30.01.2015 Views

A R C T E X

A R C T E X

A R C T E X

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DS<br />

-18<br />

DL<br />

+41<br />

Q H<br />

-18<br />

Q E<br />

+0.7<br />

Light Winter<br />

15 Mar<br />

to 15 Apr<br />

DS<br />

-41<br />

DL<br />

+33<br />

Q H<br />

-8<br />

Pre melt 15 Apr<br />

to 31 May<br />

Q E<br />

+2.5<br />

C ~0<br />

Q G<br />

-5.9<br />

Q G<br />

+3<br />

C +10.5<br />

DS<br />

-91<br />

Q G<br />

+12<br />

DL<br />

+43<br />

Q Melt<br />

+27<br />

Snow melt<br />

Jun<br />

Q H<br />

-6<br />

Q E<br />

+11<br />

C +3<br />

Light winter: Net short-wave radiation increasing à limited by high snow albedo.<br />

Energy loss by ∆L compensated by sensible heat flux and short-wave radiation.<br />

Snow heat flux negative à further cooling underlying soil column à lowest soil<br />

temperatures.<br />

Pre melt: Net short-wave radiation dominant energy supply. Sensible heat flux<br />

add. melt energy.<br />

Net long-wave radiation main balancing factor. Latent heat remains insignificant.<br />

Snow and soil column start to warm (now positive snow heat flux).<br />

Snow melt: Warming of snow pack towards 0°C à followed by snow melt.<br />

Energy consumed by melting snow is dominant component.<br />

Strong net short-wave radiation (albedo change) à Compensated by net longwave<br />

radiation.<br />

Total net radiation is much stronger energy suppler compared to Q H .<br />

Snow melt almost entirely controlled by radiation.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!