03.02.2015 Views

HOROSPHERES IN HYPERBOLIC GEOMETRY 1. Introduction ...

HOROSPHERES IN HYPERBOLIC GEOMETRY 1. Introduction ...

HOROSPHERES IN HYPERBOLIC GEOMETRY 1. Introduction ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 E. GALLEGO, A. REVENTÓS, G. SOLANES, AND E. TEUFEL<br />

as follows:<br />

L ∗ = − 1 2 (W(c 1, c 1 + c 2 ) − L 1 − TC 1 − L 2 − TC 2 ) (21)<br />

TC ∗ = 1 2 (W(c 1, c 1 + c 2 ) + L 1 + TC 1 + L 2 + TC 2 ) , (22)<br />

with<br />

∫<br />

W(c 1 , c 1 + c 2 ) = TC ∗ − L ∗ = e ( ) w 1∗<br />

(ẇ 1∗ ) 2 + 2ẅ 1∗ + κ 2 θ dσ1 1<br />

θ 1<br />

and the mixed with function<br />

w 1∗ (σ 1 ) = − ln(1 + λ(σ 1 )).<br />

Proof. By the assumptions on c 1 , c 2 and by Proposition 4.2 we<br />

have for all three curves c 1 , c 2 , c ∗ that ǫ 1 = ǫ 2 = ǫ ∗ = −1 and<br />

(κ g ) 1 , (κ g ) 2 , κ ∗ g > −<strong>1.</strong> Therfore (6) writes dσ = (κ g+1) ds, hence<br />

∫ ∫ ∫<br />

L(θ) = dσ = (κ g + 1) ds = κ g ds + L(c) . (23)<br />

This and (17) gives<br />

From (4) and (8) we get<br />

θ<br />

c<br />

TC ∗ + L ∗ = TC 1 + L 1 + TC 2 + L 2 . (24)<br />

ds =<br />

L(c) = − 1 2<br />

This applied to c ∗ yields<br />

L(c ∗ ) = − 1 2<br />

∫<br />

1 − 〈¨θ, ¨θ〉<br />

2<br />

∫<br />

θ<br />

dσ,<br />

κ 2 θ dσ + 1 2 L(θ).<br />

c<br />

θ ∗ κ 2 θ ∗ dσ∗ + 1 2 L(θ∗ ). (25)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!