30.01.2015 Views

Modern Non-Destructive Electronic Detection Techniques in ... - GSI

Modern Non-Destructive Electronic Detection Techniques in ... - GSI

Modern Non-Destructive Electronic Detection Techniques in ... - GSI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Modern</strong> <strong>Non</strong>-<strong>Destructive</strong> <strong>Electronic</strong> <strong>Detection</strong> <strong>Techniques</strong><br />

<strong>in</strong> Cryogenic Trap Systems<br />

Stefan Stahl<br />

Basic Pr<strong>in</strong>ciples of <strong>Electronic</strong> <strong>Detection</strong> Systems<br />

Applications <strong>in</strong> Recent and Futural Experiments<br />

Workshop @ <strong>GSI</strong>, 2004<br />

doc.: EloDetec.ppt


Motivation:<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Why<br />

<strong>Non</strong>-destructive <strong>Detection</strong><br />

example TOF<br />

(time-of-flight,<br />

destructive)<br />

- advantage: s<strong>in</strong>gle particle sensitivity is possible, easy to use<br />

- disadvantage: removes ion out of your trap


Motivation:<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Why<br />

<strong>Non</strong>-destructive <strong>Detection</strong><br />

example TOF<br />

(time-of-flight,<br />

destructive)<br />

Laser-Spectrosc.<br />

(non-destructive)<br />

- advantage: few ... s<strong>in</strong>gle particle sensitivity possible<br />

- disadvantage: costly, only for very few species applicable,<br />

optical access needed


Motivation:<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Why<br />

<strong>Non</strong>-destructive <strong>Detection</strong><br />

Keep<strong>in</strong>g the particles <strong>in</strong>side your trap....<br />

• no need to load the trap aga<strong>in</strong><br />

(sav<strong>in</strong>g time, efforts & costs)<br />

• longer observation time<br />

(=> good for high precision experiments)<br />

• possibility to electronically cool them down to very low<br />

energies (~ few Milli-eV) <strong>in</strong> ~ 1sec. („resistive cool<strong>in</strong>g“)<br />

• tool for high precision experiments


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

How can we detect <br />

Make use of the fact, that Ions, Electrons, Protons, ....<br />

are electrically charged particles<br />

Every Mov<strong>in</strong>g Charge = Electrical Current<br />

=> you can measure it !


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

How can we detect <br />

Motion <strong>in</strong> a Penn<strong>in</strong>g Trap:<br />

ω c =<br />

qB<br />

m


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

How can we detect <br />

Motion <strong>in</strong> a Penn<strong>in</strong>g Trap:<br />

ω c =<br />

qB<br />

m


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

How can we detect <br />

Motion <strong>in</strong> a Penn<strong>in</strong>g Trap:<br />

ω c =<br />

qB<br />

m<br />

ω z = const.<br />

qU 0<br />

m<br />

ω - =<br />

U 0<br />

B r 0<br />

2


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

How can we detect <br />

Axial Motion:<br />

Z


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

How can we detect <br />

Axial Motion:<br />

<strong>in</strong>duced image currents<br />

Z<br />

<strong>in</strong>duced current:<br />

I eff = 1/√2 · r ion / D · ω ·q<br />

(Schottky et al. ...)<br />

still small:<br />

0.2pA eff


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

<strong>Detection</strong> of excited ions (few eV)<br />

- cyclotron motion<br />

x<br />

y


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

<strong>Detection</strong> of excited ions (few eV)<br />

- cyclotron motion<br />

x<br />

pickup-electrode<br />

y<br />

pickup-electrode


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

<strong>Detection</strong> of excited ions (few eV)<br />

- cyclotron motion<br />

x<br />

y<br />

„FT-ICR“<br />

fourier-transform-ion cyclotron resonance<br />

„FT-ICR-cells“<br />

used <strong>in</strong> chemistry/biology<br />

m/q-resol. ~10 5 ...10 6<br />

still: s<strong>in</strong>gle ion detection<br />

not possible


Sensitivity Improvement:<br />

Resonant <strong>in</strong>stead of broadband detection<br />

I<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

measured signal:<br />

U = Z · I<br />

Z LC = Q LC ·|Z C,parasitic |<br />

ω ion = ω LC = 1/√(LC)<br />

broadband<br />

(given : r ion<br />

, D)<br />

resonant<br />

enhancement factor<br />

~100 (T=300K)<br />

~2000 (T = 4K)<br />

⇒cryogenic<br />

components<br />

this idea applies for axial detection as well as for FT-ICR !


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Examples of high-Q-coils:<br />

500kHz-coil<br />

for FT-ICR detection of heavy masses<br />

(Shiptrap / MATS)<br />

NbTi wire on Teflon<br />

30MHz-coil<br />

for FT-ICR of hydrogenlike ions<br />

(g-factor, Ma<strong>in</strong>z)<br />

gold plated copper


Applications and Examples<br />

of non-destructive electronic detection schemes<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

g-factor measurements: neccessity to know the<br />

magnetic field strength B 12<br />

C 5+<br />

FT-ICR-signal (resonant):<br />

FWHM of 6·10 -10 ,<br />

measurement time: 120sec<br />

(=Fourier-Limit)<br />

E k<strong>in</strong> ~ 1eV<br />

qB<br />

ω c = = ω + + ω<br />

m<br />

−<br />

Limitation: B-field drifts<br />

⇒short measurement times


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Count<strong>in</strong>g s<strong>in</strong>gle ions...<br />

how many ions are<br />

<strong>in</strong>side the trap<br />

=> just count them!<br />

without magnetron center<strong>in</strong>g<br />

ions show a considerable<br />

frequency spread


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Resistive Cool<strong>in</strong>g<br />

<strong>in</strong>duced current creates thermal energy <strong>in</strong> R => dissipative effect,<br />

=> exponential decay of amplitude<br />

τ =<br />

R =<br />

m · D²<br />

q² · R<br />

Q<br />

ω ·C<br />

ion D<br />

12<br />

C 5+ 5.5mm 23ms<br />

Protons, ‘‘’<br />

49ms<br />

131<br />

Xe 44+ , 20mm 3.3ms<br />

e - , e + , 0.7mm 10.9µs<br />

for Q = 2000, f = 0.4MHz, C = 20pF (except e - , e + )<br />

τ


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

<strong>Detection</strong> of cold particles:<br />

⇒possibility to<br />

detect cold ions


Bolometric <strong>Detection</strong><br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

of s<strong>in</strong>gle cold ions


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Mass Spectra (ramp<strong>in</strong>g method)<br />

(Rett<strong>in</strong>ghaus at al. 1967)<br />

Axial Motion:<br />

ω z ~ (qU 0 /m) 1/2<br />

Ion Signal <strong>in</strong><br />

Barium-Penn<strong>in</strong>g Trap,<br />

(Ma<strong>in</strong>z)<br />

@ 300K Q LC = 250<br />

=> simple and cost effective method


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Determ<strong>in</strong>ation of the free Proton<br />

Magnetic Moment<br />

µ p<br />

µ N<br />

=<br />

g p<br />

⋅<br />

s<br />

h<br />

• first direct high precision measurement of a free<br />

nuclear particles magnetic moment<br />

• proton / antiproton comparison,<br />

matter / antimatter symmetry (CPT-Test)


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Application of Cryogenic <strong>Electronic</strong>s<br />

at the Proton Trap:<br />

-calibration of B (magnetic field)<br />

-determ<strong>in</strong>ation of the ω z<br />

, ω -<br />

-cool<strong>in</strong>g the degrees of freedom down to 4K<br />

by resistive cool<strong>in</strong>g (and magnetron center<strong>in</strong>g)<br />

-detection of the sp<strong>in</strong> direction<br />

not quite easy...


Measurement Pr<strong>in</strong>ciple:<br />

Cont<strong>in</strong>ious Stern-Gerlach Effect<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Magnetic Bottle <strong>in</strong> „Double Trap“:<br />

electrical<br />

potential<br />

up<br />

down<br />

Axial Frequency<br />

depends on Sp<strong>in</strong> State!<br />

∆ω z = µ P ·B 2 /(m·ω z )<br />

Problem: µ P is very small<br />

⇒∆ω z frequency jump only<br />

few mHz <strong>in</strong> a „normal“ Trap


Motional Phase <strong>Detection</strong> makes very small<br />

frequency changes visible<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

one order of mag. improvement expected:<br />

e.g. 45° phase difference after 1s => 125mHz


Setup Details<br />

Proton Experiment<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong>


Hav<strong>in</strong>g a glance at<br />

cryogenic setups....<br />

vertical 4Kdewar<br />

setup<br />

(g-factor, Ma<strong>in</strong>z)<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

4K-multistage<br />

shield<strong>in</strong>g<br />

(g-factor, Ma<strong>in</strong>z)<br />

g-factor trap<br />

4K-electronics section<br />

4K-axial<br />

amplifier<br />

4K-broadband<br />

FT-ICR amplifier<br />

( Ma<strong>in</strong>z 2004 )


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

Conclusion<br />

<strong>Modern</strong> non-destructive electronic detection pr<strong>in</strong>ciples<br />

open up a variety of possibilities<br />

• to detect ion clouds at roomtemperature <strong>in</strong> a quick<br />

and cost-effective way<br />

• at 4K to detect s<strong>in</strong>gle particles and cool them to<br />

sub milli-eV level with superconduct<strong>in</strong>g elements<br />

• can be used <strong>in</strong> high precision experiments like<br />

- g-factor measurements (HCI‘s, Proton, Anti-p)<br />

- ultra-high precision mass-determ<strong>in</strong>ations


Outlook:<br />

recent and futural experiments us<strong>in</strong>g<br />

cryogenic electronic detection systems<br />

S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

• High precision g-factor determ<strong>in</strong>ation on<br />

medium-heavy HCI Ca 17+ , Ca 19+<br />

<strong>in</strong>clud<strong>in</strong>g 3 superconduct<strong>in</strong>g circuits, resonant FT-ICR<br />

and cryogenic broadband FT-ICR<br />

• Proton g-factor determ<strong>in</strong>ation<br />

• Hitrap Cooler Trap<br />

cool<strong>in</strong>g down HCI by collision and by resistive cool<strong>in</strong>g,<br />

• Quele-Trap for Quantum Comput<strong>in</strong>g<br />

• Broadband FT-ICR for KATRIN (Karlsruhe)<br />

• FT-ICR ultrahigh precision mass determ<strong>in</strong>ation<br />

(MATS, Ma<strong>in</strong>z)<br />

• and....


S. Stahl: <strong>Non</strong>destructive <strong>Electronic</strong> <strong>Detection</strong><br />

many thanks to the teams <strong>in</strong> Ma<strong>in</strong>z and <strong>GSI</strong> (Shiptrap, MATS, g-Factor)<br />

Thanks for your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!