30.01.2015 Views

A R C T E X

A R C T E X

A R C T E X

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A R C T E X<br />

Results of the Arctic Turbulence Experiments<br />

www.arctex.uni-bayreuth.de<br />

Long-term Monitoring of Heat Fluxes at a<br />

high Arctic Permafrost Site in Svalbard<br />

1


A R C T E X<br />

Results of the Arctic Turbulence Experiments<br />

www.arctex.uni-bayreuth.de<br />

CONTENT<br />

Overview field experiments<br />

Meso-scale atmospheric circulation pattern - Kongsfjord<br />

Wind field and atmospheric stability<br />

Typical diurnal patterns spring time<br />

Disturbed temperature profile close to the surface<br />

Ratio of buoyancy / shear production - Free Convection conditions<br />

Surface energy budget of permafrost on Svalbard<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de


Direct near surface measurements of sensible heat fluxes in the<br />

arctic tundra applying eddy-covariance and laser scintillometry<br />

(supported by the DFG)<br />

1 st Measurement experiment May 02, 2006 to May 20, 2006 -<br />

Location: Ny-Ålesund, Spitzbergen (Svalbard), 79° North Latitude<br />

Lüers, J and Bareiss, J (2010): The effect of misleading surface temperature estimations on the sensible heat<br />

fluxes at a high Arctic site - The Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006),<br />

Atmospheric Chemistry and Physics, 10 (1), 157-168.<br />

Lüers, J and Bareiss, J: Direct near surface measurements of sensible heat fluxes in the arctic tundra<br />

applying eddy-covariance and laser scintillometry - The Arctic Turbulence Experiment 2006 on Svalbard<br />

(ARCTEX-2006), Theor Appl Climatol, in review 2010.<br />

Westermann, S; Lüers, J; Langer, M; Piel, K; Boike, J (2009): The annual surface energy budget of a higharctic<br />

permafrost site on Svalbard, Norway, The Cryosphere, 3 (2), 631-680.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

3


Diurnal variability of near surface sensible heat fluxes during summer<br />

time over dry and wet high arctic Tundra using eddy-covariance and<br />

laser scintillometer techniques in a typical footprint area on Svalbard<br />

(DFG project LU 1400/2-1). 2 nd measurement experiment August 10,<br />

2009 to August 20, 2009 - Location: Bayelva Catchment south-west of<br />

Ny-Ålesund, 79° North latitude.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

4


Meso-scale atmospheric circulation pattern - Kongsfjord<br />

Ny-Alesund<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

5


Wind field and atmospheric stability (Lüers & Bareiss, TAC 2010)<br />

360<br />

Ny-Alesund<br />

NW SE NW SE NW SE<br />

SE<br />

NW<br />

May 2006<br />

0.8<br />

2.0<br />

315<br />

0.7<br />

1.5<br />

wind direction ¨ [°]<br />

270<br />

225<br />

180<br />

135<br />

90<br />

45<br />

0<br />

0.0<br />

07 08 09 10 11 12 13 14 15 16 17 18 19 20<br />

Time [Day]<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

u * [m s -2 ]<br />

u¨ [m s¨1]<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

stability z/L z/L ¨ [-] [-]<br />

Interaction of micrometeorological atmospheric stability with change of wind direction<br />

down (SE) or up (NW) Kongsfjord valley<br />

Forced by change of thermal meso-scale atmospheric circulation pattern or synoptic<br />

weather situation around Spitsbergen<br />

Affected by<br />

mountainous Islands covered by glaciers and sea-water filled Fjords<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

6


z/L z [ ]<br />

z/L z [ ]<br />

Ny-Alesund<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

NW<br />

Typical diurnal patterns spring time (Lüers & Bareiss, TAC 2010)<br />

z/L<br />

QH ECV<br />

00 01 02 03 03 04 04 05 05 06 06 07 07 08 08 09 09 10 10 11 12 11 13 12 14 13 1514 1615 1716 1817 19 18 20 19 21 20 22 23 21 00 22 23 00<br />

Ny-Alesund<br />

2.0<br />

SE<br />

z/L<br />

SE<br />

QH ECV<br />

QH LC95 IR<br />

QH SLS<br />

CET [hour]<br />

SE<br />

SE<br />

NW<br />

QH LC95 IR<br />

QH SLS<br />

May 16, 11, 2006<br />

10 20<br />

00 01 02 03 03 04 04 05 05 06 06 07 07 08 08 09 09 10 10 11 12 11 13 12 14 13 1514 1615 1716 1817 19 18 20 19 21 20 22 23 21 00 22 23 00<br />

CET [hour]<br />

SE<br />

NW<br />

8<br />

15<br />

6<br />

10<br />

4<br />

2<br />

5<br />

0<br />

-2<br />

-5<br />

-4<br />

-10<br />

-6<br />

-8<br />

-15<br />

-10 -20<br />

May 16, 2006<br />

10 20<br />

NW<br />

8<br />

15<br />

6<br />

10<br />

4<br />

2<br />

5<br />

0<br />

-2<br />

-5<br />

-4<br />

-10<br />

-6<br />

-8<br />

-15<br />

-10 -20<br />

QH [W m -2 ]<br />

QH [W m -2 ]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

Vh [ m s -1 ]<br />

Vh [ m s -1 ]<br />

May 11<br />

Day time sustainable<br />

neutral conditions with<br />

strong SE winds<br />

Night time stability<br />

weak or calm NW<br />

winds.<br />

May 16 vice versa<br />

Day time intermittent<br />

turbulent exchange at<br />

noon, calm winds<br />

during change of<br />

directions SE to NW.<br />

Night time sustainable<br />

neutral and windy<br />

conditions during low<br />

sun positions<br />

(Both days were sunny<br />

with some scattered<br />

alto-level clouds.)<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

7


Disturbed temperature profile close to the surface (Lüers & Bareiss, ACP 2010)<br />

Mean vertical profile of temperature and wind speed<br />

Case A reflects strong surface cooling and a sharp inversion within 1 or 2 meter (5 h to 8 h or 17 to 22 h CET).<br />

Case B occurs around noon (9 to 16 CET) indicating a disturbed profile caused by surface warming.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

8


Ratio of buoyancy / shear production - Free Convection conditions<br />

Production of Turbulent Kinetic Energy TKE<br />

B<br />

=<br />

g<br />

θ<br />

v<br />

⋅ w′<br />

θ′<br />

v<br />

Buoyancy production: This term represents effect of<br />

thermal convection on the generation of TKE.<br />

S<br />

2<br />

= u ∗<br />

⋅<br />

∆v<br />

h<br />

∆z<br />

Shear production: This term represents<br />

mechanical production of TKE or of turbulent eddies. Interaction of<br />

the vertical wind profile with the kinematic stress against the surface.<br />

Ratio B/S (B/S = flux Richardson number Ri f )<br />

TKE produced or consumed by the buoyancy term B<br />

versus<br />

TKE produced by the mechanical or shear stress term S<br />

Usable to assess the dynamical stability or the convective activity<br />

of the atmospheric boundary layer.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

9


Ratio of buoyancy / shear production - Free Convection conditions<br />

Ny-Alesund<br />

May 2006<br />

Ratio Buoyancy/Shear [ ]<br />

12<br />

9<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

-9<br />

+1 or -3<br />

Ratio B/S<br />

12<br />

9<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

-9<br />

-12<br />

07 08 09 10 11 12 13 14 15 16 17 18 19 20<br />

Determination if a free convection event or extreme stability (Stull 2000)<br />

B/S threshold of -3 buoyancy is three times greater than wind shear |B| > 3⋅|S|<br />

high possibility to generate free convection.<br />

B/S threshold of +1<br />

Time [Day]<br />

states dynamical stable, wave motion drive conditions.<br />

Most of the time in May 2006 relation thermal vs. mechanical produced TKE is near zero.<br />

Distinct, short periods of free convection or extreme stability (duration only 1 h to 2 h).<br />

Events at Ny-Ålesund appear mostly around noon or afternoon.<br />

-12<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

10


Surface energy budget of permafrost on Svalbard (Westermann, Lüers et al. TC 2009)<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de


DS<br />

-18<br />

DL<br />

+41<br />

Q H<br />

-18<br />

Q E<br />

+0.7<br />

Light Winter<br />

15 Mar<br />

to 15 Apr<br />

DS<br />

-41<br />

DL<br />

+33<br />

Q H<br />

-8<br />

Pre melt 15 Apr<br />

to 31 May<br />

Q E<br />

+2.5<br />

C ~0<br />

Q G<br />

-5.9<br />

Q G<br />

+3<br />

C +10.5<br />

DS<br />

-91<br />

Q G<br />

+12<br />

DL<br />

+43<br />

Q Melt<br />

+27<br />

Snow melt<br />

Jun<br />

Q H<br />

-6<br />

Q E<br />

+11<br />

C +3<br />

Light winter: Net short-wave radiation increasing à limited by high snow albedo.<br />

Energy loss by ∆L compensated by sensible heat flux and short-wave radiation.<br />

Snow heat flux negative à further cooling underlying soil column à lowest soil<br />

temperatures.<br />

Pre melt: Net short-wave radiation dominant energy supply. Sensible heat flux<br />

add. melt energy.<br />

Net long-wave radiation main balancing factor. Latent heat remains insignificant.<br />

Snow and soil column start to warm (now positive snow heat flux).<br />

Snow melt: Warming of snow pack towards 0°C à followed by snow melt.<br />

Energy consumed by melting snow is dominant component.<br />

Strong net short-wave radiation (albedo change) à Compensated by net longwave<br />

radiation.<br />

Total net radiation is much stronger energy suppler compared to Q H .<br />

Snow melt almost entirely controlled by radiation.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de


Dark Winter<br />

Oct to Mar<br />

Summer Jul & Aug<br />

DL<br />

+28 Q H<br />

-16<br />

Q E<br />

+2.5<br />

Q G<br />

-5<br />

C -9<br />

Dark winter: Long-wave radiation is main forcing<br />

à Net long-wave radiation dominant energy loss<br />

∆L loss is compensated by<br />

negative sensible heat flux (warming of surface,<br />

cooling of atmosphere)<br />

Sig. positive latent heat fluxes (at high wind speed<br />

& neutral stratification)<br />

Sig. influence of other factors:<br />

wind speed & precipitation (rain on snow)<br />

Schematic diagram of the contributions of the surface energy budget for different<br />

seasons. Arrows pointing away from the surface indicate positive fluxes.<br />

The flux values are given in Wm - 2 .<br />

DS<br />

-122<br />

Q G<br />

+12<br />

DL<br />

+43<br />

Q H<br />

22.5<br />

Q E<br />

22.5<br />

Summer: strong forcing by short-wave radiation<br />

à absence of snow cover.<br />

C +22<br />

Net short-wave radiation ∆S is compensated by:<br />

+ net long-wave radiation ∆L<br />

+ sensible and latent heat flux<br />

+ ground heat flux à Thawing of the active layer.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de


Surface energy budget of permafrost on Svalbard<br />

Summer 1 Jul to 31 Aug 2008, Bayelva permafrost station<br />

Sensible (red), latent (blue) and ground (green) heat<br />

fluxes W m −2 (left axis).<br />

Soil water content θ w - Time Domain Reflectometry at<br />

0.1 m depth (right axis).<br />

Average daily Bowen ratio vs. volumetric soil<br />

water content θ w<br />

Soil water content classes of widths of 0.02.<br />

Error bars represent the standard deviation of<br />

the Bowen ratio values within one class.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de


Surface energy budget of permafrost on Svalbard<br />

Snow melt - June<br />

Sensible (red), latent heat flux<br />

(blue), W m −2 , left axis.<br />

Light gray : snow-covered<br />

Dark gray : snow-free<br />

fraction of the surface area, right<br />

axis.<br />

Intermediate gray : uncertainty in<br />

area fractions.<br />

Until large snow-free patches appear<br />

Air temperature between -1°C and +5°C à snow surface temperature remains close to 0°C à resulting temperature<br />

gradient is small à weak Q H -flux à positive Q E -flux, causing cooling of surface, becomes significant (presence of water).<br />

During snow melt<br />

Infiltrating melt water à subsequent refreezing processes dominates snow pack, (isothermal close to 0°C).<br />

Underlying soil still colder à resulting in a heat transport from snow-soil interface into the soil.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de


Surface energy budget (SEB) of permafrost on Svalbard<br />

Annual cycle<br />

During polar night - main components SEB:<br />

* IR-radiation *sensible heat flux *heat input refreezing active layer<br />

Determining factor surface temperature of snow:<br />

*incoming atmospheric IR-radiation and *downward sensible heat flux<br />

During spring - Apr/May - long-lasting snow cover - high albedo:<br />

Limitation of *short-wave radiation<br />

Dominant component: energy consumed by melting snow<br />

Albedo change by snow melt is of critical importance for annual SEB<br />

Marking transition point between two fundamentally different regimes<br />

During polar day - Jul/Aug - snow-free period - system governed by<br />

*short-wave radiation<br />

Main balancing factors in the surface energy budget<br />

*turbulent heat fluxes and *IR-radiation balance<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de


Conclusions : Process understanding<br />

ARCTEX-2006 and 2009 + Understanding: variability and transport processes<br />

+ Interaction: meso-scale atmospheric circulation pattern with micrometeorological<br />

near surface atmospheric exchange conditions.<br />

+ Wind field change: short, developed unstable situations<br />

or even free-convection events (noon or early afternoon).<br />

+ Positive feedback: snow and ice melt is supported by<br />

free-convection or short unstable periods<br />

+ Disturbed temperature profile close to surface: Decoupling major error source<br />

to estimate heat fluxes and appropriate surface temperature<br />

+ Comparison: heat-flux parameterizations with direct measurements.<br />

Hydrodynamic three-layer temperature-profile model reliably reproduces<br />

temporal variability of surface temperature<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

17


Conclusions : Practical recommendations<br />

Main technical error source drifting snow and precipitation effects through flux sensor pathways (over- or<br />

underestimation and misleading flux directions)<br />

Solution<br />

Measurement height should be recorded (variation of snow depth) and must be adjusted according to change of<br />

seasons, service of a present weather detector (weather code, visibility).<br />

Decoupling effect (disturbed temperature profiles) and the determination of the surface temperature<br />

Solution<br />

Additional meteorological data + near-surface vertical gradients of wind, temperature, humidity.<br />

Surf. temp.: IR-Thermometer or pyrgeometer or extrapolation applying a hydrodynamic three-layer temperatureprofile<br />

model (Lüers & Bareiss ACP 10/1).<br />

Measurement height of instrumentation (eddy-covariance systems or gradient towers) should be in appropriate<br />

layer within and above this disturbed wind and temperature profiles.<br />

General<br />

Adaptation to polar conditions of flux data corrections and quality assessment and quality control (QA/QC)<br />

techniques (rotation of coordinate system).<br />

Detection of intermittent turbulent conditions, of free-convection events, of wave motion.<br />

Investigation of meso-scale circulation pattern and micro-scale near surface profiles.<br />

Observation of variability of the snow and tundra soil surface conditions (e.g. Web-Cam).<br />

Finding a compromise between conflicting nature of the effect of the disturbed temperature profile and the search<br />

for an acceptable fetch and desired footprint area.<br />

Johannes Lüers<br />

DACH 2010 Bonn<br />

Universität Bayreuth Bayreuther Zentrum für Ökologie und Umweltforschung<br />

Abteilung Mikrometeorologie johannes.lueers@uni-bayreuth.de<br />

18


Thanks<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!