRIS TRI Pesticides<br />

Inerts CCL 1 & 2 HPV<br />

MPV<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

Acute Cancer Gentox<br />

Dev Tox<br />

Repro Tox<br />

…and costs too much.<br />

Judson et al., 2009, Environ. Health Perspect.<br />

4


Chemicals<br />

(n = 320)<br />

ToxCast project: Diversity of<br />

in vitro data from HTS assays<br />

• 500 fast, automated chemical screens (in vitro) generating lots of data<br />

• Phase 1: Screened 300+ well characterized chemicals (primarily pesticides)<br />

• Builds statistical and computer models to forecast potential chemical toxicity<br />

Assays<br />

(n = 467)<br />

Biochemical Assays<br />

• Protein families<br />

– GPCR<br />

– NR<br />

– Kinase<br />

– Phosphatase<br />

– Protease<br />

– Other enzyme<br />

– Ion channel<br />

– Transporter<br />

Cellular Assays<br />

• Cell lines<br />

– HepG2 human hepatoblastoma<br />

– A549 human lung carcinoma<br />

– HEK 293 human embryonic kidney<br />

• Primary cells<br />

– Human endothelial cells<br />

– Human monocytes<br />

– Human keratinocytes<br />

– Human fibroblasts<br />

– Human proximal tubule kidney cells<br />

– Human small airway epithelial cells<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

http://www.epa.gov/ncct/toxcast/<br />

Judson et al., 2010, Environ. Health Perspect.<br />

• Biotransformation competent cells<br />

– Primary rat hepatocytes<br />

– Primary human hepatocytes<br />

• Assay formats<br />

– Cytotoxicity<br />

– Reporter gene<br />

– Gene expression<br />

– Biomarker production<br />

– High-content imaging for cellular<br />

phenotype<br />

5


Steps to include NMs in ToxCast<br />

• Classes of NM of interest: Au, Ag, CNT, TiO 2 , CeO 2 , ZnO, SiO 2<br />

* Initial pilot materials<br />

• Major steps:<br />

– Develop handling protocols<br />

• Compare protocols used in Center for Environmental<br />

Implications of NanoTechnology (CEINT) at Duke Univ.,<br />

ENPRA, and Japan NIST<br />

– Determine concentration ranges to test<br />

• Select based on potential for real world human exposures<br />

– Characterize NMs<br />

• CEINT at Duke Univ.<br />

– Perform High-throughput screening (HTS)<br />

• Analyze HTS data and apply ToxCast methodology<br />

TEM image of TiO 2<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

6


Deposition Fraction<br />

Deposition Fraction<br />

Using Multiple-path particle dosimetry<br />

model to determine concentrations<br />

• Open-source computational MPPD modeling<br />

tool (Applied Research Associates)<br />

– Calculates human respiratory tract particle<br />

deposition/clearance after inputing NM aerosol<br />

conc.<br />

• Reviewed literature on NM aerosol concentrations<br />

in occupational settings<br />

– Typically < 0.1 mg/m 3 for TiO 2 , Ag, CNTs<br />

• Performed sensitivity analysis<br />

– Most important inputs: aerosol concentration,<br />

breathing conditions (heavy, light exercise, rest),<br />

aspect ratio (for CNTs)<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

ICRP<br />

MPPD<br />

Light exercise<br />

breathing conditions<br />

Integrated Science Assessment for Particulate<br />

Matter, Dec. 2009, EPA NCEA, Jim Brown<br />

7


Mass per surface area (ug/cm^2)<br />

Mass per surface area (ug/cm^2)<br />

• Ag & TiO 2 nanoparticles<br />

50<br />

NM alveolar mass retained in<br />

human lungs<br />

0.16<br />

45<br />

0.14<br />

40<br />

0.12<br />

35<br />

30<br />

0.1<br />

25<br />

0.08<br />

20<br />

0.06<br />

15<br />

10<br />

5<br />

1 mg/m^3<br />

0.1 mg/m^3<br />

0.04<br />

0.02<br />

1 mg/m^3<br />

0.1 mg/m^3<br />

0<br />

0 50 100<br />

0<br />

0 20 40 60 80 100<br />

Diameter (nm)<br />

Diameter (nm)<br />

• Exposure duration: Full working lifetime<br />

of 45 years (8 h/day, 5 days/week)<br />

• Exposure duration: 24 hours<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

Alveolar mass retained for a full working lifetime to 1<br />

mg/m 3 Similar to high-end doses (~ 100-200 ug/mL)<br />

typical of in vitro testing<br />

8


NM physicochemical characterization<br />

• Colloboration with Center for Environmental Implications of NanoTechnology (CEINT) at<br />

Duke Univ.<br />

All NMs<br />

As received (dry powder or<br />

suspension)<br />

• In stock (prepared per OECD<br />

protocol: sonication in water with<br />

2% serum)<br />

Selected NM medium/cell combination<br />

In testing mediums<br />

In situ (cell/tissue)<br />

• Size distribution, shape<br />

(TEM DLS Cytovita )<br />

• Surface area<br />

(BET Calculation from DLS )<br />

• Chemical composition,crystal form<br />

(XRD Possibly ICP-MS)<br />

• Rate of dissolution<br />

(ICP-AES<br />

Possibly ion specific probe)<br />

• Surface composition/contamination<br />

(TOC<br />

Possibly SEM+EDS)<br />

• Surface charge, zeta potential<br />

(Zetasizer )<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

• Possibly hydrophobicity, surface redox react.<br />

9


Developing screening models<br />

Animal Study<br />

In vitro assay<br />

Toxicity<br />

Pathway<br />

Perturbation<br />

Connections are made<br />

by looking for statistical<br />

associations across<br />

many chemicals<br />

Requires both in vitro<br />

and in vivo data<br />

Once a model is “qualified”:<br />

• New chemicals (nanomaterials) can be run through assays<br />

• Results of assays can be used to rank chemicals (nanomaterials)<br />

for potential to cause toxicity<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

10


NCCT databases and tools<br />

• Aggregated Computational Toxicology Resource (ACToR)<br />

• Database to find chemical toxicity info from large number of sources.<br />

• ToxMiner<br />

• Database to house detailed data ToxCast and ToxRefDB - used for<br />

ToxCast analyses.<br />

• ExpoCast DB<br />

• Detailed chemical concentration by media data from observational<br />

exposure studies.<br />

• Virtual tissue Knowledge base (VT-KB)<br />

• Tool developed to curate literature on chemical toxicity<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

11


ACToR: Aggregated Computational<br />

Toxicology Resource<br />

http://actor.epa.gov/<br />

ACToR API<br />

Chemical<br />

Chemical ID,<br />

Structure<br />

ACToR Core<br />

ToxRefDB<br />

ToxMiner<br />

ExpoCastDB<br />

Internet<br />

Searches<br />

Tabular Data,<br />

Links to Web<br />

Resources<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

In Vivo Study<br />

Data - OPP<br />

ToxCast Data –<br />

NCCT, ORD,<br />

Collaborators<br />

(Currently Internal)<br />

Exposure Data –<br />

NERL, NCCT<br />

(In Development)<br />

12


ACToR goals and data sources<br />

• Compile all publicly available information on environmental chemicals<br />

Category<br />

Count<br />

Data Sets 580<br />

Chemicals 546,956<br />

Assays 3,213<br />

Assay Components 7,221<br />

Data Points 6,662,296<br />

• EPA (OPP, OPPT, NCEA, NERL)<br />

• FDA, NIH, CDC, OSHA, USDA<br />

• States and other countries<br />

• Universities<br />

• NGOs<br />

• Companies<br />

• Make data available for downloading, data mining<br />

– Available through data.gov<br />

– Entire DB can be downloaded and installed locally<br />

• Make it easy to see data gaps<br />

– Provides resource for EPA testing programs<br />

• Make it widely used<br />

– over 2000 regular users<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

Store NM physicochemical<br />

properties


Nanomaterial identity<br />

Nanomaterials require the same types of naming<br />

conventions<br />

• Common names<br />

• Systematic names<br />

• Computable representation of structure<br />

• Open source CASRN-like “code” for linking data from<br />

many sources<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

14


ToxMiner – ToxCast Data<br />

• Links<br />

– Chemicals<br />

– Assays<br />

– Genes<br />

– Pathways<br />

– Endpoints<br />

• Allows data analyses<br />

– Statistical associations (R-script)<br />

– Biologically driven data mining<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

Store in vitro HTS assay data<br />

on NMs


ToxCast assay data workflow<br />

Data on FTP site<br />

(from collaborators,<br />

contractors, etc.)<br />

Intranet wiki:<br />

log files, directory links, version<br />

stamps<br />

Data<br />

import<br />

“Raw”<br />

data<br />

Processing<br />

Processing<br />

scripts<br />

“Primary” data<br />

(standardized conc.-<br />

response format)<br />

Feedback &<br />

refinement<br />

Custom analysis<br />

(AC 50 fits, etc.)<br />

Local storage<br />

(working directory)<br />

EPA/NCCT<br />

servers<br />

“Fit” data (AC 50 /LEC)<br />

Network backup<br />

Network share<br />

(limited access)<br />

EPA<br />

servers<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

ToxMiner


ExpoCast DB<br />

• Data from NERL studies<br />

1) American Health Home<br />

Survey<br />

2) HUD Child Care Center<br />

Survey (“CCC” )<br />

3) CTEPP – NC<br />

4) CTEPP – OH<br />

• Full raw data sets available to<br />

download<br />

• Browse data capability<br />

• By study name, chemical list,<br />

media list<br />

• Descriptive statistics<br />

capabilities<br />

generic_chemical<br />

ACToR<br />

CASRN<br />

Name<br />

Location_CV<br />

N<br />

Sources<br />

N<br />

1<br />

N<br />

1 Measure<br />

(Chemical)<br />

N<br />

Location<br />

N<br />

N<br />

1<br />

Study_CV<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

Sample<br />

N<br />

1<br />

Study<br />

N<br />

1<br />

N<br />

N<br />

N<br />

Laboratory<br />

method<br />

N<br />

1<br />

N<br />

N<br />

N<br />

Medium<br />

(wipes, urine, air,<br />

soil)<br />

Subject<br />

N<br />

N<br />

N<br />

Technique /<br />

sampling method<br />

N<br />

N<br />

N<br />

N<br />

Exposure<br />

Taxonomy<br />

(ACToR)<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

N<br />

1<br />

N<br />

Conceptual<br />

Store exposure aerosol concentrations<br />

of NM in occupational settings<br />

Data Model<br />

17


Pilot curation of<br />

exposure data into CTD<br />

Exposure<br />

(Time,<br />

Location)<br />

Chemicals<br />

Target<br />

(Individual)<br />

chemical-gene<br />

interactions<br />

chemical-disease<br />

relationships<br />

Genes<br />

gene-disease<br />

relationships<br />

Diseases<br />

functional annotations<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

pathway data<br />

18


Summary<br />

• Results of nanomaterial ToxCast screening and physicochemical<br />

characterization will be publicly accessible through ACToR<br />

• For chemicals, informatics infrastructure is in place for:<br />

– Capturing chemical identity<br />

– Capturing in vitro and in vivo data<br />

– Measuring and modeling biotransformation / metabolism<br />

– Building statistical and biologically-based models<br />

– Prioritizing chemicals for targeted testing<br />

– Dealing with 10 4 to 10 6 chemicals<br />

• Challenges for nanomaterials<br />

– Material identity<br />

– Quantification of imaging characterization results<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

19


Acknowledgments<br />

EPA National Center for Computational<br />

Toxicology (NCCT), ORD<br />

Elaine Cohen Hubal, Shad Mosher<br />

Amy Wang, Keith Houck<br />

Richard Judson, Ann Richard<br />

David Reif<br />

David Dix<br />

Robert Kavlock<br />

EPA ORD<br />

Peter Egeghy<br />

James Brown<br />

Stephanie Padilla<br />

Academia, Industry and others<br />

G. Oberdörster; Univ. of Rochester<br />

E. Rogers; Univ. of Massachusetts-Lowell<br />

M. Weisner, C. Matson, R. Badireddy, S. Marinakos, R. Giulio, M. Arnold; CIENT at Duke Univ.<br />

Lang Tran, Christoph Klein; ENPRA (Risk Assessment of Engineered Nanoparticles)<br />

O. Price and B. Asgharian; Applied Research Associates, Inc<br />

Office of Research and Development (ORD)<br />

www.epa.gov<br />

This work was reviewed by EPA and approved for<br />

presentation but does not necessarily reflect Agency policy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!