31.01.2015 Views

Waves and Instabilities in Dusty Plasmas - University of Iowa

Waves and Instabilities in Dusty Plasmas - University of Iowa

Waves and Instabilities in Dusty Plasmas - University of Iowa

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

15 th Topical Conference on RF Power <strong>in</strong> <strong>Plasmas</strong><br />

May 20 –22, 2003 Jackson Hole, Wyom<strong>in</strong>g<br />

<strong>Waves</strong> <strong>and</strong> <strong>Instabilities</strong> <strong>in</strong><br />

<strong>Dusty</strong> <strong>Plasmas</strong><br />

Bob Merl<strong>in</strong>o<br />

<strong>University</strong> <strong>of</strong> <strong>Iowa</strong>


Outl<strong>in</strong>e<br />

• What is a dusty plasma<br />

• Where are dusty plasmas<br />

• Charg<strong>in</strong>g <strong>of</strong> dust particles<br />

• <strong>Waves</strong> <strong>in</strong> dusty plasmas


<strong>Dusty</strong> <strong>Plasmas</strong><br />

• Dust represents much <strong>of</strong> the solid matter <strong>in</strong><br />

the universe <strong>and</strong> this component <strong>of</strong>ten<br />

coexists with the ionized matter form<strong>in</strong>g a<br />

dusty plasma.<br />

• Dust is <strong>of</strong>ten present <strong>in</strong> laboratory plasmas as<br />

well either by choice or circumstance.


What is a dusty<br />

plasma<br />

plasma = electrons + ions<br />

-<br />

+<br />

Plasma<br />

small particle<br />

<strong>of</strong> solid matter<br />

+<br />

-<br />

+<br />

-<br />

• absorbs<br />

electrons <strong>and</strong><br />

ions<br />

+<br />

-<br />

+<br />

-<br />

+<br />

• becomes<br />

negatively<br />

charged<br />

• Debye<br />

shield<strong>in</strong>g<br />

-<br />

+<br />

-<br />

-<br />

D<br />

+<br />

+<br />

-


Importance <strong>of</strong> Charged Dust<br />

‣the dust acquires an electrical charge<br />

<strong>and</strong> thus is subject to electromagnetic<br />

as well as gravitational forces<br />

‣the charged dust particles participate <strong>in</strong><br />

the collective plasma processes


DUSTY PLASMAS<br />

Natural<br />

1. Solar nebula<br />

2. planetary r<strong>in</strong>gs<br />

3. <strong>in</strong>terstellar medium<br />

4. comet tails<br />

5. noctilucent clouds<br />

6. Lightn<strong>in</strong>g<br />

7. snow<br />

Man-made<br />

1. Microelectronic<br />

process<strong>in</strong>g<br />

2. rocket exhaust<br />

3. flames<br />

4. fusion devices<br />

5. H bomb


Rosette Nebula<br />

Our solar system<br />

accumulated out<br />

<strong>of</strong> a dense cloud <strong>of</strong><br />

gas <strong>and</strong> dust, form<strong>in</strong>g<br />

everyth<strong>in</strong>g that is now<br />

part <strong>of</strong> our world.


A flame is a very weakly ionized plasma<br />

that conta<strong>in</strong>s soot particles.<br />

An early temperature measurement <strong>in</strong> a dusty plasma.


Comet Hale-Bopp


Spokes <strong>in</strong> Saturn’s B R<strong>in</strong>g<br />

Voyager 2<br />

Nov. 1980<br />

Cass<strong>in</strong>i-<br />

Huygens<br />

July 2004


Semiconductor Process<strong>in</strong>g System<br />

13.56 MHz<br />

gas<br />

dust<br />

qE<br />

mg<br />

E<br />

substrate<br />

PUMP<br />

silane (SiH 4 ) + Ar + O 2<br />

→ SiO 2 particles


Semiconductor Manufactur<strong>in</strong>g<br />

Si<br />

dust


Physics Today<br />

August 1994


<strong>Dusty</strong> Plasma<br />

DUST


Dust Charg<strong>in</strong>g Processes<br />

• electron <strong>and</strong> ion collection<br />

• secondary emission<br />

• UV <strong>in</strong>duced photoelectron<br />

emission<br />

Total current to a gra<strong>in</strong> = 0<br />

Σ I = I e + I i + I sec + I pe = 0


The Charge on a Dust Gra<strong>in</strong><br />

In typical lab plasmas I sec = I pe = 0<br />

Electron thermal speed >> ion thermal speed so the gra<strong>in</strong>s<br />

charge to a negative potential V S relative to the plasma, until<br />

the condition I e = I i is achieved.<br />

kTe<br />

⎛eVS<br />

⎞<br />

Ie<br />

= ene<br />

exp⎜ ⎟ π a<br />

me<br />

⎝ kTe<br />

⎠<br />

kTi<br />

⎛ eVS<br />

⎞<br />

Ii<br />

= eni<br />

⎜1−<br />

⎟ π a<br />

mi<br />

⎝ kTi<br />

⎠<br />

2<br />

2<br />

electron<br />

repulsion<br />

ion enhancement<br />

a<br />

Q = (4πε o a) V S


Typical Lab Plasma<br />

•For T e = T i = T <strong>in</strong> a hydrogen plasma<br />

V S = − 2.5 (kT/e)<br />

• If T ≈ 1 eV <strong>and</strong> a = 1 µm,<br />

Q ≈−2000 e<br />

• Mass: m ≈ 5 × 10 12 m p


Dust Charge Measurements<br />

2<br />

Walch, Horanyi, & Robertson,<br />

Phys. Rev. Lett. 75, 838 (1995)<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 20 40 60 80 100 120<br />

Diameter (micron)<br />

2<br />

1.5<br />

Graphite<br />

1<br />

0.5<br />

Glass<br />

0<br />

0 20 40 60 80 100 120 140 160<br />

Electron Energy (eV)


<strong>Waves</strong> <strong>in</strong> dusty plasmas<br />

• electrostatic dust ion-cyclotron waves (EDIC)<br />

• dust ion acoustic waves (DIA)<br />

• dust ion acoustic shocks (DIAS)<br />

• dust acoustic waves (DA)<br />

• Dust cyclotron mode<br />

• Strongly coupled dusty plasmas


Effect <strong>of</strong> dust on plasma waves<br />

• the presence <strong>of</strong> dust modifies the<br />

characteristics <strong>of</strong> the usual plasma modes,<br />

even at frequencies where the dust does not<br />

participate <strong>in</strong> the wave motion<br />

• the dust provides an immobile charge<br />

neutraliz<strong>in</strong>g background<br />

n = n + Z n<br />

i e d d


Dust Modes<br />

• new, low frequency (~ few Hz) modes <strong>in</strong><br />

which the dust gra<strong>in</strong>s participate <strong>in</strong> the<br />

wave motion appear <strong>in</strong> the dispersion<br />

relations<br />

• the dust dynamics can be observed visually<br />

s<strong>in</strong>ce the dust motion can be imaged <strong>and</strong><br />

recorded on tape


Quas<strong>in</strong>eutrality <strong>in</strong> dusty plasmas<br />

• For low frequency waves the condition<br />

holds <strong>in</strong> both zero <strong>and</strong> first order<br />

ni = ne + Zdnd<br />

• def<strong>in</strong><strong>in</strong>g:<br />

ε = n n<br />

do<br />

io<br />

we characterize the<br />

dusty plasma us<strong>in</strong>g the quantity<br />

εZ d<br />

which is the fraction <strong>of</strong> negative charge on<br />

the dust gra<strong>in</strong>s


Fluid theory <strong>of</strong> Low frequency<br />

electrostatic waves <strong>in</strong> dusty plasmas<br />

Three component plasma: electrons, ions, negative dust<br />

∂nα<br />

I. +∇⋅ ( nαvα) = 0<br />

∂t<br />

∂vα<br />

II. nαmα + nαmα( vα ⋅∇ ) vα + qαnα∇ϕ<br />

∂t<br />

<br />

− q n ( v × B) = 0<br />

α α α<br />

. i = e + d d<br />

III n n Z n


New Phenomena <strong>in</strong> <strong>Dusty</strong> <strong>Plasmas</strong><br />

• Unlike ord<strong>in</strong>ary plasma, or plasmas<br />

conta<strong>in</strong><strong>in</strong>g negative ions, the charge on a<br />

dust gra<strong>in</strong> is not constant, but fluctuates with<br />

the local plasma potential.<br />

• This leads to new damp<strong>in</strong>g effects <strong>and</strong> new<br />

mechanisms for wave growth.


Fluid theory: mode frequencies<br />

• for ion <strong>and</strong> electron modes we treat the dust<br />

as an immobile negative background<br />

• for dust modes we can neglect the electron<br />

<strong>and</strong> ion <strong>in</strong>ertia terms<br />

• For excitation conditions (growth<br />

rates, critical drifts, etc.) we must<br />

use k<strong>in</strong>etic theory


Dust Ion Acoustic Mode<br />

• DIA: ion-acoustic wave modified by dust<br />

v<br />

p<br />

• Dispersion relation:<br />

ω ⎡kT<br />

kT<br />

= = +<br />

K ⎣m m Z<br />

i<br />

e<br />

⎢<br />

|| ⎢ i i 1 d<br />

( −ε<br />

)<br />

⎤<br />

⎥<br />

⎥⎦<br />

1<br />

2<br />

v p<br />

=<br />

0 1<br />

εΖ<br />

C DIA


DIA – K<strong>in</strong>etic Theory<br />

Dust acoustic waves are normally heavily L<strong>and</strong>au damped<br />

<strong>in</strong> a plasma with T e = T i . However the presence <strong>of</strong> negatively<br />

charged dust can drastically reduce the damp<strong>in</strong>g.<br />

1 ⎡ 1 3<br />

T ⎤<br />

e<br />

2 2 2 −δ<br />

⎛π<br />

⎞ ⎢⎛ me<br />

⎞ ⎛ Te<br />

⎞ 2T<br />

⎥<br />

i<br />

γ =− ωr<br />

⎜ ⎟ δ δ e<br />

8<br />

⎢⎜ ⎟ + ⎜ ⎟<br />

mi<br />

T<br />

⎥<br />

⎝ ⎠<br />

⎢⎝ ⎠ ⎝ i ⎠ ⎥<br />

⎣<br />

⎦<br />

1<br />

δ<br />

1 εZ<br />

= =<br />

- γ<br />

d<br />

εZ


Dust Ion Acoustic Wave Experiment<br />

Ta Hot Plate<br />

LANGMUIRPROBE<br />

rotat<strong>in</strong>g dust<br />

dispenser<br />

K oven<br />

end plate<br />

probe<br />

1.5<br />

DIA<br />

1.0<br />

DIA<br />

PHASE VELOCITY<br />

phase speed<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

0 0.5 1<br />

ε Z d<br />

(a)<br />

k i /k r<br />

0.5<br />

0.0<br />

Ki/K r<br />

(b)<br />

0 0.5 1<br />

ε Z d


DIA - Conclusion<br />

• Ion acoustic waves which would otherwise<br />

not propagate <strong>in</strong> a plasma with T e = T i can<br />

propagate <strong>in</strong> a plasma with a sufficient<br />

amount <strong>of</strong> negatively charged dust.<br />

• In the presence <strong>of</strong> negative dust, the wave<br />

phase velocity <strong>in</strong>creases, decreas<strong>in</strong>g the<br />

effect <strong>of</strong> ion L<strong>and</strong>au damp<strong>in</strong>g.


Experimental setup<br />

Rotat<strong>in</strong>g<br />

Dust Dispenser<br />

HP<br />

Cs<br />

B<br />

EP<br />

G<br />

LP<br />

(a)<br />

PG<br />

n<br />

(b)<br />

z


DIA Shocks – results


DIA Shocks – results


EDIC: fluid theory<br />

• Electrostatic ion-cyclotron waves excited by electron current<br />

along the magnetic field<br />

• Propagate at large angle to B<br />

ω<br />

2 ⎛kTi<br />

kT<br />

=Ω + K<br />

e<br />

⊥ ⎜ +<br />

⎝ m m (1−εZ<br />

2 2<br />

ci<br />

=Ω +<br />

2 2 2<br />

ci<br />

K⊥CDIA<br />

i i d<br />

⎞<br />

⎟<br />


Electrostatic dust ion-cycloton<br />

<strong>in</strong>stability (EDIC)


EDIC- k<strong>in</strong>etic theory results<br />

• EIC <strong>in</strong>stability driven by<br />

current along B<br />

• As more negative charge is<br />

carried by the dust, the<br />

critical drift needed to<br />

excite the <strong>in</strong>stability<br />

decreases<br />

• the <strong>in</strong>stability is easier to<br />

excite <strong>in</strong> a dusty plasma<br />

v de /v eth<br />

δ = 1/(1 −εZ d )<br />

V. W. Chow & M. Rosenberg, Planet. Space Sci. 44, 465 (1996)


Dust acoustic waves<br />

Dust<br />

dynamics<br />

Electrons<br />

& Ions<br />

∂nd ∂( ndvd)<br />

+ = 0<br />

∂t<br />

∂x<br />

⎡∂vd ∂vd ⎤ ∂nd<br />

∂ϕ<br />

mn<br />

d d ⎢ + vd kTd eZn<br />

d d<br />

0<br />

t x ⎥+ − =<br />

⎣ ∂ ∂ ⎦ ∂x ∂x<br />

∂ne<br />

∂ϕ<br />

∂n+<br />

∂ϕ<br />

kTe<br />

− ene<br />

= 0; kT+ + en+<br />

= 0<br />

∂x ∂x ∂x ∂x<br />

Quas<strong>in</strong>eutrality<br />

n = n + Z n<br />

+<br />

e d d


Comb<strong>in</strong><strong>in</strong>g the dust momentum equation with<br />

the plasma equations we see that (for the case<br />

<strong>of</strong> cold dust, T d =0).<br />

∂vd<br />

d d e<br />

∂<br />

mn =− ( p+<br />

p+<br />

)<br />

∂x<br />

∂x<br />

where p e + p + is the total pressure due to<br />

electrons <strong>and</strong> ions.<br />

In the dust acoustic wave the <strong>in</strong>ertial is<br />

provided by the massive dust particles <strong>and</strong> the<br />

electrons <strong>and</strong> ions provide the restor<strong>in</strong>g force


DA Dispersion relation<br />

Monochromatic plane wave solutions<br />

for T e = T i = T<br />

kT<br />

fλ<br />

= CDA<br />

= Zd<br />

md<br />

1−<br />

1+<br />

ε<br />

ε<br />

where ε = n do /n +o<br />

dust mass


DUST IN A GLOW DISCHARGE<br />

QE<br />

Anode Glow<br />

Plasma<br />

B<br />

E<br />

Anode<br />

N 2<br />

mg<br />

Dust Tray<br />

Vacuum<br />

vessel<br />

Levitated Gra<strong>in</strong>s<br />

Dust: kaol<strong>in</strong> (alum<strong>in</strong>um silicate)<br />

PS<br />

+


Dust Acoustic Wave Image<br />

wavefronts<br />

DA<br />

Movie


Dust Acoustic Wave<br />

Dispersion Relation<br />

16<br />

12<br />

K (cm -1 )<br />

8<br />

4<br />

0<br />

theory<br />

0 50 100 150 200<br />

ω (s -1 )


Electrostatic dust cyclotron mode<br />

• EDIC – <strong>in</strong>volves cyclotron motion <strong>of</strong> the<br />

dust – magnetized dust<br />

• Dispersion relation:<br />

ω<br />

=Ω + K<br />

⎡ kT<br />

+ εZ<br />

⎣<br />

2 2 2 d 2<br />

cd ⊥ ⎢<br />

d<br />

md + Ti Te −ε<br />

Zd<br />

=Ω +<br />

KC<br />

2 2 2<br />

cd ⊥ DA<br />

1<br />

1 ( / )(1 )<br />

⎤<br />

⎥<br />


Gyroradius <strong>of</strong> dust particles<br />

r<br />

d<br />

=<br />

mv<br />

d<br />

d<br />

d<br />

eZ B<br />

kT<br />

3 d<br />

md ∝a , Zd ∝ a, vd<br />

=<br />

m<br />

d<br />

rd<br />

∝<br />

a<br />

1<br />

2


Gyroradius <strong>of</strong> dust particles<br />

10<br />

1<br />

[Td=0.025 eV]<br />

[Td=1.0 eV]<br />

[Td = 0.1 eV]<br />

0.1<br />

B = 800 G<br />

0.01<br />

0.001 0.01 0.1 1 10<br />

dust radius (microns)


Solid state dusty plasmas<br />

In a typical plasma<br />

2<br />

eZ<br />

2 4πε<br />

od<br />

Γ = 1 is possible<br />

• The dust gra<strong>in</strong>s may then<br />

arrange themselves <strong>in</strong> a<br />

regular lattice.


Coulomb Crystal<br />

John Goree – Univ. <strong>Iowa</strong><br />

triangular lattice with<br />

hexagonal symmetry


<strong>Waves</strong> <strong>in</strong> strongly coupled<br />

dusty plasmas<br />

• The presence <strong>of</strong> short scale correlations<br />

gives rise to novel modifications <strong>of</strong> the<br />

collective behavior<br />

• Both compressional <strong>and</strong> transverse shear<br />

waves are possible


Compressional <strong>and</strong> shear waves


Summary/Conclusions<br />

• <strong>Dusty</strong> plasmas are not uncommon <strong>in</strong> the lab<br />

<strong>and</strong> are ubiquitous <strong>in</strong> the Universe<br />

• Presence <strong>of</strong> dust modifies both the<br />

excitation <strong>and</strong> propagation <strong>of</strong> plasma waves<br />

• New, very low frequency dust modes<br />

• Collective fluctuations <strong>in</strong> dusty plasmas<br />

may provide mechanism for structur<strong>in</strong>g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!