06.02.2015 Views

Towards a new Paradigm of Board Games

"There is no reason that forces the game industry to restrict itself on a paradigm of games that is repetitive, addictive, regressive and is denying the right of the user to develop his/hers intellectual capabilities of creativity. It is a strategic decision of the game industry to stupidify its costumers." ThinkArt Lab To introduce the paradigm of morphic (board) games, I start with two simple questions. Why are classical games producing regressive addiction and boredom? What are the differences between classical and morphic games? My first answers to the questions might be summarized as follows: Classical games are based on the perceptive acts of identification and separation of the elements of the game by the rules of the game. Morphic Games are involved into differentiations and structurations of interactive and reflectional patterns (morphograms) in complex constellations. For a more conceptual answer of the two questions I connect the proposed new kind of games to the theory and practice of morphogrammatics. What do I understand by morphogrammatics? Morphogrammaitics is a pre-semiotic theory of inscription. It is studying and formalizing the 'deep-structure' of semiotics. Mathematically, morphograms, as the fundamential patterns of morphogrammatics, are representations of Stirling numbers of the second kind. Formal semiotics consists of an sign repertoire and rules of maipulating its signs. This is established by a strict difference of operators and oprands (signs). In contrast, morphograms are playing a double role: they are involved in a chiastic interplay of patterns (operands) and rules (operators). This is in decisive conterast to identity-based semiotic systems that are based on atomic signs. Strings of signs are based on a set of signs with cardinality m and its potentiation (n): m^n. Hence for m=4 and n=4, there are exactly 4^4 = 256 different semiotic strings possible. But on a morphogrammatical level there are just exactly Sn(4,4) = 1+6+7+1=15 morphograms for m=n=4 possible. In this sense, those 15 morphograms are presenting the 'deep-structure' of the set of semiotic strings of length 4.

"There is no reason that forces the game industry to restrict itself on a paradigm of games that is repetitive, addictive, regressive and is denying the right of the user to develop his/hers intellectual capabilities of creativity.
It is a strategic decision of the game industry to stupidify its costumers." ThinkArt Lab


To introduce the paradigm of morphic (board) games, I start with two simple questions.

Why are classical games producing regressive addiction and boredom?

What are the differences between classical and morphic games?

My first answers to the questions might be summarized as follows:

Classical games are based on the perceptive acts of identification and separation of the elements of the game by the rules of the game.

Morphic Games are involved into differentiations and structurations of interactive and reflectional patterns (morphograms) in complex constellations.

For a more conceptual answer of the two questions I connect the proposed new kind of games to the theory and practice of morphogrammatics.

What do I understand by morphogrammatics?

Morphogrammaitics is a pre-semiotic theory of inscription. It is studying and formalizing the 'deep-structure' of semiotics.

Mathematically, morphograms, as the fundamential patterns of morphogrammatics, are representations of Stirling numbers of the second kind.

Formal semiotics consists of an sign repertoire and rules of maipulating its signs. This is established by a strict difference of operators and oprands (signs).

In contrast, morphograms are playing a double role: they are involved in a chiastic interplay of patterns (operands) and rules (operators).

This is in decisive conterast to identity-based semiotic systems that are based on atomic signs. Strings of signs are based on a set of signs with cardinality m and its potentiation (n): m^n. Hence for m=4 and n=4, there are exactly 4^4 = 256 different semiotic strings possible.

But on a morphogrammatical level there are just exactly Sn(4,4) = 1+6+7+1=15 morphograms for m=n=4 possible. In this sense, those 15 morphograms are presenting the 'deep-structure' of the set of semiotic strings of length 4.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Towards</strong> a <strong>new</strong> <strong>Paradigm</strong> <strong>of</strong> <strong>Board</strong> <strong>Games</strong><br />

Dr. phil Rudolf Kaehr<br />

ThinkArt Lab Glasgow<br />

ISSN 2041-4358<br />

( work in progress, vs. 0.3.5, May/April 2014 )<br />

Morpho<strong>Board</strong> <strong>Games</strong><br />

Motivations for Morpho<strong>Board</strong> <strong>Games</strong><br />

Morpho<strong>Games</strong> are well motivated by themselves. But there is no reason not to accept another motivation<br />

too. Moprpho<strong>Games</strong> <strong>of</strong>fer ideal approaches for a general understanding <strong>of</strong> morphogrammatics<br />

and polycontextural logics that had been developed on a much more abstract level in the past.<br />

Morpho<strong>Games</strong> <strong>of</strong>fer a playful environment to learn and enjoy the essential structurations and transformation<br />

rules <strong>of</strong> morphogrammatics.<br />

Morphogrammatics is a theory and a system <strong>of</strong> pre-semiotic patterns and their transformations that<br />

is fundamental for a study <strong>of</strong> the morphosphere.<br />

Semiotic games, like Leibniz games are ‘localized’ on the level <strong>of</strong> inscription <strong>of</strong> the semiosphere. The<br />

basic axiom <strong>of</strong> the semiosphere is based on perception: What you see is what it is (WYSIWYGapproach).<br />

Morpho<strong>Games</strong> <strong>of</strong> Morphogramatics are ‘localized’ on the level <strong>of</strong> the morphosphere where the main<br />

experience is based on cognition: What you see is not how it acts.<br />

Polycontextural game theory had been developed in the context <strong>of</strong> an explication and formalization <strong>of</strong><br />

the concepts and stratagems <strong>of</strong> ‘interactionality’ and ‘reflectionality’, especially on the level <strong>of</strong> formal<br />

systems (languages) and MAS (Multi-Agent Systems).<br />

Morpho<strong>Board</strong> <strong>Games</strong> are not to be confused with Morpho <strong>Games</strong> from other sources.<br />

Mathematical Theories <strong>of</strong> <strong>Games</strong><br />

http : // www.wisdom.weizmann.ac.il/~fraenkel/Papers/<strong>Games</strong>Handbk.pdf<br />

Morpho<strong>Board</strong> Game Definition<br />

<strong>Board</strong> program<br />

The parameters <strong>of</strong> the Game are easily changed.<br />

The parameters are : Width, Heigth, Patterns (colors) and Randomness.<br />

The initialization <strong>of</strong> the <strong>Board</strong> depends on the chosen values for the parameters.<br />

Further changes <strong>of</strong> the rules are obvious.<br />

This presentation <strong>of</strong> some very first results <strong>of</strong> the paradigm <strong>of</strong> Morpho<strong>Games</strong> are following closely<br />

Yves Papegay’s contribution to classical <strong>Board</strong> <strong>Games</strong> programmed in Mathematica.<br />

Yves Papegay, Exploring <strong>Board</strong> Game Strategies, A Recreational Application <strong>of</strong> GUIKit<br />

The Mathematica Journal, Volume 10, Issue 2, 2006<br />

http : // www.mathematica - journal.com/2006/09/exploring - board - game - strategies/<br />

Aim <strong>of</strong> the paper<br />

The aim <strong>of</strong> this paper is three-fold:<br />

1. Reconstruction <strong>of</strong> the classical concepts, definitions and programs for <strong>Board</strong> <strong>Games</strong> as presented<br />

by Papegay's Mathematica program.<br />

2. Elaboration <strong>of</strong> some dynamics <strong>of</strong> the parameters <strong>of</strong> the program to learn the scope <strong>of</strong> the internal<br />

possibility <strong>of</strong> the concept and possible extensions beyond the concept <strong>of</strong> classical <strong>Board</strong> <strong>Games</strong>.<br />

3. Sketch <strong>of</strong> the paradigm <strong>of</strong> Morpho <strong>Games</strong> and first steps <strong>of</strong> developing procedures for it in<br />

Mathematica.


The aim <strong>of</strong> this paper is three-fold:<br />

2 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

1. Reconstruction <strong>of</strong> the classical concepts, definitions and programs for <strong>Board</strong> <strong>Games</strong> as presented<br />

by Papegay's Mathematica program.<br />

2. Elaboration <strong>of</strong> some dynamics <strong>of</strong> the parameters <strong>of</strong> the program to learn the scope <strong>of</strong> the internal<br />

possibility <strong>of</strong> the concept and possible extensions beyond the concept <strong>of</strong> classical <strong>Board</strong> <strong>Games</strong>.<br />

3. Sketch <strong>of</strong> the paradigm <strong>of</strong> Morpho <strong>Games</strong> and first steps <strong>of</strong> developing procedures for it in<br />

Mathematica.<br />

Game<br />

Game definition<br />

"As quoted, the most important point when designing a board game implementation is to have a<br />

proper idea <strong>of</strong> the board itself, which represents the complete status <strong>of</strong> the game at each play and<br />

the rules that determine whether or not a play is legal." (Papegay)<br />

“The game denotes a complete set <strong>of</strong> interactions between the program—or the physical support <strong>of</strong><br />

the game, whatever it is—and the player. Hence, it is a succession <strong>of</strong> three phases:<br />

† an initialization phase when the game starts or restarts<br />

† a playing phase (i.e., when the user is playing). This is the most common behavior <strong>of</strong> the game<br />

and consists in a sequence <strong>of</strong> successive plays.<br />

† a termination phase at the end <strong>of</strong> the game.”<br />

<strong>Board</strong><br />

“The board represents not only the physical board but, by extension, the complete status <strong>of</strong> the<br />

game at a given time. By definition, in a board game, this status is well defined by a mapping<br />

between a two-dimensional set <strong>of</strong> locations and additional information (usually qualitative or<br />

discrete) for each location.”<br />

<strong>Board</strong>: Designing, Initializing, Interpretation<br />

The design <strong>of</strong> the board follows decisions about its topology. Out <strong>of</strong> the multitude <strong>of</strong> possibilities,<br />

classical <strong>Board</strong> <strong>Games</strong> are deciding for a ‘Euclidean’ topology with its Height and Width.<br />

Interpretation<br />

The category <strong>of</strong> interpretation for <strong>Board</strong> <strong>Games</strong> is reduced for classical <strong>Games</strong> to an Interpretation in<br />

the modus <strong>of</strong> identity. Because identity is ubiquitous for the classical approach it is not necessary to<br />

be specially mentioned. It is obvious that the elements <strong>of</strong> a Game, i.e. the value occupations on the<br />

<strong>Board</strong>, are subsumed under the law <strong>of</strong> identity.<br />

Definition <strong>of</strong> a <strong>Board</strong><br />

Here, the parameters <strong>of</strong> the board are set as follows:<br />

Width=22;<br />

Height=15;<br />

Patterns= {...}.<br />

In a further development, a menu will allow the user to set the values.


Morpho<strong>Board</strong><strong>Games</strong>.nb 3<br />

Width = 22;<br />

Height = 15;<br />

Patterns =<br />

8Item@v, Background Ø Green, Frame Ø TrueD,<br />

Item@e, Background Ø Red, Frame Ø TrueD, Item@u, Background Ø Blue, Frame Ø TrueD,<br />

Item@w, Background Ø Yellow, Frame Ø TrueD, Item@s, Background Ø Pink,<br />

Frame Ø TrueD, Item@z, Background Ø Gray, Frame Ø TrueD Patterns@@xDDD<br />

s s u s z w z u s u s v v w s s e z w v z s<br />

w w w z z u e v v u u w z v w z z w z e v v<br />

w e v e v s u e z e v z v z z u s s e e u w<br />

w w w u v z u e s z u w u w z e w v u u z w<br />

w s e w v s w v e z u w w e s z z u u s z s<br />

z z v v u e v v z u v s s s z w w e v e u u<br />

w e u z s u w w z z z v w e w s v z w z s z<br />

w w e e u s u w v w e e z s v e v s s z e s<br />

u z z s u w v u e z v e v v e w v z e u z u<br />

z v s e z e w s e z z e s e e s v w e s v w<br />

z v s e w w z u v w w z e u e e e s w w v s<br />

w s z w z e z e v s w u v v s u e s v w s v<br />

s z e v w z e z e z w s s s e w w e e w s v<br />

u e z v w z u w u s z s u s z w s s e w e e<br />

v u v v w e e v u w v u z w s v s e e v v u<br />

Numeric labeling <strong>of</strong> the colored board


4 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

Width = 22;<br />

Height = 15;<br />

Patterns =<br />

8Item@1, Background Ø Green, Frame Ø TrueD, Item@2, Background Ø Red,<br />

Frame Ø TrueD, Item@3, Background Ø Blue, Frame Ø TrueD,<br />

Item@4, Background Ø Yellow, Frame Ø TrueD, Item@5, Background Ø Pink,<br />

Frame Ø TrueD, Item@6, Background Ø Gray, Frame Ø TrueD Patterns@@xDDD<br />

6 3 4 4 6 3 4 5 2 3 1 1 4 3 5 4 1 6 4 1 3 2<br />

5 1 4 2 6 5 6 2 5 4 2 2 4 1 3 6 1 3 1 4 1 5<br />

5 1 4 1 5 2 3 3 4 2 6 5 3 3 5 6 6 5 6 4 6 2<br />

2 6 1 4 5 2 4 6 1 4 1 6 5 1 1 2 4 3 3 1 6 3<br />

6 3 6 3 5 3 1 1 3 5 5 6 2 3 3 3 3 4 6 4 6 6<br />

1 3 2 1 6 1 5 2 5 6 6 3 4 6 3 3 4 2 6 5 5 4<br />

4 5 3 1 2 1 2 3 1 1 6 1 5 5 3 5 2 1 5 4 6 2<br />

2 4 6 3 3 4 4 4 6 4 6 2 5 3 2 3 4 4 5 6 1 2<br />

2 6 5 1 3 6 1 2 4 1 1 5 3 2 5 6 1 3 2 3 1 1<br />

4 2 4 1 2 4 4 6 6 1 2 1 4 1 3 2 3 1 2 6 6 3<br />

3 1 2 2 4 4 1 5 5 4 4 2 6 6 4 6 3 1 3 6 5 4<br />

2 2 5 1 6 6 2 6 2 6 1 4 5 1 1 1 6 4 2 4 5 1<br />

5 5 6 1 4 6 1 3 1 3 3 4 1 5 2 6 3 1 4 3 3 2<br />

1 3 5 5 1 3 5 3 5 5 5 4 2 3 5 4 6 3 4 3 6 4<br />

4 1 2 3 2 6 2 4 1 2 2 5 6 4 3 5 5 1 5 1 2 6<br />

<strong>Board</strong> example <strong>of</strong> the presentation <strong>of</strong> Morpho<strong>Games</strong><br />

Needs@"GraphUtilities`"D<br />

<strong>Board</strong>init@D :=<br />

Patterns =<br />

8Item@v, Background Ø Green, Frame Ø TrueD,<br />

Item@e, Background Ø Red, Frame Ø TrueD, Item@u, Background Ø Blue, Frame Ø TrueD,<br />

Item@w, Background Ø Yellow, Frame Ø TrueD, Item@s, Background Ø Pink,<br />

Frame Ø TrueD, Item@z, Background Ø Gray, Frame Ø TrueD,<br />

Item@l, Background Ø Cyan, Frame Ø TrueD, Item@m, Background Ø LightBlue,<br />

Frame Ø TrueD, Item@n, Background Ø LightRed, Frame Ø TrueD


Morpho<strong>Board</strong><strong>Games</strong>.nb 5<br />

w e s u s e l z v l l<br />

s w z m m l w z w m n<br />

e s w s s l l n m u n<br />

n m m l e n s l s s z<br />

v u e z v l l u w n e<br />

v l w z v w m n l u e<br />

l n l v v s n m z m s<br />

v w z m m e u u v v e<br />

s n l v w u l l m n w<br />

Interpretation <strong>of</strong> a <strong>Board</strong><br />

The category <strong>of</strong> interpretation <strong>of</strong> a board is not necessarily a specific topic <strong>of</strong> a classical definition <strong>of</strong> a<br />

game. Classical games are conceived as ruled by the identity during a play <strong>of</strong> its board (width,<br />

height), modality (randomness, usw), elements (patterns) and rules.<br />

This is in concordance with the definition <strong>of</strong> an elementary formal system (EFS) in the sence <strong>of</strong> Melvin<br />

Fitting and Raymond Smullyan.<br />

But there are other approaches to an interpretations <strong>of</strong> a board and its use available.<br />

This proposal is distinguishing, at first, between Leibniz, Brownian, Mersennian and Stirling games.<br />

Classical games are understood as Leibniz games.<br />

Play<br />

“By definition, a play is one step <strong>of</strong> the playing phase. At each play, the player has to select which<br />

action, among the legal (valid) ones, to perform. “<br />

For poly-<strong>Games</strong>, this decision function <strong>of</strong> selection is complemented with the election function that<br />

decides what kind game (Leibniz, Stirling, etc.) shall hold for the next steps.<br />

Rules<br />

“The rules are the set <strong>of</strong> constraints that determine what can be played and how the status <strong>of</strong> the<br />

game should be modified by a play.”<br />

Additional features: Undo, repetition detection<br />

“How to Undo Remember we said our board representation needed to handle undo operations.There<br />

are two possible methods :<br />

(1) Keep a stack in which each stack item holds a whole board representation; to make a move push<br />

it on the stack and to undo a move pop the stack.Probably this is too slow ...<br />

(2) Keep a stack storing only the move itself together with enough extra information to undo the<br />

move and restore all the information in the board position. E.g. in chess you would need to store the<br />

identity <strong>of</strong> a captured piece (if any) and enough information to restore castling and en passant capturing<br />

privileges.”<br />

http://www.ics.uci.edu/~eppstein/180a/970408.html<br />

MorphoGame interpretation <strong>of</strong> a <strong>Board</strong><br />

For a Stirling approach to <strong>Board</strong> <strong>Games</strong>, the fact that the concept <strong>of</strong> patterns,where the ordered<br />

strings or morphograms <strong>of</strong> identity-free elements, are crucial, leads to the following elementary rules.<br />

MorphoGame rules<br />

Rules in colors<br />

Rule1. Ê = ‡<br />

Rule2. Ê Ê = ‡ ‡<br />

Rule3. Ê ‡ = ‡ Ê<br />

Rule4. Ê Ê Ê ¹≠ Ê Ê ‡ ¹≠ Ê ‡ Ê ¹≠ Ê ‡ ‡ ¹≠ Ê ‡ Á<br />

Rule5. Ê Ê ¹≠ Ê.<br />

Rule5 is resolved in metamorphic Morpho<strong>Games</strong>.


6 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

Rule1. Ê = ‡<br />

Rule2. Ê Ê = ‡ ‡<br />

Rule3. Ê ‡ = ‡ Ê<br />

Rule4. Ê Ê Ê ¹≠ Ê Ê ‡ ¹≠ Ê ‡ Ê ¹≠ Ê ‡ ‡ ¹≠ Ê ‡ Á<br />

Rule5. Ê Ê ¹≠ Ê.<br />

Rule5 is resolved in metamorphic Morpho<strong>Games</strong>.<br />

Identification Rules<br />

In contrast, the rules for identity-based, i.e. classical games, like Leibniz games, are given by the<br />

following postulates :<br />

Pos1. Ê ¹≠ ‡,<br />

with the natural consequences <strong>of</strong><br />

Pos2. Ê Ê ¹≠ ‡ ‡<br />

Pos3. Ê ‡ ¹≠ ‡ Ê, and<br />

Pos4: Ê Ê ¹≠ Ê .<br />

Wordings <strong>of</strong> morphogrammatic constellations<br />

For a Stirlingian game with 3 elements, some typical situations occur.<br />

1. Ê Ê Ê ª ‡ ‡ ‡ ª Á Á Á,<br />

Ê Ê ‡ ª ‡ ‡ Ê ª Á Á Ê<br />

etcetera<br />

2. Ê Ê ‡ ª rev(Ê ‡ ‡) : reversion<br />

3. Ê ‡ Ê ª rev( Ê ‡ Ê) : self-symmetry<br />

Ê Ê Ê ª rev(Ê Ê Ê)|<br />

Ê ‡ Á ª rev( Ê ‡ Á)<br />

4. Rules for blanks within the Morpho<strong>Board</strong> Game.<br />

Elimination <strong>of</strong> blanks: blank|element1|blank|element2 ï element1|element2.<br />

The rules for morphic patterns are defining the rule-set <strong>of</strong> the Morpho<strong>Board</strong> <strong>Games</strong>.<br />

Patterns <strong>of</strong> Rule4 for Sn (4, 4)<br />

Ê Ê Ê Ê<br />

Ê Ê Ê ‡<br />

Ê Ê ‡ Ê<br />

Ê Ê ‡ ‡<br />

Ê ‡ Ê Ê<br />

Ê ‡ Ê ‡<br />

Ê ‡ ‡ Ê<br />

Ê ‡ ‡ ‡<br />

Ê ‡ ‡ Á<br />

Ê ‡ Ê Á<br />

Ê ‡ ‡ Á<br />

Ê ‡ Á Ê<br />

Ê ‡ Á ‡<br />

Ê ‡ Á Á<br />

Ê ‡ Á Ï<br />

Meta-Rule for morphograms<br />

Two arbitrary morphograms @mgD i and @mgD j , i, j œ Sn2, <strong>of</strong> the same complication (length) are morphogrammatically<br />

equivalent if they don’t belong to the class <strong>of</strong> morphograms defined by the generalized<br />

Rule4 with Sn(n,n).<br />

Range <strong>of</strong> morphic board constellations<br />

What ever happens on a Morpho<strong>Board</strong> boils down to a system or structuration <strong>of</strong> morphograms ruled<br />

numerically by the Stirling numbers <strong>of</strong> the second kind and their summations by the Bell numbers.<br />

Therefore, the range <strong>of</strong> possible constellations is never infinite but restricted by the definition <strong>of</strong> the<br />

morphic structurations, counted by the Stirling numbers <strong>of</strong> the second kind.


Morpho<strong>Board</strong><strong>Games</strong>.nb 7<br />

What ever happens on a Morpho<strong>Board</strong> boils down to a system or structuration <strong>of</strong> morphograms ruled<br />

numerically by the Stirling numbers <strong>of</strong> the second kind and their summations by the Bell numbers.<br />

Therefore, the range <strong>of</strong> possible constellations is never infinite but restricted by the definition <strong>of</strong> the<br />

morphic structurations, counted by the Stirling numbers <strong>of</strong> the second kind.<br />

This fact <strong>of</strong> finiteness <strong>of</strong> the morphic constellations enables interesting classifications and reduction<br />

rules <strong>of</strong> the range <strong>of</strong> constellations.<br />

Hence given a situation with 4 positions, there are by Sn2(4,4), just 15 morphogrammatic constellations<br />

possible. Therefore, there are just 15x15 = 225 morphic confrontations between two morphograms<br />

<strong>of</strong> length=4 possible.<br />

For the phenotypical realization <strong>of</strong> a board and its constellations, the range is counted by<br />

Example<br />

For m=3, k=2<br />

m!<br />

Hm-kL! .<br />

For the case <strong>of</strong> just 2 elements involved in a constellation <strong>of</strong> 3 positions, the abstract morphogram,<br />

[Êıı], has a representation <strong>of</strong> 6 concrete realizations, i.e. the set {[abb], [acc], [baa], [bcc], [caa],<br />

[cbb]}, all representing the morphogram [Êıı].<br />

Hence, the number <strong>of</strong> confrontations between the phenotypical representations <strong>of</strong> [Êıı] and [Êıı]<br />

on a Morpho<strong>Board</strong> is 6x6=36.<br />

Equivalence classes <strong>of</strong> games<br />

The distinctions <strong>of</strong> different phenotypical representations <strong>of</strong> genotypical constellations, morphograms,<br />

enable to define a theory <strong>of</strong> equivalence classes <strong>of</strong> Morpho<strong>Games</strong>.<br />

Morpho<strong>Games</strong> that appear phenotypically as different may still be morphogrammatically equivalent.<br />

This not to confuse with the trivial statement that what we can play in red we can also play in green.<br />

MorphoGame strategies<br />

At first, there are two simple strategies to consider:<br />

1. Strategy: Elimination<br />

Morphic sameness is eliminating the morphograms.<br />

a.) vertical and horizontal<br />

u w m n<br />

z s v z<br />

ï [ ]<br />

b.) horizontal<br />

n l e w<br />

v e m w ï [ ]<br />

c.) vertical<br />

n l e<br />

v e m ï [ ]<br />

2. Strategy: Reduction<br />

Morphic sameness is reducing the morphograms up to one morphogram.<br />

Rules have to specify which morphic representation <strong>of</strong> the reduction owith the second strategy<br />

survives.<br />

a.) vertical and horizontal<br />

u w m n<br />

z s v z<br />

ï<br />

m<br />

v<br />

n<br />

z<br />

b.) horizontal<br />

n l e w<br />

v e m w ï v e m w<br />

c.) vertical<br />

n l e<br />

v e m ï e m


8 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

n l e<br />

v e m ï e m<br />

Explanation <strong>of</strong> the elinination rules<br />

Rule1: Ê = ‡<br />

If there are just two elements on the board as neighbors available, then they get eliminated independently<br />

<strong>of</strong> being the same or different. Also the blanks between the elements are eliminated.<br />

Ñ Ñ Ñ Ñ Ñ Ñ<br />

Ñ v Ñ Ñ l Ñ<br />

ï É<br />

v Ñ Ñ l<br />

Ñ Ñ Ñ Ñ<br />

ï v l ï [ ] : horizontal<br />

v<br />

l<br />

ï@D : vertical (for final steps)<br />

Rule2: Ê Ê = ‡ ‡<br />

The same as for Rule1 with two or more elements.<br />

v Ñ l<br />

v Ñ l<br />

ï@D : vertical<br />

v Ñ v<br />

l Ñ l<br />

ï@D : horizontal<br />

Rule3: Ê ‡ = ‡ Ê<br />

m<br />

n<br />

n<br />

m<br />

ï [ ] : horizontal+vertical<br />

Iteration <strong>of</strong> Rule3<br />

l<br />

m<br />

n<br />

u<br />

n<br />

m<br />

ï [ ] : horizontal+vertical<br />

n<br />

w<br />

n<br />

l<br />

z<br />

l<br />

ï [ ] : horizontal+vertical<br />

Rule4: Ê Ê ‡ ¹≠ Ê ‡ Ê ¹≠ Ê ‡ ‡ ¹≠ Ê ‡ Á<br />

This rule marks the difference between patterns <strong>of</strong> elements. It hold in both directions: vertically and<br />

horizontally.<br />

Following Rule4: Ê ‡ Á ¹≠ Ê ‡ Ê , the two patterns<br />

therefore not eliminable.<br />

MorphoPalindromes<br />

v<br />

w<br />

e<br />

and<br />

l<br />

s<br />

l<br />

are morphogrammatically different and<br />

A higher level <strong>of</strong> sophistication is achieved with the strategy to detect not just morphic equivalences<br />

but morphic palindromes.


Morpho<strong>Board</strong><strong>Games</strong>.nb 9<br />

Morphic palindromes are a subclass <strong>of</strong> morphograms. The detection <strong>of</strong> Morphic palindromes is demanding<br />

for a <strong>new</strong> abstraction <strong>of</strong> detection and separation.<br />

Therefore, palindromic games are <strong>of</strong> a higher gaming level than the basic morphogrammatic games.<br />

Two arbitrary morphograms @mgD i and @mgD j , i, j œ Sn2, <strong>of</strong> the same complication (length) are morphogrammatically<br />

equivalent if they are morpho-palindromic.<br />

There are three main categories to distingush for a detection <strong>of</strong> morphic palindromes.<br />

Case one: Head and body are morphogrammaticall equivalent<br />

The MorphoGame related strategy to detect and eliminat patterns is based on the presumption that<br />

the head and the body, defined by repetition, reversion and accretion, are <strong>of</strong> the same length.<br />

Odd palindromes, i.e. morphogrames <strong>of</strong> length 2n+1, entail a medium pattern between the two<br />

parts, head and body. For even palindromes, the medium part is empty.<br />

Even palindromes<br />

Therefore, the head and the body <strong>of</strong> the palindrome shall be ‘parallelized’ horizontally in the game.<br />

If two patterns are building together a morphic palindrome then they shall be eliminated.<br />

1. Repetition<br />

2. Reversion<br />

3. Accretion<br />

Iterability scheme for @1, 2, 2, 3D ; 14<br />

head <strong>of</strong> palindrome<br />

@1, 2, 2, 3D<br />

á ¯ ä<br />

reversion accretion repetition<br />

@2, 3, 3, 1D<br />

@3, 2, 2, 1D<br />

@3, 4, 4, 1D<br />

@4, 2, 2, 1D<br />

@4, 5, 5, 1D<br />

@2, 3, 3, 4D<br />

@3, 1, 1, 2D<br />

@3, 2, 2, 4D<br />

@3, 4, 4, 5D<br />

@4, 1, 1, 2D<br />

@4, 2, 2, 5D<br />

@4, 5, 5, 6D<br />

@1, 2, 2, 3D<br />

@1, 4, 4, 3D<br />

- [1,2,2,3] = tnf[3,4,4,1];<br />

val it = true : bool<br />

- [1,2,2,3,1,4,4,3] = [1,2,2,3,2,3,3,1];<br />

val it = false : bool<br />

Example<br />

The two neighbor patterns [ Ê ‡ Ê Á ‡ Á ] and [ Á ‡ Á Ê ‡ Ê ] are morphic palindromes, hence they<br />

are eliminable.<br />

In this case, the two patterns are also just morphogrammatically equivalent.<br />

[1,2,1,3,2,3] = mg [3,2,3,1,2,1]<br />

[1,2,2,3,3,4,4,1] = mg [1,4,4,3,3,2,2,1]<br />

-ispalindrome@1, 2, 2, 3, 3, 4, 4, 1D;<br />

val it = true : bool<br />

Odd palindromes<br />

Serial case


10 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

n<br />

n<br />

z<br />

e<br />

e<br />

,<br />

l<br />

l<br />

n<br />

w<br />

w<br />

,<br />

l<br />

s<br />

l<br />

w<br />

l<br />

s<br />

l<br />

: vertical<br />

e s u s e : horizontal<br />

If @mgD is a vertical or horizontal palindrome it is eliminable :<br />

@mgD œ PAl : @mgD ï @D<br />

Counter example<br />

m<br />

z<br />

z<br />

z<br />

l<br />

l<br />

v<br />

w<br />

ï not-[]<br />

Examples<br />

-ispalindrome[1, 2, 1, 3, 1, 2, 1];<br />

val it = true : bool<br />

-ispalindrome[1, 2, 3, 2, 1];<br />

val it = true : bool<br />

-ispalindrome[1, 1, 2, 3, 3];<br />

val it = true : bool<br />

Case two: Head and body are morphogrammatically different<br />

A more intriguing case is given if the body and the head <strong>of</strong> two even palindromes are morphogrammatically<br />

different.<br />

Trivially, the morphogram [1,1,1,1] is a palindrome. The same holds for the morphogram [1,2,1,2].<br />

But both are morphogrammatically different, [1,1,1,1] mg ¹≠ [1,2,1,2].<br />

Hence, the <strong>new</strong> abstraction is ruled by the property <strong>of</strong> being a palindrome.<br />

Both morphograms <strong>of</strong> the example are palindromes <strong>of</strong> the same length, hence they can be eliminated.<br />

In contrast, the morphogram [1,1,1,2] is not a palindrome. Hence, the comparison <strong>of</strong> [1,1,1,2] and<br />

[1,1,1,1] is not eliminative.<br />

@mgD mg 1 ¹≠ @mgD 2 Ô @mgD 1 ,@mgD 2 œ PAl : @mgD 1 || @mgD 2 ï []<br />

Example<br />

horizontal palindromes:<br />

l n l<br />

v w z<br />

s n l<br />

ï l n l œ Pal, v w z<br />

s n l œ Pal,<br />

l n l ¹≠ mg s n l , v w z ï []<br />

Program to detect morphic palindromes<br />

Bisymmetric e/v-version<br />

BiSymTest[x] =<br />

TabView[<br />

Grid /@<br />

{x ,<br />

"Palindrome" -> SameQ[<br />

Grid[<br />

Reverse[First[Grid[Reverse /@<br />

x]]]] ,<br />

Grid[<br />

Reverse /@ First[Grid[Reverse[<br />

x]]]],<br />

Grid[Transpose[x]]],<br />

Clear[x]


BiSymTest[x] =<br />

TabView[<br />

Grid /@<br />

{x ,<br />

"Palindrome" -> SameQ[<br />

Grid[<br />

Reverse[First[Grid[Reverse /@<br />

x]]]] ,<br />

Grid[<br />

Reverse /@ First[Grid[Reverse[<br />

x]]]],<br />

Grid[Transpose[x]]],<br />

Clear[x]<br />

}]<br />

Morpho<strong>Board</strong><strong>Games</strong>.nb 11<br />

Wee MorphoPalindrome Checker Palin (4, 2)<br />

« Å▸ ¡<br />

v<br />

e v<br />

e v e<br />

List Version<br />

PalindromeQ[i_String] := StringReverse[i] == i<br />

MorphoPalindromeQ[i_String] := ReLabel[StringReverse[i]] == i<br />

Example for lists<br />

"Palindromes 4to5"@MenuViewD<br />

@1,2,3,1D<br />

@1, 1, 2, 3, 1, 1D rule1 @1, 1, 2, 3, 1, 1D<br />

@4, 1, 2, 3, 1, 4D rule3 @1, 2, 3, 4, 2, 1D<br />

@4, 1, 2, 3, 1, 5D rule4 @1, 2, 3, 4, 2, 5D<br />

@2, 1, 2, 3, 1, 3D rule1 @1, 2, 1, 3, 2, 3D<br />

@3, 1, 2, 3, 1, 2D rule2 @1, 2, 3, 1, 2, 3D<br />

The Morpho<strong>Board</strong> configuration<br />

The Morpho<strong>Board</strong> configuration is defined by the board measures, the number <strong>of</strong> elements and a<br />

random function that maps the elements onto the <strong>Board</strong>.<br />

The MorphoTransition rules<br />

The Transition mappings are considering different modi <strong>of</strong> parallelism <strong>of</strong> the reduction rules.<br />

Termination and Evaluation <strong>of</strong> the MorphoPlay<br />

The scores <strong>of</strong> the play are determined by the numbers <strong>of</strong> steps and the number <strong>of</strong> not resolved<br />

patterns <strong>of</strong> the reduction game.<br />

Examples for a manual play<br />

The examples show the strategy how to achieve the results <strong>of</strong>:<br />

First play: 18 steps, with 2 patterns left.<br />

Second play: 15 steps, with 3 patterns left.


12 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

Different logics for different paradigms<br />

Classical games<br />

Obviously, classical board games are ruled by classical two-valued logic. This is abbreviated by the<br />

identity rules <strong>of</strong> the classical game: Pos1: Ê ¹≠ ‡. An element <strong>of</strong> a game has a unique value: it is or it<br />

is not on the board. Logically speaking, it is true (false) that an element occupies a place on the<br />

board.<br />

For the game, what counts are sequences <strong>of</strong> the identical and unique elements. Therefore, the classical<br />

two-valued logic is ruling the rationality <strong>of</strong> the game. A blank on a classical board has no logical<br />

significance. It just marks the elimination <strong>of</strong> a value.<br />

Hence, the rules <strong>of</strong> a classical game are concerning the status <strong>of</strong> the sequences <strong>of</strong> connected identical<br />

elements on the board.<br />

Classical sequences <strong>of</strong> the same elements might be ordered horizontally and vertically, but there are<br />

also possibilities to connect the elements diagonally.<br />

u<br />

v<br />

A diagonal connection is illustrated by the example<br />

m<br />

s<br />

u<br />

u<br />

. The diagonal rule reduces the blue diago-<br />

n<br />

e<br />

nal sequence<br />

u<br />

Ñ<br />

Ñ<br />

v<br />

u<br />

u<br />

to the figure<br />

Ò<br />

m<br />

s<br />

n<br />

v<br />

Ò<br />

„<br />

e<br />

.<br />

All three modi <strong>of</strong> connection, horizontal, vertical and diagonal, are gap-free.<br />

This reflection on the logic <strong>of</strong> games shouldn’t be confused with the genre <strong>of</strong> Logic <strong>Games</strong>.<br />

Morpho<strong>Games</strong><br />

Things are different for Morpho<strong>Games</strong>. What counts for the game are not the elements and their<br />

values as such but the differences between the elements that are localized on the board. Because <strong>of</strong><br />

this differential definition <strong>of</strong> the states <strong>of</strong> a MorphoGame, not only the involved and localized elements<br />

are <strong>of</strong> importance but the gaps, represented by the blanks, too.<br />

To put it in a abbreviation, the logic <strong>of</strong> Morpho<strong>Games</strong> is not two-valued but a combination <strong>of</strong> at least<br />

two 2-valued logics and the logics between the two 2-valued logics covering the logical status <strong>of</strong> the<br />

gaps inscribed as blanks.<br />

Hence, the rules <strong>of</strong> Morpho<strong>Games</strong> are concerning the status <strong>of</strong> the sequences <strong>of</strong> horizontally and<br />

vertically connected complex differences and their gaps on the board.<br />

For example:<br />

w Ñ blanks Ñ m<br />

w Ñ blanks Ñ m<br />

ï<br />

w w<br />

m<br />

m<br />

ï Ñ Ñ<br />

: vertical + horizontal move and<br />

elimination.<br />

Desiderata<br />

The Morpho<strong>Board</strong> <strong>Games</strong> are not yet programmed.<br />

This note gives just the general concept with its rules and the program for the <strong>Board</strong> constellations.<br />

The rules have to be applied by a human player. A programmed version will hopefully follow soon.<br />

<strong>Board</strong> configuration one<br />

n z l v l s z s l z n<br />

m e z m w e n m e z w<br />

n l n u u l u l s s l


Morpho<strong>Board</strong><strong>Games</strong>.nb 13<br />

n u z l n l n v n w v<br />

v w u w m n m z z z m<br />

m w z s v z m n s e e<br />

w l e l u e l u v z m<br />

w s v l u v z m u w l<br />

m n w n v z n s u v z<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

Decompositions <strong>of</strong> board one<br />

One possible solution <strong>of</strong> the <strong>Board</strong> is given by the following 18 steps <strong>of</strong> the Game with 2 patterns left<br />

(omitting any moves <strong>of</strong> the squares).<br />

This demonstration <strong>of</strong> the MorphoGame with ‘board one’ is quite static and relies only on the existing<br />

configurations <strong>of</strong> the board. There are also no ‘diagonal’ interpretations involved.<br />

Therefore, the action <strong>of</strong> moving elements (squares) on the board to produce <strong>new</strong> constellations is not<br />

yet included in this description.<br />

The rules are horizontally and vertically applied to the patterns.<br />

1 Ñ Ñ Ñ Ñ Ñ Ñ Ñ 1 6 6<br />

1 Ñ Ñ Ñ Ñ Ñ Ñ Ñ 1 6 6<br />

17 Ñ Ñ Ñ Ñ 17 5 5 13 13 l<br />

17 Ñ Ñ Ñ Ñ 17 5 5 13 13 v<br />

12 12 2 Ñ Ñ 2 18 8 Ñ 8 m<br />

12 Ñ 2 Ñ Ñ 2 18 8 Ñ 8 e<br />

18 10 10 11 11 15 Ñ 15 v 9 9<br />

18 10 10 11 11 15 Ñ 15 u Ñ Ñ<br />

4 Ñ Ñ 4 14 Ñ 14 s u 9 9<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ 3 Ñ Ñ 3<br />

4 Ñ Ñ 4 14 Ñ 14 3 Ñ Ñ 3<br />

The number at the corners <strong>of</strong> a deleted pattern (configuration) indicates the number <strong>of</strong> the steps <strong>of</strong><br />

the play and its empty frame.<br />

Vertical application <strong>of</strong> Rule3<br />

1 = n z l v l s z s l<br />

m e z m w e n m e<br />

ï Ñ Ñ ,<br />

with vertical application <strong>of</strong> Rule3 : Ê ‡ = ‡ Ê<br />

2 = u w m n<br />

z s v z<br />

ï Ñ Ñ<br />

, with Rule3 : Ê ‡ = ‡ Ê,<br />

3 = n e w w<br />

w v l l<br />

:<br />

n<br />

w = e v ï w l<br />

= w l<br />

ï Ñ Ñ : vertical,<br />

with Rule3 : Ê ‡ = ‡ Ê for<br />

n<br />

w = e v ,<br />

and Rule3 as Identity Rule for<br />

w<br />

l<br />

= w l<br />

,


14 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

w<br />

l<br />

w<br />

l<br />

ï Ñ Ñ<br />

: vertical + horizontal.<br />

4 =<br />

m n w n<br />

n l e w<br />

v e m w<br />

: horizontal is not valid becaus <strong>of</strong> double "n",<br />

and not valid for vertical because <strong>of</strong> double "w" :<br />

m n w n ¹≠ n l e w<br />

v e m w : vertical,<br />

Hence, what holds is :<br />

m n w<br />

n l e<br />

v e m<br />

vertically + horizontally and n l e w<br />

v e m w horizontally.<br />

5 = u l<br />

n v<br />

ï@D : vertical + horizontal.<br />

6 = z n<br />

z w<br />

ï@D : horizontal.<br />

7 = l n<br />

u z<br />

ï@D : vertical + horizontal.<br />

8 = z z z<br />

n s e : vertical<br />

z<br />

m<br />

9 =<br />

w<br />

l<br />

: vertical + horizontal<br />

v<br />

z<br />

10 = l e<br />

s v<br />

: vertical + horizontal<br />

11 = l u<br />

l u<br />

: vertical + horizontal<br />

12 = v w<br />

m w : horizontal<br />

13 = s s<br />

n w : vertical<br />

14 =<br />

v z n<br />

l v m<br />

s l l<br />

ï@D : vertical<br />

15 = e l u<br />

v z m<br />

ï@D : vertical + horizontal<br />

16 = u u<br />

l n : vertical<br />

17 =<br />

n 7 7 16 16 l<br />

n 7 7 16 16 l<br />

: horizontal move, neglecting blanks


Morpho<strong>Board</strong><strong>Games</strong>.nb 15<br />

n 7 7 16 16 l<br />

n 7 7 16 16 l<br />

ï n l<br />

n l<br />

ï @D : horizontal move, removing blanks<br />

18 =<br />

12 12 2 Ñ Ñ 2 m<br />

12 Ñ 2 Ñ Ñ 2 m<br />

w 10 10 11 15 Ñ Ñ<br />

w 10 10 11 15 Ñ Ñ<br />

4 Ñ Ñ 4 14 Ñ 14<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ<br />

4 Ñ Ñ 4 14 Ñ 14<br />

ï w Ñ Ñ Ñ Ñ Ñ m<br />

w Ñ Ñ 4 14 Ñ m ï w w<br />

m<br />

m<br />

ï @D : vertical + horizontal move<br />

According to the rules, this final constellation cannot be further resolved .<br />

Hence the play ends after 18 steps with 2 patterns unsolved. The score is (18, 2).<br />

5 13 13 l<br />

5 13 l<br />

5 13 13 v<br />

8 Ñ 8 m<br />

8 Ñ 8 e<br />

15 v 9 9<br />

15 u Ñ Ñ<br />

ï<br />

5 13 v<br />

8 Ñ m<br />

8 Ñ e<br />

15 v Ñ<br />

15 u Ñ<br />

ï<br />

Ñ<br />

Ñ<br />

s<br />

v<br />

u<br />

u<br />

l<br />

v<br />

m<br />

e<br />

.<br />

s u 9 9<br />

s u Ñ<br />

Test <strong>of</strong> (4.) with ReLabel<br />

m n w n<br />

n l e w<br />

v e m w<br />

88m, n, w, n


16 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

Ñ<br />

Ñ<br />

s<br />

v<br />

u<br />

u<br />

l<br />

v<br />

m<br />

e<br />

ï<br />

Ñ<br />

Ñ<br />

s<br />

v<br />

Ñ<br />

Ñ<br />

l<br />

v<br />

m<br />

e<br />

. Following this path, further reductions are possible:<br />

Ñ<br />

Ñ<br />

s<br />

v<br />

Ñ<br />

Ñ<br />

l<br />

v<br />

m<br />

e<br />

ï Ò, with the figure<br />

Ñ<br />

Ñ<br />

s<br />

v<br />

Ñ<br />

Ñ<br />

plus the reduction <strong>of</strong> the blanks and finally the equivalence<br />

<strong>of</strong> s and v by Rule1 we get the terminal state Ò.<br />

l<br />

Ñ<br />

And by a self-application <strong>of</strong> Rule1 onto the figure<br />

v<br />

m<br />

it reduces it via<br />

Ñ<br />

Ñ<br />

to the terminal state Ò.<br />

e<br />

Ñ<br />

As a result we have the situation that by applying the morpho-rules consequently what includes its<br />

self-application, all Morpho<strong>Games</strong> are re-deducible to a terminal state Ò or ‡. That is, all Morpho<strong>Games</strong><br />

terminate in the final state Ò or ‡.<br />

But this approach makes sense only for the final steps <strong>of</strong> the difference-theoretic concept <strong>of</strong> the<br />

MorphoGame.<br />

A second run<br />

A second approach to the previous configuration <strong>of</strong> the <strong>Board</strong> for the run one is given by the following<br />

15 steps with 3 patterns left as shown by the resulting constellation <strong>of</strong> the board by run two.<br />

n z l v l s z s l z n<br />

m e z m w e n m e z w<br />

n l n u u l u l s s l<br />

n u z l n l n v n w v<br />

v w u w m n m z z z m<br />

m w z s v z m n s e e<br />

w l e l u e l u v z m<br />

w s v l u v z m u w l<br />

m n w n v z n s u v z<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

15 7 Ñ Ñ Ñ Ñ Ñ Ñ 7 14 15<br />

15 7 Ñ Ñ Ñ Ñ Ñ Ñ 7 14 15<br />

9 Ñ Ñ Ñ Ñ 9 u 11 11 6 6<br />

9 Ñ Ñ Ñ Ñ 9 n Ñ Ñ Ñ Ñ<br />

13 12 10 Ñ Ñ 10 12 11 11 Ñ Ñ<br />

13 12 10 Ñ Ñ 10 12 n s Ñ Ñ<br />

4 Ñ Ñ Ñ 4 5 Ñ 5 v Ñ Ñ<br />

4 Ñ Ñ Ñ 4 Ñ Ñ Ñ 14 Ñ Ñ<br />

13 3 3 13 v 5 Ñ 5 14 6 6<br />

1 Ñ 1 Ñ 2 Ñ Ñ Ñ Ñ Ñ 2<br />

1 Ñ 1 13 2 Ñ Ñ Ñ Ñ Ñ 2<br />

1. = n l e<br />

v e m<br />

ï @D : vertical


2.<br />

l v m n e w v<br />

s l l w v l m<br />

ï @D : vertical<br />

In contrast, the horizontal interpretation <strong>of</strong> H2.L doesn' t hold.<br />

88l, v, m, n, e, w, v


18 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

v<br />

m<br />

n<br />

v<br />

n<br />

13. =<br />

4<br />

4<br />

w<br />

w<br />

ï<br />

m<br />

m<br />

w<br />

w<br />

ï @D<br />

m<br />

14. = z z<br />

u<br />

u<br />

ï @D<br />

15. = n m<br />

n<br />

w<br />

ï @D<br />

This final constellation cannot be resolved according the rules.<br />

Hence, the score is (15,3).<br />

Ñ 9 u 11 11<br />

Ñ 9 n Ñ Ñ<br />

Ñ 10 12 11 11<br />

Ñ 10 12 n s<br />

4 5 Ñ 5 v<br />

4 Ñ Ñ Ñ 14<br />

ï<br />

v<br />

u<br />

n<br />

n<br />

Ñ<br />

s<br />

v<br />

.<br />

v 5 Ñ 5 14<br />

2 Ñ Ñ Ñ Ñ<br />

2 Ñ Ñ Ñ Ñ<br />

Self-application <strong>of</strong> rules<br />

A further reduction is possible with the idea <strong>of</strong> a self-application <strong>of</strong> the difference rules. Again, this<br />

step makes sense only after the difference-oriented run is exhausted. Applied from the beginning<br />

would ruin the game.<br />

v<br />

u<br />

n<br />

n<br />

Ñ<br />

s<br />

v<br />

ï<br />

v<br />

n<br />

Ñ<br />

s<br />

v<br />

ï v n ï<br />

Strategies for morphograms<br />

The two examples show clearly the strategy how to detect and separate morphogrmmatically similar<br />

patterns and how to eliminate them.<br />

First, a pattern has a clear frame which is defined by its environment.<br />

Hence two or more patterns that are similar must have the same horizontal and vertical frame. The<br />

frames are defined by their local Width and Height.<br />

A frame is separated, horizontally and vertically, from its environment by different other not overlapping<br />

patterns.<br />

board<br />

1.<br />

z z z m<br />

n l e<br />

v e m<br />

w<br />

w<br />

ï<br />

z z z m<br />

n l e<br />

v e m<br />

w<br />

w<br />

: part <strong>of</strong> the board


Morpho<strong>Board</strong><strong>Games</strong>.nb 19<br />

2.<br />

z z z m<br />

n l e<br />

v e m<br />

w<br />

w<br />

horizontal z z z m ëvertical<br />

w<br />

w<br />

environments <strong>of</strong> the pattern<br />

n l e<br />

v e m .<br />

3.<br />

n l e<br />

v e m :<br />

horizontally separated pattern by environments w w and z z z m .<br />

4.<br />

n l e<br />

v e m ï n v = l e = e m ¹≠ w w<br />

: vertically, reduction by Rule3, with<br />

environments w w and z z z m .<br />

n<br />

v = l e = e m ï @D.<br />

5. n l e w = v e m w : horizontal reduction by Rule3, including w .<br />

6. Horizontal strategy with additional separation criteria<br />

board<br />

w s v l u v z m u w l<br />

m n w n v z n s u v z<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

board<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

n l e w<br />

v e m w<br />

l v m n e w v<br />

s l l w v l m<br />

n l e w<br />

v e m w ; l<br />

s ; v m n e w v<br />

l l w v l m<br />

horizontal separation <strong>of</strong><br />

n l e w<br />

v e m w by l s .<br />

Program-assisted recognition <strong>of</strong> patterns with ReLabel<br />

Program-assisted recognition <strong>of</strong> patterns<br />

The cognitive training necessary to play Morpho<strong>Games</strong> might be supported by some simple but<br />

helpful programs. They might be implemented as tools into the game.


20 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

ReLabel@L_ListD := L ê.<br />

Map@Ò@@1DD Ø Ò@@2DD &, Transpose@8DeleteDuplicates@LD, Range@Length@Union@LDDD


Morpho<strong>Board</strong><strong>Games</strong>.nb 21<br />

n l e w = v e m w ï @D<br />

ReLabel[{n, l, e, w, l, v, m}] ¹≠ ReLabel[{v, e, m, w, s, l, l}]<br />

{1, 2, 3, 4, 2, 5, 6} ¹≠ {1, 2, 3, 4, 5, 6, 6},<br />

Therefore these patterns cannot be eliminated by the existing rules.<br />

n l e w l v m ¹≠<br />

v e m w s l l<br />

A further separation beyond n l e w = v e m w implying<br />

n l e w l v m ¹≠ v e m w s l l<br />

or more elements, stops with the double occurrence <strong>of</strong> the element "l".<br />

Also the identity <strong>of</strong> the elements doesn't count, their order is <strong>of</strong> relevance.<br />

Numeric presentation <strong>of</strong> a Morpho<strong>Board</strong><br />

2 5 4 2 1 5 3 6 5 3 3<br />

2 4 6 3 1 5 2 1 2 5 5<br />

4 1 2 6 2 5 5 2 6 6 6<br />

1 3 6 5 3 4 6 6 6 3 1<br />

2 4 6 2 3 4 4 2 3 6 6<br />

2 2 5 4 6 1 5 4 4 6 6<br />

4 1 6 5 2 5 5 6 5 5 3<br />

2 4 5 2 6 6 2 1 5 1 1<br />

6 2 1 2 3 2 5 3 5 2 2<br />

1 6 3 4 4 4 6 6 4 1 6<br />

5 3 6 1 5 3 1 2 1 3 2<br />

1 1<br />

1<br />

2 2 is not accepted because it has a prolongation <strong>of</strong> 1 in 2,<br />

1 6<br />

1<br />

1<br />

hence is not separated or the same as the neighbor 2<br />

6<br />

.<br />

ReLabel@82, 5, 4, 2, 1, 5, 3, 6, 5, 3, 3


22 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

Definition <strong>of</strong> the environments <strong>of</strong> patterns<br />

Classical situation<br />

Positions <strong>of</strong> colored tiles are given by a succession <strong>of</strong> calls to the pseudorandom number generator.<br />

(Papegay )<br />

Visualizing the <strong>Board</strong><br />

We are now able to initialize the game given the vlues for its Heights, Width and Patterns (colors).<br />

Choosing some colors, we can define the function View for a nicer display <strong>of</strong> the board. (ibd)<br />

Transition function<br />

“To deal with corner and boundary situations, we define the <strong>Board</strong>Value function to access the values<br />

<strong>of</strong> the board. It returns -1 if the arguments for location are outside the bounds <strong>of</strong> the board. This<br />

allows us to ignore the boundaries <strong>of</strong> the board when considering the neighbors <strong>of</strong> a location.” (ibd)<br />

Full Mathematica Program for the <strong>Board</strong> Game MHaki by Yves Papegay<br />

Needs@"GraphUtilities`"D<br />

Needs@"GUIKit`"D<br />

NewGame@D ê; Not@NeedRandomnessD := H<strong>Board</strong> = Init<strong>Board</strong>@D; InitPlay@D;L<br />

NewGame@s_: SeedD := HSeed = s; SeedRandom@sD; <strong>Board</strong> = Init<strong>Board</strong>@D; InitPlay@D;L<br />

NewGame@s_: SeedD := HSeed = 7; SeedRandom@7D; <strong>Board</strong> = Init<strong>Board</strong>@D; InitPlay@D;L<br />

NewGame@"<strong>new</strong>"D := HSeedRandom@D; Seed = Random@Integer, 31 991D;<br />

SeedRandom@SeedD; <strong>Board</strong> = Init<strong>Board</strong>@D; InitPlay@D;L<br />

Init<strong>Board</strong>@D := Table@InitPosition@i, jD, 8i, Height


Morpho<strong>Board</strong><strong>Games</strong>.nb 23<br />

Function@x, <strong>Board</strong>Value@xD ã <strong>Board</strong>Value@First@yDDDD &, yDDDD, 8p


24 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

NBPlayGame@"<strong>new</strong>"D<br />

With a Parameter Interface (to do)<br />

H* Frame for <strong>Board</strong> *L<br />

Width = 22;<br />

Height = 11;<br />

Patterns = Range@6D;<br />

NeedRandomness = True<br />

H* Colors *L<br />

HMakiColors = 8Green, Blue, Red, Yellow, White, Pink<<br />

H* HMakiColors@@x+vDD *L<br />

View@D := Show@Graphics@Raster@Transpose@Map@Reverse, Transpose@<strong>Board</strong>DDDD ê.<br />

x_Integer :> HMakiColors@@x + 2DDDD<br />

H* FaceNeighbours@p_D *L<br />

FaceNeighbours@p_D :=<br />

Map@Plus@p, ÒD &, 880, 1


Morpho<strong>Board</strong><strong>Games</strong>.nb 25<br />

Width = 20; Height = 15; Patterns = Range@5D; NeedRandomness = True; PixelSize = 12;<br />

Clear@ScoreD<br />

InitScore@D := Score = 80, 0, Width Height<<br />

UpdateScore@D := Module@8n = Width Height - Length@Select@Flatten@<strong>Board</strong>D, Ò == 0 &DD


26 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

In the simplest case <strong>of</strong> a MorphoGame it starts with a parallelism by the tuples <strong>of</strong> similar neighboring<br />

values.<br />

<strong>Board</strong>Value@posD = 888i, j


Morpho<strong>Board</strong><strong>Games</strong>.nb 27<br />

That is:<br />

a = mg<br />

Hence, in ML:<br />

b iff ReLabel(a) == ReLabel(b).<br />

fun teq a b = (tnf a = tnf b);<br />

And more in the sense <strong>of</strong> differences <strong>of</strong> E=equal and N=nonequal:<br />

fun teq a b = (ENstructure a) = (ENstructure b);<br />

Difference ε/n-notation <strong>of</strong> morphograms<br />

The fact that the presentation <strong>of</strong> the morphograms by specific elements is arbitrary has to be considered<br />

as crucial. Therefore, not the elements are determining the morphic patterns but the differences<br />

between the elements.<br />

This is well depicted for the example [Ê ‡ Ê].<br />

Ê ‡ Ê : morphogram<br />

\ê \ê<br />

1. n n 3. : ε ê n - structure<br />

\ê<br />

2. ε<br />

A useful notation is given with the matrix <strong>of</strong> the ε/n-structures.<br />

Ê Ê Ê Ê Ê ‡ Ê ‡ Ê Ê ‡ ‡ Ê ‡ Á<br />

ε -<br />

ε<br />

ε<br />

ε -<br />

n<br />

n<br />

n -<br />

ε<br />

n<br />

n -<br />

n<br />

ε<br />

n -<br />

n<br />

n<br />

Example for the ε/n-structures <strong>of</strong><br />

z<br />

w<br />

v<br />

m<br />

l<br />

z<br />

z<br />

w<br />

v<br />

= n -<br />

n n , m<br />

l<br />

z<br />

= n -<br />

z<br />

n n , hence w<br />

v<br />

mg<br />

=<br />

m l<br />

z<br />

.<br />

With ReLabel:<br />

ReLabel@L_ListD := L ê.<br />

Map@Ò@@1DD Ø Ò@@2DD &, Transpose@8DeleteDuplicates@LD, Range@Length@Union@LDDD


28 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

iê j 1 2 3 4 5 6 7<br />

1 e z m w e n m<br />

2 l n u u l u l<br />

3 u z 8i, j< 8i, j + 1< l n v<br />

4 w u 8i + 1, j< 8i + 1, j + 1< n m z<br />

5 w z s v z m n<br />

6 l e l u e l u<br />

7 s v l u v z m<br />

iê j 1 2 3 4 5 6<br />

1 e z m blank w m<br />

2 l n u Ñ u l<br />

3 u z 8i, j< blank 8i, j + n< v<br />

4 w u 8i + 1, j< blank 8i + 1, j + n< z<br />

5 w z s Ñ v n<br />

6 l e l Ñ u u<br />

7 s v l blank u m<br />

<strong>Board</strong>ValueMorpho@8l1_, c1_, l2_, c2_


Morpho<strong>Board</strong><strong>Games</strong>.nb 29<br />

Bval@<strong>Board</strong>ValueMorpho@Hi, j - 1L, Hi + 1, j - 1LDD<br />

mg<br />

=<br />

val@<strong>Board</strong>ValueMorpho@Hi, j L, Hi + 1, j LDD,<br />

mg<br />

=<br />

val@<strong>Board</strong>ValueMorpho@Hi, j + 1L, Hi + 1, j + 1LDDF<br />

mg<br />

¹≠<br />

val@<strong>Board</strong>ValueMorpho@Hi, j + 2L, Hi + 1, j + 2LDD<br />

short :<br />

8i, j + 1<<br />

8i + 1, j + 1<<br />

8i, j + 2<<br />

8i + 1, j + 2<<br />

val@<strong>Board</strong>ValueMorpho@Hi, j + 1L, Hi + 1, j + 1LDD<br />

mg<br />

¹≠<br />

val@<strong>Board</strong>ValueMorpho@Hi, j + 2L, Hi + 1, j + 2LDD<br />

Horizontal environment, upper<br />

8i - 1, j - 1< 8i - 1, j< 8i - 1, j + 1<<br />

8i, j -1< 8i, j< 8i, j + 1<<br />

val@<strong>Board</strong>ValueMorpho@Hi, j - 1L, Hi , jL, Hi, j + 1LDD<br />

¹≠ mg<br />

val@<strong>Board</strong>ValueMorpho@Hi - 1, j - 1L, Hi - 1, jL, Hi - 1, j + 1LDD<br />

Morpho<strong>Board</strong> <strong>Games</strong> in the Framework <strong>of</strong> Graphematics<br />

The distinction between classical and morphogrammatic board interpretations and rules motivates to<br />

involve additionally to the Stirling games <strong>of</strong> Morpho<strong>Games</strong> a group <strong>of</strong> other graphematic systems<br />

(structurations).<br />

Different paradigms<br />

An elementary group <strong>of</strong> not mixed approaches or paradigms is listed as: Stirling, Mersenne, Brown<br />

and Leibniz systems.<br />

Stirling structurations are the domain <strong>of</strong> morphogrammatics and therefore <strong>of</strong> Morpho<strong>Games</strong>.<br />

Leibniz structurations are the domain <strong>of</strong> identity based systems <strong>of</strong> abstract logical, arithmetic and<br />

semiotic calculi, therefore <strong>of</strong> classical board games.<br />

Brownian and Mersennian structurations are two non-orthodox systems that are not genuinely morphogrammatic.<br />

The additional structurations are becoming relevant for game theory and games if they are set into a<br />

interactional context that involves parallelism.<br />

Brownian games are commutative, while Mersennian games are iteration invariant.<br />

Leibniz games are special cases <strong>of</strong> such a parallel setting: they collapse with their neighbor systems.


30 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

To define a reasonable board game in the framework <strong>of</strong> Brownian, Mersennian and Stirling structurations,<br />

a simple parallelism <strong>of</strong> the path (steps) <strong>of</strong> the game is <strong>of</strong> necessity.<br />

Tabularity vs. linearity<br />

With this, the emphasis on the tabularity <strong>of</strong> the game, with its board and its planar rules for the<br />

distinction <strong>of</strong> patterns, environments and successions, a <strong>new</strong> approach, compared to the previous<br />

studies <strong>of</strong> graphematic calculi, is promoted.<br />

First, common to all games is that they need a workspace (board) on which parts are selected for<br />

manipulation by the rules typical for the chosen rationality (kind) <strong>of</strong> the game. The kind <strong>of</strong> the game<br />

defines the characteristics <strong>of</strong> the elements (operands) for the applied rules (operators).<br />

Second, a reasonable game has a beginning and an end. Hence it is ruled by the initial and final<br />

conditions <strong>of</strong> the game.<br />

The mentioned categories are stable. There is no interplay between the categories. Between board<br />

and part, elements and rules their is no interplay. A board is a board and a part <strong>of</strong> a board is not the<br />

board.<br />

Metamorphic games where the basic categories are involved in complex interplays are possible only<br />

as a multitude <strong>of</strong> discontextural games. The shall be called poly-<strong>Games</strong>.<br />

General frameworks<br />

Systems<br />

Leibniz<br />

a a b b<br />

a b a b<br />

Stirling turn<br />

Mersenne<br />

Stirling<br />

á ä<br />

a a b<br />

a b a<br />

ä á<br />

a a<br />

a b<br />

a a b<br />

a b b<br />

Brown<br />

Pascal<br />

á ä<br />

Brown ¬ Stirling Ø Mersenne<br />

ä ¯ á<br />

Leibniz<br />

types\values aa ab ba bb combinatorics<br />

Leibniz aa ab ba bb m n<br />

Mersenne aa ab ba - 2 n - 1<br />

Brown aa ab - bb J n + m- 1<br />

N<br />

Stirling aa ab - - ⁄ M<br />

k=1<br />

S Hn, kL<br />

n<br />

http://memristors.memristics.com/Handouts/Kindergarten%20and%20Differences-Handouts.html<br />

http://memristors.memristics.com/Kindergarten%20and%20Differences/Kindergarten%20and%20Diff<br />

erences.html<br />

Leibniz <strong>Games</strong> (Identification)<br />

Graaphematic identity rules<br />

‡ ‡ ¹≠ ‡<br />

‡ ¹≠ Á<br />

Wording<br />

Two elements are not equal one element.<br />

Different elements are different and not equal.


Morpho<strong>Board</strong><strong>Games</strong>.nb 31<br />

<strong>Board</strong> frames<br />

" i, j œ <strong>Board</strong> HHeigth i, Width jL :<br />

val@<strong>Board</strong>Value@Hi, jLDD id<br />

=<br />

H* vertical *L<br />

val@<strong>Board</strong>Value@Hi, jLDD = id<br />

val@<strong>Board</strong>Value@Hi + 1, jLDD,<br />

valB<strong>Board</strong>Value@Hi, j + 1LD, H* horizontal *L<br />

val@<strong>Board</strong>Value@Hi, jLDD = id<br />

valB<strong>Board</strong>Value@Hi, j + 1L, Hi + 1, jL, Hi + 1, j + 1LD,<br />

with = id œ Pos1<br />

Leibnizian game rules<br />

r1:<br />

n<br />

n<br />

n<br />

fl [] : vertical<br />

r2: n n n fl [] : horizontal<br />

r1.2:<br />

Ñ n Ñ<br />

n n n<br />

Ñ n Ñ<br />

fl [] : mixed<br />

Grid@<br />

88Item@" ", Background -> White, Frame -> TrueD,<br />

Item@n, Background -> Blue, Frame -> TrueD,<br />

Item@" ", Background -> White, Frame -> TrueD Blue, Frame -> TrueD,<br />

Item@n, Background -> Blue, Frame -> TrueD,<br />

Item@n, Background -> Blue, Frame -> TrueD White, Frame -> TrueD,<br />

Item@n, Background -> Blue, Frame -> TrueD,<br />

Item@" ", Background -> White, Frame -> TrueD


32 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

n l n u u l u l s s l<br />

n u z l n l n v n w v<br />

v w u w m n m z z z m<br />

m w z s v z m n s e e<br />

w l e l u e l u v z m<br />

w s v l u v z m u w l<br />

m n w n v z n s u v z<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

Mersenne <strong>Games</strong> (Differentiation)<br />

The basic graphematic rules for the Mersenne differentiation calculus<br />

Á ‡ ¹≠ ‡ Á<br />

Á Á = ‡ ‡<br />

The basic rules <strong>of</strong> the calculus <strong>of</strong> differentiations<br />

Rule 1. () () = Ø<br />

Rule 2. (()) = ()<br />

3. Substitution rules<br />

Wording<br />

Rule1: A differentiation between 2 differentiations is an absence <strong>of</strong> a differentiation.<br />

Rule2: A differentiation <strong>of</strong> a differentiation is a differentiation.<br />

In colors<br />

Rule1. ‡ ‡ = Ø<br />

Rule2. ‡ = ‡<br />

<strong>Board</strong> frames<br />

" i, j œ <strong>Board</strong> HHeigth i, Width jL :<br />

val@<strong>Board</strong>ValueMersenne@HHi, jL, Hi + 1, jLLDD<br />

Mers<br />

=<br />

val@<strong>Board</strong>ValueMersenne@HHi, j + 1L, Hi + 1, j + 1LLDD,<br />

with Mers = œ Rule1, Rule2<br />

Mersennian game rules<br />

Rule1 : Vertical HserialL<br />

z<br />

z<br />

ï @D : Rule1,<br />

Applications <strong>of</strong> Rule1<br />

l<br />

u<br />

l u fl l l<br />

fl @D<br />

Rules2: Horizontal (parallel)<br />

z z ï z : Rule2<br />

Applications <strong>of</strong> Rule2<br />

z z z ï z : Rule2


Morpho<strong>Board</strong><strong>Games</strong>.nb 33<br />

e z w<br />

e z w<br />

s s l<br />

ï<br />

Ñ s l<br />

: Rule2, environment<br />

n w v<br />

n w v<br />

First steps <strong>of</strong> a run for a Mersennian Game<br />

n z l v l s z s l z n<br />

m e z m w e n m e z w<br />

n l n u u l u l s s l<br />

n u z l n l n v n w v<br />

v w u w m n m z z z m<br />

m w z s v z m n s e e<br />

w l e l u e l u v z m<br />

w s v l u v z m u w l<br />

m n w n v z n s u v z<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

n z l v l s z s l Ñ n<br />

m e z m w e n m e Ñ w<br />

Ñ l n u u Ñ u l s s l<br />

Ñ u z l n Ñ n v n w v<br />

v Ñ u w m n Ñ z z z m<br />

m Ñ z s v z Ñ n s e Ñ<br />

Ñ l e Ñ Ñ e l u v z m<br />

Ñ s v Ñ Ñ v z m Ñ w l<br />

m n w n v z n s Ñ v z<br />

n l e Ñ l v m n e w v<br />

v e m Ñ s l l w v l m<br />

Vertical<br />

Rule1 :<br />

l<br />

l<br />

,<br />

u n<br />

u , n<br />

fl @D<br />

Rule1 :<br />

m<br />

m ,<br />

w z<br />

w , z<br />

fl @D<br />

Horizontal, Rule2<br />

e e fl e ,<br />

s s , l l , u u ,<br />

z z z<br />

Brownian <strong>Games</strong> (Distinction)<br />

The basic graphematic rules for the Brownian distinction calculus<br />

Á ‡ = ‡ Á<br />

Á Á ¹≠ ‡ ‡<br />

Basic rules for the Brownian distinction calculus based on the graphematic rules.<br />

Rule 1. () () = ()<br />

Rule 2. (()) = Ø<br />

3. Substitution rules


34 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

Rule 1. () () = ()<br />

Rule 2. (()) = Ø<br />

3. Substitution rules<br />

Wording<br />

Rule1: A distinction <strong>of</strong> 2 distinctions is a distinction.<br />

Rule2: A distinction <strong>of</strong> a distinction is no distinction.<br />

In colors<br />

Rule1. ‡ ‡ = ‡<br />

Rule2.<br />

‡ = Ø<br />

<strong>Board</strong> frames<br />

" i, j œ <strong>Board</strong> HHeigth i, Width jL :<br />

val@<strong>Board</strong>ValueBrown@HHi, jL, Hi + 1, jLLDD<br />

Brown<br />

=<br />

val@<strong>Board</strong>ValueBrown@HHi, j + 1L, Hi + 1, j + 1LLDD,<br />

Brown<br />

with = œ Rule1, Rule2<br />

Examples<br />

The genuine Brownian rules might be translated into the two rules:<br />

Brownian rules :<br />

Rule1 :<br />

w<br />

w<br />

ï w : vertical, serial<br />

Rule2 : w w ï @D : horizontal, parallel<br />

Graphematic rules :<br />

w<br />

w<br />

w<br />

v<br />

w<br />

w<br />

v<br />

w<br />

ï w w ï@D : vertical, horizontal<br />

ï @D : vertical<br />

l<br />

u<br />

l u ï u u<br />

l<br />

l<br />

: vertical<br />

l<br />

u<br />

l u<br />

ï @D : horizontal<br />

With horizontal chain and environment<br />

e z w<br />

s s l<br />

n w v<br />

ï<br />

e z w<br />

Ñ Ñ l<br />

n w v<br />

Direct Brownian game rules<br />

Rule1<br />

Vertical (linear) setting. Rule1 is sufficient to deal with uni-linear events selected from the board.<br />

z<br />

z<br />

ï<br />

z<br />

Rule2<br />

Has no corespondence in a uni - linear setting. HOverlapping is excludedL<br />

Horizontal (parallel) setting.<br />

Rule2 demands for a planar (tabular) definition <strong>of</strong> the workspace. This is realized by a parallel setting<br />

<strong>of</strong> the event chains.


Morpho<strong>Board</strong><strong>Games</strong>.nb 35<br />

z z z ï z<br />

s s l ï l<br />

First steps <strong>of</strong> a run for a Brownian Game<br />

n z l v l s z s l z n<br />

m e z m w e n m e z w<br />

n l n u u l u l s s l<br />

n u z l n l n v n w v<br />

v w u w m n m z z z m<br />

m w z s v z m n s e e<br />

w l e l u e l u v z m<br />

w s v l u v z m u w l<br />

m n w n v z n s u v z<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

n z l v l s z s l Ñ n<br />

m e z m w e n m e z w<br />

Ñ l n u u Ñ u l s s l<br />

n u z l n l n v n w v<br />

v Ñ u w m n Ñ z z z m<br />

m w z s v z m n s e e<br />

Ñ l e Ñ Ñ e l u v z m<br />

w s v l u v z m Ñ w l<br />

m n w n v z n s u v z<br />

n l e Ñ l v m n e w v<br />

v e m w s l l w v l m<br />

Comparison <strong>of</strong> Brownian and Mersennian games<br />

<strong>Games</strong> under Mersenne and Brown rules are complementary. There are also dual games for each<br />

type <strong>of</strong> games.<br />

Stirling <strong>Games</strong> (Difference)<br />

Stirling games have a first representation by Morpho<strong>Games</strong>.<br />

<strong>Board</strong> frames<br />

" i, j œ <strong>Board</strong> HHeigth i, Width jL :<br />

val@<strong>Board</strong>ValueMorpho@HHi, jL, Hi + 1, jLLDD<br />

mg<br />

=<br />

val@<strong>Board</strong>ValueMorpho@HHi, j + 1L, Hi + 1, j + 1LLDD,<br />

with = mg œ Rule1 - Rule4<br />

Elementary rules for morpho<strong>Games</strong>: Frame rules<br />

Very first elementary rules for morpho<strong>Games</strong> are given by the rules for frames only. This approach is<br />

abstracting from the specific rules (or logic) <strong>of</strong> the constellations (patterns, morphograms), and is<br />

just taking the abstract frames, independent <strong>of</strong> their internal structure or coloring, defined by their<br />

width and heights only and separated by their (empty) environment into account.<br />

Frame rule1


36 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

Frames <strong>of</strong> the same size which are separated, vertically or horizontally or both, by an empty environment<br />

can be eliminated. This applies for single patterns too.<br />

This might happen automatically by a first run. And then by pattern construction by the frame rule2.<br />

Frame rule2<br />

The composition <strong>of</strong> constellations (patterns) can be manipulated in all directions: the horizontal,<br />

vertical and the diagonal.<br />

Frame rule3<br />

The minimum <strong>of</strong> adjacent (adjacency) <strong>of</strong> the squares have to be chosen to define the game.<br />

The minimum adjaceny <strong>of</strong> the neigborhod <strong>of</strong> frames is obviously 1.<br />

Adjacent by Emily Lanie<br />

Example<br />

First steps for a morphFrame game<br />

Example <strong>of</strong> the first step <strong>of</strong> a morphoFrame Game with an adjency <strong>of</strong> 1.<br />

ï<br />

First steps <strong>of</strong> a run for a Stirling Game<br />

n z l v l s z s l z n<br />

m e z m w e n m e z w


Morpho<strong>Board</strong><strong>Games</strong>.nb 37<br />

n l n u u l u l s s l<br />

n u z l n l n v n w v<br />

v w u w m n m z z z m<br />

m w z s v z m n s e e<br />

w l e l u e l u v z m<br />

w s v l u v z m u w l<br />

m n w n v z n s u v z<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

vertical, first steps<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ z n<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ z w<br />

n Ñ Ñ Ñ Ñ l Ñ Ñ Ñ Ñ Ñ<br />

n Ñ Ñ Ñ Ñ l Ñ Ñ Ñ Ñ Ñ<br />

v w Ñ Ñ Ñ Ñ m Ñ Ñ Ñ Ñ<br />

m w Ñ Ñ Ñ Ñ m Ñ Ñ Ñ Ñ<br />

w Ñ Ñ Ñ Ñ Ñ Ñ Ñ v Ñ Ñ<br />

w Ñ Ñ Ñ Ñ Ñ Ñ Ñ u Ñ Ñ<br />

Ñ Ñ Ñ n Ñ Ñ Ñ Ñ u Ñ Ñ<br />

Ñ Ñ Ñ w Ñ Ñ Ñ Ñ e Ñ Ñ<br />

v e m w Ñ Ñ Ñ Ñ v Ñ Ñ<br />

vertical, final first steps<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ n<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ w<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ<br />

v Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ<br />

m Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ v Ñ Ñ<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ<br />

Ñ Ñ Ñ n Ñ Ñ Ñ Ñ Ñ Ñ Ñ<br />

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ e Ñ Ñ<br />

v e m Ñ Ñ Ñ Ñ Ñ v Ñ Ñ<br />

Horizontal, first steps<br />

n z l v l s z s l z n<br />

m e z m w e n m e z w<br />

n l n u u l u l s s l<br />

n u z l n l n v n w v<br />

v w u w m n m z z z m<br />

m w z s v z m n s e e<br />

w l e l u e l u v z m<br />

w s v l u v z m u w l<br />

m n w n v z n s u v z<br />

n l e w l v m n e w v<br />

v e m w s l l w v l m<br />

Test with ReLabel<br />

EqualBReLabelB: n z l v l s z s l z n >F,<br />

ReLabelB: m e z m w e n m e z w >FF<br />

ReLabel@8n, z, l, v, l, s, z, s, l, z, n


38 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

ReLabel@8n, z, l


Morpho<strong>Board</strong><strong>Games</strong>.nb 39<br />

6 3 4 4 6 3 4 5 2 3 1 1 4 3 5 4 1 6 4 1 3 2<br />

5 1 4 2 6 5 6 2 5 4 2 2 4 1 3 6 1 3 1 4 1 5<br />

5 1 4 1 5 2 3 3 4 2 6 5 3 3 5 6 6 5 6 4 6 2<br />

2 6 1 4 5 2 4 6 1 4 1 6 5 1 1 2 4 3 3 1 6 3<br />

6 3 6 3 5 3 1 1 3 5 5 6 2 3 3 3 3 4 6 4 6 6<br />

1 3 2 1 6 1 5 2 5 6 6 3 4 6 3 3 4 2 6 5 5 4<br />

4 5 3 1 2 1 2 3 1 1 6 1 5 5 3 5 2 1 5 4 6 2<br />

2 4 6 3 3 4 4 4 6 4 6 2 5 3 2 3 4 4 5 6 1 2<br />

2 6 5 1 3 6 1 2 4 1 1 5 3 2 5 6 1 3 2 3 1 1<br />

4 2 4 1 2 4 4 6 6 1 2 1 4 1 3 2 3 1 2 6 6 3<br />

3 1 2 2 4 4 1 5 5 4 4 2 6 6 4 6 3 1 3 6 5 4<br />

2 2 5 1 6 6 2 6 2 6 1 4 5 1 1 1 6 4 2 4 5 1<br />

5 5 6 1 4 6 1 3 1 3 3 4 1 5 2 6 3 1 4 3 3 2<br />

1 3 5 5 1 3 5 3 5 5 5 4 2 3 5 4 6 3 4 3 6 4<br />

4 1 2 3 2 6 2 4 1 2 2 5 6 4 3 5 5 1 5 1 2 6<br />

Vertical<br />

3<br />

6<br />

6<br />

5<br />

5<br />

2<br />

2<br />

3<br />

= palin<br />

3<br />

1<br />

1<br />

3<br />

1<br />

1<br />

2<br />

1<br />

1<br />

5<br />

¹≠ palin,<br />

1<br />

1<br />

3<br />

1<br />

1<br />

2<br />

1<br />

1<br />

= palin,<br />

1<br />

6<br />

2<br />

3<br />

6<br />

5<br />

,<br />

3 1<br />

3 1<br />

6 4<br />

3 1<br />

¹≠ palin, but morpho - equivalent<br />

Horizontal<br />

4 4 4<br />

6 1 2<br />

= palin1 »» palin2, palin1 ¹≠ mg palin2<br />

3 1 1 4<br />

4 2 2 4<br />

= palin »» palin<br />

4 4 1 5 5 4 4 2 6 6 = palin<br />

1 5 5 4 4 2 = palin<br />

2 4 4 6 6 1 = palin<br />

Palindrome tests


40 Morpho<strong>Board</strong><strong>Games</strong>.nb<br />

-ispalindrome Htnf@3, 6, 6, 5, 5, 4, 4, 3DL;<br />

val it = true : bool<br />

-ispalindrome Htnf@3, 1, 1, 3, 1, 1, 2, 1, 1, 5DL;<br />

val it = false : bool<br />

-ispalindrome Htnf@1, 1, 3, 1, 1, 2, 1, 1DL;<br />

val it = true : bool<br />

-ispalindrome@1, 2, 3, 1D;<br />

val it = true : bool<br />

-ispalindrome Htnf@1, 6, 2, 3, 6, 5DL;<br />

val it = true : bool<br />

-ispalindrome Htnf@3, 1, 1, 4DL;<br />

val it = true : bool<br />

-ispalindrome Htnf@4, 2, 2, 4DL;<br />

val it = true : bool<br />

-ispalindrome Htnf@6, 6, 1, 5, 5, 4, 4, 2, 6, 6DL; <br />

val it = true : bool<br />

- ispalindrome Htnf@1, 5, 5, 4, 4, 2DL;<br />

val it = true : bool<br />

- ispalindrome Htnf@2, 4, 4, 6, 6, 1DL;<br />

val it = true : bool<br />

Augmenting games with <strong>new</strong> elements<br />

Up to now, the scope <strong>of</strong> the patterns, i.e. the number <strong>of</strong> elements on the board had been, once set,<br />

constant.<br />

From a classical, identity-oriented point <strong>of</strong> view, an addition <strong>of</strong> elements is straight forwards and<br />

simple.<br />

Morphogrammatics is, again, not based on identical elements, but on patterns, i.e. morphograms.<br />

Hence, an extension <strong>of</strong> the scope <strong>of</strong> the patterns has to take the specific laws (properties, characteristics)<br />

<strong>of</strong> morphogrammatics into account.<br />

This leads to a morphogrammatic concept <strong>of</strong> addition (coalition). And in more complex situation to a<br />

morphogrammatic approach to multiplication (cooperation).<br />

Coalition<br />

Coalition in morphogrammatics is a retro-grade recursive and super - additive operation.<br />

Hence, a morphogrammatically adequate extension <strong>of</strong> the range <strong>of</strong> elements is not abstract but retrograde<br />

defined by the ‘elements’ already in the game.<br />

Steps towards a program for Morpho<strong>Board</strong> <strong>Games</strong><br />

FaceNeighboursMorpho@p_, q_D :=<br />

Map@Plus@p, q, ÒD &,<br />

880, 1


SpotMorpho@p_, q_D := FixedPoint@<br />

Function@y1, Union@y1, Apply@Union, Map@Select@FaceNeighboursMorpho@ÒD, Function@<br />

x1, <strong>Board</strong>ValueMorpho@x1D ã <strong>Board</strong>ValueMorpho@First@y1DDDD &, y1DDDD, 8p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!