31.01.2015 Views

Pitch Circle Problem 8.17 Construct the profile of a disk cam that ...

Pitch Circle Problem 8.17 Construct the profile of a disk cam that ...

Pitch Circle Problem 8.17 Construct the profile of a disk cam that ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Follower Travel, mm<br />

Displacement, cm<br />

1.5<br />

1.0<br />

0.5<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Cam Rotation Angle<br />

90˚<br />

<strong>Pitch</strong><br />

<strong>Circle</strong><br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

10<br />

9<br />

8<br />

7<br />

6<br />

<strong>Problem</strong> <strong>8.17</strong><br />

<strong>Construct</strong> <strong>the</strong> <strong>pr<strong>of</strong>ile</strong> <strong>of</strong> a <strong>disk</strong> <strong>cam</strong> <strong>that</strong> follows <strong>the</strong> displacement diagram shown below. The<br />

follower is a radial roller and has a diameter <strong>of</strong> 10 mm. The base circle diameter <strong>of</strong> <strong>the</strong> <strong>cam</strong> is to be<br />

40 mm and <strong>the</strong> <strong>cam</strong> rotates clockwise.<br />

30<br />

15<br />

Solution:<br />

0 0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 360˚<br />

Cam Rotation<br />

- 361 -


Total Follow Travel<br />

Use <strong>the</strong> follower diagram subdivisions <strong>of</strong> 20˚. Next draw <strong>the</strong> <strong>cam</strong> pitch circle and lay <strong>of</strong>f radial<br />

lines in <strong>the</strong> counterclockwise direction. The follower displacements can <strong>the</strong>n be taken directly from<br />

<strong>the</strong> displacement diagram. Draw <strong>the</strong> pitch curve. Draw <strong>the</strong> <strong>cam</strong> follower circles on <strong>the</strong> pitch curve.<br />

Use a smooth curve to draw <strong>the</strong> <strong>cam</strong> <strong>pr<strong>of</strong>ile</strong> tangent to <strong>the</strong> follower circles.<br />

6<br />

5<br />

4<br />

Prime Curve<br />

7<br />

3<br />

8<br />

2<br />

9<br />

Prime <strong>Circle</strong><br />

Base <strong>Circle</strong><br />

1<br />

0<br />

10<br />

Cam<br />

16<br />

17<br />

15<br />

11<br />

12 13<br />

14<br />

<strong>Problem</strong> 8.18<br />

Accurately sketch one half <strong>of</strong> <strong>the</strong> <strong>cam</strong> <strong>pr<strong>of</strong>ile</strong> (stations 0-6) for <strong>the</strong> <strong>cam</strong> follower, base circle, and<br />

displacement diagram given below. The base circle diameter is 1.2 in.<br />

<br />

<br />

1.0<br />

Base <strong>Circle</strong><br />

0 1 2 3 4 5 6 7<br />

11 10 9 8<br />

Station Point<br />

Numbers<br />

- 362 -


220˚<br />

240˚<br />

260˚<br />

280˚<br />

1 inch<br />

300˚<br />

180˚<br />

200˚<br />

Prime circle<br />

320˚<br />

340˚<br />

0˚<br />

80˚<br />

100˚<br />

120˚<br />

<strong>Problem</strong> 8.21<br />

Lay out a <strong>cam</strong> <strong>pr<strong>of</strong>ile</strong> assuming <strong>that</strong> an oscillating, roller follower starts from a dwell for 0˚ to 140˚<br />

<strong>of</strong> <strong>cam</strong> rotation, and <strong>the</strong> <strong>cam</strong> rotates clockwise. The rise occurs with parabolic motion during <strong>the</strong><br />

<strong>cam</strong> rotation from 140˚ to 220˚. The follower <strong>the</strong>n dwells for 40˚ <strong>of</strong> <strong>cam</strong> rotation, and <strong>the</strong> return<br />

occurs with parabolic motion for <strong>the</strong> <strong>cam</strong> rotation from 260˚ to 360˚. The amplitude <strong>of</strong> <strong>the</strong> follower<br />

rotation is 35˚, and <strong>the</strong> follower radius is 1 in. The base circle radius is 2 in, and <strong>the</strong> distance<br />

between <strong>the</strong> <strong>cam</strong> axis and follower rotation axis is 4 in. Lay out <strong>the</strong> <strong>cam</strong> <strong>pr<strong>of</strong>ile</strong> using 20˚ plotting<br />

intervals such <strong>that</strong> <strong>the</strong> pressure angle is 0 when <strong>the</strong> follower is in <strong>the</strong> bottom dwell position.<br />

Solution:<br />

The displacement <strong>pr<strong>of</strong>ile</strong> can be easily computed using <strong>the</strong> equations in Chapter 8 using a<br />

spreadsheet or MATLAB program. Remember <strong>that</strong> <strong>the</strong> parabolic motion is represented by two<br />

curves in each rise and return region. The curves are matched at <strong>the</strong> midpoints <strong>of</strong> <strong>the</strong> rise and<br />

return. The <strong>pr<strong>of</strong>ile</strong> equations are:<br />

For 0 140˚<br />

= 0<br />

For <strong>the</strong> first part <strong>of</strong> <strong>the</strong> rise, 140˚ 180˚ , and<br />

<br />

= 2L<br />

<br />

<br />

<br />

2<br />

where L = 35˚, = 140˚, and = 220˚140˚= 80˚.<br />

For <strong>the</strong> second part <strong>of</strong> <strong>the</strong> rise, 180˚ 220˚ , and<br />

- 367 -


= L 12<br />

1 <br />

<br />

<br />

<br />

2<br />

where L = 35˚, = 140˚, and = 220˚140˚= 80˚.<br />

For 220˚ 260˚<br />

= 35˚<br />

For <strong>the</strong> first part <strong>of</strong> <strong>the</strong> return, 260˚ 310˚, and<br />

<br />

= L 12 <br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

where L = 35˚, = 260˚, and = 360˚260˚=100˚<br />

For <strong>the</strong> second part <strong>of</strong> <strong>the</strong> return, 310˚ 360˚, and<br />

= 2L<br />

1 <br />

<br />

2<br />

where L = 35˚, = 260˚, and = 360˚260˚=100˚<br />

The displacement diagram is given below followed by a table <strong>of</strong> values for at 20˚ increments <strong>of</strong><br />

.<br />

Theta Follower Angle<br />

0.000 0.000<br />

20.000 0.000<br />

40.000 0.000<br />

60.000 0.000<br />

80.000 0.000<br />

100.000 0.000<br />

120.000 0.000<br />

140.000 0.000<br />

160.000 4.375<br />

180.000 17.500<br />

200.000 30.625<br />

220.000 35.000<br />

240.000 35.000<br />

260.000 35.000<br />

280.000 32.200<br />

300.000 23.800<br />

- 368 -


320.000 11.200<br />

340.000 2.800<br />

360.000 0.000<br />

To lay out <strong>the</strong> <strong>cam</strong>, first draw <strong>the</strong> prime circle which has a radius <strong>of</strong> 2.0" + 1.0" = 3.0". Next draw<br />

<strong>the</strong> pivot circle for <strong>the</strong> follower pivot. The radius <strong>of</strong> <strong>the</strong> pivot circle is 4". Draw <strong>the</strong> follower in <strong>the</strong><br />

initial position ( = 0˚ ) to determine <strong>the</strong> follower length (r 3 ) and <strong>the</strong> position on <strong>the</strong> pivot circle<br />

corresponding to = 0˚ . As indicated in Example 8.5, <strong>the</strong> length r 3 is given by<br />

r3 = r 1 2 (rb +r0) = 4 2 (2 +1) 2 = 2.646"<br />

Identify <strong>the</strong> point on <strong>the</strong> pivot circle corresponding to = 0˚ , lay <strong>of</strong>f <strong>the</strong> radial lines at 20˚<br />

increments from this point, and label <strong>the</strong> lines in <strong>the</strong> counterclockwise direction. Draw lines from<br />

<strong>the</strong> intersections <strong>of</strong> <strong>the</strong> radal lines with <strong>the</strong> pivot circle tangent to <strong>the</strong> prime circle. Then lay <strong>of</strong>f <strong>the</strong><br />

angular displacements from <strong>the</strong>se tangent lines. Locate <strong>the</strong> center <strong>of</strong> <strong>the</strong> follower by <strong>the</strong> distance r 3<br />

from <strong>the</strong> pivot circle along <strong>the</strong>se lines. Draw 1" radius circles through <strong>the</strong> endponts <strong>of</strong> <strong>the</strong> distances<br />

layed <strong>of</strong>f along <strong>the</strong>se lines, and fit a smooth curve which is tangent to <strong>the</strong> circles corresponding to<br />

<strong>the</strong> roller follower.<br />

The <strong>cam</strong> <strong>pr<strong>of</strong>ile</strong> is shown in <strong>the</strong> following figure.<br />

- 369 -


160˚<br />

140˚<br />

120˚<br />

180˚<br />

100˚<br />

1 inch<br />

200˚<br />

80˚<br />

220˚<br />

60˚<br />

240˚<br />

40˚<br />

260˚<br />

20˚<br />

280˚<br />

0˚<br />

300˚<br />

320˚<br />

340˚<br />

<strong>Problem</strong> 8.22<br />

Lay out <strong>the</strong> rise portion <strong>of</strong> <strong>the</strong> <strong>cam</strong> <strong>pr<strong>of</strong>ile</strong> if a flat-faced, translating, radial follower's motion is<br />

uniform. The total rise is 1.5 in, and <strong>the</strong> rise occurs over 100˚ <strong>of</strong> can rotation. The follower dwells<br />

for 90˚ <strong>of</strong> <strong>cam</strong> rotation prior to <strong>the</strong> beginning <strong>of</strong> <strong>the</strong> rise, and dwells for 80˚ <strong>of</strong> <strong>cam</strong> rotation at <strong>the</strong><br />

end <strong>of</strong> <strong>the</strong> rise. The <strong>cam</strong> will rotate counterclockwise, and <strong>the</strong> base circle radius is 3 in.<br />

Solution:<br />

The displacement <strong>pr<strong>of</strong>ile</strong> can be easily computed using <strong>the</strong> equations in Chapter 8 in a spreadsheet<br />

or MATLAB program. The <strong>pr<strong>of</strong>ile</strong> equations are:<br />

For 0 90˚<br />

s = 0<br />

- 370 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!