30.01.2015 Views

Analytical Solution of Cold-air-drainage Flow Within and Above ...

Analytical Solution of Cold-air-drainage Flow Within and Above ...

Analytical Solution of Cold-air-drainage Flow Within and Above ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 nd International Countermeasures <strong>of</strong> Urban Heat Isl<strong>and</strong>, Berkeley, USA, Sep21-23, 2009<br />

<strong>Analytical</strong> <strong>Solution</strong> for <strong>Cold</strong>-<strong>air</strong><strong>drainage</strong><br />

flow On Sloping Forest<br />

Zhiwen Luo, Yuguo Li<br />

Department <strong>of</strong> Mechanical Engineering<br />

The University <strong>of</strong> Hong Kong, Hong Kong, China<br />

Chuixiang Yi<br />

Queens College, The City University <strong>of</strong> New York,<br />

Flushing, USA


<strong>Cold</strong>-<strong>air</strong>-<strong>drainage</strong> <strong>Flow</strong><br />

Source: C.David Whiteman “Mountain Meterology”


<strong>Cold</strong>-<strong>air</strong>-<strong>drainage</strong> <strong>Flow</strong><br />

• Mitigate the nocturnal UHI<br />

– Kitada, 1998; Ohashi <strong>and</strong> Kida, 2002<br />

• Disperse the urban pollution<br />

– Baumbach <strong>and</strong> Vogt, 1999; Egan, 1984; Lu <strong>and</strong> Turco, 1994<br />

• Influence the nocturnal ecosystematmosphere<br />

exchange<br />

– Lee <strong>and</strong> Hu, 2002; Turnipseed et al, 2003; Yi et al, 2000


Hong Kong Isl<strong>and</strong><br />

Source: www.gearthblog.com


Physical model


19:00 pm<br />

Mar 15,2008


Ra=10 9 Ra=10 8<br />

Ra=10 7<br />

Ra=106


<strong>Analytical</strong> Models<br />

• Pr<strong>and</strong>tl model<br />

– One dimensional, but gives the detailed structure <strong>of</strong><br />

the flow pr<strong>of</strong>ile<br />

• Hydraulic model<br />

– Only provide the layer-averaged characteristic scales<br />

<strong>of</strong> flow parameters, i.e., velocity, momentum<br />

thickness, buoyancy deficit


Vegetation on Slope <strong>Flow</strong><br />

• Few studies address this problem<br />

– Bergen, 1969; Devito <strong>and</strong> Miller, 1983<br />

• Katabatic flow can occur both within <strong>and</strong><br />

above the tree canopies<br />

– Komatsu et al, 2003; Devito <strong>and</strong> miller, 1983; Pypker, 2007<br />

• Underst<strong>and</strong> the flow structure can help to<br />

estimate the surface fluxes


<strong>Cold</strong>-<strong>air</strong>-<strong>drainage</strong> winds---Forest Canopy<br />

katabatic wind above the canopy<br />

katabatic wind in the canopy<br />

Modified from Pr<strong>of</strong> Tree’s PPT


Aims<br />

Propose a simple analytical model<br />

by coupling both above <strong>and</strong> within<br />

tree canopies


<strong>Cold</strong>-<strong>air</strong>-<strong>drainage</strong> <strong>Flow</strong> Model<br />

z<br />

n<br />

h<br />

0<br />

x<br />

z<br />

s<br />

T<br />

Assumptions:<br />

_<br />

• One dimensional normal to<br />

the slope<br />

• Constant deficit <strong>of</strong> potential<br />

temperature in the canopy<br />

• Non-linear advection term is<br />

ignored in the momentum<br />

equation<br />

c D --- drag coefficient;<br />

a ---- leaf area density;<br />

LAI—leaf area index;<br />

"! --- deficit <strong>of</strong> the potential<br />

temperature ;<br />

h ---- canopy height


<strong>Flow</strong> <strong>Within</strong> Canopy<br />

(non-uniform)<br />

Momentum equation<br />

" u#<br />

w#<br />

=<br />

" n<br />

g&<br />

!%<br />

sin$<br />

+ c<br />

D<br />

au 2 ( n)<br />

Parameterizing the Reynolds stress (Yi,<br />

2008):<br />

$ ( z) / # = " u!<br />

w!<br />

( z)<br />

= c<br />

D<br />

( z)<br />

u 2 ( z)<br />

U<br />

"<br />

0<br />

cD(0)<br />

2 $ [ LAI $ L(<br />

n)]<br />

g'<br />

#&<br />

sin%<br />

$ [ L(<br />

n"<br />

) $ L(<br />

n)]<br />

( n)<br />

= $ ( U (0) e $ ! e dn"<br />

c<br />

( 2<br />

D(<br />

n)<br />

a(<br />

n)<br />

u<br />

D<br />

2<br />

cD ( n)<br />

u ( n))<br />

= g%<br />

! $ sin#<br />

+ c<br />

" n<br />

( n)<br />

c<br />

D<br />

( n)<br />

n<br />

( n)<br />

)<br />

1/ 2<br />

n<br />

L( n)<br />

= " a(<br />

n!<br />

) dn!<br />

LAI = L(0)<br />

# h


<strong>Flow</strong> <strong>Above</strong> Canopy<br />

Pr<strong>and</strong>tl Model<br />

!<br />

!<br />

"<br />

!<br />

!<br />

#<br />

$<br />

%<br />

=<br />

=<br />

%<br />

2<br />

2<br />

2<br />

2<br />

)sin<br />

(<br />

)<br />

(<br />

sin<br />

dn<br />

d<br />

k<br />

n<br />

u<br />

dn<br />

n<br />

u<br />

d<br />

k<br />

g<br />

h<br />

m<br />

&<br />

'<br />

(<br />

'<br />

&<br />

)<br />

)]<br />

/<br />

'cos(<br />

)<br />

/<br />

sin(<br />

[<br />

)<br />

(<br />

/<br />

l<br />

n<br />

C<br />

l<br />

n<br />

Ke<br />

n<br />

u<br />

s<br />

l<br />

n<br />

!<br />

"<br />

=<br />

!<br />

#<br />

4<br />

1<br />

2<br />

2 )<br />

sin<br />

4<br />

(<br />

!<br />

N<br />

k<br />

k<br />

l<br />

h<br />

m<br />

=<br />

m<br />

h<br />

k<br />

k<br />

N<br />

g<br />

K<br />

!<br />

=<br />

Pr<strong>and</strong>tl<br />

Pr<strong>and</strong>tl in 1905<br />

in 1905


Coupling at Canopy Top<br />

canopy<br />

above<br />

canopy<br />

in<br />

u<br />

u !<br />

! = )<br />

(0<br />

(0)<br />

s<br />

canopy<br />

above<br />

n<br />

canopy<br />

in<br />

n !<br />

!<br />

! "<br />

=<br />

= "<br />

" #<br />

=<br />

#<br />

= ,<br />

0<br />

0,<br />

canopy<br />

above<br />

n<br />

canopy<br />

in<br />

n<br />

dn<br />

du<br />

dn<br />

du<br />

!<br />

=<br />

!<br />

=<br />

=<br />

0,<br />

0,<br />

!<br />

"<br />

!<br />

#<br />

$<br />

%<br />

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&<br />

'<br />

(<br />

=<br />

)<br />

)<br />

'<br />

&&&&&&&&&&&&&&&<br />

*<br />

(<br />

'<br />

= '<br />

'<br />

*<br />

'<br />

'<br />

'<br />

'<br />

+<br />

0<br />

)]<br />

/<br />

cos(<br />

)<br />

/<br />

sin(<br />

[<br />

)<br />

(<br />

0<br />

)<br />

)<br />

(<br />

sin<br />

)<br />

(<br />

(0)<br />

(<br />

)<br />

(<br />

/<br />

2<br />

1/<br />

0<br />

)]<br />

(<br />

)<br />

(<br />

[<br />

)]<br />

(<br />

[<br />

2<br />

2<br />

n<br />

l<br />

n<br />

C<br />

l<br />

n<br />

Ke<br />

n<br />

U<br />

n<br />

h<br />

dn<br />

e<br />

n<br />

c<br />

g<br />

e<br />

C<br />

K<br />

n<br />

c<br />

c<br />

n<br />

U<br />

s<br />

l<br />

n<br />

n<br />

n<br />

L<br />

n<br />

L<br />

D<br />

s<br />

n<br />

L<br />

LAI<br />

D<br />

D<br />

,<br />

-<br />

,<br />

.


Validation <strong>and</strong> Discussion<br />

Leaf area density


Velocity Pr<strong>of</strong>ile<br />

Low-level jet<br />

Ri<br />

g ! T<br />

= T ! z " #<br />

2<br />

$ ! u %<br />

& '<br />

( ! z )<br />

Minimum vertical exchange<br />

Super-stable layer<br />

Minimum velocity <strong>and</strong> largest leaf area density


Sensitive Study<br />

---Uniform Case<br />

• Atmospheric Stability<br />

• Slope angle<br />

• Canopy morphology


Influence <strong>of</strong> Atmospheric Stability <strong>and</strong> Slope Angle<br />

400<br />

350<br />

300<br />

!=5°, "=2 K/km<br />

!=5°, "=4 K/km<br />

!=10°, "=2 K/km<br />

Steeper slope<br />

)<br />

m<br />

(<br />

H<br />

250<br />

200<br />

150<br />

Weak stability<br />

100<br />

50<br />

Strong stability<br />

Canopy top<br />

0<br />

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0<br />

Velocity (m/s)


)<br />

m<br />

(<br />

Influence <strong>of</strong> Plant Canopy<br />

y<br />

p<br />

o<br />

n<br />

a<br />

c<br />

220<br />

200<br />

180<br />

LAI=2<br />

LAI=4<br />

LAI=10<br />

e<br />

h<br />

t<br />

e<br />

v<br />

o<br />

b<br />

a<br />

160<br />

140<br />

120<br />

100<br />

80<br />

LAI=4<br />

LAI=2<br />

t<br />

h<br />

g<br />

i<br />

e<br />

H<br />

60<br />

40<br />

20<br />

LAI=10<br />

0<br />

Canopy Top<br />

-20<br />

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0<br />

Velocity (m/s)


Conclusions<br />

• <strong>Analytical</strong> solution on cold-<strong>air</strong>-<strong>drainage</strong> winds by<br />

accounting for the influence <strong>of</strong> tree canopy is<br />

obtained.<br />

• The effect <strong>of</strong> atmospheric stability <strong>and</strong> slope<br />

inclination is also investigated.<br />

• The influence <strong>of</strong> different leaf area indexes is<br />

studied.


Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!