01.02.2015 Views

Production Monitoring - Scientific Workshop Final.pptx

Production Monitoring - Scientific Workshop Final.pptx

Production Monitoring - Scientific Workshop Final.pptx

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Permanent <strong>Production</strong><br />

<strong>Monitoring</strong><br />

Observatories in <strong>Scientific</strong> Ocean Drilling<br />

Lee Jackson & John Lovell<br />

Schlumberger Reservoir <strong>Monitoring</strong> and Control<br />

Rosharon, Texas


Drivers<br />

Recovery<br />

<br />

<br />

<br />

Reservoir Management driven<br />

Monitor and Evaluate <strong>Production</strong><br />

Optimize Drainage<br />

Update<br />

Model<br />

Reduced Intervention<br />

No loss of production<br />

Control<br />

Monitor<br />

Reduced risk<br />

Real Time Evaluation<br />

Combined with Flow Control devices<br />

allows for immediate corrective actions.<br />

Inflow<br />

Inflow<br />

Inflow<br />

Inflow<br />

Optimization<br />

Inflow<br />

Inflow<br />

Inflow


The Early Days<br />

• First Examples of Permanent<br />

<strong>Production</strong> monitoring date back to<br />

the early 1960’s<br />

• Data would be required for several<br />

weeks during production.<br />

• Reliability was questionable.<br />

• Early systems would monitor pressure<br />

only.<br />

3


Evolution<br />

1978 - First subsea<br />

wet mate connector<br />

deployment<br />

1972 - First<br />

permanent strain<br />

gauge installation<br />

(SPE 18357)<br />

1962 - Analog logging<br />

gauge run on wireline<br />

cable<br />

1984 - First HP quartz<br />

gauge developed<br />

1989 – SLB<br />

technology project for<br />

"Permanent<br />

<strong>Monitoring</strong>" initialized<br />

1993 - Permanent<br />

Quartz Gauge<br />

(PQG)<br />

commercialized<br />

1992 - First remote<br />

data communication<br />

2003 - Revolution<br />

in electrical<br />

connectors with<br />

Intellitite* series<br />

2005 - Combining<br />

downhole gauges<br />

with DTS in hybrid<br />

“NEON” cables<br />

2006 - WellNET<br />

downhole network<br />

system<br />

commercialized<br />

2004 - NET series<br />

generation of digital<br />

gauges<br />

2008 - Electrical<br />

systems for<br />

distributed sandface<br />

measurements<br />

1970 1980 1990 2000 2010<br />

2011 - New series of<br />

gauges with<br />

increased multidropping<br />

capabilities<br />

2010 - Gauge<br />

reliability<br />

improvement<br />

program<br />

2012 - New<br />

generation of<br />

WellNET platform for<br />

advanced IC systems


Current Technology<br />

Pressure and temperature gauges<br />

• Quartz and Sapphire gauges<br />

• Ultra Low power SOI Gauges<br />

• Fiber-optic P/T gauge<br />

Distributed measurements<br />

• Optical DTS (pumped or fixed fiber cable)<br />

• Electrical sensor array system<br />

300<br />

(572)<br />

250<br />

(482)<br />

200<br />

( 392 )<br />

175<br />

( 347 )<br />

150<br />

( 302 )<br />

100<br />

( 212 )<br />

50<br />

( 122 )<br />

0<br />

0<br />

Quartz Gauges<br />

Sapphire Gauges<br />

Fiber Optic Gauges<br />

Conventional<br />

NLQG-10<br />

NDPG-10<br />

Espionage<br />

Electrical Gauges<br />

NPQG-16<br />

Fiber Optic Gauge<br />

Ultra HP HT<br />

345<br />

690<br />

1 034<br />

1 379<br />

1724<br />

( 5 000 ) ( 10 000 ) ( 15 000 ) ( 20 000 ) ( 25 000 )<br />

Working<br />

Pressure<br />

HP<br />

HT<br />

Fiber-optic gauge<br />

NHQG-25<br />

2068<br />

( 30 000 )<br />

Enablers<br />

• Wellsite RT Connectors<br />

• Acoustic Data Loggers<br />

• WaveGliders<br />

Future Technology<br />

• UHPT Electronic Gauges<br />

• Wireless Gauges


Downhole <strong>Monitoring</strong> Systems and Reliability<br />

Reliability<br />

System is a chain.<br />

All links must be functional for system to work.<br />

Downhole equipment<br />

Gauge, cable, protectors<br />

Surface and subsea equipment<br />

Wellhead outlet, wet connector, flying leads<br />

Acquisition card and SCM<br />

Client MCS / SCADA<br />

Compatible with system components from multiple suppliers<br />

(interfacing challenges)<br />

Project Management<br />

Critical to Long Term Reliability<br />

Subsea tree<br />

Wellhead outlet<br />

Wet connector<br />

Harness and stab<br />

Acq<br />

Cable splice<br />

SCM or<br />

Data<br />

Logger<br />

Packer penetration<br />

Flow control valve<br />

Gauge cable head<br />

Gauge and mandrel


Identifying Failure Modes<br />

Surviving<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

2002-03<br />

2000-01<br />

1998-99<br />

1995-97<br />

0.6<br />

0.5<br />

1 2 3 4 5<br />

Run Time (in years)<br />

7


Identifying Failure Modes<br />

8


Schlumberger Permanent Gauge Survival


Industry Growth<br />

10


FloWatcher*<br />

Permanent Downhole Flow Metering System<br />

Applications<br />

• <strong>Production</strong> allocation<br />

• Well productivity and trend analysis<br />

• Interference testing<br />

• Pressure transient analysis<br />

• <strong>Monitoring</strong> efficiency of electrical<br />

submersible pumps (ESPs)<br />

• Problem diagnosis


Applications<br />

8 Single Sensor Gauges are<br />

deployed across the reservoir<br />

to monitor Gas/Oil and Water<br />

contact points.<br />

12


Applications<br />

5 Zone Intelligent Completion with <strong>Monitoring</strong> and Control<br />

13


Subsea Considerations<br />

In hydrocarbon subsea wells, many completions are deployed<br />

in separate stages so that the pressure integrity of each stage<br />

can be confirmed before the next stage is run in. Also<br />

simplifies any subsequent workover activity.<br />

This translates to the need of a “wet-mate” to join cables in<br />

one completion stage to the next.<br />

Such wet-mates have proven notoriously unreliable… so far<br />

14


Dual Stage Completion – Telemetry/Power Solution<br />

Inductive coupling transmits power and data<br />

No rotational alignment<br />

Tolerant of debris<br />

No exposed electrical contacts<br />

Contraction joint provides depth tolerance<br />

Snap-latch provides mechanical feedback<br />

Merges data onto existing P/T control line<br />

No additional subsea tree penetrations<br />

15


Sandface Array Technology Components<br />

Flux Station acts as a repeater.<br />

Quartz Gauges and multiple array on<br />

same twisted-pair control line<br />

Subsea card for SCM or DIU<br />

Spoolable array of miniaturized temperature<br />

sensors incorporated onto cable<br />

Inductive coupler for wireless power and<br />

data communication<br />

Wellhead outlet and wet-mate<br />

Able to power dozens of P/T gauges and<br />

spools of sensors (up to 600)<br />

Interpretation software to provide flow-profiling,<br />

fluid identification, etc


Case Studies of Subsea Arrays<br />

Cleanup data<br />

Cleanup data and Flow Profile<br />

Cross-flow before/aftercleanup<br />

Zonal Interference and <strong>Production</strong><br />

Flow Profile<br />

Test run showed leaking isolation valve


Multiwell Analysis for Reservoir Mapping<br />

Shut in<br />

Producing<br />

Original reservoir has sands<br />

penetrated by two wells


Multiwell Analysis for Reservoir Mapping<br />

Shut in<br />

Producing<br />

Interference analysis shows<br />

unexpected connectivity<br />

between two sand bodies


Subsea Geothermals<br />

Radical lateral variations in temperature


Reservoir Geothermal Possibilities<br />

4 o C 4 o C<br />

4 o C 4 o C<br />

OR<br />

Isothermal contours strongly<br />

driven by seabed<br />

Isotherms less strongly driven by<br />

seabed


Reservoir Temperature in these wells<br />

was Controlled By Sea Water Depth


Reservoir Geothermal Possibilities<br />

4 o C 4 o C<br />

4 o C 4 o C<br />

Sea-bed dominates – gives implications to the reservoir barriers


Long-term Methane Hydrate <strong>Monitoring</strong> <br />

Goal: characterize MH hydrate production process during dissociation (production test) <br />

To surface<br />

Orange ball<br />

Water Depth<br />

1,000m<br />

Wet-mate connector (Elec.)<br />

Wet-mate connector (Elec.)<br />

26” OH, 20” CH<br />

MH reservoir<br />

12-1/4”OH, 9-5/8”CH<br />

DTS optic line<br />

Well depth 370m<br />

MH reservoir<br />

60m<br />

TAS array line<br />

Clamp<br />

Distance from production well ~50m


Long-term Methane Hydrate <strong>Monitoring</strong> <br />

Goal: characterize MH hydrate production process during dissociation (production test) <br />

4. Surface <br />

DTS, Controller,<br />

Wet-mate<br />

TAS DTS Pressure<br />

Battery<br />

Cable Protector Vessel<br />

Connector for ROV<br />

2. Seafloor <br />

MT2<br />

<strong>Monitoring</strong> wells<br />

MT1<br />

3. Surface-seafloor <br />

MC<br />

<strong>Production</strong> well<br />

Surface System<br />

Water Depth<br />

1,000m<br />

Subsea<br />

Cable<br />

1. Downhole <br />

Well depth 370m


Measurement Specifications <br />

Optical DTS<br />

Digital TAS<br />

Measurement Range Entire wellbore Hydrate Zone of Interest<br />

Measurement Resolution 1m 2m<br />

Sensor Length 450m 390m<br />

Measurement Accuracy ±0.5ºC ±0.1ºC<br />

Measurement Resolution 0.01ºC 0.001ºC<br />

<strong>Monitoring</strong> Duration > 18 months (600D) During deployment &<br />

production test (only)


Resolution/Accuracy of Array<br />

1mdegC/10mins


System Connectivity Diagram<br />

3m <br />

Surface<br />

system on<br />

vessel<br />

Acoustic<br />

Transponder<br />

USB Storage<br />

TAS<br />

RS485 +<br />

Power<br />

WMC<br />

holder panel<br />

WMC<br />

Electrical<br />

(DTS)<br />

~ 1.5km<br />

3m <br />

Bulkhead<br />

4- Ports<br />

‘Orange Ball’<br />

Schlumberger<br />

Downhole<br />

Optical<br />

Splice<br />

Chamber<br />

DTS<br />

Controlline<br />

Electrical<br />

(TAS)<br />

Field splice <br />

Elec. Manual Mate <br />

Opt. pre-made splice


Conclusions<br />

Significant progress towards subsea reservoir monitoring:<br />

• Reliability (>10yr life) is now routine)<br />

• <strong>Production</strong> measurements moving from above the<br />

production packer, to data along the sandface.<br />

• Distributed measurement (electrical and optical) complement<br />

single-point data<br />

• Subsea hardware has been deployed in observation and<br />

production wells, with water communication by ROV,<br />

accoustic and hard-wired.<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!