02.02.2015 Views

Certain Convolution Properties of Multivalent Analytic Functions ...

Certain Convolution Properties of Multivalent Analytic Functions ...

Certain Convolution Properties of Multivalent Analytic Functions ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

46 Jin-Lin Liu<br />

Hence an application <strong>of</strong> Lemma 1 yields<br />

(2.3) g(z) ≺ h(z).<br />

Noting that 0 ≤ α 1<br />

α 2<br />

< 1 and that h(z) is convex univalent in U, it follows<br />

from (2.1), (2.2) and (2.3) that<br />

(1 − α 1 )z −p Ip λ (a, c)f(z) + α 1<br />

p z−p+1 (Ip λ (a, c)f(z)) ′<br />

= α (<br />

1<br />

(1 − α 2 )z −p Ip λ (a, c)f(z) + α )<br />

2<br />

α 2 p z−p+1 (Ip λ (a, c)f(z)) ′ +<br />

≺ h(z).<br />

Thus f(z) ∈ B λ p (a, c, α 1 ; h) and the pro<strong>of</strong> <strong>of</strong> Theorem 1 is completed.<br />

Theorem 2. Let<br />

(<br />

1 − α )<br />

1<br />

g(z)<br />

α 2<br />

(2.4) Re{z −p φ p (a 1 , a 2 ; z)} > 1 2<br />

(z ∈ U),<br />

where φ p (a 1 , a 2 ; z) is defined as in (1.3). Then<br />

B λ p (a 1 , c, α; h) ⊂ B λ p (a 2 , c, α; h).<br />

Pro<strong>of</strong>. For f(z) ∈ A (p) it is easy to verify that<br />

(2.5) z −p I λ<br />

p (a 2 , c)f(z) = (z −p φ p (a 1 , a 2 ; z)) ∗ (z −p I λ<br />

p (a 1 , c)f(z))<br />

and<br />

(2.6) z −p+1 (I λ<br />

p (a 2 , c)f(z)) ′ = (z −p φ p (a 1 , a 2 ; z)) ∗ (z −p+1 (I λ<br />

p (a 1 , c)f(z)) ′ ).<br />

Let f(z) ∈ B λ p (a 1 , c, α; h). Then from (2.5) and (2.6) we deduce that<br />

(2.7)<br />

(1 − α)z −p I λ<br />

p (a 2 , c)f(z) + α p z−p+1 (I λ<br />

p (a 2 , c)f(z)) ′<br />

= (z −p φ p (a 1 , a 2 ; z)) ∗ ψ(z)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!