29.01.2015 Views

Journal of Heat Transfer, Vol. 121, No. 4. pp 770-773, November 1999

Journal of Heat Transfer, Vol. 121, No. 4. pp 770-773, November 1999

Journal of Heat Transfer, Vol. 121, No. 4. pp 770-773, November 1999

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NOMENCLATURE<br />

(<strong>Journal</strong> <strong>of</strong> <strong>Heat</strong> <strong>Transfer</strong>, <strong>Vol</strong>. <strong>121</strong>, <strong>No</strong>. <strong>4.</strong> <strong>pp</strong> <strong>770</strong>-<strong>773</strong>, <strong>No</strong>vember <strong>1999</strong>)<br />

QUANTITY SYMBOL COHERENT SI UNIT<br />

Absorptivity (radiation) α ⎯<br />

Absorption Coefficient (radiation) κ m -1<br />

Activation Energy <strong>of</strong> a Reaction ∆Ε J/kg<br />

Amount-<strong>of</strong>-Substance<br />

molar flow rate<br />

molar ‘mass velocity’ ( = N & / Ac<br />

)<br />

Angle<br />

plane<br />

solid<br />

<strong>of</strong> contact<br />

Area<br />

cross-sectional<br />

surface<br />

Ν<br />

N &<br />

n&<br />

α, β, γ, θ, φ<br />

Ω, ω<br />

θ<br />

A c , S<br />

A , A s<br />

Coefficient <strong>of</strong> <strong>Vol</strong>ume Expansion β =(1/υ) (∂υ/∂T)p K -1<br />

Compressibility Factor ( = pv / RT<br />

)<br />

Ζ ⎯<br />

kmol<br />

kmol/s<br />

kmol/m 2 s<br />

Complex Refractive Index m = n-ik ⎯<br />

Concentration<br />

mass (= M/V)<br />

molar (= N/V)<br />

c i , ρ i<br />

c , ρ<br />

kg/m 3<br />

kmol/m 3<br />

Coordinates<br />

Cartesian<br />

cylindrical<br />

spherical<br />

Density<br />

mass (= M/V)<br />

molar (= N/V)<br />

i<br />

i<br />

x, y, z<br />

r, φ, z<br />

r, θ, φ<br />

ρ<br />

ρ<br />

rad<br />

sr<br />

rad<br />

m 2<br />

m 2<br />

m, m, m<br />

m, rad, m<br />

m, rad, rad<br />

kg/m 3<br />

kmol/m 3<br />

Diffusion Coefficient D m 2 /s<br />

Diffusivity, Thermal (= k/ρc p ) α m 2 /s<br />

Dryness Fraction (quality)<br />

<strong>of</strong> flow<br />

x<br />

x *<br />

⎯<br />

⎯<br />

Emissive Power (radiation) E W/m 2<br />

Emissivity (radiation) ε ⎯<br />

Energy<br />

kinetic<br />

potential<br />

transfer per unit time (power)<br />

Enthalpy (= U + pV)<br />

specific, molar<br />

<strong>of</strong> reaction<br />

E<br />

E k<br />

E p<br />

W & , Q &<br />

Η<br />

h, h<br />

∆Η 0<br />

S<br />

s, s<br />

Entropy<br />

specific, molar<br />

Equilibrium (dissociation) constant K ⎯<br />

Extinction coefficient β = κ+σ s<br />

m -1<br />

Force<br />

weight (force <strong>of</strong> gravity)<br />

F<br />

Mg<br />

J =Nm<br />

J = Nm<br />

J = Nm<br />

W= Nm/s=kg m 2 /s 3<br />

J<br />

J/kg, J/kmol<br />

J<br />

J/K<br />

J/kg K, J/kmol K<br />

N = kg m/s 2<br />

N = kg m/s 2<br />

Fraction


mass, <strong>of</strong> species i<br />

mole, <strong>of</strong> species i<br />

void<br />

<strong>of</strong> volume flow<br />

Frequency<br />

circular<br />

Gas Constant<br />

molar (universal)<br />

specific, <strong>of</strong> species i<br />

Gibbs Function (= H - TS)<br />

specific (= h - Ts)<br />

molar ( = h −Ts)<br />

Gravitational Acceleration<br />

standard<br />

<strong>Heat</strong><br />

quantity <strong>of</strong><br />

rate (power)<br />

flux ( Q & / A)<br />

rate per unit volume<br />

QUANTITY SYMBOL COHERENT SI UNIT<br />

x i , y i<br />

⎯<br />

x i , y i<br />

⎯<br />

ε<br />

⎯<br />

⎯<br />

ε *<br />

ν, f<br />

ω<br />

R<br />

R i<br />

G<br />

g<br />

g<br />

Hz = s -1<br />

rad/s<br />

J/kmol K<br />

J/kg K<br />

J<br />

J/kg<br />

J/kmol<br />

g<br />

m/s 2<br />

m/s 2<br />

gn<br />

S & , q&′′<br />

′<br />

W/m 3<br />

Q<br />

J<br />

Q, & q<br />

q &,<br />

q ′′<br />

W = J/s<br />

W/m 2<br />

<strong>Heat</strong> Capacity<br />

specific (constant v or p)<br />

C<br />

c<br />

v<br />

, c<br />

p<br />

J/K<br />

J/kg K<br />

molar (constant v or p)<br />

J/kmol K<br />

c<br />

v<br />

, c<br />

p<br />

ratio c p /c v<br />

⎯<br />

γ<br />

<strong>Heat</strong> <strong>Transfer</strong> Coefficient h W/m 2 K<br />

Helmholtz Function ( = U - TS)<br />

specific (= u - T s)<br />

molar (= u − Ts )<br />

F<br />

f<br />

f<br />

J<br />

J/kg<br />

J/kmol<br />

Intensity (radiation) I W/m 2 sr<br />

Internal Energy<br />

U<br />

J<br />

specific, molar<br />

u, u<br />

J/kg, J/kmol<br />

Joule - Thomson Coefficient µJT =(∂T/∂p) h K/Pa = m 2 K/N<br />

Length<br />

width<br />

height<br />

diameter<br />

radius<br />

distance along path<br />

film thickness<br />

thickness<br />

Mass<br />

flow rate<br />

velocity <strong>of</strong> flux (flowrate per unit area = M & /A c )<br />

Mass <strong>Transfer</strong> Coefficient<br />

L<br />

W<br />

H<br />

D<br />

R<br />

s<br />

δ<br />

δ, ∆<br />

M<br />

M &<br />

m&<br />

, ρu<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m<br />

kg<br />

kg/s<br />

kg/m 2 s<br />

hm , km<br />

m/s<br />

Molar Mass M kg/kmol<br />

Mean Free Path λ , l m


QUANTITY SYMBOL COHERENT SI UNIT<br />

Optical Thickness τ ⎯<br />

Phase Function (radiation) Φ ⎯<br />

Pressure<br />

drop<br />

partial<br />

Reflectivity (radiation) ρ ⎯<br />

Scattering Albedo ω = σ s /(σ s +κ) ⎯<br />

p<br />

∆p<br />

p i<br />

Pa = N/ m 2<br />

Pa<br />

Pa<br />

Scattering Coefficient (radiation) σs m -1<br />

Shear Stress τ Pa = N/m 2 = kg/m s 2<br />

Stoichiometric Coefficient ν ⎯<br />

Surface Tension σ N/m = kg/s 2<br />

Temperature<br />

absolute T K<br />

Thermal Conductivity k W/mK<br />

Time t s<br />

Velocity<br />

components in Cartesian coordinates x, y, z<br />

u<br />

u, v, w<br />

m/s<br />

m/s<br />

View Factor (geometric or configuration factor)<br />

Fij<br />

⎯<br />

Viscosity<br />

dynamic (absolute)<br />

kinematic (= µ/ρ)<br />

µ<br />

ν<br />

Pa s=N s/m 2 = kg/m s<br />

m 2 /s<br />

<strong>Vol</strong>ume<br />

V<br />

m 3<br />

flow rate<br />

V &<br />

m 3 /s<br />

specific, molar<br />

v, v<br />

m 3 /kg, m 3 /kmol<br />

Work<br />

rate (power)<br />

W<br />

W &<br />

J = Nm<br />

W = J/s=Nm/s<br />

Wavelength λ m<br />

SUBSCRIPTS AND SUPERSCRIPTS<br />

QUANTITY<br />

SYMBOL<br />

Bulk<br />

b<br />

Critical State<br />

c<br />

Fluid<br />

f<br />

Gas or Saturated Vapour<br />

g<br />

Liquid or Saturated Liquid<br />

l<br />

Change <strong>of</strong> Phase<br />

fusion<br />

sublimation<br />

evaporation<br />

ls<br />

sg<br />

lg<br />

Mass transfer quantity<br />

m<br />

Solid or Saturated Solid<br />

s<br />

Wall<br />

w<br />

Free-stream<br />

∞<br />

Inlet in, 1<br />

Outlet out, 2<br />

At Constant Value <strong>of</strong> Property<br />

p, v, T, etc<br />

Molar (per unit <strong>of</strong> amount-<strong>of</strong>-substance)<br />

⎯ (overbar)<br />

Stagnation (subscript) 0<br />

DIMENSIONLESS GROUPS*


QUANTITY<br />

SYMBOL<br />

Biot Number<br />

Bi = hL / k<br />

Bond Number Bo = g(<br />

ρ − ρ<br />

2<br />

) L / σ<br />

Dean Number (Re) (r in /R coil ) 1/2<br />

Eckert Number<br />

l<br />

(rin = tube inner radius;<br />

Rcoil = coil mean radius)<br />

Ec = u 2 /c p ∆T<br />

Euler Number 2<br />

Eu = ∆p /( 1 ρu<br />

)<br />

Fourier Number Fo = α t/L 2<br />

Friction Factor 2<br />

f = τ w /( 1 ρ u )<br />

Froude Number<br />

Fr = u 2 /gl<br />

Galileo Number Ga = L 3 g/v 2<br />

Grash<strong>of</strong> Number<br />

Gr = βgL 3<br />

∆ T / ν<br />

2<br />

Graetz Number<br />

Knudsen Number (λ = mean free path)<br />

Lewis Number<br />

Mach Number<br />

Gz = (Re)(Pr) D/L<br />

2<br />

2<br />

v<br />

Kn = λ / L<br />

Le = (Sc)/(Pr)=α/D<br />

M = u / u sound<br />

1 / 2<br />

= u /( γRT<br />

/ M ) for perfect gas<br />

Marangoni Number Ma = ( ∂ σ / ∂T ) R∆T<br />

/( αµ )<br />

Nusselt Number<br />

Péclet Number<br />

Prandtl Number<br />

Nu = hL/kf<br />

Pe = (Re)(Pr)<br />

Pr = c p µ/k<br />

Rayleigh Number<br />

Ra=(Gr)(Pr)<br />

Reynolds Number Re = uL / ν = ρuL<br />

/ µ = m&<br />

L / µ<br />

Schmidt Number<br />

Sc=ν/D=µ/ρD<br />

Sherwood Number<br />

Sh=h m L/D<br />

Stanton Number<br />

St=(Nu)/(Re)(Pr)=h/ρc p u<br />

Stefan or Jakob Number<br />

Ste or Ja = c p ∆Τ/∆h<br />

Strouhal Number<br />

Sr = νL/u<br />

Weber Number<br />

We=u 2 ρL/σ<br />

* The symbol L in the dimensionless groups stands for a generic length, and is defined according to the<br />

particular geometry being described; i.e., it may be diameter, hydraulic diameter, plate length, etc.<br />

PHYSICAL CONSTANTS<br />

QUANTITY<br />

SYMBOL<br />

Avogadro’s Number N A = 6.0225x10 26 kmol -1<br />

Boltzmann’s Constant<br />

k = 1.38066 x 10 -23 J/K<br />

Planck’s Constant<br />

h = 6.62608 x 10 -34 Js<br />

Stefan-Boltzmann Constant σ = 5.67051x10 -8 W/(m 2 K 4 )<br />

Speed <strong>of</strong> Light in Vacuum<br />

c = 2.99792 x 10 8 m/s<br />

Universal Gas Constant<br />

R = 8.31441x10 3 J/kmol·K

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!