08.02.2015 Views

Configuration Space and Degrees of Freedom - University of ...

Configuration Space and Degrees of Freedom - University of ...

Configuration Space and Degrees of Freedom - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MEAM 535<br />

<strong>Configuration</strong> <strong>Space</strong> <strong>and</strong> <strong>Degrees</strong> <strong>of</strong> <strong>Freedom</strong><br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

1


MEAM 535<br />

<strong>Degrees</strong> <strong>of</strong> freedom <strong>and</strong> constraints<br />

Consider a system S with N particles, P r (r=1,...,N), <strong>and</strong> their<br />

positions vector x r in some reference frame A. The 3N components<br />

specify the configuration <strong>of</strong> the system, S.<br />

The configuration space is defined as:<br />

ℵ= { X X ∈ R 3N , X = [ x 1<br />

.a 1<br />

, x 1<br />

.a 2<br />

, x 1<br />

.a 3<br />

,…x N<br />

.a 1<br />

, x N<br />

.a 2<br />

, x N<br />

.a 3 ] T<br />

}<br />

The 3N scalar numbers are called configuration space variables or<br />

€<br />

coordinates for the system.<br />

The trajectories <strong>of</strong> the system in the configuration space are always<br />

continuous.<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

2


MEAM 535<br />

What are Constraints<br />

Claim (Rosenberg)<br />

In a system <strong>of</strong> two or more particles, unconstrained motion is<br />

simply not possible.<br />

Definition<br />

If the motion <strong>of</strong> the system is affected by one or more constraints<br />

on the positions <strong>of</strong> the particles, the constraints are called<br />

configuration constraints.<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

3


MEAM 535<br />

A System <strong>of</strong> Two Particles on a Line<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

4


MEAM 535<br />

Examples <strong>of</strong> <strong>Configuration</strong> Constraints<br />

1. A particle moving on a plane in three dimensional space. The configuration<br />

space is R 3 . However, the particle is constrained to lie on a plane:<br />

A x 1<br />

+ B x 2<br />

+ C x 3<br />

+ D = 0<br />

2. A particle suspended from a string in three dimensional space. The<br />

configuration space is R 3 . The particle is constrained to move so that its<br />

distance from a fixed point is always the same. This is called a spherical<br />

pendulum.<br />

(x 1<br />

– a) 2 + (x 2<br />

– b) 2 + (x 3<br />

– c) 2 – r 2 = 0<br />

3. Two particles attached by a massless rod. The configuration space is R 6 . The<br />

two particles are constrained so that the distance between them is a constant.<br />

(x 1<br />

– x 4<br />

) 2 + (x 2<br />

– x 5<br />

) 2 + (x 3<br />

– x 6<br />

) 2 – r 2 = 0<br />

4. A particle constrained by the equation below is constrained to move on a<br />

circle in three-dimensional space whose radius changes with time t.<br />

x 1<br />

dx 1<br />

+ x 2<br />

dx 2<br />

+ x 3<br />

dx 3<br />

- c 2 dt = 0<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

5


MEAM 535<br />

Examples <strong>of</strong> Constraints<br />

Example 1<br />

Are these configuration constraints<br />

z<br />

Example 2: Disk rolling on plane<br />

Rolling constraint at P a<br />

q 2<br />

3<br />

A particle moving in a horizontal plane (call it the x-y plane) is steered in<br />

such a way that the slope <strong>of</strong> the trajectory is proportional to the time elapsed<br />

from t=0.<br />

x<br />

a 2<br />

b 2<br />

y<br />

a 1<br />

e<br />

b 2 C<br />

3<br />

C*<br />

q 4<br />

q 1<br />

q 3 b 1<br />

P<br />

q 5<br />

e 3<br />

e 1<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

6


MEAM 535<br />

<strong>Degrees</strong> <strong>of</strong> <strong>Freedom</strong><br />

Consider a system <strong>of</strong> N particles, S, in a reference frame A.<br />

A 3N-dimensional configuration space is associated with the system S.<br />

When there are one or more configuration constraints not all <strong>of</strong> the 3N<br />

variables describing the system configuration are independent.<br />

The minimum number <strong>of</strong> variables (also called coordinates)<br />

required to completely specify the configuration (position <strong>of</strong><br />

every particle) <strong>of</strong> a system is called the number <strong>of</strong> degrees <strong>of</strong><br />

freedom for that system.<br />

1. No. <strong>of</strong> degrees <strong>of</strong> freedom = No. <strong>of</strong> variables required to describe the system<br />

- No. <strong>of</strong> independent configuration constraints<br />

2. No. <strong>of</strong> degrees <strong>of</strong> freedom <strong>of</strong> a system depends on reference frame.<br />

Controversial!<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

7


MEAM 535<br />

Definitions<br />

<strong>Degrees</strong> <strong>of</strong> freedom <strong>of</strong> a system<br />

The number <strong>of</strong> independent variables (or coordinates) required to completely<br />

specify the configuration <strong>of</strong> the system.<br />

Point on a plane (2-D)<br />

Point in 3-D space<br />

Line on a plane<br />

Kinematic chain<br />

A system <strong>of</strong> rigid bodies connected together by joints. A chain is called<br />

closed if it forms a closed loop. A chain that is not closed is called an open<br />

chain.<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

8


MEAM 535<br />

<strong>Degrees</strong> <strong>of</strong> <strong>Freedom</strong>: Example<br />

Q<br />

Q<br />

Q<br />

P<br />

P<br />

P<br />

A<br />

A<br />

A<br />

No. <strong>of</strong> degrees <strong>of</strong> freedom<br />

= No. <strong>of</strong> variables required to describe the system<br />

- No. <strong>of</strong> independent configuration constraints<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

9


MEAM 535<br />

The Planar 3-R manipulator<br />

Planar kinematic chain<br />

All joints are revolute with connectivity = 1<br />

What is the number <strong>of</strong> degrees <strong>of</strong> freedom<br />

Link 3<br />

Link 2<br />

Joint 3<br />

Link 1<br />

Joint 2<br />

Joint 1<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

10


MEAM 535<br />

Open Kinematic Chains<br />

The Adept 1850 Palletizer<br />

Planar manipulator<br />

No. <strong>of</strong> degrees <strong>of</strong> freedom (d<strong>of</strong>) = no. <strong>of</strong> independent 1 d<strong>of</strong> joints.<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

11


MEAM 535<br />

Connectivity, Mobility, <strong>and</strong> <strong>Degrees</strong> <strong>of</strong> <strong>Freedom</strong><br />

Mobility or number <strong>of</strong> degrees <strong>of</strong> freedom <strong>of</strong> a (general) planar<br />

kinematic chain<br />

General expression<br />

n number <strong>of</strong> links<br />

( ) + f i<br />

M = d n − j −1<br />

j<br />

∑<br />

i=1<br />

€<br />

j number <strong>of</strong> joints between the links<br />

f i connectivity <strong>of</strong> joint i (1 for revolute <strong>and</strong> prismatic, 3 for spherical)<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

12


MEAM 535<br />

Examples: Mobility (<strong>Degrees</strong> <strong>of</strong> <strong>Freedom</strong>)<br />

Ingersoll R<strong>and</strong> machine tool (Stewart Platform)<br />

number <strong>of</strong> links, n = 20<br />

number <strong>of</strong> joints, j = 24<br />

connectivity, f i = 1 or 3<br />

LEG 3<br />

END EFFECTOR<br />

LEG 4<br />

END EFFECTOR<br />

S<br />

Leg 5<br />

Leg 4 LEG 2 Leg 6<br />

LEG 5<br />

P<br />

LEG 1<br />

Leg 3<br />

Leg 2<br />

Leg 1<br />

LEG 6<br />

R<br />

R<br />

( ) + f i<br />

M = 6 n − j −1<br />

g<br />

∑<br />

i=1<br />

BASE<br />

M =<br />

BASE<br />

( 19 − 24) + 36 6<br />

6 =<br />

LEG NO. i<br />

€<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

13


MEAM 535<br />

Rigidly Connected System <strong>of</strong> Particles in 3-D<br />

No. <strong>of</strong> degrees <strong>of</strong> freedom<br />

= No. <strong>of</strong> variables required to describe the system<br />

- No. <strong>of</strong> independent configuration constraints<br />

Number <strong>of</strong> particles<br />

rigidly connected, N<br />

3N- N C 2<br />

Number <strong>of</strong><br />

degrees <strong>of</strong><br />

freedom, n<br />

2 5 5<br />

3 6 6<br />

4 6 6<br />

5 5 6<br />

6 3 6<br />

<strong>University</strong> <strong>of</strong> Pennsylvania<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!