03.02.2015 Views

An analytical solution for non-Darcian flow in a confined

An analytical solution for non-Darcian flow in a confined

An analytical solution for non-Darcian flow in a confined

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

1<br />

Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx<br />

www.elsevier.com/locate/advwatres<br />

2 <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed<br />

3 aquifer us<strong>in</strong>g the power law function<br />

4 Zhang Wen a,b , Guanhua Huang a,b, *, Hongb<strong>in</strong> Zhan c<br />

5 a Department of Irrigation and Dra<strong>in</strong>age, College of Water Conservancy and Civil Eng<strong>in</strong>eer<strong>in</strong>g, Ch<strong>in</strong>a Agricultural University, Beij<strong>in</strong>g, 100083, PR Ch<strong>in</strong>a<br />

6 b Ch<strong>in</strong>ese–Israeli International Center <strong>for</strong> Research <strong>in</strong> Agriculture, Ch<strong>in</strong>a Agricultural University, Beij<strong>in</strong>g, 100083, PR Ch<strong>in</strong>a<br />

7 c Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA<br />

8 Received 26 February 2007; received <strong>in</strong> revised <strong>for</strong>m 3 May 2007; accepted 25 June 2007<br />

9<br />

10 Abstract<br />

11 We have developed a new method to analyze the power law based <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> toward a well <strong>in</strong> a conf<strong>in</strong>ed aquifer with and<br />

12 without wellbore storage. This method is based on a comb<strong>in</strong>ation of the l<strong>in</strong>earization approximation of the <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> equation<br />

13 and the Laplace trans<strong>for</strong>m. <strong>An</strong>alytical <strong>solution</strong>s of steady-state and late time drawdowns are obta<strong>in</strong>ed. Semi-<strong>analytical</strong> <strong>solution</strong>s of the<br />

14 drawdowns at any distance and time are computed by us<strong>in</strong>g the Stehfest numerical <strong>in</strong>verse Laplace trans<strong>for</strong>m. The results of this study<br />

15 agree perfectly with previous Theis <strong>solution</strong> <strong>for</strong> an <strong>in</strong>f<strong>in</strong>itesimal well and with the Papadopulos and Cooper’s <strong>solution</strong> <strong>for</strong> a f<strong>in</strong>ite-diam-<br />

16 eter well under the special case of <strong>Darcian</strong> <strong>flow</strong>. The Boltzmann trans<strong>for</strong>m, which is commonly employed <strong>for</strong> solv<strong>in</strong>g <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong><br />

17 problems be<strong>for</strong>e, is problematic <strong>for</strong> study<strong>in</strong>g radial <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong>. Comparison of drawdowns obta<strong>in</strong>ed by our proposed method and<br />

18 the Boltzmann trans<strong>for</strong>m method suggests that the Boltzmann trans<strong>for</strong>m method differs from the l<strong>in</strong>earization method at early and mod-<br />

19 erate times, and it yields similar results as the l<strong>in</strong>earization method at late times. If the power <strong>in</strong>dex n and the quasi hydraulic conductivity<br />

20 k get larger, drawdowns at late times will become less, regardless of the wellbore storage. When n is larger, <strong>flow</strong> approaches steady state<br />

21 earlier. The drawdown at steady state is approximately proportional to r 1 n , where r is the radial distance from the pump<strong>in</strong>g well. The<br />

22 late time drawdown is a superposition of the steady-state <strong>solution</strong> and a negative time-dependent term that is proportional to t (1 n)/(3 n) ,<br />

23 where t is the time.<br />

24 Ó 2007 Published by Elsevier Ltd.<br />

25 Keywords: Non-<strong>Darcian</strong> <strong>flow</strong>; Power law; Laplace trans<strong>for</strong>m; L<strong>in</strong>earization method<br />

26<br />

27 1. Introduction<br />

28 Scientists and eng<strong>in</strong>eers have been fasc<strong>in</strong>ated with <strong>non</strong>-<br />

29 <strong>Darcian</strong> <strong>flow</strong> <strong>for</strong> more than one hundred years [8] and<br />

30 there are still plenty of unanswered questions. Among<br />

31 many difficulties encountered <strong>in</strong> deal<strong>in</strong>g with <strong>non</strong>-<strong>Darcian</strong><br />

32 <strong>flow</strong>, two of them are notable. One of them is to adequately<br />

33 characterize <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> us<strong>in</strong>g physically measurable<br />

parameters. The other is to f<strong>in</strong>d a robust mathematical tool<br />

to solve the <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> govern<strong>in</strong>g equation.<br />

Non-<strong>Darcian</strong> <strong>flow</strong> can arise from a number of different<br />

ways. For <strong>flow</strong> at low rates <strong>in</strong> f<strong>in</strong>e-gra<strong>in</strong>ed media such as<br />

clay and silt aquitards, the <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> may be attributed<br />

to the electro-chemical surface effect between the fluid<br />

and the solid, and is named pre-l<strong>in</strong>ear <strong>flow</strong> [32,36]. The prel<strong>in</strong>ear<br />

<strong>flow</strong> has also been extensively <strong>in</strong>vestigated <strong>in</strong> the<br />

petroleum eng<strong>in</strong>eer<strong>in</strong>g [35,5]. For <strong>flow</strong> at high rates <strong>in</strong><br />

coarse gra<strong>in</strong>ed and fractured media, or near pump<strong>in</strong>g wells,<br />

the <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> may be caused by the <strong>in</strong>ertial effect<br />

and the onset of turbulent <strong>flow</strong>, and is subsequently named<br />

post-l<strong>in</strong>ear <strong>flow</strong> [1,14,24,36].<br />

Many <strong>for</strong>mulas have been proposed to quantify the relationship<br />

between the hydraulic gradient and the specific<br />

UNCORRECTED PROOF<br />

* Correspond<strong>in</strong>g author. Address: Department of Irrigation and Dra<strong>in</strong>age,<br />

College of Water Conservancy and Civil Eng<strong>in</strong>eer<strong>in</strong>g, Ch<strong>in</strong>a<br />

Agricultural University, Beij<strong>in</strong>g, 100083, PR Ch<strong>in</strong>a. Tel.: +86 10<br />

62737144; fax: +86 10 62737138.<br />

E-mail address: ghuang@cau.edu.cn (G. Huang).<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

0309-1708/$ - see front matter Ó 2007 Published by Elsevier Ltd.<br />

doi:10.1016/j.advwatres.2007.06.002<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

2 Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx<br />

Nomenclature<br />

Q<br />

A ¼ S n<br />

m k<br />

B ¼ 2pr w mk<br />

C<br />

n 1,<br />

2pm<br />

a parameter used <strong>in</strong> Eq. (10)<br />

h i ð1 nÞ,<br />

a parameter used <strong>in</strong> Eq. (22)<br />

Q<br />

2pmr w<br />

a parameter def<strong>in</strong>ed <strong>in</strong> Appendix Eq. (A10) and<br />

used <strong>in</strong> Eq. (27)<br />

C 0 , C 1 , C 2 <strong>in</strong>tegration constants<br />

k quasi hydraulic conductivity, an empirical constant<br />

<strong>in</strong> the Izbash equation [(L/T) n ]<br />

m aquifer thickness [L]<br />

n power <strong>in</strong>dex, an empirical constant <strong>in</strong> the Izbash<br />

equation<br />

p Laplace variable<br />

q(r,t) specific discharge [L/T]<br />

49 discharge <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong>. The most commonly used<br />

50 ones are the Forchheimer equation [8] and the Izbash equa-<br />

51 tion [13]. The Forchheimer equation states that the hydrau-<br />

52 lic gradient is a second-order polynomial function of the<br />

53 specific discharge; while the Izbash equation states that<br />

54 the hydraulic gradient is a power function of the specific<br />

55 discharge. Many <strong>in</strong>vestigators preferred to choose the<br />

56 Forchheimer equation to describe <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> based<br />

57 on the argument that the Forchheimer equation <strong>in</strong>cludes<br />

58 both the viscous and <strong>in</strong>ertial effects and is an expansion<br />

59 of the l<strong>in</strong>ear Darcy’s law e.g. [25,37,38,9,20]. The choice<br />

60 of the Izbash equation is based on a different philosophical<br />

61 argument: many post-l<strong>in</strong>ear <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong>s are caused<br />

62 predom<strong>in</strong>ately by turbulent effects, which are conveniently<br />

63 modeled by power law functions [17,6,24]. In some cases,<br />

64 the Forchheimer equation is favored; <strong>in</strong> other cases, the<br />

65 Izbash equation is a better choice; and <strong>in</strong> certa<strong>in</strong> circum-<br />

66 stances, both equations can describe <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong><br />

67 equally well [2,27].<br />

68 In terms of the mathematical tool to study the <strong>non</strong>-Dar-<br />

69 cian <strong>flow</strong>, the Boltzmann trans<strong>for</strong>m has been regarded as<br />

70 an appropriate <strong>analytical</strong> method to solve the <strong>non</strong>-<strong>Darcian</strong><br />

71 <strong>flow</strong> govern<strong>in</strong>g equation e.g. [25–28]. The Boltzmann trans-<br />

72 <strong>for</strong>m is a special member of a family named ‘‘similarity<br />

73 method’’ that has been broadly used <strong>in</strong> solv<strong>in</strong>g diffusion<br />

74 type of problems [19,36]. The idea of the Boltzmann trans-<br />

75 <strong>for</strong>m is to comb<strong>in</strong>e the spatial coord<strong>in</strong>ate (denoted as r)<br />

76 and the temporal coord<strong>in</strong>ate<br />

p<br />

(denoted as t) <strong>in</strong>to a new<br />

77 Boltzmann variable g ¼ r= ffiffi t and to change the partial dif-<br />

78 ferential equation of <strong>flow</strong> <strong>in</strong>to an ord<strong>in</strong>ary differential<br />

79 equation. Although theoretically appeal<strong>in</strong>g, the Boltzmann<br />

80 trans<strong>for</strong>m is rather restrictive because it requires that all<br />

81 the <strong>in</strong>itial and boundary conditions can also be simulta-<br />

82 neously trans<strong>for</strong>med <strong>in</strong>to <strong>for</strong>ms only conta<strong>in</strong><strong>in</strong>g the Boltz-<br />

83 mann variable g. Un<strong>for</strong>tunately, such a requirement has<br />

84 often not be rigorously checked or even ignored <strong>in</strong> many<br />

85 studies. This has caused considerable confusion <strong>in</strong> the liter-<br />

86 atures on <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong>. It is unclear how much error<br />

87 will be <strong>in</strong>troduced when such a requirement is not satisfied.<br />

Q<br />

r<br />

r c<br />

r w<br />

R<br />

s(r,t)<br />

s w (t)<br />

S<br />

t<br />

C<br />

I m (x)<br />

K m (x)<br />

pump<strong>in</strong>g discharge [L 3 /T]<br />

distance from the center of the well [L]<br />

radius of well cas<strong>in</strong>g [L]<br />

effective radius of well screen [L]<br />

radius of <strong>in</strong>fluence of the pump<strong>in</strong>g well [L]<br />

drawdown [L]<br />

drawdown <strong>in</strong>side well [L]<br />

Aquifer storage coefficient<br />

pump<strong>in</strong>g time [T]<br />

Gamma function<br />

The first k<strong>in</strong>d order m modified Bessel function<br />

The second k<strong>in</strong>d order m modified Bessel function<br />

A careful review of previous studies of <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong><br />

<strong>in</strong>dicates that the Boltzmann trans<strong>for</strong>m works very well<br />

when <strong>flow</strong> field is planar. For <strong>in</strong>stance, Sen [25,28] and<br />

Wen et al. [36] have successfully applied the Boltzmann<br />

trans<strong>for</strong>m to study <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> to a s<strong>in</strong>gle fracture.<br />

However, the Boltzmann trans<strong>for</strong>m seems to be problematic<br />

when radial <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> is considered, such as<br />

those near the pump<strong>in</strong>g wells. When the groundwater <strong>flow</strong><br />

partial differential govern<strong>in</strong>g equation is converted <strong>in</strong>to an<br />

ord<strong>in</strong>ary differential equation after the Boltzmann trans<strong>for</strong>m,<br />

<strong>in</strong>tegration is often the next step to yield the <strong>solution</strong><br />

with an unknown <strong>in</strong>tegration ‘‘constant’’ that must be<br />

determ<strong>in</strong>ed via the boundary condition. For a radial <strong>non</strong>-<br />

<strong>Darcian</strong> <strong>flow</strong> problem, the boundary condition near the<br />

pump<strong>in</strong>g well can not be trans<strong>for</strong>med <strong>in</strong>to a <strong>for</strong>m only<br />

depend<strong>in</strong>g on the Boltzmann variable. This will make the<br />

<strong>in</strong>tegration ‘‘constant’’ to be temporal or spatially dependent.<br />

For <strong>in</strong>stance, the <strong>in</strong>tegration ‘‘constant’’ <strong>in</strong> Eq. (7)<br />

of Sen [26] is actually a function of time (see Eq. (9) of<br />

Sen [26]). Several scientists <strong>in</strong>clud<strong>in</strong>g Camacho-V and Vasquez-C<br />

[3] have noticed this problem be<strong>for</strong>e.<br />

If the Boltzmann trans<strong>for</strong>m is found to be <strong>in</strong>appropriate<br />

<strong>for</strong> a particular <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> problem, then one has to<br />

f<strong>in</strong>d an alternative mathematical tool to solve the <strong>non</strong>-<strong>Darcian</strong><br />

<strong>flow</strong> problem. Fortunately, we have noticed that many<br />

<strong>non</strong>-Newtonian <strong>flow</strong> problems resemble similar <strong>non</strong>-l<strong>in</strong>earity<br />

characteristics as the <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> problems. The<br />

l<strong>in</strong>earization approximation method has been proven to<br />

be a successful tool to deal with the <strong>non</strong>-l<strong>in</strong>earity of the<br />

<strong>non</strong>-Newtonian <strong>flow</strong> e.g. [12,18,34]. To our knowledge,<br />

the l<strong>in</strong>earization approximation method has rarely been<br />

used to <strong>in</strong>vestigate the <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong>, particularly <strong>for</strong><br />

the Izbash type of <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong>. The purpose of this<br />

paper is to develop a new method <strong>for</strong> solv<strong>in</strong>g the power<br />

law based radial <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> near a pump<strong>in</strong>g well<br />

comb<strong>in</strong><strong>in</strong>g the l<strong>in</strong>earization approximation with the<br />

Laplace trans<strong>for</strong>m. The results of the <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong><br />

will be compared with that of the <strong>Darcian</strong> <strong>flow</strong>. The importance<br />

of different <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> parameters will be<br />

UNCORRECTED PROOF<br />

88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx 3<br />

127 assessed. We will also compare this method with the Boltz-<br />

128 mann trans<strong>for</strong>m method used be<strong>for</strong>e.<br />

129 2. Conceptual and mathematical models<br />

130 2.1. Problem statement and <strong>solution</strong>s<br />

131 Consider<strong>in</strong>g a vertical pump<strong>in</strong>g well <strong>in</strong> a conf<strong>in</strong>ed<br />

132 aquifer, the thickness of the aquifer is m. The aquifer is<br />

133 homogeneous and isotropic. The physical system is the<br />

134 same as that of Sen [26], as shown <strong>in</strong> Fig. 1a. The cont<strong>in</strong>u-<br />

135<br />

136<br />

ity equation can be expressed as:<br />

138<br />

oqðr; tÞ qðr; tÞ<br />

þ ¼ S or r m<br />

osðr; tÞ<br />

; ð1Þ<br />

ot<br />

139 where q(r,t) is the specific discharge at radial distance r and<br />

140 time t, s(r,t) is the drawdown, and S is the storage coeffi-<br />

141 cient of the aquifer. With the assumptions used <strong>in</strong> Sen<br />

142 [26], the <strong>in</strong>itial and boundary conditions can be written as:<br />

sðr; 0Þ ¼0;<br />

ð2Þ<br />

144<br />

sð1; tÞ ¼0;<br />

Land Surface<br />

m<br />

Conf<strong>in</strong>ed Aquifer<br />

Land Surface<br />

m<br />

Conf<strong>in</strong>ed Aquifer<br />

s w<br />

2r c<br />

Q<br />

r<br />

Land Surface<br />

s<br />

Conf<strong>in</strong>ed Aquifer<br />

ð3Þ<br />

lim½2pmrqðr; tÞŠ ¼ Q: ð4Þ<br />

r!0<br />

where Q is the pump<strong>in</strong>g rate of the well, which is assumed<br />

to be constant dur<strong>in</strong>g the pump<strong>in</strong>g period. Eq. (4) <strong>in</strong>dicates<br />

that the wellbore storage is not considered here, all the<br />

pump<strong>in</strong>g rate comes from the aquifer. We employ the<br />

power law to describe the <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong>:<br />

½qðr; tÞŠ n ¼ k<br />

UNCORRECTED PROOF<br />

2r w<br />

r<br />

Land Surface<br />

s<br />

Conf<strong>in</strong>ed Aquifer<br />

Fig. 1. The schematic diagrams of the problem (a) without wellbore<br />

storage and (b) with wellbore storage.<br />

Q<br />

146<br />

147<br />

148<br />

149<br />

150<br />

151<br />

152<br />

osðr; tÞ<br />

; ð5Þ<br />

or<br />

154<br />

<strong>in</strong> which k and n are constants and n is between one and 155<br />

two. Further discussion of Eq. (5) and the parameters k 156<br />

and n are given by several studies <strong>in</strong>clud<strong>in</strong>g Wen et al. 157<br />

[36]. When n goes to one, <strong>flow</strong> is <strong>Darcian</strong>, and k becomes 158<br />

the hydraulic conductivity. Thus, k can be regarded as a 159<br />

quasi hydraulic conductivity term [36], which reflects how 160<br />

easy the aquifer can transmit water. When n is less than 161<br />

one, <strong>flow</strong> is called pre-l<strong>in</strong>ear <strong>flow</strong>. When n is between one 162<br />

and two, <strong>flow</strong> is post-l<strong>in</strong>ear <strong>flow</strong>. If n approaches two, <strong>flow</strong> 163<br />

is fully developed turbulent, mean<strong>in</strong>g that the hydraulic 164<br />

gradient of <strong>flow</strong> is <strong>in</strong>dependent of the Reynolds number 165<br />

[6,17]. The fully developed turbulent <strong>flow</strong> is likely to occur 166<br />

under certa<strong>in</strong> cases such as very close to the pump<strong>in</strong>g well, 167<br />

near a dam, preferential <strong>flow</strong>, etc. In some cases, k and n 168<br />

are not real constants, and depend on the property of the 169<br />

media and the velocities. Moutsopoulos and Tsihr<strong>in</strong>tzis 170<br />

[16] suggested that the assumption of constant n and k 171<br />

was more likely not justified if a boundary condition of 172<br />

known piezometric head was considered, whereas it was 173<br />

probably justified if a known flux was considered, such as 174<br />

<strong>in</strong> this study. If there is strong evidence that k and/or n 175<br />

are not constant <strong>for</strong> the <strong>flow</strong> regime, alternative ap- 176<br />

proaches other than Eq. (5) are needed. Nevertheless, k 177<br />

and n are treated as constants <strong>in</strong> this study. Eq. (5) can 178<br />

be expressed <strong>in</strong> an alternative way as:<br />

179<br />

180<br />

1=n<br />

½qðr; tÞŠ ¼ k 1=n osðr; tÞ<br />

: ð6Þ<br />

or<br />

182<br />

Substitut<strong>in</strong>g Eq. (6) to Eq. (1) will yield:<br />

183<br />

184<br />

o 2 s<br />

or þ n os<br />

2 r or ¼ S n 1<br />

n<br />

n os os<br />

m k 1=n or ot : ð7Þ 186<br />

Now one must deal with the<br />

os n 1<br />

n<br />

term on the right hand 187<br />

or<br />

side of Eq. (7) which is a <strong>non</strong>-l<strong>in</strong>ear govern<strong>in</strong>g equation. 188<br />

One possible way to l<strong>in</strong>earize Eq. (7) is to replace os/or 189<br />

on the right hand side of Eq. (7) by a time-<strong>in</strong>dependent 190<br />

approximation term as follows:<br />

191<br />

192<br />

<br />

Q n<br />

osðr; tÞ ½qðr; tÞŠn<br />

2prm<br />

¼ : ð8Þ<br />

or k k<br />

194<br />

Eq. (8) is referred to as the l<strong>in</strong>earization approximation. 195<br />

This approximation means that the amount of water 196<br />

passed through any radial face per unit time is treated as 197<br />

Q regardless of how far away from the center of the well. 198<br />

In a rigorous sense, the <strong>flow</strong> rate is equal to Q only at 199<br />

the pump<strong>in</strong>g wellbore. Similar l<strong>in</strong>earization approxima- 200<br />

tions have been commonly used <strong>in</strong> study<strong>in</strong>g <strong>non</strong>-Newto- 201<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

4 Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx<br />

202 nian <strong>flow</strong> e.g. [12,18,34]. F<strong>in</strong>ite difference <strong>solution</strong>s <strong>in</strong> <strong>non</strong>-<br />

203 Newtonian <strong>flow</strong> studies <strong>in</strong>dicate that the errors caused by<br />

204 the approximation are generally small [12,18,34]. This<br />

205 approximation works the best at places near the pump<strong>in</strong>g<br />

206 well and/or at late times. It will be less accurate at early<br />

207 times when drawdown changes rapidly with time. With this<br />

208<br />

209<br />

approximation, Eq. (7) can be changed to:<br />

211<br />

o 2 s<br />

or þ n os<br />

2 r or ¼ S n<br />

m k<br />

n 1<br />

Q<br />

r 1 n os<br />

2pm<br />

212 Eq. (9) is a l<strong>in</strong>ear partial differential equation, which can be<br />

213 solved by Laplace trans<strong>for</strong>m. With the Laplace trans<strong>for</strong>m<br />

214<br />

215<br />

<strong>for</strong> time t, one has:<br />

217<br />

ot :<br />

d 2 s<br />

dr þ n ds<br />

2 r dr ¼ Ar1 n ps ð10Þ<br />

n<br />

k<br />

ð9Þ<br />

Q<br />

2pm n 1, p is the Laplace variable, over bar of<br />

218 where A ¼ S m<br />

219 variable s means the Laplace trans<strong>for</strong>m of s. The <strong>in</strong>itial<br />

220 condition has been used <strong>in</strong> the Laplace trans<strong>for</strong>m. With<br />

221<br />

222<br />

this trans<strong>for</strong>m, the boundary conditions can be changed to:<br />

sð1; pÞ ¼0;<br />

ð11Þ<br />

224<br />

<br />

lim r n ds<br />

r!0 dr<br />

<br />

¼<br />

<br />

Q n<br />

2pm<br />

kp : ð12Þ<br />

225 Eq. (10) is a <strong>for</strong>m of Bessel’s equation. Its ord<strong>in</strong>ary solu-<br />

226 tion has been given <strong>in</strong> previous studies on <strong>non</strong>-Newtonian<br />

227 <strong>flow</strong> [12]. Carslaw and Jaeger p. 414, case V [4] have also<br />

228 provided a <strong>solution</strong> <strong>for</strong> this problem, which is<br />

229<br />

<br />

<br />

<br />

2 pffiffiffiffiffi<br />

2 pffiffiffiffiffi<br />

sðr;pÞ¼r 1<br />

2 n<br />

C 1 I 1 n<br />

3 n 3 n r3 2 Ap þ C 2 K 1 n<br />

3 n 3 n r3 2 Ap ;<br />

231<br />

ð13Þ<br />

232 <strong>in</strong> which I 1 nðxÞ and K 1 nðxÞ are the first and second k<strong>in</strong>d<br />

3 n 3 n<br />

233 modified Bessel function with the order 1 n,<br />

3 n<br />

234 C 1 and C 2 are the <strong>in</strong>tegration constants depend<strong>in</strong>g on the<br />

235 boundary conditions. In terms of the boundary condition<br />

236 of Eq. (11), C 1 = 0. Then, Eq. (13) becomes:<br />

237<br />

<br />

<br />

2 pffiffiffiffiffi<br />

sðr; pÞ ¼r 1<br />

2 n<br />

C 2 K 1 n<br />

3 n 3 n r3 2 Ap : ð14Þ<br />

239<br />

240 Apply<strong>in</strong>g Eq. (12) <strong>in</strong> Eq. (14), one has:<br />

241 <br />

C 2 r n 1 n <br />

<br />

2 pffiffiffiffiffi<br />

r 1<br />

2 n<br />

K 1 n<br />

2<br />

3 n 3 n r3 2 Ap<br />

<br />

<br />

þ r 1<br />

2 n<br />

K<br />

0<br />

2 pffiffiffiffiffi<br />

pffiffiffiffiffi<br />

<br />

n<br />

1 n<br />

3 n 3 n r3 2 Ap r 1<br />

2<br />

n<br />

Ap<br />

<br />

Q n<br />

243<br />

2pm<br />

¼<br />

kp<br />

; <strong>for</strong> r ! 0: ð15Þ<br />

244 With the properties of the modified Bessel functions: xdK m<br />

245 (x)/dx + mK m (x) = xK m 1 (x) and K m (x) =K m (x) p. 505<br />

246 [29], Eq. (15) can be reduced to:<br />

248<br />

<br />

pffiffiffiffiffi<br />

C 2 r n r 1 n Ap K 2<br />

3 n<br />

<br />

2 n<br />

3 n r3 2<br />

UNCORRECTED PROOF<br />

p<br />

ffiffiffiffiffi<br />

Ap<br />

<br />

<br />

¼<br />

<br />

Q n<br />

2pm<br />

; <strong>for</strong> r ! 0:<br />

kp<br />

ð16Þ<br />

Accord<strong>in</strong>g to the property of the second k<strong>in</strong>d modified<br />

Bessel function K m ðxÞ CðmÞ x m<br />

2 2<br />

; m > 0 when x goes to zero<br />

p. 505 [29], <strong>in</strong> which C() is the gamma function, one has:<br />

pffiffiffiffi 2<br />

2 Q<br />

2pm<br />

n<br />

Ap<br />

3 n<br />

3 n<br />

C 2 ¼ p<br />

kp<br />

ffiffiffiffiffi : ð17Þ<br />

Ap C<br />

2<br />

3 n<br />

There<strong>for</strong>e, one can determ<strong>in</strong>e the <strong>solution</strong> of the drawdown<br />

<strong>in</strong> Laplace doma<strong>in</strong> accord<strong>in</strong>gly:<br />

<br />

<br />

pffiffiffiffi 2<br />

2 Q n<br />

3 n<br />

Ap<br />

<br />

<br />

2pm 3 n<br />

sðr; pÞ ¼ p<br />

kp<br />

ffiffiffiffiffi<br />

2 pffiffiffiffiffi<br />

r 1 2 n<br />

Ap C<br />

2 K n<br />

1 n<br />

3 n 3 n r3 2 Ap : ð18Þ<br />

3 n<br />

Eq. (18) can be solved by us<strong>in</strong>g either the <strong>analytical</strong> or the<br />

numerical Laplace <strong>in</strong>version methods. Luan [15] has used<br />

an <strong>analytical</strong> Laplace <strong>in</strong>version method to <strong>in</strong>vestigate<br />

<strong>non</strong>-Newtonian <strong>flow</strong> <strong>in</strong> a double-porosity <strong>for</strong>mation.<br />

However, the <strong>analytical</strong> <strong>in</strong>version is often complex and<br />

not always available. It is proven that the numerical<br />

methods are very efficient and useful <strong>for</strong> such <strong>in</strong>version<br />

problems e.g. [30,31,7]. We have evaluated Eq. (18) by<br />

us<strong>in</strong>g the Stehfest method [30,31], the drawdowns at any<br />

given distance r and time t can be obta<strong>in</strong>ed when the<br />

parameters of the aquifer are known.<br />

We have developed a MATLAB program to compute<br />

the drawdown by us<strong>in</strong>g this <strong>in</strong>version method. The Stehfest<br />

method requires a choice of N which is the number of terms<br />

used <strong>in</strong> the <strong>in</strong>version. Our numerical exercise shows that<br />

N = 18 gives the most accurate and stable <strong>solution</strong>, thus<br />

will be used <strong>in</strong> all the follow<strong>in</strong>g calculation. The MATLAB<br />

program is simple and straight<strong>for</strong>ward with the Stehfest<br />

method as the primary component. The program is free<br />

of charge from the authors upon request.<br />

2.2. Solutions with wellbore storage<br />

When the well radius is relatively large, the wellbore<br />

storage can not be ignored. Large diameter wells are commonly<br />

used all over the world, especially <strong>in</strong> develop<strong>in</strong>g<br />

countries such as India and Ch<strong>in</strong>a e.g. [11,10]. Similar to<br />

the physical system of Papadopulos and Cooper [21], the<br />

schematic diagram is shown <strong>in</strong> Fig. 1b. If the wellbore<br />

storage is considered, the boundary condition will be<br />

expressed as:<br />

# 1=n<br />

2pr w mk 1=n osðr; tÞ r!rw<br />

pr 2 c<br />

or<br />

os w ðtÞ<br />

ot<br />

¼ Q; t > 0:<br />

249<br />

250<br />

251<br />

253<br />

254<br />

255<br />

256<br />

258<br />

259<br />

260<br />

261<br />

262<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

269<br />

270<br />

271<br />

272<br />

273<br />

274<br />

275<br />

276<br />

277<br />

278<br />

279<br />

280<br />

281<br />

282<br />

283<br />

284<br />

285<br />

286<br />

287<br />

288<br />

ð19Þ 290<br />

<strong>in</strong> which r w is the effective radius of the well screen and r c is 291<br />

the radius of the well cas<strong>in</strong>g. In most cases, r c is not equal 292<br />

to and often much larger than r w . s w (t) is the drawdown <strong>in</strong> 293<br />

the well, which is equal to the drawdown at the face of well- 294<br />

bore <strong>in</strong> the aquifer s(r w ,t). With the Laplace trans<strong>for</strong>m, Eq. 295<br />

(19) becomes<br />

296<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

297<br />

299<br />

# 1=n<br />

2pr w mk 1=n dsðr; tÞ r!rw<br />

pr 2 c<br />

dr<br />

ps wðtÞ ¼ Q p : ð20Þ<br />

300 Eq. (20) is a <strong>non</strong>-l<strong>in</strong>ear boundary condition. The <strong>solution</strong> is<br />

301 still <strong>in</strong> the <strong>for</strong>m of Eq. (13) with C 1 = 0. However, it seems<br />

302 difficult to obta<strong>in</strong> the <strong>in</strong>tegration constant C 2 of Eq. (13)<br />

303 directly from the <strong>non</strong>-l<strong>in</strong>ear boundary condition Eq. (20).<br />

304 In light of the l<strong>in</strong>earization method as shown <strong>in</strong> Eq. (8),<br />

305 then Eq. (19) can be simplified to<br />

306<br />

ð1 nÞ<br />

Q osðr w ; tÞ os w ðtÞ<br />

308<br />

2pr w mk<br />

2pmr w<br />

or<br />

pr 2 c<br />

ot<br />

Q: ð21Þ<br />

309 Tak<strong>in</strong>g the Laplace trans<strong>for</strong>m of Eq. (21), one has<br />

310<br />

pr 2 c psðr w; pÞ ¼ Q 312<br />

p ; ð22Þ<br />

h i ð1<br />

Q nÞ.<br />

313 <strong>in</strong> which B ¼ 2pr w mk<br />

2pmr w<br />

Substitut<strong>in</strong>g Eq. (22) <strong>in</strong>to<br />

314 Eq. (13), one has:<br />

315<br />

B dsðr w; tÞ<br />

dr<br />

Q<br />

C 2 ¼ n pffiffiffiffiffi<br />

<br />

p Br 1 n<br />

w<br />

Ap K<br />

2<br />

pffiffiffiffiffi<br />

<br />

2<br />

3 n 3 n r3 2<br />

w Ap<br />

þpr 2 n<br />

c pr1 2 2<br />

w K pffiffiffiffiffio:<br />

1 n<br />

3 n 3 n r3 2<br />

w Ap<br />

317<br />

ð23Þ<br />

318 After obta<strong>in</strong><strong>in</strong>g C 2 , the <strong>solution</strong> with wellbore storage <strong>in</strong><br />

319 Laplace doma<strong>in</strong> can be written as<br />

pffiffiffiffiffi<br />

Qr 1<br />

2 n<br />

K<br />

2 1 n<br />

3 n 3 n r3 2 Ap<br />

sðr;pÞ¼ n pffiffiffiffiffi<br />

<br />

p Br 1 n<br />

w<br />

Ap K<br />

2<br />

pffiffiffiffiffi<br />

<br />

2<br />

3 n 3 n r3 2<br />

w Ap<br />

þpr 2 n<br />

c pr1 2 2<br />

w K pffiffiffiffiffio:<br />

1 n<br />

3 n 3 n r3 2<br />

w Ap<br />

321<br />

ð24Þ<br />

322 When n approaches 1, <strong>flow</strong> becomes <strong>Darcian</strong>. Eq. (23) can<br />

323<br />

324<br />

be approximated by<br />

326<br />

qffiffiffiffiffiffiffi<br />

S<br />

QK 0 r p mk<br />

sðr; pÞ ¼ n qffiffiffiffiffiffiffi<br />

qffiffiffiffiffiffiffi<br />

qffiffiffiffiffiffiffio:<br />

S<br />

p 2pr w mk p<br />

S<br />

K<br />

mk 1 r w<br />

þ p pr<br />

mk 2 c pK S<br />

0 r w p mk<br />

ð25Þ<br />

327 Eq. (25) is the same as the <strong>solution</strong> of Papadopulos and<br />

328 Cooper [21] <strong>in</strong> Laplace doma<strong>in</strong>. Eq. (23) can also be eval-<br />

329 uated by the numerical <strong>in</strong>version which is <strong>in</strong>cluded <strong>in</strong> the<br />

330 MATLAB program.<br />

331 2.3. Approximate <strong>analytical</strong> <strong>solution</strong>s at steady state and late<br />

332 times<br />

333 Be<strong>for</strong>e the discussion of the results, it is necessary to<br />

334 obta<strong>in</strong> the <strong>analytical</strong> <strong>solution</strong>s at steady state and late<br />

335 times. For steady-state <strong>flow</strong>, the drawdown does not<br />

336 depend on time t, thus os ¼ 0. Appendix shows the detailed<br />

ot<br />

337 derivation of obta<strong>in</strong><strong>in</strong>g the steady-state drawdown which is<br />

338 <br />

sðrÞ ¼<br />

Q n <br />

1 1 1<br />

; r<br />

2pm kðn 1Þ r n 1 R n 1 w 6 r 6 R;<br />

340<br />

ð26Þ<br />

341 where r w is the effective radius of the well screen and R is<br />

342 the radius of <strong>in</strong>fluence of the well at which the drawdown<br />

Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx 5<br />

is negligible. Notice that 1 < n 6 2, thus the drawdown 343<br />

decreases with distance with a power of (n 1). For the 344<br />

special case of <strong>Darcian</strong> <strong>flow</strong>, n is approach<strong>in</strong>g 1, and Eq. 345<br />

(26) can be simplified as follows. Recall<strong>in</strong>g the identity that 346<br />

lim n!1 ð1= r n 1 Þ¼lim n!1 fexp½ ðn 1Þ ln rŠg ffi 1 ðn 1Þ 347<br />

ln r, thus Eq. (26) becomes the well known steady-state 348<br />

<br />

<strong>solution</strong> <strong>for</strong> <strong>Darcian</strong> <strong>flow</strong> to a well: sðrÞ ¼<br />

Q<br />

2pmk lnðr=RÞ. 349<br />

A m<strong>in</strong>or issue to po<strong>in</strong>t out is that the radius of <strong>in</strong>fluence 350<br />

R must be used when discuss<strong>in</strong>g the steady-state <strong>Darcian</strong> 351<br />

<strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed aquifer; otherwise, the drawdown will 352<br />

become <strong>in</strong>f<strong>in</strong>ity when r goes to <strong>in</strong>f<strong>in</strong>ity.<br />

353<br />

It is notable that van Poollen and Jargon [33] have pro- 354<br />

vided an <strong>analytical</strong> <strong>solution</strong> of steady-state <strong>non</strong>-Newtonian 355<br />

fluid <strong>flow</strong>. They have also provided a numerical <strong>solution</strong> of 356<br />

transient <strong>non</strong>-Newtonian fluid <strong>flow</strong>. Eq. (26) <strong>in</strong>dicates that 357<br />

the steady-state drawdown will <strong>in</strong>crease with the pump<strong>in</strong>g 358<br />

rate Q, and decrease with the quasi hydraulic conductivity 359<br />

k and the thickness of the aquifer m. Tak<strong>in</strong>g the derivative 360<br />

with respect to r on both sides of Eq. (26), it is found that 361<br />

dsðrÞ<br />

¼ ðQ=2pmrÞn , which is consistent with Eq. (8).<br />

dr k 362<br />

In addition to the steady-state <strong>solution</strong>, it is also <strong>in</strong>ter- 363<br />

est<strong>in</strong>g to derive the time-dependent late time <strong>solution</strong> which 364<br />

may be very useful <strong>in</strong> well test<strong>in</strong>g analysis because the late 365<br />

time <strong>solution</strong> is normally accurate enough after a certa<strong>in</strong> 366<br />

time of pump<strong>in</strong>g, as demonstrated by Wu [37]. The late 367<br />

time <strong>analytical</strong> <strong>solution</strong> can be obta<strong>in</strong>ed by conduct<strong>in</strong>g 368<br />

the <strong>in</strong>verse Laplace trans<strong>for</strong>m of Eq. (18) by allow<strong>in</strong>g the 369<br />

Laplace trans<strong>for</strong>m parameter p to be sufficiently small. 370<br />

The Appendix has given the detailed derivation of the later 371<br />

time <strong>analytical</strong> <strong>solution</strong> which is<br />

372<br />

373<br />

sðr; tÞ ¼<br />

Q n <br />

1 1 C<br />

; ð27Þ<br />

2pm kðn 1Þ r n 1 t n 3 1<br />

n<br />

375<br />

where the constant C is given <strong>in</strong> Eq. (A10) of the Appendix. 376<br />

It is <strong>in</strong>terest<strong>in</strong>g to see that the late time drawdown is 377<br />

simply a superposition of the steady-state <strong>solution</strong> and a 378<br />

negative term that decreases with time with a power of 379<br />

(n 1)/(3 n). Interest<strong>in</strong>gly, the time-dependent decreas- 380<br />

<strong>in</strong>g term <strong>in</strong> Eq. (27) is <strong>in</strong>dependent of spatial coord<strong>in</strong>ate. 381<br />

S<strong>in</strong>ce the wellbore storage will not affect the steady-state 382<br />

and late time drawdowns. Above <strong>solution</strong>s Eqs. (26) and 383<br />

(27) are also valid <strong>for</strong> the case with the wellbore storage. 384<br />

3. Results and discussion<br />

There are two different ways to present the results. One<br />

way is to present the dimensionless drawdown versus<br />

dimensionless time <strong>in</strong> log–log scales, the so-called type<br />

curves, as often done <strong>in</strong> <strong>Darcian</strong> <strong>flow</strong> studies. The other<br />

way is to analyze the result <strong>in</strong> dimensional <strong>for</strong>ms. For <strong>Darcian</strong><br />

<strong>flow</strong>, one of the advantages of us<strong>in</strong>g type curves is<br />

based on the consideration that the dimensionless drawdown<br />

is often a function of dimensionless time only <strong>in</strong> a<br />

conf<strong>in</strong>ed aquifer, provided that other effects such as leakage<br />

across the aquifer boundaries are not considered. For<br />

<strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> discussed here, the benefits of us<strong>in</strong>g type<br />

UNCORRECTED PROOF<br />

385<br />

386<br />

387<br />

388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

394<br />

395<br />

396<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

6 Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx<br />

397 curves are not always obvious because of the <strong>non</strong>-l<strong>in</strong>ear<br />

398 power law relationship between the discharge and the<br />

399 hydraulic gradient. Furthermore, it is straight<strong>for</strong>ward to<br />

400 test the sensitivity of the <strong>solution</strong>s to two parameters n<br />

401 and k <strong>in</strong> dimensional <strong>for</strong>ms. There<strong>for</strong>e, we prefer a dimen-<br />

402 sional analysis <strong>for</strong> most parts of the follow<strong>in</strong>g analysis. The<br />

403 type curves are only used when the results are compared<br />

404 with previous <strong>solution</strong>s of <strong>Darcian</strong> <strong>flow</strong> under the special<br />

405 case of n =1.<br />

406 Nevertheless, the type curves <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong><br />

407 can be easily obta<strong>in</strong>ed based on the dimensional analysis<br />

408 if the dimensionless terms can be adequately def<strong>in</strong>ed.<br />

409 With the developed MATLAB program <strong>for</strong> the numeri-<br />

410 cal Laplace <strong>in</strong>version, we have obta<strong>in</strong>ed the drawdown<br />

411 values aga<strong>in</strong>st time which are presented <strong>in</strong> log–log scales,<br />

412 as shown <strong>in</strong> Figs. 2–13. In the follow<strong>in</strong>g discussion, we<br />

413 only consider the case that n is larger than one, because<br />

414 pre-l<strong>in</strong>ear <strong>flow</strong> is unlikely to occur near the pump<strong>in</strong>g<br />

415 wells.<br />

416 3.1. Drawdowns without wellbore storage<br />

417 3.1.1. Comparison of the <strong>non</strong>-l<strong>in</strong>ear type curves with Theis<br />

418 curves<br />

419 When n approaches one, <strong>flow</strong> is approach<strong>in</strong>g <strong>Darcian</strong>.<br />

420 The result of Eq. (18) will approach the classical Theis solu-<br />

421 tion <strong>in</strong> the Laplace doma<strong>in</strong>. We have compared our results<br />

422 <strong>for</strong> n = 1 with the Theis type curves as shown <strong>in</strong> Fig. 2,<br />

423 which has the same axes as those def<strong>in</strong>ed <strong>in</strong> Theis type<br />

424 curves, i.e. u ¼ r2 S<br />

and W ðuÞ ¼ 4pmk sðr; tÞ. It is clear to<br />

4mkt<br />

Q<br />

425 see that our results agree perfectly with the Theis type<br />

426 curves. This <strong>in</strong>dicates that our MATLAB program based<br />

Fig. 3. Comparison of the drawdowns obta<strong>in</strong>ed by the proposed<br />

l<strong>in</strong>earization and Laplace trans<strong>for</strong>m method and the Boltzmann trans<strong>for</strong>m<br />

method with n = 2.0, Q =50m 3 /h, m =50m, k = 0.1(m/h) n , and<br />

S = 0.001 <strong>for</strong> the distances r = 10 m and 100 m, respectively.<br />

Fig. 4. Drawdowns versus r 2 /t with n = 1.5, Q =50m 3 /h, m =50m,<br />

k = 0.1(m/h) n , and S = 0.001 <strong>for</strong> the distances r =10m,20m,50m,and<br />

100 m, respectively.<br />

UNCORRECTED PROOF<br />

Fig. 2. Comparison of the type curves <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> and Theis<br />

type curves.<br />

on the numerical <strong>in</strong>version is applicable. On the other<br />

hand, it may suggest that the errors of the l<strong>in</strong>earization<br />

approximation are negligible at least when n is close to<br />

one. In the follow<strong>in</strong>g analysis, we consider the l<strong>in</strong>earization<br />

<strong>solution</strong>s as ‘‘quasi-exact’’ <strong>solution</strong>s when compar<strong>in</strong>g to the<br />

results of the Boltzmann method.<br />

427<br />

428<br />

429<br />

430<br />

431<br />

432<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx 7<br />

Fig. 5. Drawdowns versus time with Q =50m 3 /h, r =20m, m =50m,<br />

k = 0.1(m/h) n , and S = 0.001 <strong>for</strong> the values of power <strong>in</strong>dex n = 1.2, 1.5,<br />

1.8, and 2.0, respectively.<br />

Fig. 6. Drawdowns versus time with n = 1.5, Q =50m 3 /h, r =20m,<br />

m = 50 m, and S = 0.001 <strong>for</strong> the quasi hydraulic conductivity values<br />

k = 0.1(m/h) n , 0.2(m/h) n , 0.5(m/h) n , and 0.8(m/h) n , respectively.<br />

433 3.1.2. Comparison of this study with those based on the<br />

434 Boltzmann trans<strong>for</strong>m<br />

435 The comparison of our l<strong>in</strong>earization results with the<br />

436 <strong>solution</strong>s of the Boltzmann trans<strong>for</strong>m [26] is shown <strong>in</strong><br />

437 Fig. 3. As presented by Sen [26], the drawdown obta<strong>in</strong>ed<br />

438 by us<strong>in</strong>g the Boltzmann trans<strong>for</strong>m can be expressed as<br />

439 sðr; tÞ ¼ 1 k<br />

Q<br />

2pm<br />

n R 1<br />

r<br />

1<br />

2 n 1<br />

r 0n n 3<br />

UNCORRECTED PROOF<br />

h <br />

r 02 S Q n 1<br />

i n=ð1 nÞdr<br />

4mkt 2pmr þ 1<br />

0 , <strong>in</strong><br />

0<br />

Fig. 7. Drawdowns versus distance with n = 1.5, Q =50m 3 /h, m =50m,<br />

k = 0.1(m/h) n , and S = 0.001 <strong>for</strong> time t = 0.1 h, 1 h, 10 h, 100 h and<br />

1000 h, respectively.<br />

Fig. 8. Comparison of the wellbore well function of this study and that of<br />

Papadopulos and Cooper (1967) <strong>for</strong> a =10 3 , 10 4 , and 10 5 ,<br />

respectively.<br />

which r 0 is a dummy <strong>in</strong>tegration variable. As shown <strong>in</strong><br />

Fig. 3, considerable differences have been found at early<br />

and moderate times <strong>for</strong> fully turbulent <strong>flow</strong> (n = 2).<br />

Whereas the Boltzmann trans<strong>for</strong>m method and the l<strong>in</strong>earization<br />

method yield nearly the same results at late times at<br />

locations that are 10 m and 100 m away from the pump<strong>in</strong>g<br />

well, as seen <strong>in</strong> Fig. 3.<br />

440<br />

441<br />

442<br />

443<br />

444<br />

445<br />

446<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

8 Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx<br />

Fig. 9. Drawdowns <strong>in</strong> the well with wellbore storage with Q =50m 3 /h,<br />

m =50m, k = 0.1(m/h) n , r w = 0.1 m, r c = 1 m, and S = 0.001 <strong>for</strong> the<br />

values of power <strong>in</strong>dex n = 1.1, 1.2, 1.5, and 2.0, respectively.<br />

Fig. 10. Drawdowns <strong>in</strong> the well with wellbore storage with Q =50m 3 /h,<br />

m =50m, n = 1.5, r w = 0.1 m, r c = 1 m, and S = 0.001 <strong>for</strong> the quasi<br />

hydraulic conductivity values k = 0.1, 0.2, 0.5 and 0.8, respectively.<br />

447 A careful check of Sen [26] <strong>in</strong>dicates that the boundary<br />

448 condition can not be<br />

p<br />

trans<strong>for</strong>med <strong>in</strong>to the <strong>for</strong>m <strong>in</strong> terms of<br />

449 the variable g ¼ r= ffiffi t only. There<strong>for</strong>e, the <strong>solution</strong>s as<br />

450 shown <strong>in</strong> Eqs. (9) and (10) of Sen [26] are not only func-<br />

451 tions of variable g but also functions of time t or r, violat-<br />

452 <strong>in</strong>g the requirement of us<strong>in</strong>g the Boltzmann trans<strong>for</strong>m.In<br />

453 order to demonstrate that the drawdown <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong><br />

454 <strong>flow</strong> is not only a function of r 2 /t, we compute the draw-<br />

Fig. 11. Drawdowns <strong>in</strong> the aquifer with wellbore storage with Q =50m 3 /<br />

h, m =50m,k = 0.1(m/h) n , r w = 0.1 m, r c =1m,r = 10 m, and S = 0.001<br />

<strong>for</strong> the values of power <strong>in</strong>dex n = 1.1, 1.2, 1.5 and 2.0, respectively.<br />

Fig. 12. Drawdowns <strong>in</strong> the aquifer (r = 10 m) with wellbore storage with<br />

Q =50m 3 /h, m =50m, n = 1.5, r w = 0.1 m, r c =1m, r = 10 m, and<br />

S = 0.001 <strong>for</strong> the quasi hydraulic conductivity values k = 0.1, 0.2, 0.5, and<br />

0.8, respectively.<br />

UNCORRECTED PROOF<br />

downs <strong>for</strong> four different distances r =10m, 20m, 50m<br />

and 100 m with n = 1.5, Q =50m 3 /s, m =50m, k = 0.1<br />

(m/hr) n and S = 0.001, and present the results <strong>in</strong> Fig. 4.<br />

Differences have been found among the curves of s–r 2 /t<br />

at the four distances. This proves that the drawdown is<br />

<strong>in</strong>deed not only a function of g.<br />

455<br />

456<br />

457<br />

458<br />

459<br />

460<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx 9<br />

Fig. 13. Drawdowns at t =10 5 h versus distance with Q =50m 3 /h,<br />

m =50m, k = 0.1(m/h) n , and S = 0.001 <strong>for</strong> the values of power <strong>in</strong>dex<br />

n = 1.1, 1.2, 1.5 and 2.0, respectively.<br />

461 Interest<strong>in</strong>gly, despite of the problems associated with the<br />

462 Boltzmann trans<strong>for</strong>m, the results obta<strong>in</strong>ed from the l<strong>in</strong>ear-<br />

463 ization method seem to agree reasonably well with those<br />

464 obta<strong>in</strong>ed from the Boltzmann trans<strong>for</strong>m method at late<br />

465 times, as reflected <strong>in</strong> Fig. 3. However, when the wellbore<br />

466 storage is <strong>in</strong>cluded, we have found that the l<strong>in</strong>earization<br />

467 method gives the same drawdown at the pump<strong>in</strong>g wellbore<br />

468 as that of Papadopulos and Cooper [21] <strong>for</strong> <strong>Darcian</strong> <strong>flow</strong><br />

469 (see detailed discussion <strong>in</strong> Section 3.2); on the contrary,<br />

470 the Boltzmann trans<strong>for</strong>m method can not reproduce the<br />

471 same wellbore drawdown as predicted by Papadopulos<br />

472 and Cooper [21] <strong>for</strong> <strong>Darcian</strong> <strong>flow</strong>.<br />

473 3.1.3. Effect of the power <strong>in</strong>dex n and the quasi hydraulic<br />

474 conductivity k<br />

475 The sensitivity of the drawdown versus n is shown <strong>in</strong><br />

476 Fig. 5 with n = 1.2, 1.5, 1.8 and 2.0, respectively. As<br />

477 shown <strong>in</strong> this figure, the late time drawdown decreases<br />

478 when n <strong>in</strong>creases at any given. This f<strong>in</strong>d<strong>in</strong>g is consistent<br />

479 with the steady-state <strong>solution</strong> Eq. (26) and the late time<br />

480 <strong>solution</strong> Eq. (27). Physically speak<strong>in</strong>g, this is also under-<br />

481 standable. A greater n value implies greater deviation from<br />

482 <strong>Darcian</strong> <strong>flow</strong> and greater degree of turbulence of <strong>flow</strong>,<br />

483 <strong>in</strong>dicat<strong>in</strong>g that <strong>flow</strong> near the well will experience greater<br />

484 degree of resistance. As a result, the cone of depression<br />

485 of the pump<strong>in</strong>g well will be shrunk to a smaller volume<br />

486 surround<strong>in</strong>g the well. In another word, the drawdown will<br />

487 drop to zero faster when mov<strong>in</strong>g away from the well. The<br />

488 consequence of this is a smaller drawdown at any given<br />

489 distance r and time t.<br />

490 Fig. 5 also shows that when n is larger, <strong>flow</strong> approaches<br />

491 steady state more quickly. This f<strong>in</strong>d<strong>in</strong>g is proved by the<br />

<strong>analytical</strong> <strong>solution</strong> Eq. (27) <strong>in</strong> which the time-dependent<br />

term drops to zero faster when n gets larger.<br />

The impact of the quasi hydraulic conductivity k on the<br />

drawdown is also analyzed. The results are shown <strong>in</strong> Fig. 6.<br />

At early times, the drawdown is greater when the value of k<br />

is larger; while at late times, the drawdown is less when k is<br />

larger. This f<strong>in</strong>d<strong>in</strong>g is similar to the <strong>in</strong>fluence of the power<br />

<strong>in</strong>dex n on the drawdown.<br />

3.1.4. Drawdowns versus distance<br />

All the discussion above is about the drawdown versus<br />

time t. It is equally important to analyze the drawdown<br />

versus distance r. We have analyzed the drawdowns versus<br />

distance r at five given times, as shown <strong>in</strong> Fig. 7. It is <strong>in</strong>terest<strong>in</strong>g<br />

to notice that <strong>for</strong> <strong>flow</strong> near the pump<strong>in</strong>g well, all the<br />

curves approach the same asymptotic value <strong>in</strong> Fig. 7. This<br />

simply reflects the fact that the drawdowns at places very<br />

close to the pump<strong>in</strong>g well reach steady state shortly after<br />

the start of pump<strong>in</strong>g.<br />

3.2. Drawdowns with wellbore storage<br />

3.2.1. Drawdown <strong>in</strong> the well<br />

When n approaches one, <strong>flow</strong> is <strong>Darcian</strong>, then the <strong>flow</strong><br />

model with wellbore storage is the same as that of Papadopulos<br />

and Cooper [21] <strong>for</strong> <strong>Darcian</strong> <strong>flow</strong> to a large diameter<br />

well. We can use the <strong>analytical</strong> <strong>solution</strong>s of Papadopulos<br />

and Cooper [21] to verify our results. In order to make this<br />

comparison feasible, we use the same dimensionless variables<br />

as that of Papadopulos and Cooper [21]: the wellbore<br />

well function W ðu w Þ¼ 4pmk s Q wðtÞ, the dimensionless time<br />

factor u w ¼ r2 w S , and a ¼ r2 w S . The computed type curves<br />

4mkt r 2 c<br />

based on both the numerical <strong>in</strong>version of Eq. (25) and<br />

the <strong>analytical</strong> <strong>solution</strong>s of Papadopulos and Cooper [21]<br />

are shown <strong>in</strong> Fig. 8. It is obvious to notice that our numerical<br />

<strong>in</strong>version results under <strong>Darcian</strong> <strong>flow</strong> case (n = 1) agree<br />

very well with the <strong>solution</strong>s of Papadopulos and Cooper<br />

[21].<br />

The sensitivity analysis of the power <strong>in</strong>dex n and the<br />

quasi hydraulic conductivity k on the drawdown <strong>in</strong> the well<br />

are shown <strong>in</strong> Figs. 9 and 10, respectively. In these two figures,<br />

all the diagrams <strong>in</strong> log–log scales can be divided <strong>in</strong>to<br />

three portions. For the first portion at early times, all the<br />

l<strong>in</strong>es are straight and approach the same asymptotic values,<br />

reflect<strong>in</strong>g the fact that the pumped water comes from the<br />

wellbore storage entirely dur<strong>in</strong>g this period. For the second<br />

portion at moderate time, all the curves start to deviate<br />

from the straight l<strong>in</strong>es, mean<strong>in</strong>g that the pump<strong>in</strong>g rate is<br />

partially from the wellbore storage and partially from the<br />

aquifer. While at late times, the third portion, a larger n<br />

or k value leads to a smaller drawdown <strong>in</strong> the well. This<br />

f<strong>in</strong>d<strong>in</strong>g is consistent with the late time <strong>analytical</strong> <strong>solution</strong><br />

of Eq. (27).<br />

UNCORRECTED PROOF<br />

3.2.2. Drawdowns <strong>in</strong> the aquifer<br />

We have also analyzed the drawdown <strong>in</strong> the aquifer with<br />

different n and k values, as shown <strong>in</strong> Figs. 11 and 12 by<br />

492<br />

493<br />

494<br />

495<br />

496<br />

497<br />

498<br />

499<br />

500<br />

501<br />

502<br />

503<br />

504<br />

505<br />

506<br />

507<br />

508<br />

509<br />

510<br />

511<br />

512<br />

513<br />

514<br />

515<br />

516<br />

517<br />

518<br />

519<br />

520<br />

521<br />

522<br />

523<br />

524<br />

525<br />

526<br />

527<br />

528<br />

529<br />

530<br />

531<br />

532<br />

533<br />

534<br />

535<br />

536<br />

537<br />

538<br />

539<br />

540<br />

541<br />

542<br />

543<br />

544<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

10 Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx<br />

545 us<strong>in</strong>g distance r = 10 m as an example. It can be found that<br />

546 the drawdown <strong>in</strong> the aquifer is less when n or k are greater<br />

547 at late times; while the opposite is true at early times. This<br />

548 f<strong>in</strong>d<strong>in</strong>g is similar to that of the drawdown <strong>in</strong> the aquifer<br />

549 without consider<strong>in</strong>g wellbore storage.<br />

550 3.3. Drawdowns versus distances at late times<br />

551 To demonstrate the late time behavior of the draw-<br />

552 downs, we compute the drawdowns with different n values<br />

553 at t =10 5 h <strong>for</strong> both Eqs. (14) and (23), the results are<br />

554 shown <strong>in</strong> Fig. 13. The approximate <strong>analytical</strong> <strong>solution</strong><br />

555 Eq. (26) <strong>for</strong> steady-state <strong>flow</strong> is also <strong>in</strong>cluded <strong>in</strong> this figure.<br />

556 The subtle difference <strong>for</strong> the case of n = 1.2 might due to<br />

557 that <strong>flow</strong> is still at unsteady stage even <strong>for</strong> time as large<br />

558 as 10 5 h. When the time is longer than 10 5 h, the numerical<br />

559 <strong>in</strong>version results approach the steady-state <strong>analytical</strong><br />

560 results. This <strong>in</strong>dicates when n is smaller, it will take longer<br />

561 time to approach the steady state.<br />

562 It can also be found that all the drawdown curves are<br />

563 nearly straight with different n values <strong>in</strong> log–log scales. This<br />

564 aga<strong>in</strong> can be expla<strong>in</strong>ed by the approximate <strong>analytical</strong> solu-<br />

565 tion of Eq. (26) <strong>in</strong> which the drawdown is proportional to<br />

566 r 1 n . When plotted <strong>in</strong> log–log scales, the relationship<br />

567 between the drawdown and the distance is a straight l<strong>in</strong>e<br />

568 with a slope of 1 n.<br />

569 4. Summary and conclusions<br />

570 We have developed a method to compute the drawdown<br />

571 of the power law based <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> toward a well <strong>in</strong><br />

572 a conf<strong>in</strong>ed aquifer with and without wellbore storage. To<br />

573 use this method, one first has to approximate the <strong>non</strong>-Dar-<br />

574 cian <strong>flow</strong> equation with a l<strong>in</strong>earization equation, then to<br />

575 obta<strong>in</strong> the <strong>solution</strong>s of the l<strong>in</strong>earization equation <strong>in</strong><br />

576 Laplace doma<strong>in</strong>, and f<strong>in</strong>ally to obta<strong>in</strong> the drawdowns by<br />

577 us<strong>in</strong>g a numerical <strong>in</strong>verse Laplace trans<strong>for</strong>m method. The<br />

578 MATALAB based program has been developed to facili-<br />

579 tate the numerical computation. Drawdowns obta<strong>in</strong>ed by<br />

580 our proposed method have been compared with those<br />

581 obta<strong>in</strong>ed by us<strong>in</strong>g the Boltzmann trans<strong>for</strong>m method. We<br />

582 have also analyzed the sensitivity of the drawdowns both<br />

583 <strong>in</strong> the well and <strong>in</strong> the aquifer to a number of parameters<br />

584 such as the power law <strong>in</strong>dex n and the quasi hydraulic con-<br />

585 ductivity k.<br />

586 Several f<strong>in</strong>d<strong>in</strong>gs can be drawn from this study. The<br />

587 drawdown <strong>for</strong> the power law based <strong>non</strong>-<strong>Darcian</strong><br />

p<br />

radial<br />

588 <strong>flow</strong> can not be expressed as a function of g ¼ r= ffiffi t , this<br />

589 means that the drawdown can not be obta<strong>in</strong>ed by directly<br />

590 solv<strong>in</strong>g the <strong>non</strong>-<strong>Darcian</strong> radial <strong>flow</strong> equation with the<br />

591 Boltzmann trans<strong>for</strong>m. The Boltzmann trans<strong>for</strong>m method<br />

592 differs from the l<strong>in</strong>earization method considerably at early<br />

593 and moderate times, but it yields nearly the same results as<br />

594 the l<strong>in</strong>earization method at late times. The results of this<br />

595 new method <strong>for</strong> the special <strong>Darcian</strong> <strong>flow</strong> case (n = 1) agree<br />

596 perfectly with that of the Theis <strong>solution</strong> <strong>for</strong> an <strong>in</strong>f<strong>in</strong>itesi-<br />

597 mally small pump<strong>in</strong>g well, and with that of the Papadopu-<br />

los and Cooper <strong>solution</strong> [21] <strong>for</strong> a f<strong>in</strong>ite-diameter pump<strong>in</strong>g<br />

well. If the power <strong>in</strong>dex n and the quasi hydraulic conductivity<br />

k get larger, drawdowns at early times will get<br />

greater; whereas drawdowns at late times will become less,<br />

regardless of the wellbore storage. When n is larger, <strong>flow</strong><br />

approaches steady state earlier. <strong>An</strong>d the drawdown is<br />

approximately proportional to r 1 n at steady state. The<br />

late time drawdown is a superposition of the steady-state<br />

<strong>solution</strong> and a negative time-dependent term that is proportional<br />

to t (1 n)/(3 n) .<br />

5. Uncited references<br />

[22,23,39]. Q1 609<br />

Acknowledgements<br />

This research was partly supported by the National Natural<br />

Science Foundation of Ch<strong>in</strong>a (Grant Numbers<br />

50428907 and 50479011) and the Program <strong>for</strong> New Century<br />

Excellent Talents <strong>in</strong> University (Grant Number<br />

NCET-05-0125). We would like to thank Dr. Yu-Shu Wu<br />

<strong>for</strong> br<strong>in</strong>g<strong>in</strong>g us attention of the study on <strong>non</strong>-Newtonian<br />

<strong>flow</strong>. The constructive comments from five a<strong>non</strong>ymous<br />

reviewers and the Editor are also gratefully acknowledged,<br />

which help us improve the quality of the manuscript.<br />

Appendix A. Derivation of the <strong>analytical</strong> <strong>solution</strong>s at steady<br />

state and late times<br />

UNCORRECTED PROOF<br />

598<br />

599<br />

600<br />

601<br />

602<br />

603<br />

604<br />

605<br />

606<br />

607<br />

608<br />

610<br />

611<br />

612<br />

613<br />

614<br />

615<br />

616<br />

617<br />

618<br />

619<br />

620<br />

621<br />

For steady-state <strong>flow</strong>, one has os ¼ 0. Then Eq. (9) can 622<br />

ot<br />

be changed to<br />

623<br />

o 2 s<br />

or þ n os<br />

2 r or ¼ 0; ðA1Þ 625<br />

or,<br />

626<br />

<br />

o<br />

r n os <br />

¼ 0:<br />

ðA2Þ<br />

or or<br />

628<br />

Then one has<br />

629<br />

630<br />

r n os<br />

or ¼ C os<br />

0; or<br />

or ¼ C 0<br />

r ; ðA3Þ n 632<br />

where C 0 is a constant, which can be obta<strong>in</strong>ed by the 633<br />

boundary condition Eq. (8). Substitut<strong>in</strong>g Eq. (A3) to Eq. 634<br />

(8), one has<br />

635<br />

<br />

Q n<br />

2pm<br />

C 0 ¼<br />

k<br />

: ðA4Þ 637<br />

For steady-state <strong>flow</strong>, the drawdown at a sufficiently far 638<br />

distance R from the well will be essentially be zero, where 639<br />

R is often called the radius of <strong>in</strong>fluence of the well. There- 640<br />

<strong>for</strong>e, <strong>in</strong>tegrat<strong>in</strong>g Eq. (A3) leads to the f<strong>in</strong>al steady-state 641<br />

<strong>solution</strong> as 642<br />

643<br />

n <br />

Q 1 1 1<br />

sðrÞ ¼<br />

; r<br />

2pm kðn 1Þ r n 1 R n 1 w 6 r 6 R<br />

ðA5Þ 645<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx 11<br />

646 The approximate <strong>analytical</strong> <strong>solution</strong> at lat times can be ob-<br />

647 ta<strong>in</strong>ed by allow<strong>in</strong>g the Laplace trans<strong>for</strong>m parameter p to be<br />

648 very small <strong>in</strong> Eq. (18). Recall<strong>in</strong>g the follow<strong>in</strong>g two term<br />

649 approximation of K m (x) p. 505, 51:9:2 [29]:<br />

K m ðxÞ Cð mÞxm þ CðmÞx m<br />

;<br />

2 1þm 2 1 m 0 < jmj < 1; <strong>for</strong> small x<br />

651<br />

ðA6Þ<br />

652 Then<br />

654<br />

K 1 n<br />

3 n<br />

<br />

2 pffiffiffiffiffi<br />

n<br />

3 n r3 2 Ap ¼ C n 1<br />

3 n<br />

2<br />

<br />

n<br />

3 n<br />

þ C 1<br />

2<br />

pffiffiffiffiffi<br />

Ap<br />

3 n<br />

r 3<br />

2<br />

n<br />

655 and Eq. (18) becomes:<br />

656<br />

<br />

sðr; pÞ ¼<br />

Q n<br />

1 1<br />

2pm k pr þ C <br />

1 n<br />

3 n<br />

n 1<br />

658<br />

<br />

r 3<br />

2<br />

n<br />

!1 n<br />

3 n<br />

pffiffiffiffiffi<br />

Ap<br />

3 n<br />

!n 1<br />

3 n<br />

<strong>An</strong> 3 1<br />

n<br />

C 2<br />

3 n ð3 nÞ nþ1<br />

3 n<br />

; ðA7Þ<br />

1<br />

p 4<br />

3 2n<br />

n<br />

!<br />

:<br />

ðA8Þ<br />

659 Recall<strong>in</strong>g the follow<strong>in</strong>g <strong>in</strong>verse Laplace trans<strong>for</strong>m identi-<br />

660 ties L 1 [1/p] =1, L 1 [1/p d ]=t d 1 /C(d), and consider<strong>in</strong>g<br />

661 the properties of the Gamma function p. 414 [29], the <strong>in</strong>-<br />

662 verse Laplace trans<strong>for</strong>m of Eq. (A8) becomes:<br />

664<br />

<br />

sðr; tÞ ¼<br />

Q n <br />

1 1 C<br />

; ðA9Þ<br />

2pm kðn 1Þ r n 1 3 n<br />

665 where the constant C equals:<br />

666<br />

668<br />

C ¼<br />

A n 1<br />

3 n<br />

ð3 nÞ 2n 2<br />

3 n<br />

C 2<br />

3 n<br />

t n 1<br />

: ðA10Þ<br />

669 S<strong>in</strong>ce the wellbore storage will not affect the steady-state<br />

670 and late time drawdowns. Above derived <strong>solution</strong>s of<br />

671 (A5) and (A10) are also valid <strong>for</strong> the case with the wellbore<br />

672 storage.<br />

673 References<br />

674 [1] Basak P. Steady <strong>non</strong>-<strong>Darcian</strong> seepage through embankments. J Irri<br />

675 Dra<strong>in</strong> Div 1976;102:435–43.<br />

676 [2] Bordier C, Zimmer D. Dra<strong>in</strong>age equations and <strong>non</strong>-<strong>Darcian</strong> mod-<br />

677 el<strong>in</strong>g <strong>in</strong> coarse porous media or geosynthetic materials. J Hydrol<br />

678 2000;228:174–87.<br />

679 [3] Camacho VRG, Vasquez CM. Comment on <strong>analytical</strong> <strong>solution</strong><br />

680 <strong>in</strong>corporat<strong>in</strong>g <strong>non</strong>-l<strong>in</strong>ear radial <strong>flow</strong> <strong>in</strong> conf<strong>in</strong>ed aquifers by Zekai<br />

681 Sen. Water Resour Res 1992;28(12):3337–8.<br />

682 [4] Carslaw HS, Jaeger JC. Conduction of heat <strong>in</strong> solids. London,<br />

683 UK: Ox<strong>for</strong>d University Press; 1959.<br />

684 [5] Choi ES, Cheema T, Islam MR. A new dual-porosity/dual perme-<br />

685 ability model with <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> through fractures. J Petrol Sci<br />

686 Eng 1997;17(3-4):331–44.<br />

687 [6] Chen C, Wan J, Zhan H. Theoretical and experimental studies of<br />

688 coupled seepage-pipe <strong>flow</strong> to a horizontal well. J Hydrol<br />

689 2003;281:159–71.<br />

690 [7] Crump KS. Numerical <strong>in</strong>version of Laplace trans<strong>for</strong>ms us<strong>in</strong>g a<br />

691 Fourier series approximation. J ACM 1976;23(1):89–96.<br />

692 [8] Forchheimer PH. Wasserbewegun durch Boden. Zeitsch-rift des<br />

693 Vere<strong>in</strong>es Deutscher Ingenieure 1901;49(1736–1749 & 50):1781–8.<br />

[9] Fourar M, Radilla G, Lenormand R, Moyne C. On the <strong>non</strong>-l<strong>in</strong>ear<br />

behavior of a lam<strong>in</strong>ar s<strong>in</strong>gle-phase <strong>flow</strong> through two and threedimensional<br />

porous media. Adv Water Resour 2004;27:669–77.<br />

[10] Gupta CP, S<strong>in</strong>gh VS. Flow regime associated with partially<br />

penetrat<strong>in</strong>g large diameter wells <strong>in</strong> hard rocks. J Hydrol 1988;103:<br />

209–17.<br />

[11] Herbert R, Kitch<strong>in</strong>g R. Determ<strong>in</strong>ation of aquifer parameters from<br />

large diameter dug well pump<strong>in</strong>g tests. Ground Water 1981;19(6):<br />

593–9.<br />

[12] Ikoku CU, Ramey Jr HJ. Transient <strong>flow</strong> of <strong>non</strong>-Newtona<strong>in</strong> powerlaw<br />

fluids <strong>in</strong> porous media. SPEJ 1979:pp–174.<br />

[13] Izbash SV. O filtracii V Kropnozernstom Materiale. Len<strong>in</strong>grad,<br />

USSR 1931(<strong>in</strong> Russian).<br />

[14] Kohl T, Evans KF, Hopkirk RJ, Jung R, Ryback L. Observation and<br />

simulation of <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> transients <strong>in</strong> fractured rock. Water<br />

Resour Res 1997;33(3):407–18.<br />

[15] Luan Z. <strong>An</strong>alytical <strong>solution</strong> <strong>for</strong> transient <strong>flow</strong> of <strong>non</strong>-Newtonian<br />

fluids <strong>in</strong> naturally fractured reservoirs. Acta Petrolei S<strong>in</strong>ica<br />

1981;2:75–9. <strong>in</strong> Ch<strong>in</strong>ese.<br />

[16] Moutsopoulos KN, Tsihr<strong>in</strong>tzis VA. Approximate <strong>analytical</strong> <strong>solution</strong>s<br />

of the Forchheimer equation. J Hydrol 2005;309:93–103.<br />

[17] Munson BP, Young DF, Okiishi TH. Fundamentals of fluid<br />

mechanics. third ed. New York, USA: Wiley; 1998.<br />

[18] Odeh AS, Yang HT. Flow of <strong>non</strong>-Newtonian power-law fluids<br />

through porous media. SPEJ 1979:155–63.<br />

[19] Özisik MN. Boundary value problems of heat conduction. New<br />

York, USA: Dover; 1989.<br />

[20] Panfilov M, Fourar M. Physical splitt<strong>in</strong>g of <strong>non</strong>-l<strong>in</strong>ear effects <strong>in</strong> highvelocity<br />

stable <strong>flow</strong> through porous media. Adv Water Resour<br />

2006;29:30–41.<br />

[21] Papadopulos IS, Cooper HH. Drawdown <strong>in</strong> a well of large diameter.<br />

Water Resour Res 1967;3(1):241–4.<br />

[22] Park E, Zhan H. Hydraulics of a f<strong>in</strong>ite-diameter horizontal well with<br />

wellbore storage and sk<strong>in</strong> effect. Adv Water Resour 2002;25:389–400.<br />

[23] Park E, Zhan H. Hydraulics of horizontal wells <strong>in</strong> fractured shallow<br />

aquifer systems. J Hydrol 2003;281:147–58.<br />

[24] Qian J, Zhan H, Zhao W, Sun F. Experimental study of turbulent<br />

unconf<strong>in</strong>ed groundwater <strong>flow</strong> <strong>in</strong> a s<strong>in</strong>gle fracture. J Hydrol<br />

2005;311:134–42.<br />

[25] Sen Z. Non-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> fractured rocks with a l<strong>in</strong>ear <strong>flow</strong><br />

pattern. J Hydrol 1987;92:43–57.<br />

[26] Sen Z. Non-l<strong>in</strong>ear <strong>flow</strong> toward wells. J Hydrol Eng 1989;115(2):<br />

193–209.<br />

[27] Sen Z. Non-l<strong>in</strong>ear radial <strong>flow</strong> <strong>in</strong> conf<strong>in</strong>ed aquifers toward large<br />

diameter wells. Water Resour Res 1990;26(5):1103–9.<br />

[28] Sen Z. Unsteady groundwater <strong>flow</strong> towards extended wells. Ground<br />

Water 1992;30(1):61–7.<br />

[29] Spanier J, Oldham KB. <strong>An</strong> atlas of functions. New York,<br />

USA: Hemisphere; 1987.<br />

[30] Stehfest H. Algorithm 368 numerical <strong>in</strong>version of Laplace trans<strong>for</strong>ms.<br />

Communications of ACM 1970;13(1):47–9.<br />

[31] Stehfest H. Remark on algorithm 368 numerical <strong>in</strong>version of Laplace<br />

trans<strong>for</strong>ms. Communications of ACM 1970;13(10):624–5.<br />

[32] Teh CI, Nie X. Coupled consolidation theory with <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong>.<br />

Comput Geotech 2002;29:169–209.<br />

[33] van Poollen HK, Jargon JR. Steady-state and unsteady-state<br />

<strong>flow</strong> of <strong>non</strong>-Newtonian fluids through porous media. SPE J<br />

1969;246:80–8.<br />

[34] Vongvuthipornchai S, Raghavan R. Well test analysis of data<br />

dom<strong>in</strong>ated by storage and sk<strong>in</strong>: <strong>non</strong>-Newtonian power-law fluids.<br />

SPE Format Eval 1987:618–28.<br />

[35] Wattenbarger RA, Ramey Jr HJ. Well test <strong>in</strong>terpretation of vertically<br />

fractured gas wells. J Pet Tech AIME 1969;246:625–32.<br />

[36] Wen Z, Huang G, Zhan H. Non-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a s<strong>in</strong>gle conf<strong>in</strong>ed<br />

vertical fracture toward a well. J Hydrol 2006;330:698–708.<br />

[37] Wu YS. <strong>An</strong> approximate <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-Darcy <strong>flow</strong><br />

toward a well <strong>in</strong> fractured media. Water Resour Res 2002;38(3):1023.<br />

doi:10.1029/2001WR000713.<br />

UNCORRECTED PROOF<br />

694<br />

695<br />

696<br />

697<br />

698<br />

699<br />

700<br />

701<br />

702<br />

703<br />

704<br />

705<br />

706<br />

707<br />

708<br />

709<br />

710<br />

711<br />

712<br />

713<br />

714<br />

715<br />

716<br />

717<br />

718<br />

719<br />

720<br />

721<br />

722<br />

723<br />

724<br />

725<br />

726<br />

727<br />

728<br />

729<br />

730<br />

731<br />

732<br />

733<br />

734<br />

735<br />

736<br />

737<br />

738<br />

739<br />

740<br />

741<br />

742<br />

743<br />

744<br />

745<br />

746<br />

747<br />

748<br />

749<br />

750<br />

751<br />

752<br />

753<br />

754<br />

755<br />

756<br />

757<br />

758<br />

759<br />

760<br />

761<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002


ADWR 1178 No. of Pages 12, Model 5+<br />

17 July 2007 Disk Used<br />

ARTICLE IN PRESS<br />

12 Z. Wen et al. / Advances <strong>in</strong> Water Resources xxx (2007) xxx–xxx<br />

762 [38] Wu YS. Numerical simulation of s<strong>in</strong>gle-phase and multiphase <strong>non</strong>-<br />

763 Darcy <strong>flow</strong> <strong>in</strong> porous and fractured reservoirs. Transport <strong>in</strong> Porous<br />

764 Media 2002;49:209–40.<br />

[39] Yamada H, Nakamura F, Watanabe Y, Murakami M, Nogami T.<br />

Measur<strong>in</strong>g hydraulic permeability <strong>in</strong> a streambed us<strong>in</strong>g the packer<br />

test. Hydrol Process 2005;19:2507–24.<br />

765<br />

766<br />

767<br />

768<br />

UNCORRECTED PROOF<br />

Please cite this article <strong>in</strong> press as: Wen Z et al., <strong>An</strong> <strong>analytical</strong> <strong>solution</strong> <strong>for</strong> <strong>non</strong>-<strong>Darcian</strong> <strong>flow</strong> <strong>in</strong> a conf<strong>in</strong>ed ..., Adv Water Resour<br />

(2007), doi:10.1016/j.advwatres.2007.06.002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!