29.01.2015 Views

View Palenik Polyurethane Foam Particles Presentation - Projects at ...

View Palenik Polyurethane Foam Particles Presentation - Projects at ...

View Palenik Polyurethane Foam Particles Presentation - Projects at ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Contribution to the<br />

Characteriz<strong>at</strong>ion, Identific<strong>at</strong>ion<br />

and Comparison of <strong>Polyurethane</strong><br />

<strong>Foam</strong> <strong>Particles</strong><br />

Skip <strong>Palenik</strong><br />

Mark <strong>Palenik</strong><br />

Microtrace LLC<br />

Elgin, IL USA<br />

www.microtracescientific.com


<strong>Particles</strong> of plastic foam are occasionally<br />

encountered during the examin<strong>at</strong>ion of<br />

microscopic trace evidence


The fact th<strong>at</strong> they are usually observed as small<br />

particles (and thus easily transferable) is typically an<br />

indic<strong>at</strong>ion th<strong>at</strong> the source object has degraded


In cases where the source can be determined these<br />

particles can provide significant evidence of contact


Microscopical and microchemical methods<br />

are complimentary and have both proven of<br />

value in this type of analysis


• Stereomicroscopy<br />

Microscopy<br />

• Polarized light microscopy<br />

• Phase contrast microscopy<br />

• Color/MSP<br />

• Fluorescence/MSF<br />

• SEM-EDS / Micro-XRF


Stereomicroscopy<br />

Shape<br />

Color


Some details of internal structure can often<br />

be observed even before mounting for PLM


Testing for elastomerism


Polarized light microscopy<br />

(Mounted in 1.660)


Birefringence


Phase contrast microscopy


Microspectrophotometry


Raman microspectroscopy<br />

PB 15 Raman reference spectrum<br />

Blue foam Raman spectrum


Fluorescence microscopy and<br />

Microfluorimetry


SEM-EDS Analysis


SEM-EDS Analysis


Micro-XRF spectrum showing<br />

bromine from flame retardant


Microchemical Methods –<br />

primarily instrumental<br />

• Infrared microspectroscopy as ne<strong>at</strong><br />

particle in compression cell (if<br />

necessary)<br />

• Infrared microspectroscopy after<br />

solvent extraction<br />

• Raman microspectroscopy<br />

• GC/MS<br />

• Solvent extraction<br />

• Pyrolysis


Micro-FTIR<br />

• Identify as polyurethane or other.<br />

• Classify as polyether or polyester.<br />

• After extraction identify plasticizers<br />

(e.g. phthal<strong>at</strong>es) and obtain<br />

spectrum of the ne<strong>at</strong> polyurethane<br />

• Compare infrared spectra


Polyester type urethane - ne<strong>at</strong>


Polyester urethane after acetone wash


Acetone extract from <strong>Foam</strong> 2


Polyether type urethane foam - ne<strong>at</strong>


Polyether urethane after acetone wash


Acetone extract from foam 4


GC-MS<br />

• Inform<strong>at</strong>ion from both extraction and<br />

pyrolysis. Extraction provides<br />

especially useful d<strong>at</strong>a on lower<br />

molecular weight compounds.<br />

• Separ<strong>at</strong>ion and identific<strong>at</strong>ion of<br />

ingredients of the product (e.g.<br />

plasticizers, styrene, etc.)<br />

• Study of breakdown products, which<br />

provide especially good points of<br />

comparison.


kCounts Sample ID: Sample #1<br />

700<br />

Pyrolysis<br />

600<br />

Benzene, 2,4-diisocyan<strong>at</strong>o-1-methyl-<br />

500<br />

2H-Benzimidazol-2-one, 1,3-dihydro-5-methyl-<br />

400<br />

300<br />

Indole-2-one, 2,3-dihydro-6-amino-<br />

Benzene, 1,3-diisocyan<strong>at</strong>o-2-methyl-<br />

200<br />

100<br />

0<br />

2.5 5.0 7.5 10.0 12.5 15.0 17.5<br />

minutes


MCounts Sample ID Sample 1<br />

Acetone extract<br />

Indole-2-one, 2,3-dihydro-6-amino-<br />

1.5<br />

Benzene, 1,3-diisocyan<strong>at</strong>o-2-methyl-<br />

2H-Benzimidazol-2-one,<br />

1,3-dihydro-5-methyl-<br />

Benzene, 2,4-diisocyan<strong>at</strong>o-1-methyl-<br />

1.0<br />

1,3-Benzenediamine, 2-methyl-<br />

1,3-Benzenediamine, 4-methyl-<br />

0.5<br />

0.0<br />

2.5 5.0 7.5 10.0 12.5 15.0 17.5<br />

minutes


MCounts<br />

Isobutandiol<br />

Sample ID: Sample #2<br />

Pyrolysis<br />

3<br />

2<br />

1<br />

0<br />

2.5 5.0 7.5 10.0 12.5 15.0 17.5<br />

minutes


MCounts Sample ID Sample 2; 2 dgr-PU ac #2 ac - 8-3-2011dgr-PU ac #2 ac -1.SMS<br />

2.0<br />

Acetone extract<br />

1.5<br />

1.0<br />

0.5<br />

polyol<br />

0.0<br />

2.5 5.0 7.5 10.0 12.5 15.0 17.5<br />

minutes


MCounts<br />

styrene<br />

Sample ID: Jeep, Sample #7<br />

Pyrolysis<br />

7<br />

6<br />

5<br />

Naphthalene, 2-bromo-<br />

4<br />

3<br />

2<br />

ethylbenzene<br />

xylenes<br />

alpha-methylbenzene<br />

1<br />

toluene<br />

dimethylquinoline<br />

0<br />

2.5 5.0 7.5 10.0 12.5 15.0 17.5<br />

minutes


Summary<br />

• By means of microscopical and microchemical<br />

techniques, it is possible to analyze and identify<br />

even single small polyurethane particles.<br />

• By careful selection of techniques and their order<br />

of applic<strong>at</strong>ion, it is possible to characterize single<br />

polyuethane foam particles for purposes of<br />

comparison.<br />

• Since these particles are typically degraded to<br />

some degree, GC-MS analysis of ne<strong>at</strong> particles,<br />

their extracts or pyrolyz<strong>at</strong>es provides a<br />

convenient and reliable means of comparison<br />

based on the degree of chemical alter<strong>at</strong>ion th<strong>at</strong><br />

the Q and K samples have undergone.


Thanks and acknowledgement<br />

• Mark <strong>Palenik</strong><br />

• K<strong>at</strong>ie White<br />

• Jay Beckert<br />

• Chris <strong>Palenik</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!