29.01.2015 Views

Mast 330 / Math 370 Sec A Final Exam December 2002

Mast 330 / Math 370 Sec A Final Exam December 2002

Mast 330 / Math 370 Sec A Final Exam December 2002

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

page 1 of 3<br />

<strong>Mast</strong> <strong>330</strong> / <strong>Math</strong> <strong>370</strong> <strong>Sec</strong> A <strong>Final</strong> <strong>Exam</strong> <strong>December</strong> <strong>2002</strong><br />

Professor:<br />

Instructions:<br />

Richard Hall<br />

Please answer all 5 questions, which carry equal marks.<br />

Explain your working carefully. Calculators of any type are<br />

permitted. [Lined booklets]<br />

1. Solve the following differential equations by first finding the general solution,<br />

and then the particular solution satisfying the given condition:<br />

(a)<br />

y ′ = t 2 cot(y), t ≥ 0, y(1) = π 3 .<br />

(b)<br />

(3t 2 − t 3 − ty + y)dt + tdy =0, y(1) = 1.<br />

2. A group of rabbits enters a very prosperous period. In a continuous model,<br />

the number of rabbits N(t) at time t (in months) satisfies the differential<br />

equation<br />

dN<br />

dt = rN + λt2 , r, λ > 0.<br />

(a) Find the general solution.<br />

(b) For the case r = 1 2<br />

, λ =1, find the particular solution satisfying N(0) =<br />

20. What is the population N(5) in five months<br />

3. Find the general solution to the differential equation<br />

y ′′ − 2y ′ + y =<br />

et<br />

1+t 2 .


<strong>Mast</strong> <strong>330</strong> / <strong>Math</strong> <strong>370</strong> <strong>Sec</strong> A <strong>Final</strong> <strong>Exam</strong> <strong>December</strong> <strong>2002</strong> page 2 of 3<br />

4. Consider the differential equation representing forced vibrations of a springmass<br />

system with friction, given by<br />

x ′′ + x ′ + 5 4 x = cos(ωt),<br />

where x(t) is the position of the mass at time t, and ω is a positive parameter.<br />

(a) Find the general solution.<br />

(b) Find C(w), the amplitude of the steady-state (large-time) solution.<br />

(c) Sketch C(ω), the ‘resonance curve’, and find for what value ˆω of ω C(ω)<br />

is maximum.<br />

5. By using Laplace transforms or otherwise solve the following initial-value problem<br />

in which a linear system, initially at rest, receives an impulse at t =1:<br />

y ′′ − y =3δ(t − 1), y(0) = y ′ (0) = 0.<br />

Verify that your answer to this problem is indeed a solution to the given differential<br />

equation.


<strong>Mast</strong> <strong>330</strong> / <strong>Math</strong> <strong>370</strong> <strong>Sec</strong> A <strong>Final</strong> <strong>Exam</strong> <strong>December</strong> <strong>2002</strong> page 3 of 3<br />

Table of Laplace Transforms<br />

f(t) =L −1 {F (s)}<br />

1<br />

F (s) =L{f(t)} = ∫ ∞<br />

0 e−st f(t)dt<br />

1<br />

s , s > 0<br />

e at 1<br />

s−a , s>a<br />

t n , n integer > 0<br />

n!<br />

s n+1 , s > 0<br />

t p ,<br />

p > −1<br />

sin(bt)<br />

cos(bt)<br />

Γ(p+1)<br />

,s>0<br />

s p+1<br />

b<br />

s 2 +b 2 , s > 0<br />

s<br />

s 2 +b 2 , s > 0<br />

sinh(bt)<br />

cosh(bt)<br />

e at sin(bt)<br />

e at cos(bt)<br />

e at f(t)<br />

b<br />

s 2 −b 2 , s > |b|<br />

s<br />

s 2 −b 2 , s > |b|<br />

b<br />

(s−a) 2 +b 2 , s>a<br />

s−a<br />

(s−a) 2 +b 2 , s>a<br />

F (s − a), s > a<br />

(−t) n f(t), n integer > 0 F (n) (s)<br />

f (n) (t) s n F (s) − s n−1 f(0) − ...− f (n−1) (0)<br />

f(ct)<br />

u c (t)<br />

1<br />

c F ( )<br />

s<br />

c , c > 0<br />

e −cs<br />

s ,c≥ 0<br />

u c (t)f(t − c) e −cs F (s), c ≥ 0<br />

δ(t − c) e −cs , c ≥ 0<br />

∫ t<br />

0<br />

f(t − τ)g(τ)dτ<br />

F<br />

(s)G(s)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!