09.02.2015 Views

Do Transitioned Athletes Compete at an Advantage or Disadvantage

Do Transitioned Athletes Compete at an Advantage or Disadvantage

Do Transitioned Athletes Compete at an Advantage or Disadvantage

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Do</strong> <strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>Compete</strong> <strong>at</strong> <strong>an</strong> Adv<strong>an</strong>tage <strong>or</strong> Disadv<strong>an</strong>tage<br />

as compared with Physically B<strong>or</strong>n Men <strong>an</strong>d Women:<br />

A review of the Scientific Liter<strong>at</strong>ure<br />

Michaela C. Devries PhD<br />

May 18, 2008<br />

Prepared f<strong>or</strong> the Promising Practices: W<strong>or</strong>king with Tr<strong>an</strong>sitioning/<strong>Tr<strong>an</strong>sitioned</strong><br />

<strong>Athletes</strong> in Sp<strong>or</strong>t Project


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 2<br />

Table of Contents<br />

Page<br />

1.0 Abstract 3<br />

2.0 Introduction 4<br />

3.0 Sex Differences in Perf<strong>or</strong>m<strong>an</strong>ce, Anthropometrics <strong>an</strong>d Metabolism 4<br />

4.0 Metabolic Effects of Testosterone <strong>an</strong>d Estrogen 7<br />

4.1 Metabolic effects of testosterone 8<br />

4.2 Metabolic effects of estrogen 9<br />

5. 0 H<strong>or</strong>mone Levels in <strong>Tr<strong>an</strong>sitioned</strong> Men <strong>an</strong>d Women Compared with 10<br />

Physically B<strong>or</strong>n Men <strong>an</strong>d Women<br />

5.1 Acceptable limits f<strong>or</strong> testosterone <strong>an</strong>d estrogen in 11<br />

sp<strong>or</strong>t <strong>an</strong>d how this pertains to tr<strong>an</strong>sitioned <strong>at</strong>hletes<br />

6.0 Effects of Cross-Sex H<strong>or</strong>mones on Parameters th<strong>at</strong> may Influence Perf<strong>or</strong>m<strong>an</strong>ce 11<br />

6.1 Testosterone administr<strong>at</strong>ion to tr<strong>an</strong>sitioned men 12<br />

6.2 Estrogen administr<strong>at</strong>ion to tr<strong>an</strong>sitioned women 12<br />

6.3 Based on the evidence presented above, would either 14<br />

tr<strong>an</strong>sitioned men <strong>or</strong> women compete <strong>at</strong> <strong>an</strong> adv<strong>an</strong>tage against<br />

physically b<strong>or</strong>n men <strong>an</strong>d women<br />

6.4 How do the findings to d<strong>at</strong>e compare with the IOC Stockholm 14<br />

Consensus<br />

7.0 Perspectives 15<br />

7.1 Is there a perf<strong>or</strong>m<strong>an</strong>ce adv<strong>an</strong>tage <strong>or</strong> disadv<strong>an</strong>tage 15<br />

8.0 Conclusions 15<br />

9.0 References 17


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 3<br />

1.0 Abstract<br />

<strong>Tr<strong>an</strong>sitioned</strong> <strong>at</strong>hletes present a unique challenge to sp<strong>or</strong>t governing bodies with respect to<br />

determining the eligibility of such <strong>at</strong>hletes to compete against physically b<strong>or</strong>n men <strong>an</strong>d women.<br />

The IOC Stockholm consensus on sex reassignment in sp<strong>or</strong>ts allows tr<strong>an</strong>sitioned men <strong>an</strong>d<br />

women to compete against members of their new sex provided th<strong>at</strong> sex reassignment surgery is<br />

complete, the individuals are legally recognized as a member of their new sex <strong>an</strong>d proper crosssex<br />

h<strong>or</strong>mone administr<strong>at</strong>ion has been ongoing f<strong>or</strong> <strong>at</strong> least two years. The basis behind this<br />

st<strong>at</strong>ement is to minimize the effects of previous sex h<strong>or</strong>mone exposure on <strong>at</strong>hletic perf<strong>or</strong>m<strong>an</strong>ce.<br />

The purpose of the current review is to examine the scientific evidence th<strong>at</strong> exists to determine if<br />

tr<strong>an</strong>sitioned <strong>at</strong>hletes compete <strong>at</strong> <strong>an</strong> adv<strong>an</strong>tage <strong>or</strong> disadv<strong>an</strong>tage as compared with physically b<strong>or</strong>n<br />

men <strong>an</strong>d women. Men outperf<strong>or</strong>m women in <strong>at</strong>hletic events by approxim<strong>at</strong>ely 11-18%,<br />

potentially as a result of well known sex differences including th<strong>at</strong> men are taller, have a gre<strong>at</strong>er<br />

maximal aerobic <strong>an</strong>d <strong>an</strong>aerobic capacity, muscle mass <strong>an</strong>d strength <strong>an</strong>d altered substr<strong>at</strong>e<br />

utiliz<strong>at</strong>ion characteristics. The observed sex differences are the result of differences in<br />

testosterone <strong>an</strong>d estrogen. Testosterone increases muscle mass <strong>an</strong>d strength, bone size <strong>an</strong>d<br />

mineral content <strong>an</strong>d haemoglobin content. Estrogen has a profound effect on substr<strong>at</strong>e<br />

metabolism during exercise, increasing the reli<strong>an</strong>ce on lipid st<strong>or</strong>es. As both testosterone <strong>an</strong>d<br />

estrogen c<strong>an</strong> influence perf<strong>or</strong>m<strong>an</strong>ce measures it is imp<strong>or</strong>t<strong>an</strong>t to ensure th<strong>at</strong> tr<strong>an</strong>sitioned <strong>at</strong>hletes<br />

have sex h<strong>or</strong>mone levels within the n<strong>or</strong>mal physiological r<strong>an</strong>ge f<strong>or</strong> their new sex. While<br />

h<strong>or</strong>mone concentr<strong>at</strong>ions in tr<strong>an</strong>sitioned women fall in line with those of physically b<strong>or</strong>n women,<br />

tr<strong>an</strong>sitioned men spend the maj<strong>or</strong>ity of time with supraphysiological levels of testosterone <strong>an</strong>d<br />

higher estrogen as compared with physically b<strong>or</strong>n men. Cross-sex h<strong>or</strong>mone administr<strong>at</strong>ion to<br />

tr<strong>an</strong>sitioned individuals results in haemoglobin <strong>an</strong>d subcut<strong>an</strong>eous f<strong>at</strong> content <strong>an</strong>d muscle crosssectional<br />

areas similar to those values in physically b<strong>or</strong>n men <strong>an</strong>d women. To d<strong>at</strong>e, no study has<br />

examined the effects of cross-sex h<strong>or</strong>mones on <strong>an</strong>y objective measures of <strong>at</strong>hletic perf<strong>or</strong>m<strong>an</strong>ce<br />

(maximal aerobic capacity, time trials). Additionally, no trial has been conducted in tr<strong>an</strong>sitioned<br />

<strong>at</strong>hletes as compared with physically b<strong>or</strong>n men <strong>an</strong>d women <strong>at</strong>hletes. As such, there is no concrete<br />

evidence to supp<strong>or</strong>t <strong>or</strong> refute the position th<strong>at</strong> tr<strong>an</strong>sitioned <strong>at</strong>hletes compete <strong>at</strong> <strong>an</strong> adv<strong>an</strong>tage <strong>or</strong><br />

disadv<strong>an</strong>tage as compared with physically b<strong>or</strong>n men <strong>an</strong>d women <strong>at</strong>hletes.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 4<br />

2.0 Introduction<br />

<strong>Tr<strong>an</strong>sitioned</strong> <strong>at</strong>hletes present a unique challenge to sp<strong>or</strong>t governing bodies in determining<br />

the eligibility of such <strong>at</strong>hletes to compete against physically b<strong>or</strong>n men <strong>an</strong>d women. M<strong>an</strong>y<br />

differences exist between men <strong>an</strong>d women; however, whether these differences persist upon<br />

tr<strong>an</strong>sition <strong>or</strong> whether they impact perf<strong>or</strong>m<strong>an</strong>ce is yet to be determined. The purpose of the<br />

current review is to examine the scientific liter<strong>at</strong>ure in <strong>an</strong> <strong>at</strong>tempt to determine if enough<br />

inf<strong>or</strong>m<strong>at</strong>ion is currently available to address the question of whether tr<strong>an</strong>sitioned <strong>at</strong>hletes<br />

compete <strong>at</strong> <strong>an</strong> adv<strong>an</strong>tage/disadv<strong>an</strong>tage as compared with physically b<strong>or</strong>n men <strong>an</strong>d women. F<strong>or</strong><br />

the purpose of this review the genotypic definition of m<strong>an</strong> <strong>an</strong>d wom<strong>an</strong> will be used. Specifically,<br />

<strong>an</strong> XY genotype will denote men <strong>an</strong>d <strong>an</strong> XX genotype will denote women. Throughout the<br />

course of this rep<strong>or</strong>t the differences between men <strong>an</strong>d women, the metabolic effects of sex<br />

h<strong>or</strong>mones, the h<strong>or</strong>mone levels in tr<strong>an</strong>sitioned men <strong>an</strong>d women as compared with physically b<strong>or</strong>n<br />

men <strong>an</strong>d women <strong>an</strong>d future research will be discussed.<br />

3.0 Sex Differences in Perf<strong>or</strong>m<strong>an</strong>ce, Anthropometrics <strong>an</strong>d Metabolism<br />

Typically, men outperf<strong>or</strong>m women by 11-18% depending on the type of activity<br />

(Comben, 1996). Additionally, there is a 5-37% difference in w<strong>or</strong>ld rec<strong>or</strong>d times between men<br />

<strong>an</strong>d women f<strong>or</strong> a variety of sp<strong>or</strong>ting events, as summarized in Table 1. Additionally, f<strong>or</strong> <strong>an</strong>y<br />

given training st<strong>at</strong>us men have a higher maximal aerobic capacity (VO 2peak ) rel<strong>at</strong>ive to body<br />

weight as compared with women (26, 27). The differences in perf<strong>or</strong>m<strong>an</strong>ce observed between<br />

men <strong>an</strong>d women are likely the result of numerous fact<strong>or</strong>s th<strong>at</strong> are different between the sexes.<br />

Anthropometrically, men are taller by approxim<strong>at</strong>ely 12-15 cm (26, 27, 93), have gre<strong>at</strong>er muscle<br />

mass <strong>an</strong>d less body f<strong>at</strong> (26, 27, 57, 93) <strong>an</strong>d gre<strong>at</strong>er bone thickness (45, 56, 57) <strong>an</strong>d bone mineral<br />

density (12, 56, 93).<br />

Table 1: W<strong>or</strong>ld rec<strong>or</strong>ds by sp<strong>or</strong>ting event f<strong>or</strong> men <strong>an</strong>d women as <strong>at</strong> May 18, 2008 <strong>an</strong>d the<br />

percent difference in perf<strong>or</strong>m<strong>an</strong>ce between men <strong>an</strong>d women in each event.<br />

Sp<strong>or</strong>t Event Men Women % difference*<br />

Track <strong>an</strong>d Field<br />

100m 9.74s 10.49s 7.7<br />

400m 43.18s 47.60s 10.2<br />

1000m 2:11.96min 2:28.98min 12.9<br />

10km 27:02min 30:21min 12.3<br />

42km 2:04:26h 2:15:25h 8.8<br />

100km 6:13:33h 6:33:11h 5.3<br />

High jump 2.45m 2.09m 17.2<br />

Pole vault 6.14m 5.01m 22.6<br />

Long jump 8.95m 7.52m 19.0<br />

Javelin 98.48m 71.70m 37.4<br />

Speed sk<strong>at</strong>ing<br />

(sh<strong>or</strong>t track)<br />

500m 41.051s 43.216s 5.3<br />

1000m 1:23.815min 1:29.495min 6.8<br />

1500m 2:10.639min 2:16.729min 4.7


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 5<br />

Speed sk<strong>at</strong>ing<br />

(long track)<br />

500m 34.03s 37.02s 8.8<br />

1000m 1:07.00min 1:13.11min 9.1<br />

1500m 1:42.01min 1:51.79min 9.6<br />

5000m 6:03.32min 6:45.61min 11.6<br />

Swimming<br />

50m freestyle 21.28s 23.97s 12.6<br />

100m freestyle 47.50s 52.88s 11.3<br />

200m freestyle 1:43.86min 1:55.52min 11.2<br />

400m freestyle 3:40.08min 4:01.53min 9.7<br />

* % difference in dist<strong>an</strong>ce f<strong>or</strong> high jump, pole vault, long jump <strong>an</strong>d javelin w<strong>or</strong>ld rec<strong>or</strong>ds, <strong>an</strong>d in speed<br />

f<strong>or</strong> all other w<strong>or</strong>ld rec<strong>or</strong>ds.<br />

D<strong>at</strong>a obtained from the Intern<strong>at</strong>ional Associ<strong>at</strong>ion of Athletics Feder<strong>at</strong>ions (www.iaaf.<strong>or</strong>g) <strong>an</strong>d the Official<br />

Site of the Olympics Movement (www.olympic.<strong>or</strong>g).<br />

Being le<strong>an</strong>er c<strong>an</strong> be a perf<strong>or</strong>m<strong>an</strong>ce benefit because f<strong>or</strong> a given body weight m<strong>or</strong>e muscle mass<br />

indic<strong>at</strong>es increased metabolically active tissue as well as increased capacity to gener<strong>at</strong>e f<strong>or</strong>ce.<br />

Additionally, thicker/denser bones c<strong>an</strong> increase stability <strong>an</strong>d decrease risk of injury.<br />

Additionally, f<strong>at</strong> distribution differs between men <strong>an</strong>d women with women having a m<strong>or</strong>e gynoid<br />

(gluteal-fem<strong>or</strong>al region) f<strong>at</strong> distribution <strong>an</strong>d men having a m<strong>or</strong>e <strong>an</strong>droid (abdominal region) f<strong>at</strong><br />

distribution (11, 93), resulting in a lower centre of gravity in women. Increased body f<strong>at</strong> <strong>an</strong>d<br />

body f<strong>at</strong> distribution c<strong>an</strong> influence perf<strong>or</strong>m<strong>an</strong>ce because increased body f<strong>at</strong> is additional weight<br />

th<strong>at</strong> needs to be carried during <strong>at</strong>hletic events <strong>an</strong>d body f<strong>at</strong> distribution may influence<br />

perf<strong>or</strong>m<strong>an</strong>ce biomech<strong>an</strong>ics. Interestingly, <strong>at</strong> birth sex differences in <strong>an</strong>thropometrics already<br />

exist with boys being longer <strong>an</strong>d having gre<strong>at</strong>er f<strong>at</strong>-free mass th<strong>an</strong> girls (93).<br />

In acc<strong>or</strong>d<strong>an</strong>ce with <strong>an</strong> increased muscle mass <strong>an</strong>d muscle cross-sectional area (57), men<br />

also have increased muscle strength (57, 58). However, even when muscle cross-sectional area is<br />

accounted f<strong>or</strong>, men have gre<strong>at</strong>er knee flex<strong>or</strong> <strong>an</strong>d extens<strong>or</strong> muscle strength (57), while no sex<br />

differences in muscle strength was observed in elbow flex<strong>or</strong> <strong>an</strong>d extens<strong>or</strong> muscles when<br />

determined rel<strong>at</strong>ive to muscle cross-sectional area (57). The disprop<strong>or</strong>tion<strong>at</strong>ely higher leg muscle<br />

strength in men may be the result of a gre<strong>at</strong>er percentage of type II (fast twitch) muscle fibres<br />

(68, 79, 81). Type II muscle fibres, as compared with type I (slow twitch) muscle fibres, are<br />

larger allowing f<strong>or</strong> gre<strong>at</strong>er contraction strength <strong>an</strong>d power (41); whereas type I muscle fibres<br />

have a gre<strong>at</strong>er mitochondrial content allowing f<strong>or</strong> gre<strong>at</strong>er muscle endur<strong>an</strong>ce (41). Thus, a gre<strong>at</strong>er<br />

prop<strong>or</strong>tion of type II muscle fibres would suggest a gre<strong>at</strong>er ability in sp<strong>or</strong>ts requiring high f<strong>or</strong>ce<br />

<strong>an</strong>d explosive movements; whereas <strong>an</strong> individual with a gre<strong>at</strong>er prop<strong>or</strong>tion of type I fibres would<br />

be better suited f<strong>or</strong> endur<strong>an</strong>ce events. Additionally, gre<strong>at</strong>er muscle mass in men also results in a<br />

higher <strong>an</strong>aerobic capacity (63, 92). However, in trained men <strong>an</strong>d women, sex differences in<br />

<strong>an</strong>aerobic capacity are no longer found when rel<strong>at</strong>ive to le<strong>an</strong> body mass (63). In untrained men<br />

<strong>an</strong>d women, the sex difference in <strong>an</strong>aerobic capacity persists despite controlling f<strong>or</strong> le<strong>an</strong> body<br />

mass (92). Again the sex difference in <strong>an</strong>aerobic capacity may be the result of differing muscle<br />

fibre type between men <strong>an</strong>d women (68, 79, 81) <strong>an</strong>d may disappear with training when muscle<br />

fibre type shifts (48, 78, 82) to meet the metabolic dem<strong>an</strong>ds imposed on it by the <strong>at</strong>hlete. A<br />

gre<strong>at</strong>er <strong>an</strong>aerobic capacity would allow <strong>an</strong> <strong>at</strong>hlete to continue to perf<strong>or</strong>m <strong>at</strong> levels beyond the


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 6<br />

<strong>an</strong>aerobic threshold (beyond the VO 2peak ) f<strong>or</strong> a gre<strong>at</strong>er period of time; thus allowing the <strong>at</strong>hlete to<br />

perf<strong>or</strong>m <strong>at</strong> a higher intensity f<strong>or</strong> a longer period of time.<br />

Men <strong>an</strong>d women also differ in th<strong>at</strong> the Q <strong>an</strong>gle (the <strong>an</strong>gle of the quadriceps to the knee) is<br />

gre<strong>at</strong>er in women, the result of a wider pelvis (2, 39). The Q <strong>an</strong>gle is a determin<strong>an</strong>t of p<strong>at</strong>ellar<br />

tracking <strong>an</strong>d is determined by measuring the <strong>an</strong>gle th<strong>at</strong> is f<strong>or</strong>med <strong>at</strong> the knee when a line is<br />

drawn from the <strong>an</strong>teri<strong>or</strong> superi<strong>or</strong> iliac spine to the centre of the p<strong>at</strong>ella <strong>an</strong>d from the centre of the<br />

p<strong>at</strong>ella to the centre of the tibial tuberosity (39). The gre<strong>at</strong>er Q <strong>an</strong>gle in women results in a<br />

gre<strong>at</strong>er valgus <strong>or</strong>ient<strong>at</strong>ion of the knee extens<strong>or</strong> mech<strong>an</strong>ism (35), which c<strong>an</strong> increase risk of knee<br />

injury (35) <strong>an</strong>d may influence sp<strong>or</strong>t perf<strong>or</strong>m<strong>an</strong>ce, specifically running efficiency (3). Indeed,<br />

elite women runners typically have narrower pelvises th<strong>an</strong> age-m<strong>at</strong>ched controls (95). However,<br />

recently the <strong>an</strong><strong>at</strong>omical imp<strong>or</strong>t<strong>an</strong>ce of the sex difference in Q <strong>an</strong>gle (~2.3 0 difference between<br />

men <strong>an</strong>d women) has been questioned (39).<br />

Lung capacity is also gre<strong>at</strong>er in men as compared with women. Specifically men have a<br />

gre<strong>at</strong>er lung volume (64, 65) <strong>an</strong>d larger airways (76) as compared with height-m<strong>at</strong>ched women.<br />

As summarized by Harms (42), the smaller airways in women c<strong>an</strong> lead to gre<strong>at</strong>er limit<strong>at</strong>ions to<br />

expir<strong>at</strong><strong>or</strong>y flow, which may result in early f<strong>at</strong>igue of the respir<strong>at</strong><strong>or</strong>y muscles (i.e. diaphragm)<br />

during heavy exercise in women. Additionally, women have lower resting lung diffusing<br />

capacity, which is the result of fewer alveoli <strong>an</strong>d smaller airway diameter (46). Together these<br />

findings suggest th<strong>at</strong> gas exch<strong>an</strong>ge, <strong>an</strong>d ventil<strong>at</strong>ion may be limiting in women during exercise;<br />

however, a lower oxygen dem<strong>an</strong>d due to lower body weight may nullify the effect of these<br />

differences on exercise perf<strong>or</strong>m<strong>an</strong>ce (46). However, if gas exch<strong>an</strong>ge is limited in women during<br />

exercise then oxygen delivery to active muscles would also be limited <strong>an</strong>d would lower maximal<br />

aerobic metabolism.<br />

Oxygen delivery to the muscles may also be limited in women as a result of lower<br />

haemoglobin levels (37). Haemoglobin is the oxygen carrying metalloprotein in red blood cells,<br />

allowing f<strong>or</strong> delivery of oxygen from the lungs to the tissues (41). During exercise, oxygen is<br />

delivered to the active muscles via haemoglobin; thus lower haemoglobin content in women<br />

limits oxygen delivery to the active muscles <strong>an</strong>d would lower maximal aerobic capacity.<br />

Imp<strong>or</strong>t<strong>an</strong>tly, there is a positive c<strong>or</strong>rel<strong>at</strong>ion between blood testosterone concentr<strong>at</strong>ions <strong>an</strong>d<br />

haemoglobin levels (37). Additionally, absolute heart mass <strong>an</strong>d volume is gre<strong>at</strong>er in men as<br />

compared with women (72, 73). When n<strong>or</strong>malized to body surface area, to control f<strong>or</strong><br />

differences in body weight <strong>an</strong>d height between men <strong>an</strong>d women, sex differences in left<br />

ventricular volume, but not right ventricular volume <strong>or</strong> left <strong>an</strong>d right ventricular function,<br />

disappeared (73). However, cardiac output (a function of heart r<strong>at</strong>e <strong>an</strong>d stroke volume) is not<br />

different between the sexes (73).<br />

From a metabolic st<strong>an</strong>dpoint women rely to a gre<strong>at</strong>er extent on lipid st<strong>or</strong>es to fuel<br />

exercise as compared with men as evidenced by a lower respir<strong>at</strong><strong>or</strong>y exch<strong>an</strong>ge r<strong>at</strong>io (RER) (17,<br />

26, 34, 47, 69, 86, 88, 90). It has been consistently shown th<strong>at</strong> women use less liver<br />

glycogen/glucose (lower glucose r<strong>at</strong>e of appear<strong>an</strong>ce, r<strong>at</strong>e of disappear<strong>an</strong>ce <strong>an</strong>d metabolic<br />

clear<strong>an</strong>ce r<strong>at</strong>e) (26, 34), have a higher r<strong>at</strong>e of lipolysis (gre<strong>at</strong>er glycerol turnover) (17), higher<br />

plasma free f<strong>at</strong>ty acid concentr<strong>at</strong>ion (9, 66) <strong>an</strong>d depending on the type of exercise perf<strong>or</strong>med <strong>an</strong>d<br />

the menstrual cycle phase in which women are tested, lower muscle glycogen utiliz<strong>at</strong>ion (26,


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 7<br />

86), with no difference in intramyocellular lipid (IMCL) utiliz<strong>at</strong>ion (27, 94) during endur<strong>an</strong>ce<br />

exercise. Additionally, skeletal muscle <strong>an</strong>d myocardial glycogen depletion is lower in female, as<br />

compared with male, r<strong>at</strong>s following exercise (36, 51). It has been suggested th<strong>at</strong> these sex<br />

differences during exercise are due to differences in estrogen concentr<strong>at</strong>ion/activity (15, 61). In<br />

fact, estrogen supplement<strong>at</strong>ion studies in <strong>an</strong>imals <strong>an</strong>d hum<strong>an</strong>s have supp<strong>or</strong>ted the<br />

af<strong>or</strong>ementioned findings of higher f<strong>at</strong> oxid<strong>at</strong>ion f<strong>or</strong> women during endur<strong>an</strong>ce exercise (17, 25,<br />

71).<br />

While there is no difference in IMCL utiliz<strong>at</strong>ion during exercise between men <strong>an</strong>d<br />

women, it has been consistently shown th<strong>at</strong> women have a gre<strong>at</strong>er IMCL content as compared<br />

with men (26, 33, 68, 83). Increased IMCL content may influence exercise perf<strong>or</strong>m<strong>an</strong>ce as it is a<br />

readily available fuel source within the muscle. Additionally, using electron microscopy it has<br />

been shown th<strong>at</strong> pri<strong>or</strong> to <strong>an</strong>d following a period of endur<strong>an</strong>ce training women have a higher<br />

number of IMCL in a given area of muscle, but not a gre<strong>at</strong>er lipid size, as compared with men,<br />

<strong>an</strong>d this gre<strong>at</strong>er number of IMCL contributed to the increased IMCL content in women (26).<br />

Thus, women have <strong>an</strong> increased availability of IMCL to use as a substr<strong>at</strong>e source during<br />

exercise; however, IMCL utiliz<strong>at</strong>ion is not different between the sexes.<br />

Intriguingly, while there are sex differences in IMCL st<strong>or</strong>age <strong>an</strong>d not IMCL utiliz<strong>at</strong>ion<br />

during exercise it appears the opposite is true with regards to muscle glycogen st<strong>or</strong>age <strong>an</strong>d<br />

utiliz<strong>at</strong>ion. Depending on the type of exercise perf<strong>or</strong>med (during running women spare muscle<br />

glycogen as compared with men (86)) <strong>or</strong> the menstrual cycle in which women are tested (in the<br />

luteal phase women spare muscle glycogen as compared with men (26)) women utilized less<br />

muscle glycogen during exercise as compared with men. However, there is no sex difference in<br />

muscle glycogen st<strong>or</strong>age between the sexes (26, 53, 86, 87). Overall the increased reli<strong>an</strong>ce on<br />

lipid <strong>an</strong>d decreased reli<strong>an</strong>ce on carbohydr<strong>at</strong>e st<strong>or</strong>es during exercise in women c<strong>an</strong> influence<br />

endur<strong>an</strong>ce exercise perf<strong>or</strong>m<strong>an</strong>ce by slowing carbohydr<strong>at</strong>e depletion. The <strong>at</strong>tenu<strong>at</strong>ed carbohydr<strong>at</strong>e<br />

depletion in women allows women to exercise <strong>at</strong> a higher intensity f<strong>or</strong> a longer period of time<br />

since carbohydr<strong>at</strong>es are necessary to maintain exercise intensities gre<strong>at</strong>er th<strong>an</strong> approxim<strong>at</strong>ely 65-<br />

70% (90).<br />

The extent to which, if <strong>an</strong>y, the af<strong>or</strong>ementioned sex differences influence sp<strong>or</strong>t<br />

perf<strong>or</strong>m<strong>an</strong>ce is yet to be determined. Additionally, whether differences in h<strong>or</strong>mone levels<br />

between men <strong>an</strong>d women medi<strong>at</strong>e these differences, with several exceptions, is also unknown.<br />

4.0 Metabolic Effects of Testosterone <strong>an</strong>d Estrogen<br />

One of the main elements differenti<strong>at</strong>ing men <strong>an</strong>d women is the differences in h<strong>or</strong>monal<br />

milieu. The average concentr<strong>at</strong>ions of testosterone <strong>an</strong>d estrogen in men <strong>an</strong>d mid-follicular <strong>an</strong>d<br />

mid-luteal women are presented in Table 2.<br />

Table 2: N<strong>or</strong>mal h<strong>or</strong>mone concentr<strong>at</strong>ions in physically b<strong>or</strong>n men <strong>an</strong>d women.<br />

Testosterone<br />

(nmol/L)<br />

Estrogen<br />

(pmol/L)<br />

Men 21 + 1 128 + 13<br />

Mid-follicular women 1.1 + 0.1 184 + 71


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 8<br />

Mid-luteal women 1.0 + 0.2 361 + 107<br />

D<strong>at</strong>a are me<strong>an</strong>s + st<strong>an</strong>dard area of the me<strong>an</strong> (SEM), where SEM is a measure of<br />

vari<strong>an</strong>ce within the study popul<strong>at</strong>ion. D<strong>at</strong>a from Devries, MC et al. Am J Physiol<br />

Regul Integr Comp Physiol, 2006; 291:R1120-R1128.<br />

Aside from the obvious role sex h<strong>or</strong>mones play in primary <strong>an</strong>d secondary sexual characteristics,<br />

these h<strong>or</strong>mones also influence numerous other metabolic systems.<br />

4.1 Metabolic effects of testosterone<br />

Testosterone is well known as <strong>an</strong> <strong>an</strong>abolic agent regul<strong>at</strong>ing muscle mass (6, 44, 75, 85)<br />

<strong>an</strong>d strength (6, 31, 75, 85). In fact, testosterone supplement<strong>at</strong>ion c<strong>an</strong> increase strength by ~5-<br />

20% <strong>an</strong>d le<strong>an</strong> body mass by ~2-5 kg (43). Additionally, the effect of testosterone on muscle mass<br />

<strong>an</strong>d strength are dose dependent; however, its effects to increase strength are typically only<br />

found when testosterone levels are <strong>at</strong> high end n<strong>or</strong>mal <strong>or</strong> supraphysiological levels (7). In fact,<br />

when given <strong>at</strong> levels th<strong>at</strong> mimic n<strong>or</strong>mal physiological concentr<strong>at</strong>ions, no ch<strong>an</strong>ge in muscle<br />

strength is found, despite increases in muscle mass (80). When testosterone levels are abl<strong>at</strong>ed via<br />

<strong>or</strong>chidectomy in mice, there is a decrease in type I <strong>an</strong>d II muscle fibre cross-sectional area <strong>an</strong>d<br />

this effect is <strong>at</strong>tenu<strong>at</strong>ed by testosterone administr<strong>at</strong>ion (5). Specifically, slow twitch (type I)<br />

muscle fibres are the most sensitive to testosterone removal <strong>an</strong>d supplement<strong>at</strong>ion (5). Following<br />

<strong>or</strong>chidectomy, maximal f<strong>or</strong>ce gener<strong>at</strong>ion decreased in mice; whereas in testosterone tre<strong>at</strong>ed<br />

<strong>or</strong>chidectomized mice, maximal f<strong>or</strong>ce gener<strong>at</strong>ion was not different from control mice (5).<br />

However, while maximal f<strong>or</strong>ce gener<strong>at</strong>ion is enh<strong>an</strong>ced following testosterone administr<strong>at</strong>ion in<br />

<strong>or</strong>chidectomized mice, there is no difference in contraction speed (5).<br />

Testosterone is also thought to play a role in f<strong>at</strong>igue resist<strong>an</strong>ce <strong>an</strong>d muscle recovery. In<br />

mice, testosterone administr<strong>at</strong>ion following <strong>or</strong>chidectomy enh<strong>an</strong>ced f<strong>at</strong>igue resist<strong>an</strong>ce in slow<br />

twitch (type I), but not fast twitch (type II) muscle fibres (5). However, in hum<strong>an</strong>s, a wide r<strong>an</strong>ge<br />

of testosterone doses did not influence muscle f<strong>at</strong>igability (85). Additionally, muscle specific<br />

tension, a measure of muscle quality, did not ch<strong>an</strong>ge in response to <strong>an</strong>y testosterone dose (85).<br />

The role of testosterone on muscle recovery is not compelling. Despite higher testosterone<br />

concentr<strong>at</strong>ions following resist<strong>an</strong>ce exercise when repetitions were perf<strong>or</strong>med slowly, as<br />

compared with when repetitions were perf<strong>or</strong>med <strong>at</strong> regular speed, no difference was found in<br />

recovery of maximal strength <strong>or</strong> jump perf<strong>or</strong>m<strong>an</strong>ce in hum<strong>an</strong>s (38).<br />

The sex differences in bone size <strong>an</strong>d mineral content <strong>an</strong>d haemoglobin content are the<br />

direct result of differences in testosterone concentr<strong>at</strong>ions between the sexes. During puberty in<br />

boys, the <strong>an</strong>abolic effects of testosterone increase the total qu<strong>an</strong>tity of bone <strong>an</strong>d increase calcium<br />

retention within the bone, resulting in larger, stronger bones (41). Testosterone also influences<br />

the shape of the pelvis by narrowing the pelvic inlet <strong>an</strong>d lengthening it, as well as, increasing the<br />

strength of the pelvis f<strong>or</strong> load-bearing (41). If no testosterone is present, the male pelvis<br />

resembles th<strong>at</strong> of the female (41). Testosterone also stimul<strong>at</strong>es red blood cell production, which,<br />

as described in detail above, contains haemoglobin, which carries oxygen to the w<strong>or</strong>king<br />

muscles. Testosterone administr<strong>at</strong>ion to a castr<strong>at</strong>ed m<strong>an</strong> to mimic physiological testosterone<br />

levels increases red blood cell count by 15-20% (41).


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 9<br />

The observed sex differences in metabolism between men <strong>an</strong>d women during exercise are<br />

not medi<strong>at</strong>ed by differences in testosterone. In fact, a recent study investig<strong>at</strong>ed substr<strong>at</strong>e<br />

utiliz<strong>at</strong>ion during exercise in men with physiological testosterone levels, abl<strong>at</strong>ed testosterone <strong>an</strong>d<br />

supraphysiological concentr<strong>at</strong>ions of testosterone <strong>an</strong>d found no differences in lipid <strong>or</strong><br />

carbohydr<strong>at</strong>e oxid<strong>at</strong>ion during exercise (13). Thus, while testosterone does appear to regul<strong>at</strong>e<br />

some of the differences between the sexes, substr<strong>at</strong>e metabolism during exercise is not one of<br />

them.<br />

4.2 Metabolic effects of estrogen<br />

The observed sex difference in metabolism during exercise is medi<strong>at</strong>ed by differences in<br />

estrogen concentr<strong>at</strong>ion between the sexes. 17-β-estradiol (E2) supplement<strong>at</strong>ion trials in <strong>an</strong>imals<br />

(16, 60, 61), <strong>an</strong>d hum<strong>an</strong>s (18, 25, 71, 89), have shown th<strong>at</strong> sh<strong>or</strong>t term administr<strong>at</strong>ion of E2 c<strong>an</strong><br />

modify fuel selection during endur<strong>an</strong>ce exercise. In <strong>an</strong>imals, E2 supplement<strong>at</strong>ion to<br />

ooph<strong>or</strong>ectomized female <strong>or</strong> male r<strong>at</strong>s spared skeletal muscle, hep<strong>at</strong>ic <strong>an</strong>d myocardial glycogen<br />

during exhaustive <strong>an</strong>d submaximal exercise, resulting in improved perf<strong>or</strong>m<strong>an</strong>ce (16, 60, 61, 70).<br />

In ammen<strong>or</strong>rheic women, 100 μg/d E2 supplement<strong>at</strong>ion f<strong>or</strong> 3 days increased free f<strong>at</strong>ty acid<br />

concentr<strong>at</strong>ion, decreased liver glucose utiliz<strong>at</strong>ion, with no effect on whole body lipolysis <strong>an</strong>d no<br />

ch<strong>an</strong>ge in RER, carbohydr<strong>at</strong>e <strong>or</strong> f<strong>at</strong> oxid<strong>at</strong>ion (71). However, there was no effect of E2<br />

supplement<strong>at</strong>ion on perf<strong>or</strong>m<strong>an</strong>ce during a run to exhaustion <strong>at</strong> 85% VO 2peak th<strong>at</strong> was preceded by<br />

a 90 min run <strong>at</strong> 65% VO 2peak (71). E2 supplement<strong>at</strong>ion trials in men have yielded similar findings<br />

(18, 25, 89). Low dose E2 (100-300 μg/d) supplement<strong>at</strong>ion to men f<strong>or</strong> 11 days, resulting in<br />

serum estradiol concentr<strong>at</strong>ions similar to the level seen in the follicular phase of the menstrual<br />

cycle in women, had no effect on perf<strong>or</strong>m<strong>an</strong>ce <strong>or</strong> muscle glycogen utiliz<strong>at</strong>ion during a 90 min<br />

cycling bout <strong>at</strong> 60% VO 2peak ; however, there was a trend towards higher lipid <strong>an</strong>d lower<br />

carbohydr<strong>at</strong>e oxid<strong>at</strong>ion during the exercise bout (89). When the E2 dose administered to men<br />

was increased (1-3 mg/d, 8 days) RER <strong>an</strong>d carbohydr<strong>at</strong>e oxid<strong>at</strong>ion were decreased <strong>an</strong>d lipid<br />

oxid<strong>at</strong>ion increased (25). Additionally, high dose E2 lowered liver glucose utiliz<strong>at</strong>ion (18, 25)<br />

<strong>an</strong>d resting muscle glycogen content with no effect on muscle glycogen utiliz<strong>at</strong>ion (25). Lastly,<br />

similar to the findings of Ruby et al (71), there was no effect of high dose E2 supplement<strong>at</strong>ion on<br />

whole body lipolysis in men (18). To d<strong>at</strong>e, only one E2 supplement<strong>at</strong>ion trial has found <strong>an</strong> effect<br />

of E2 on whole body substr<strong>at</strong>e utiliz<strong>at</strong>ion by lowering RER <strong>an</strong>d CHO oxid<strong>at</strong>ion <strong>an</strong>d increasing<br />

lipid oxid<strong>at</strong>ion (25). It is possible th<strong>at</strong> a dose response rel<strong>at</strong>ionship exists with respect to E2 <strong>an</strong>d<br />

RER as there was no effect of low dose E2 on RER (71, 89). However, in the study conducted by<br />

Carter et al (18), serum estradiol concentr<strong>at</strong>ions were higher th<strong>an</strong> those in the Devries et al (25)<br />

study, <strong>an</strong>d yet no effect of E2 on RER was observed. One possible expl<strong>an</strong><strong>at</strong>ion could be the<br />

smaller sample size used in the study by Carter et al (18) resulting in a type II err<strong>or</strong>.<br />

Altern<strong>at</strong>ively, as E2 is known to increase IMCL content <strong>an</strong>d lipoprotein lipase activity in r<strong>at</strong>s<br />

(22, 67, 96), <strong>an</strong>d given th<strong>at</strong> there is simult<strong>an</strong>eous FFA esterific<strong>at</strong>ion <strong>an</strong>d IMCL hydrolysis during<br />

exercise (40), <strong>an</strong>d th<strong>at</strong> increased IMCL synthesis would elev<strong>at</strong>e RER, it is possible th<strong>at</strong> the RER<br />

could be falsely elev<strong>at</strong>ed with E2. Theref<strong>or</strong>e, it is possible th<strong>at</strong> in the study conducted by Carter<br />

et al (18), th<strong>at</strong> the dosing regime was so high th<strong>at</strong> the effects of E2 on lipid synthesis exceeded<br />

those on lipid mobiliz<strong>at</strong>ion leading to <strong>an</strong> inability to detect <strong>an</strong> effect of E2 on lowering RER.<br />

Collectively these d<strong>at</strong>a suggest th<strong>at</strong> E2 has a primary action on liver glycogenolysis <strong>an</strong>d glucose<br />

release, while muscle glycogenolysis is not affected by sh<strong>or</strong>t term E2 supplement<strong>at</strong>ion. However,<br />

as E2 lowered muscle glycogen content (25), perhaps with time <strong>an</strong> effect of E2 on muscle


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 10<br />

glycogen utiliz<strong>at</strong>ion will be seen. Additionally, these studies suggest th<strong>at</strong> <strong>at</strong> the level of substr<strong>at</strong>e<br />

utiliz<strong>at</strong>ion E2 has a gre<strong>at</strong>er impact on CHO, as opposed to lipid, metabolism.<br />

Estrogen also acts as <strong>an</strong> <strong>an</strong>ti-oxid<strong>an</strong>t, <strong>at</strong>tenu<strong>at</strong>ing exercise-induced oxid<strong>at</strong>ive stress <strong>an</strong>d<br />

inflamm<strong>at</strong>ion (54, 84). Acute bouts of exercise increase reactive oxygen species production in<br />

hum<strong>an</strong>s (1, 24, 74). Increases in reactive oxygen species production leads to oxid<strong>at</strong>ive stress <strong>an</strong>d<br />

c<strong>an</strong> result in oxid<strong>at</strong>ive damage in muscle <strong>an</strong>d blood (1, 10, 55, 74, 97). Oxid<strong>an</strong>t induced muscle<br />

damage c<strong>an</strong> decrease muscle function <strong>an</strong>d result in muscle s<strong>or</strong>eness (24, 62) <strong>an</strong>d may also result<br />

in muscle f<strong>at</strong>igue (4), decreasing perf<strong>or</strong>m<strong>an</strong>ce capacity. In various cell lines, E2 inhibits reactive<br />

oxygen species gener<strong>at</strong>ion by inhibiting NADPH oxidase enzyme activity (50, 91). Similar<br />

effects of E2 to inhibit reactive oxygen species production have been found in <strong>an</strong>imal models as<br />

well (21, 32, 50, 54). However, acute increases in reactive oxygen species production during<br />

exercise stimul<strong>at</strong>e gene tr<strong>an</strong>scription to increase <strong>an</strong>tioxid<strong>an</strong>t enzyme content (77). In fact, despite<br />

acute bouts of exercise increasing reactive oxygen species production, trained individuals have<br />

lower levels of oxid<strong>at</strong>ive stress <strong>an</strong>d higher levels of <strong>an</strong>tioxid<strong>an</strong>t enzymes (14, 23, 59) as<br />

compared with their sedentary counterparts. These findings c<strong>an</strong> be interpreted in two ways. First,<br />

if estrogen acts to <strong>at</strong>tenu<strong>at</strong>e reactive oxygen species production, perhaps the oxid<strong>an</strong>t effect of <strong>an</strong><br />

acute bout of exercise is lower in women, as compared with men, resulting in lower muscle<br />

damage <strong>an</strong>d s<strong>or</strong>eness. On the other h<strong>an</strong>d, the effect of estrogen to <strong>at</strong>tenu<strong>at</strong>e reactive oxygen<br />

species production during exercise may result in a smaller adapt<strong>at</strong>ion to repe<strong>at</strong>ed bouts of<br />

exercise (i.e. endur<strong>an</strong>ce training) in women. Thus, estrogen plays <strong>an</strong> imp<strong>or</strong>t<strong>an</strong>t role in the<br />

regul<strong>at</strong>ion of substr<strong>at</strong>e metabolism during exercise as well as the oxid<strong>at</strong>ive stress response to<br />

exercise.<br />

5.0 H<strong>or</strong>mone Levels in <strong>Tr<strong>an</strong>sitioned</strong> Men <strong>an</strong>d Women Compared with Physically B<strong>or</strong>n Men<br />

<strong>an</strong>d Women<br />

The typical sex h<strong>or</strong>mone concentr<strong>at</strong>ions in tr<strong>an</strong>sitioned men <strong>an</strong>d women, as well as those<br />

from physically b<strong>or</strong>n men <strong>an</strong>d women are presented in table 3. When comparing the values,<br />

physically b<strong>or</strong>n women <strong>an</strong>d tr<strong>an</strong>sitioned women have very similar concentr<strong>at</strong>ions of both<br />

testosterone <strong>an</strong>d estrogen. However, tr<strong>an</strong>sitioned men appear to have higher estrogen <strong>an</strong>d<br />

Table 3: Testosterone <strong>an</strong>d estrogen concentr<strong>at</strong>ions in tr<strong>an</strong>sitioned men <strong>an</strong>d women as compared<br />

with physically b<strong>or</strong>n men <strong>an</strong>d women.<br />

Testosterone<br />

(nmol/L)<br />

Estrogen<br />

(pmol/L)<br />

Physically b<strong>or</strong>n men 22 + 6 96 + 12<br />

<strong>Tr<strong>an</strong>sitioned</strong> men 31 + 11 134 + 35<br />

Physically b<strong>or</strong>n women 1.6 + 0.6 161 + 55<br />

<strong>Tr<strong>an</strong>sitioned</strong> women 1.0 + 0.0 175 + 37<br />

D<strong>at</strong>a are me<strong>an</strong>s + SEM. D<strong>at</strong>a from Elbers et al. Am J Physiol Endocrinol Metab,<br />

1999; 276:E317-E325.<br />

testosterone concentr<strong>at</strong>ions as compared with physically b<strong>or</strong>n men. This is intriguing as it<br />

suggests th<strong>at</strong> tr<strong>an</strong>sitioned men may experience perf<strong>or</strong>m<strong>an</strong>ce benefits from higher levels of both<br />

testosterone (muscle strength <strong>an</strong>d mass) <strong>an</strong>d estrogen (increased reli<strong>an</strong>ce on lipid st<strong>or</strong>es during


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 11<br />

exercise). Traditionally, testosterone is administered to tr<strong>an</strong>sitioned men once every 14 days,<br />

resulting in supraphysiological testosterone concentr<strong>at</strong>ions th<strong>at</strong> remain elev<strong>at</strong>ed f<strong>or</strong> <strong>at</strong> least 5-9<br />

days after testosterone administr<strong>at</strong>ion (8) <strong>an</strong>d then drop to subn<strong>or</strong>mal levels during the last few<br />

days bef<strong>or</strong>e the next scheduled injection (52). However, recently a long-acting testosterone,<br />

testosterone undec<strong>an</strong>o<strong>at</strong>e, dosing regime has been developed. This dosing regime requires<br />

female-to-male tr<strong>an</strong>sitioned individuals to undergo two initial injections separ<strong>at</strong>ed by 6 weeks,<br />

followed by one injection every 12 weeks thereafter (52). Thus, using this regime tr<strong>an</strong>sitioned<br />

men only require 4 doses per year. This dosing regime is adv<strong>an</strong>tageous because the testosterone<br />

concentr<strong>at</strong>ions th<strong>at</strong> result immedi<strong>at</strong>ely following injection are within the physiological r<strong>an</strong>ge <strong>an</strong>d<br />

remained stable between doses (52). Additionally, <strong>at</strong> the end of one year of dosing with<br />

testosterone undec<strong>an</strong>o<strong>at</strong>e, testosterone levels in tr<strong>an</strong>sitioned men were mid-r<strong>an</strong>ge of n<strong>or</strong>mal<br />

physiological values f<strong>or</strong> physically b<strong>or</strong>n men (52). As testosterone has a multitude of<br />

perf<strong>or</strong>m<strong>an</strong>ce-enh<strong>an</strong>cing effects (see above), tr<strong>an</strong>sitioned men who wish to compete <strong>at</strong> the elite<br />

level should strive to minimize the large vari<strong>at</strong>ion in testosterone concentr<strong>at</strong>ions (peaks <strong>an</strong>d<br />

troughs) th<strong>at</strong> result with traditional testosterone injection regimes <strong>an</strong>d should utilize the<br />

testosterone undec<strong>an</strong>o<strong>at</strong>e regime, as described above. The reasons f<strong>or</strong> this recommend<strong>at</strong>ion are<br />

two-fold. First, as described above, traditional testosterone dosing regimes result in<br />

supraphysiological testosterone levels f<strong>or</strong> <strong>at</strong> least 5-9 days following testosterone injection. As<br />

tr<strong>an</strong>sitioned men undergo testosterone dosing every 14 days, they spend a large prop<strong>or</strong>tion of<br />

time with supraphysiological testosterone concentr<strong>at</strong>ions, which may enh<strong>an</strong>ce <strong>at</strong>hletic<br />

perf<strong>or</strong>m<strong>an</strong>ce, resulting in <strong>an</strong> unfair adv<strong>an</strong>tage as compared with physically b<strong>or</strong>n men. Second, as<br />

drug testing is common practice in elite sp<strong>or</strong>t, the traditional dosing regime may result in a failed<br />

drug-test as testosterone levels are elev<strong>at</strong>ed f<strong>or</strong> <strong>at</strong> least 36-64% of the time during the two week<br />

period after a single testosterone dose. Using the new long-acting testosterone ensures th<strong>at</strong><br />

tr<strong>an</strong>sitioned men are not competing <strong>at</strong> <strong>an</strong> unfair adv<strong>an</strong>tage, as compared with physically b<strong>or</strong>n<br />

men <strong>an</strong>d prevents the tr<strong>an</strong>sitioned male <strong>at</strong>hlete from failing a drug test as testosterone levels do<br />

not reach supraphysiological levels using this dosing method.<br />

5.1 Acceptable limits f<strong>or</strong> testosterone <strong>an</strong>d estrogen in sp<strong>or</strong>t <strong>an</strong>d how this pertains to tr<strong>an</strong>sitioned<br />

<strong>at</strong>hletes<br />

The C<strong>an</strong>adi<strong>an</strong> Centre f<strong>or</strong> Ethics in Sp<strong>or</strong>t is the regul<strong>at</strong>ing body in C<strong>an</strong>adi<strong>an</strong> Sp<strong>or</strong>t f<strong>or</strong><br />

doping infractions (19). There is no acceptable level of synthetic <strong>or</strong> exogenous testosterone <strong>or</strong><br />

estrogen in competing <strong>at</strong>hletes (19). Thus, tr<strong>an</strong>sitioned <strong>at</strong>hletes taking cross-sex h<strong>or</strong>mones would<br />

be required to complete a Therapeutic Use Exemption (TUE) to permit the use of synthetic<br />

testosterone <strong>or</strong> estrogen (i.e. testosterone undec<strong>an</strong>o<strong>at</strong>e, ethinyl estradiol) (19). If a TUE has not<br />

been obtained by a tr<strong>an</strong>sitioned <strong>at</strong>hlete <strong>an</strong>d exogenous sources of testosterone <strong>or</strong> estrogen are<br />

found within the <strong>at</strong>hlete’s sample, a doping infraction would be charged against the <strong>at</strong>hlete (19).<br />

In this case, the tr<strong>an</strong>sitioned <strong>at</strong>hlete would be able to present his/her case to the review board to<br />

explain why the endogenous h<strong>or</strong>mone was found (19).<br />

6.0 Effects of Cross-sex H<strong>or</strong>mones on Parameters th<strong>at</strong> may Influence Perf<strong>or</strong>m<strong>an</strong>ce<br />

D<strong>at</strong>a on the effects of cross-sex h<strong>or</strong>mone administr<strong>at</strong>ion on fact<strong>or</strong>s th<strong>at</strong> may influence<br />

perf<strong>or</strong>m<strong>an</strong>ce are sparse.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 12<br />

6.1 Testosterone administr<strong>at</strong>ion to tr<strong>an</strong>sitioned men<br />

Testosterone administr<strong>at</strong>ion to tr<strong>an</strong>sitioned men increased haemoglobin <strong>an</strong>d hem<strong>at</strong>ocrit<br />

content within one year of h<strong>or</strong>mone supplement<strong>at</strong>ion (37, 52), with no further increase beyond<br />

one year (37), thus perhaps increasing oxygen delivery to the muscle during exercise.<br />

Imp<strong>or</strong>t<strong>an</strong>tly, there was no difference in haemoglobin levels between tr<strong>an</strong>sitioned men <strong>an</strong>d<br />

physically b<strong>or</strong>n men (37). Testosterone administr<strong>at</strong>ion to tr<strong>an</strong>sitioned men also increased muscle<br />

cross-sectional area; however, muscle cross-sectional area was still smaller th<strong>an</strong> th<strong>at</strong> of<br />

tr<strong>an</strong>sitioned women pri<strong>or</strong> to testosterone depriv<strong>at</strong>ion (i.e. physically b<strong>or</strong>n men) (28, 29, 37).<br />

However, of note, while average muscle cross-sectional area was gre<strong>at</strong>er in physically b<strong>or</strong>n men,<br />

there was a large r<strong>an</strong>ge in muscle cross-sectional area within both groups of men (37). Further<br />

examin<strong>at</strong>ion of the d<strong>at</strong>a shows th<strong>at</strong> <strong>at</strong> the average muscle cross-sectional area was only gre<strong>at</strong>er in<br />

physically b<strong>or</strong>n men because they had a larger minimum muscle cross-sectional area, as<br />

compared with tr<strong>an</strong>sitioned men (37). At the high end of the spectrum, muscle cross-sectional<br />

area was not different between tr<strong>an</strong>sitioned <strong>an</strong>d physically b<strong>or</strong>n men (37). These findings suggest<br />

th<strong>at</strong> since <strong>an</strong> <strong>at</strong>hletic popul<strong>at</strong>ion would have gre<strong>at</strong>er muscle mass <strong>an</strong>d the maximal muscle crosssectional<br />

area did not differ between tr<strong>an</strong>sitioned <strong>an</strong>d physically b<strong>or</strong>n men, differences in muscle<br />

mass between physically b<strong>or</strong>n <strong>an</strong>d tr<strong>an</strong>sitioned men may not be <strong>an</strong> issue when comparing <strong>at</strong>hletic<br />

perf<strong>or</strong>m<strong>an</strong>ce. However, as the above-mentioned study was not conducted in <strong>at</strong>hletes, this<br />

hypothesis warr<strong>an</strong>ts further investig<strong>at</strong>ion.<br />

Testosterone administr<strong>at</strong>ion to tr<strong>an</strong>sitioned men also decreased f<strong>at</strong> content <strong>at</strong> the triceps,<br />

biceps, suprailiac <strong>an</strong>d paraumbilical regions, with no ch<strong>an</strong>ge <strong>at</strong> the subscapular region (28).<br />

Specifically, there was <strong>an</strong> overall decrease in subcut<strong>an</strong>eous f<strong>at</strong> content with testosterone<br />

administr<strong>at</strong>ion (28, 29), despite <strong>an</strong> increase in body weight (28). The decrease in body f<strong>at</strong> content<br />

was the gre<strong>at</strong>est in the gynoid region resulting in a decrease in the waist-to-hip r<strong>at</strong>io (28).<br />

Additionally, the lower subcut<strong>an</strong>eous f<strong>at</strong> content following testosterone tre<strong>at</strong>ment was the result<br />

of smaller f<strong>at</strong> cell size (30). However, subcut<strong>an</strong>eous f<strong>at</strong> content was still gre<strong>at</strong>er in tr<strong>an</strong>sitioned<br />

men as compared with physically b<strong>or</strong>n men (28). On the other h<strong>an</strong>d testosterone administr<strong>at</strong>ion<br />

increased visceral f<strong>at</strong> content within 1 year of tre<strong>at</strong>ment (28, 29), which was further increased <strong>at</strong><br />

3 years of tre<strong>at</strong>ment (29). There was also <strong>an</strong> increased basal, but not stimul<strong>at</strong>ed, lipolytic activity<br />

in abdominal, but not gluteal, adipocytes following 1 year of testosterone supplement<strong>at</strong>ion (30).<br />

6.2 Estrogen administr<strong>at</strong>ion to tr<strong>an</strong>sitioned women<br />

Estrogen <strong>an</strong>d <strong>an</strong>ti-<strong>an</strong>drogen administr<strong>at</strong>ion to tr<strong>an</strong>sitioned women decreased haemoglobin<br />

content in tr<strong>an</strong>sitioned women <strong>an</strong>d these levels were comparable to values in physically b<strong>or</strong>n<br />

women (37). Again these ch<strong>an</strong>ges were observed in tr<strong>an</strong>sitioned women within one year of<br />

cross-sex h<strong>or</strong>mone administr<strong>at</strong>ion <strong>an</strong>d no further ch<strong>an</strong>ge in haemoglobin content was found after<br />

three years of h<strong>or</strong>mone administr<strong>at</strong>ion (37). To d<strong>at</strong>e no study has investig<strong>at</strong>ed the effect of<br />

estrogen administr<strong>at</strong>ion on hem<strong>at</strong>ocrit content in tr<strong>an</strong>sitioned women. Estrogen <strong>an</strong>d <strong>an</strong>ti<strong>an</strong>drogen<br />

supplement<strong>at</strong>ion to tr<strong>an</strong>sitioned women decreased muscle cross-sectional area (28, 37);<br />

however, muscle cross-sectional area was still gre<strong>at</strong>er th<strong>an</strong> th<strong>at</strong> of tr<strong>an</strong>sitioned men pri<strong>or</strong> to<br />

testosterone administr<strong>at</strong>ion (i.e. physically b<strong>or</strong>n women). Imp<strong>or</strong>t<strong>an</strong>tly, although the average<br />

muscle cross-sectional area was gre<strong>at</strong>er in tr<strong>an</strong>sitioned women, there was a dram<strong>at</strong>ic r<strong>an</strong>ge in<br />

muscle cross-sectional area within both groups (37). Specifically, while <strong>at</strong> the low end of the


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 13<br />

spectrum, physically b<strong>or</strong>n women had smaller muscle cross-sectional area; <strong>at</strong> the high end of the<br />

spectrum muscle cross-sectional area was equal between tr<strong>an</strong>sitioned women <strong>an</strong>d physically b<strong>or</strong>n<br />

women (37). This finding is of imp<strong>or</strong>t<strong>an</strong>ce as individuals (both tr<strong>an</strong>sitioned <strong>an</strong>d physically b<strong>or</strong>n<br />

women) taking part in sp<strong>or</strong>t would likely have gre<strong>at</strong>er muscle mass th<strong>an</strong> the average popul<strong>at</strong>ion,<br />

thus as difference did not exist <strong>at</strong> the upper end of the muscle cross-sectional area spectrum,<br />

differences in muscle cross-sectional area may not exist between tr<strong>an</strong>sitioned women <strong>an</strong>d<br />

physically b<strong>or</strong>n women <strong>at</strong>hletes. However, as the af<strong>or</strong>ementioned trial did not compare muscle<br />

cross-sectional area in tr<strong>an</strong>sitioned <strong>an</strong>d physically b<strong>or</strong>n women <strong>at</strong>hletes, this premise remains<br />

unsubst<strong>an</strong>ti<strong>at</strong>ed.<br />

Estrogen <strong>an</strong>d <strong>an</strong>ti-<strong>an</strong>drogen administr<strong>at</strong>ion also alters body f<strong>at</strong> content <strong>an</strong>d distribution<br />

(28, 30). Specifically, in tr<strong>an</strong>sitioned women estrogen supplement<strong>at</strong>ion increased both<br />

subcut<strong>an</strong>eous (28, 30) <strong>an</strong>d visceral f<strong>at</strong> (28) content, resulting in <strong>an</strong> overall increase in percent<br />

body f<strong>at</strong>. Additionally, the increase in subcut<strong>an</strong>eous f<strong>at</strong> was most prominent in the gynoid region<br />

(66% vs 57% increase); however, the waist-to-hip r<strong>at</strong>io did not ch<strong>an</strong>ge in tr<strong>an</strong>sitioned women<br />

(28). Additionally, total subcut<strong>an</strong>eous f<strong>at</strong> content still appeared to be lower in tr<strong>an</strong>sitioned<br />

women following one year of estrogen tre<strong>at</strong>ment as compared with physically b<strong>or</strong>n women (28).<br />

Looking <strong>at</strong> individual <strong>an</strong><strong>at</strong>omical loc<strong>at</strong>ions, estrogen <strong>an</strong>d <strong>an</strong>ti-<strong>an</strong>drogen administr<strong>at</strong>ion increased<br />

percent body f<strong>at</strong> <strong>at</strong> the triceps, biceps, subscapula, suprailiac <strong>an</strong>d para-umbilical regions (28).<br />

Estrogen <strong>an</strong>d <strong>an</strong>ti-<strong>an</strong>drogen supplement<strong>at</strong>ion also increased individual adipocyte size <strong>an</strong>d<br />

decreased basal lipolytic activity of gluteal <strong>an</strong>d abdominal f<strong>at</strong> cells (30). However, similar to the<br />

effect of testosterone supplement<strong>at</strong>ion to tr<strong>an</strong>sitioned men, estrogen <strong>an</strong>d <strong>an</strong>ti-<strong>an</strong>drogen<br />

supplement<strong>at</strong>ion to tr<strong>an</strong>sitioned women did not alter r<strong>at</strong>es of stimul<strong>at</strong>ed lipolysis (30).<br />

Despite women generally being lighter th<strong>an</strong> men (26, 27), total body weight increased in<br />

response to estrogen <strong>an</strong>d <strong>an</strong>ti-<strong>an</strong>drogen supplement<strong>at</strong>ion in tr<strong>an</strong>sitioned women, despite a<br />

decrease in muscle mass (28). Thus, f<strong>or</strong> sp<strong>or</strong>ting events where <strong>an</strong> <strong>at</strong>hlete would have to carry<br />

their own body weight (i.e. running) <strong>an</strong> increase in body weight following estrogen <strong>an</strong>d <strong>an</strong>ti<strong>an</strong>drogen<br />

tre<strong>at</strong>ment may be detrimental to perf<strong>or</strong>m<strong>an</strong>ce. However, again, to d<strong>at</strong>e no study has<br />

been conducted investig<strong>at</strong>ing the effect of estrogen supplement<strong>at</strong>ion on body weight in<br />

tr<strong>an</strong>sitioned women <strong>at</strong>hletes. As <strong>at</strong>hletes are very active <strong>an</strong>d proper nutrition plays <strong>an</strong> imp<strong>or</strong>t<strong>an</strong>t<br />

role in <strong>at</strong>hletic perf<strong>or</strong>m<strong>an</strong>ce, it is likely th<strong>at</strong> body weight would decrease in this subset of<br />

tr<strong>an</strong>sitioned women. Additionally, the body weight decrease would likely be due to the effect of<br />

estrogen to decrease muscle mass, while body f<strong>at</strong> st<strong>or</strong>es would not increase as dram<strong>at</strong>ically as<br />

th<strong>at</strong> found in non-<strong>at</strong>hletic tr<strong>an</strong>sitioned women. However, this the<strong>or</strong>y needs to be tested.<br />

To d<strong>at</strong>e no study has been conducted investig<strong>at</strong>ing the long term effects of estrogen<br />

supplement<strong>at</strong>ion on carbohydr<strong>at</strong>e <strong>or</strong> lipid metabolism during endur<strong>an</strong>ce exercise. However, as<br />

described in detail above (see “metabolic effects of estrogen), E2 supplement<strong>at</strong>ion to men c<strong>an</strong><br />

spare liver glucose/glycogen utiliz<strong>at</strong>ion (17, 25), resulting in lower carbohydr<strong>at</strong>e <strong>an</strong>d higher lipid<br />

oxid<strong>at</strong>ion during a bout of endur<strong>an</strong>ce exercise (25). However, these E2 supplement<strong>at</strong>ion trials<br />

have used dosing periods of 72h to 11 days (18, 25, 71, 89), thus their applicability to<br />

metabolism during exercise in tr<strong>an</strong>sitioned women needs further investig<strong>at</strong>ion.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 14<br />

6.3 Based on the evidence presented above, would either tr<strong>an</strong>sitioned men <strong>or</strong> women compete <strong>at</strong><br />

<strong>an</strong> adv<strong>an</strong>tage against physically b<strong>or</strong>n men <strong>an</strong>d women<br />

Based on the evidence above, to d<strong>at</strong>e there is really no concrete evidence to supp<strong>or</strong>t <strong>or</strong><br />

refute th<strong>at</strong> tr<strong>an</strong>sitioned men <strong>or</strong> women would compete <strong>at</strong> <strong>an</strong> adv<strong>an</strong>tage as compared with<br />

physically b<strong>or</strong>n men <strong>an</strong>d women. Testosterone administr<strong>at</strong>ion to tr<strong>an</strong>sitioned men resulted in<br />

haemoglobin levels similar to those in physically b<strong>or</strong>n men (37). Additionally, <strong>at</strong> the upper level,<br />

muscle cross-sectional area was not different between physically b<strong>or</strong>n <strong>an</strong>d tr<strong>an</strong>sitioned men (37).<br />

In fact, the only sex difference th<strong>at</strong> persisted following one year of testosterone administr<strong>at</strong>ion<br />

was a higher amount of subcut<strong>an</strong>eous f<strong>at</strong> in tr<strong>an</strong>sitioned men, as compared with physically b<strong>or</strong>n<br />

men (28). Thus, if this fact<strong>or</strong> was <strong>an</strong> imp<strong>or</strong>t<strong>an</strong>t determin<strong>an</strong>t of perf<strong>or</strong>m<strong>an</strong>ce it may result in a<br />

perf<strong>or</strong>m<strong>an</strong>ce detriment when tr<strong>an</strong>sitioned men competed against physically b<strong>or</strong>n men. However,<br />

imp<strong>or</strong>t<strong>an</strong>tly as discussed in the sex difference section above, absolute muscle mass is not<br />

necessarily indic<strong>at</strong>ive of muscle quality (57), as evidenced by the finding th<strong>at</strong> when absolute<br />

muscle mass is controlled f<strong>or</strong>, men still have gre<strong>at</strong>er leg muscle strength (57). Estrogen <strong>an</strong>d <strong>an</strong>ti<strong>an</strong>drogen<br />

tre<strong>at</strong>ment to tr<strong>an</strong>sitioned women resulted in haemoglobin levels similar to those found<br />

in physically b<strong>or</strong>n women (37). Anthropometrically, <strong>at</strong> the higher end muscle cross-sectional<br />

area was equal between tr<strong>an</strong>sitioned <strong>an</strong>d physically b<strong>or</strong>n women (37); whereas subcut<strong>an</strong>eous f<strong>at</strong><br />

content remained lower <strong>an</strong>d total body weight higher in tr<strong>an</strong>sitioned women, as compared with<br />

physically b<strong>or</strong>n women (28). Imp<strong>or</strong>t<strong>an</strong>tly, none of the studies th<strong>at</strong> have been conducted to d<strong>at</strong>e<br />

have specifically looked <strong>at</strong> perf<strong>or</strong>m<strong>an</strong>ce variables in tr<strong>an</strong>sitioned versus physically b<strong>or</strong>n men <strong>an</strong>d<br />

women. The only study written to address the issue of tr<strong>an</strong>sitioned individuals in competitive<br />

sp<strong>or</strong>t (37) did so using a retrospective design in a non-<strong>at</strong>hletic popul<strong>at</strong>ion. Additionally, no study<br />

has rec<strong>or</strong>ded whether height has ch<strong>an</strong>ged in response to cross-sex h<strong>or</strong>mone administr<strong>at</strong>ion. Thus,<br />

based on the currently available inf<strong>or</strong>m<strong>at</strong>ion there is not enough evidence to supp<strong>or</strong>t <strong>or</strong> refute a<br />

claim th<strong>at</strong> tr<strong>an</strong>sitioned <strong>at</strong>hletes compete <strong>at</strong> <strong>an</strong> unfair adv<strong>an</strong>tage <strong>or</strong> disadv<strong>an</strong>tage as compared with<br />

physically b<strong>or</strong>n men <strong>an</strong>d women.<br />

6.4 How do the findings to d<strong>at</strong>e compare with the IOC Stockholm Consensus<br />

In 2003 the Intern<strong>at</strong>ional Olympic Committee (IOC) Medical Commissioner convened a<br />

group of individuals to issue recommend<strong>at</strong>ions on sex reassignment in sp<strong>or</strong>ts (49). The group<br />

issued the following recommend<strong>at</strong>ions (49):<br />

1) Individuals undergoing sex reassignment of male to female (<strong>an</strong>d vice versa) pri<strong>or</strong> to<br />

puberty should be regarded as girls <strong>an</strong>d women (<strong>an</strong>d vice versa) <strong>an</strong>d no restrictions<br />

should be made with regards to particip<strong>at</strong>ion in sp<strong>or</strong>t.<br />

2) Individuals undergoing sex reassignment of male to female (<strong>an</strong>d vice versa) after puberty<br />

are eligible f<strong>or</strong> particip<strong>at</strong>ion in sp<strong>or</strong>t in their new sex c<strong>at</strong>eg<strong>or</strong>y provided the following<br />

conditions are met:<br />

a. Sex-reassignment surgery has been completed, including external genitalia<br />

ch<strong>an</strong>ges <strong>an</strong>d gonadectomy<br />

b. The <strong>at</strong>hlete is legally recognized as a member of their new sex<br />

c. Cross-sex h<strong>or</strong>mone therapy appropri<strong>at</strong>e f<strong>or</strong> the new sex has been administered in<br />

a verifiable m<strong>an</strong>ner <strong>an</strong>d f<strong>or</strong> a sufficient length of time to minimize sex-rel<strong>at</strong>ed<br />

adv<strong>an</strong>tages in sp<strong>or</strong>t competition.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 15<br />

d. In the opinion of the review board, competition against one’s new sex should<br />

commence no sooner th<strong>an</strong> 2 years after gonadectomy.<br />

However, the d<strong>at</strong>a presented above suggests th<strong>at</strong> fewer th<strong>an</strong> 2 years may be required to minimize<br />

the effects of sex h<strong>or</strong>mone exposure pri<strong>or</strong> to tr<strong>an</strong>sition on sp<strong>or</strong>t perf<strong>or</strong>m<strong>an</strong>ce. Testosterone<br />

administr<strong>at</strong>ion to tr<strong>an</strong>sitioned men increased haemoglobin content <strong>an</strong>d muscle cross-sectional<br />

area within one year with no further ch<strong>an</strong>ge after three years (37). Estrogen administr<strong>at</strong>ion to<br />

tr<strong>an</strong>sitioned women decreased haemoglobin content within one year with no further decrease<br />

after three years (37). Additionally, estrogen supplement<strong>at</strong>ion decreased muscle cross-sectional<br />

area within one year with only a slight further decrease after three years (37). Thus, these<br />

preliminary findings suggest th<strong>at</strong> one year of cross-sex h<strong>or</strong>mone supplement<strong>at</strong>ion may be<br />

sufficient to minimize the effects of pri<strong>or</strong> h<strong>or</strong>mone exposure on perf<strong>or</strong>m<strong>an</strong>ce in tr<strong>an</strong>sitioned men<br />

<strong>an</strong>d women. However, again these results are taken from average tr<strong>an</strong>sitioned individuals, not<br />

tr<strong>an</strong>sitioned <strong>at</strong>hletes, thus the applicability of these results to <strong>an</strong> <strong>at</strong>hletic popul<strong>at</strong>ion is yet to be<br />

determined.<br />

7.0 Perspectives<br />

7.1 Is there a perf<strong>or</strong>m<strong>an</strong>ce adv<strong>an</strong>tage <strong>or</strong> disadv<strong>an</strong>tage<br />

To d<strong>at</strong>e there are limited d<strong>at</strong>a with regards to the effects cross-sex h<strong>or</strong>mone<br />

administr<strong>at</strong>ion have on fact<strong>or</strong>s th<strong>at</strong> influence perf<strong>or</strong>m<strong>an</strong>ce. No study has been conducted in<br />

tr<strong>an</strong>sitioned <strong>at</strong>hletes <strong>an</strong>d no study has perf<strong>or</strong>med <strong>an</strong>y objective perf<strong>or</strong>m<strong>an</strong>ce testing (i.e. VO 2peak ,<br />

time trial perf<strong>or</strong>m<strong>an</strong>ce <strong>or</strong> strength). We do know the effects of testosterone <strong>an</strong>d estrogen<br />

administr<strong>at</strong>ion on body composition <strong>an</strong>d muscle mass; however, these fact<strong>or</strong>s themselves do not<br />

necessarily dict<strong>at</strong>e perf<strong>or</strong>m<strong>an</strong>ce. Until specific research is conducted comparing perf<strong>or</strong>m<strong>an</strong>ce<br />

measures in tr<strong>an</strong>sitioned <strong>an</strong>d physically b<strong>or</strong>n men <strong>an</strong>d women no conclusive st<strong>at</strong>ement c<strong>an</strong> be<br />

made with regards to competitive adv<strong>an</strong>tage/disadv<strong>an</strong>tage. One fact<strong>or</strong> th<strong>at</strong> does st<strong>an</strong>d out with<br />

regards to fair play in sp<strong>or</strong>ting competition is the finding th<strong>at</strong> depending on the type of<br />

testosterone th<strong>at</strong> is used by tr<strong>an</strong>sitioned men, supraphysiological concentr<strong>at</strong>ions of testosterone<br />

persist f<strong>or</strong> 5-9 days following injection. As dosing periods using traditional injection regimes are<br />

every 14 days, tr<strong>an</strong>sitioned men spend the maj<strong>or</strong>ity of their time with <strong>an</strong> elev<strong>at</strong>ed testosterone<br />

level (8). As testosterone is a known <strong>an</strong>abolic agent increasing muscle mass <strong>an</strong>d improving<br />

strength (6, 31, 75, 85), care must be taken to ensure th<strong>at</strong> testosterone levels in tr<strong>an</strong>sitioned men<br />

m<strong>at</strong>ch those of physically b<strong>or</strong>n men. One recommend<strong>at</strong>ion th<strong>at</strong> c<strong>an</strong> be made is the use of<br />

testosterone undec<strong>an</strong>o<strong>at</strong>e in tr<strong>an</strong>sitioned men w<strong>an</strong>ting to compete in sp<strong>or</strong>ting events, as this<br />

dosing regime produces long-term stable testosterone levels (52). However, again, further<br />

research is likely needed bef<strong>or</strong>e this recommend<strong>at</strong>ion c<strong>an</strong> be conclusive.<br />

8.0 Conclusions<br />

Overall there is a paucity of d<strong>at</strong>a regarding the effect of tr<strong>an</strong>sitioning on <strong>at</strong>hletic<br />

perf<strong>or</strong>m<strong>an</strong>ce. Wh<strong>at</strong> perf<strong>or</strong>m<strong>an</strong>ce d<strong>at</strong>a does exist was not taken from tr<strong>an</strong>sitioned <strong>at</strong>hletes; thus its<br />

applicability within <strong>an</strong> <strong>at</strong>hletic popul<strong>at</strong>ion is uncertain. To d<strong>at</strong>e no study has conducted <strong>an</strong>y s<strong>or</strong>t<br />

of exercise test to assess <strong>at</strong>hletic perf<strong>or</strong>m<strong>an</strong>ce. The only study to have addressed tr<strong>an</strong>sitioned<br />

<strong>at</strong>hletes in competitive sp<strong>or</strong>t used a retrospective study design <strong>an</strong>d considered muscle mass <strong>an</strong>d


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 16<br />

haemoglobin content to be predict<strong>or</strong>s of <strong>at</strong>hletic prowess. Undoubtedly these fact<strong>or</strong>s do influence<br />

perf<strong>or</strong>m<strong>an</strong>ce; however, in <strong>at</strong>hletics the whole is gre<strong>at</strong>er th<strong>an</strong> its parts <strong>an</strong>d as such, perf<strong>or</strong>m<strong>an</strong>ce<br />

during <strong>at</strong>hletic events needs to be assessed. While to d<strong>at</strong>e the d<strong>at</strong>a available does not appear to<br />

suggest th<strong>at</strong> tr<strong>an</strong>sitioned <strong>at</strong>hletes would compete <strong>at</strong> <strong>an</strong> adv<strong>an</strong>tage <strong>or</strong> disadv<strong>an</strong>tage as compared<br />

with physically b<strong>or</strong>n men <strong>an</strong>d women, there is not enough d<strong>at</strong>a available to fully subst<strong>an</strong>ti<strong>at</strong>e this<br />

claim. Much m<strong>or</strong>e research needs to be conducted bef<strong>or</strong>e a consensus c<strong>an</strong> be made. However,<br />

due to the low prevalence of tr<strong>an</strong>sitioned individuals in the popul<strong>at</strong>ion, conducting these studies<br />

will be challenging. Due to these complic<strong>at</strong>ions we may never truly know whether tr<strong>an</strong>sitioned<br />

<strong>at</strong>hletes compete <strong>at</strong> <strong>an</strong> adv<strong>an</strong>tage <strong>or</strong> disadv<strong>an</strong>tage as compared with physically b<strong>or</strong>n men <strong>an</strong>d<br />

women.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 17<br />

9.0 References<br />

1. Alessio H. Exercise-induced oxid<strong>at</strong>ive stress. Med Sci Sp<strong>or</strong>ts Exerc 25: 218-224, 1993.<br />

2. Andersen HA. The quadriceps <strong>an</strong>gle <strong>an</strong>d its rel<strong>at</strong>ion to fem<strong>or</strong>al tension. Acta Orthop<br />

Sc<strong>an</strong>d 53: 577-579, 1982.<br />

3. Anderson T. Biomech<strong>an</strong>ics <strong>an</strong>d running economy. Sp<strong>or</strong>ts Med 22: 76-89, 1996.<br />

4. Anguilo A, Tauler P, Sureda A, Cases N, Tur J, <strong>an</strong>d Pons A. Antioxid<strong>an</strong>t diet<br />

supplement<strong>at</strong>ion enh<strong>an</strong>ces aerobic perf<strong>or</strong>m<strong>an</strong>ce in am<strong>at</strong>eur sp<strong>or</strong>tsmen. J Sp<strong>or</strong>ts Sci 25: 1203-<br />

1210, 2007.<br />

5. Axell A, MacLe<strong>an</strong> H, Pl<strong>an</strong>t D, Harcourt L, Davis J, Jimenez M, H<strong>an</strong>delsm<strong>an</strong> D,<br />

Lynch G, <strong>an</strong>d Zajac J. Continuous testosterone administr<strong>at</strong>ion prevents skeletal muscle <strong>at</strong>rophy<br />

<strong>an</strong>d enh<strong>an</strong>ces resist<strong>an</strong>ce to f<strong>at</strong>igue in <strong>or</strong>chidectomized male mice. Am J Physiol Endocrinol<br />

Metab 291: E506-E516, 2006.<br />

6. Bhasin S, St<strong>or</strong>er T, Berm<strong>an</strong> N, Callegari C, Clevenger R, Phillips J, Bunnell T,<br />

Tricker R, Shirazi A, <strong>an</strong>d Casaburi R. The effects of supraphysiologic doses of testosterone<br />

on muscle size <strong>an</strong>d strength in n<strong>or</strong>mal men. N Engl J Med 335: 1-7, 1996.<br />

7. Bhasin S, Woodhouse L, Casaburi R, Singh A, Bhasin D, Berm<strong>an</strong> N, Chen X,<br />

Yarasheski K, Magli<strong>an</strong>o L, Dzekov C, Dzekov J, Bross R, Phillips J, Sinha-Hikim I, Shen<br />

R, <strong>an</strong>d St<strong>or</strong>er T. Testosterone dose-response rel<strong>at</strong>ionships in healthy young men. Am J Physiol<br />

Endocrinol Metab 281: 2001.<br />

8. Bisschop P, To<strong>or</strong>i<strong>an</strong>s A, Endert E, Wiersinga W, Go<strong>or</strong>en L, <strong>an</strong>d Fliers E. The effects<br />

of sex-steroid administr<strong>at</strong>ion on the pituitary-thyroid axis in tr<strong>an</strong>ssexuals. Eur J Endocrinol 155:<br />

11-16, 2006.<br />

9. Bl<strong>at</strong>chf<strong>or</strong>d F, Knowlton R, <strong>an</strong>d Schneider D. Plasma FFA responses to prolonged<br />

walking in untrained men <strong>an</strong>d women. Eur J Appl Physiol Occup Physiol 53: 343-347, 1985.<br />

10. Bloomer R, <strong>an</strong>d Goldfarb A. Anaerobic exercise <strong>an</strong>d oxid<strong>at</strong>ive stress: A review. C<strong>an</strong> J<br />

Appl Physiol 29: 245-263, 2004.<br />

11. Blouin K, Boivin A, <strong>an</strong>d Tchernof A. Androgens <strong>an</strong>d body f<strong>at</strong> distribution. J Steroid<br />

Biochem Mol Biol 103: 272-280, 2008.<br />

12. Bottcher J, Pfeil A, Shafer M, Petrovitch A, Seidl B, Mentzel H, Lehm<strong>an</strong>n G, Malich<br />

A, Heyne J, Hein G, Wolf G, <strong>an</strong>d Kaiser W. N<strong>or</strong>m<strong>at</strong>ive d<strong>at</strong>a f<strong>or</strong> digital X-ray radiogrammetry<br />

from a single female <strong>an</strong>d male Germ<strong>an</strong> coh<strong>or</strong>t. J Clin Densitom 9: 341-350, 2006.<br />

13. Braun B, Gerson L, Hagobi<strong>an</strong> T, Grow D, <strong>an</strong>d Chipkin S. No effect of sh<strong>or</strong>t-term<br />

testosterone m<strong>an</strong>ipul<strong>at</strong>ion on exercise substr<strong>at</strong>e metabolism in men. J Appl Physiol 99: 1930-<br />

1937, 2005.<br />

14. Brites F, Zago V, Verona J, Muzzio M, Wikinski R, <strong>an</strong>d Schreier L. HDL capacity to<br />

inhibit LDL oxid<strong>at</strong>ion in well-trained tri<strong>at</strong>hletes. Life Sci 78: 3074-3081, 2006.<br />

15. Bunt J. Metabolic actions of estradiol: signific<strong>an</strong>ce f<strong>or</strong> acute <strong>an</strong>d chronic exercise<br />

responses. Med Sci Sp<strong>or</strong>ts Exerc 22: 286-290, 1990.<br />

16. Campbell SE, <strong>an</strong>d Febbraio MA. Effect of the ovari<strong>an</strong> h<strong>or</strong>mones on GLUT 4 expression<br />

<strong>an</strong>d contraction-stimul<strong>at</strong>ed glucose uptake. Am J Physiol 282: E1139-E1146, 2002.<br />

17. Carter S, McKenzie S, Mourtzakis M, Mahoney D, <strong>an</strong>d Tarnopolsky MA. Sh<strong>or</strong>t-term<br />

17-beta-estradiol decreases glucose Ra but not whole body metabolism during endur<strong>an</strong>ce<br />

exercise. J Appl Physiol 90: 139-146, 2001.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 18<br />

18. Carter SL, McKenzie S, Mourtzakis M, Mahoney DJ, <strong>an</strong>d Tarnopolsky MA. Sh<strong>or</strong>tterm<br />

17-beta-estradiol decreases glucose Ra but not whole body metabolism during endur<strong>an</strong>ce<br />

exercise. J Appl Physiol 90: 139-146, 2001.<br />

19. CCES. C<strong>an</strong>adi<strong>an</strong> Centre f<strong>or</strong> Ethics in Sp<strong>or</strong>t. www.cces.ca.<br />

20. Comben L. Tr<strong>an</strong>sgender issues in sp<strong>or</strong>t. Problems, solutions <strong>an</strong>d the future. Research<br />

Paper, Master of Laws, University of Melbourne, 1996.<br />

21. D<strong>an</strong>tas A, Tostes R, F<strong>or</strong>tes Z, Costa S, Nigro D, <strong>an</strong>d Carvalho M. In vivo evidence<br />

f<strong>or</strong> <strong>an</strong>tioxid<strong>an</strong>t potential of estrogen in microvessels of female spont<strong>an</strong>eously hypertensive r<strong>at</strong>s.<br />

Hypertension 39: 405-411, 2002.<br />

22. De Bellis M, Keshav<strong>an</strong> M, Beers S, Hall J, Frustaci K, Masalehd<strong>an</strong> A, Noll J, <strong>an</strong>d<br />

B<strong>or</strong>ing A. Sex differences in brain m<strong>at</strong>ur<strong>at</strong>ion during childhood <strong>an</strong>d adolescence. Cerebral<br />

C<strong>or</strong>tex 11: 552-557, 2001.<br />

23. Dek<strong>an</strong>y M, Nemeskeri V, Gyare I, Harbula J, Malomsoki J, <strong>an</strong>d Pucsok J.<br />

Antioxid<strong>an</strong>t st<strong>at</strong>us of interval-trained <strong>at</strong>hletes in various sp<strong>or</strong>ts. Int J Sp<strong>or</strong>ts Medicine 27: 112-<br />

116, 2006.<br />

24. Dekkers JvD, LJ, <strong>an</strong>d Kemper H. The role of <strong>an</strong>tioxid<strong>an</strong>t vitamins <strong>an</strong>d enzymes in the<br />

prevention of exercise-induced muscle damage. Sp<strong>or</strong>ts Med 21: 216-238, 1996.<br />

25. Devries M, Hamadeh M, Graham T, <strong>an</strong>d Tarnopolsky MA. 17-beta-estradiol<br />

supplement<strong>at</strong>ion decreases glucose Ra <strong>an</strong>d Rd with no effect on muscle glycogen utiliz<strong>at</strong>ion<br />

during moder<strong>at</strong>e intensity exercise in men. J Clin Endocrinol Metab 90: 6218-6225, 2005.<br />

26. Devries M, Hamadeh MJ, Phillips SA, <strong>an</strong>d Tarnopolsky MA. Menstrual cycle phase<br />

<strong>an</strong>d sex influence muscle glycogen utiliz<strong>at</strong>ion <strong>an</strong>d glucose turnover during moder<strong>at</strong>e-intensity<br />

endur<strong>an</strong>ce exercise. Am J Physiol Regul Intergr Comp Physiol 291: R1120-R1128, 2006.<br />

27. Devries M, Lowther S, Glover A, Hamadeh M, <strong>an</strong>d Tarnopolsky M. IMCL area<br />

density, but not IMCL utiliz<strong>at</strong>ion, is higher in women during moder<strong>at</strong>e-intensity endur<strong>an</strong>ce<br />

exercise, compared with men. Am J Physiol Regul Comp Physiol 293: R2336-R2342, 2007.<br />

28. Elbers J, Asschem<strong>an</strong> H, Seidell J, <strong>an</strong>d Go<strong>or</strong>en L. Effects of sex steroid h<strong>or</strong>mones on<br />

regional f<strong>at</strong> depots as assessed my magnetic reson<strong>an</strong>ce imaging in tr<strong>an</strong>ssexuals. Am J Physiol<br />

276: E317-E325, 1999.<br />

29. Elbers J, Asschem<strong>an</strong> H, Seidell J, Megens J, <strong>an</strong>d Go<strong>or</strong>en L. Long-term testosterone<br />

administr<strong>at</strong>ion increases visceral f<strong>at</strong> in female to male tr<strong>an</strong>ssexuals. J Clin Endocrinol Metab 82:<br />

2044-2047, 1997.<br />

30. Elbers J, de Jong S, Teerlink T, Asschem<strong>an</strong> H, Seidell J, <strong>an</strong>d Go<strong>or</strong>en L. Ch<strong>an</strong>ges in<br />

f<strong>at</strong> cell size <strong>an</strong>d in vitro lipolytic activity of abdominal <strong>an</strong>d gluteal adipocytes after a one-year<br />

cross-sex h<strong>or</strong>mone administr<strong>at</strong>ion in tr<strong>an</strong>ssexuals. Metabolism 48: 1371-1377, 1999.<br />

31. Ferr<strong>an</strong>do A, Sheffield-Mo<strong>or</strong>e M, Yeckel C, Gilkison C, Ji<strong>an</strong>g J, Achacosa A,<br />

Lieberm<strong>an</strong> SA, Tipton K, Wolfe R, <strong>an</strong>d Urb<strong>an</strong> R. Testosterone administr<strong>at</strong>ion to older men<br />

improves muscle function: molecular <strong>an</strong>d physiological mech<strong>an</strong>isms. Am J Physiol Endocrinol<br />

Metab 282: 2002.<br />

32. Fl<strong>or</strong>i<strong>an</strong> M, Freim<strong>an</strong> A, <strong>an</strong>d Magder S. Tre<strong>at</strong>ment with 17-beta-estradiol reduces<br />

superoxide production in a<strong>or</strong>ta of ovariectomized r<strong>at</strong>s. Steroids 69: 779-787, 2004.<br />

33. F<strong>or</strong>sberg A, Nilsson E, Wernem<strong>an</strong> J, Bergstrom J, <strong>an</strong>d Hultm<strong>an</strong> E. Muscle<br />

composition in rel<strong>at</strong>ion to age <strong>an</strong>d sex. Clin Sci 81: 549-256, 1991.<br />

34. Friedl<strong>an</strong>der AL, Casazza GA, H<strong>or</strong>ning MA, Huie MJ, Piacentini MF, Trimmer JK,<br />

<strong>an</strong>d Brooks GA. Training-induced alter<strong>at</strong>ions of carbohydr<strong>at</strong>e metabolism in women: women<br />

respond differently from men. J Appl Physiol 85: 1175-1186, 1998.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 19<br />

35. Fulkerson J, <strong>an</strong>d Arendt E. Anteri<strong>or</strong> knee pain in females. Clin Orthop Rel<strong>at</strong> Res 372:<br />

69-73, 2000.<br />

36. Goldberg D, Palmer W, Rumsey W, <strong>an</strong>d Kendrick Z. Effect of sexual m<strong>at</strong>ur<strong>at</strong>ion <strong>an</strong>d<br />

exhaustive exercise on myocardial glycogen metabolism. Proc Soc Exp Biol Med 174: 53-58,<br />

1983.<br />

37. Go<strong>or</strong>en L, <strong>an</strong>d Bunck M. Tr<strong>an</strong>ssexuals <strong>an</strong>d competitive sp<strong>or</strong>ts. Europe<strong>an</strong> Journal of<br />

Endocrinology 151: 425-429, 2004.<br />

38. Goto K, Takahashi K, Yamamoto M, <strong>an</strong>d Takam<strong>at</strong>su K. H<strong>or</strong>mone <strong>an</strong>d recovery<br />

responses to resist<strong>an</strong>ce exercise with slow movement. J Physiol Sci 58: 7-14, 2008.<br />

39. Grelsamer R, Dubey A, <strong>an</strong>d Weinstein C. Men <strong>an</strong>d women have similar Q <strong>an</strong>gles. A<br />

clinical <strong>an</strong>d trigonometric evalu<strong>at</strong>ion. J Bone Joint Surg (Br) 87: 1498-1501, 2005.<br />

40. Guo Z, Burguera B, <strong>an</strong>d Jensen MD. Kinetics of intramuscular triglyceride f<strong>at</strong>ty acids<br />

in exercising hum<strong>an</strong>s. J Appl Physiol 89: 2057-2064, 2000.<br />

41. Guyton A, <strong>an</strong>d Hall J. Textbook of Medical Physiology. Philadelphia, PA: W.B.<br />

Saunders Comp<strong>an</strong>y, 2000, p. 1064.<br />

42. Harms C. <strong>Do</strong>es gender affect pulmonary function <strong>an</strong>d exercise capacity. Respir<strong>at</strong><strong>or</strong>y<br />

Physiology <strong>an</strong>d Neurobiology 151: 124-131, 2005.<br />

43. Hartgens F, <strong>an</strong>d Kuipers H. Effects of <strong>an</strong>drogenic-<strong>an</strong>abolic steroids in <strong>at</strong>hletes. Sp<strong>or</strong>ts<br />

Med 34: 513-554, 2004.<br />

44. Herbst K, <strong>an</strong>d Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr<br />

Metab Care 7: 271-277, 2004.<br />

45. Hogler W, Blimkie C, Cowell C, Inglis D, Rauch F, Kemp A, Wiebe P, Dunc<strong>an</strong> C,<br />

Farpour-Lambert N, <strong>an</strong>d Woodhead H. Sex-specific developmental ch<strong>an</strong>ges in muscle size<br />

<strong>an</strong>d bone geometry <strong>at</strong> the fem<strong>or</strong>al shaft. Bone J<strong>an</strong> 26 Epub ahead of print: 2008.<br />

46. Hopkins S, <strong>an</strong>d Harms C. Gender <strong>an</strong>d pulmonary gas exch<strong>an</strong>ge during exercise. Med<br />

Sci Sp<strong>or</strong>ts Exerc 32: 50-56, 2004.<br />

47. H<strong>or</strong>ton TJ, Pagliassotti MJ, Hobbs K, <strong>an</strong>d Hill JO. Fuel metabolism in men <strong>an</strong>d<br />

women during <strong>an</strong>d after long-dur<strong>at</strong>ion exercise. J Appl Physiol 85: 1823-1832, 1998.<br />

48. Hostler D, Schwiri<strong>an</strong> C, Campos G, Toma K, Crill M, Hagerm<strong>an</strong> G, Hagerm<strong>an</strong> F,<br />

<strong>an</strong>d Staron R. Skeletal muscle adapt<strong>at</strong>ions in elastic resist<strong>an</strong>ce-trained young men <strong>an</strong>d women.<br />

Eur J Appl Physiol 86: 112-118, 2001.<br />

49. IOC. Stockholm Consensus on sex reassignment in sp<strong>or</strong>ts.<br />

http://www.olympic.<strong>or</strong>g/uk/<strong>or</strong>g<strong>an</strong>is<strong>at</strong>ion/commissions/medical/full_st<strong>or</strong>y_uk.aspid=841.<br />

50. Itagaki T, Shimizu I, Cheng X, Yu<strong>an</strong> Y, Oshio A, Tamaki K, Fukuno H, Honda H,<br />

Okamura Y, <strong>an</strong>d Ito S. Opposing effects of oestradiol <strong>an</strong>d progesterone on intracellular<br />

p<strong>at</strong>hways <strong>an</strong>d activ<strong>at</strong>ion processes in the oxid<strong>at</strong>ive stress induced activ<strong>at</strong>ion of cultured r<strong>at</strong><br />

hep<strong>at</strong>ic stell<strong>at</strong>e cells. Gut 54: 1782-1789, 2005.<br />

51. Ivey P, <strong>an</strong>d Gaesser G. Postexercise muscle <strong>an</strong>d liver glycogen metabolism in male <strong>an</strong>d<br />

female r<strong>at</strong>s. J Appl Physiol 62: 1250-1254, 1987.<br />

52. Jacobeit J, Go<strong>or</strong>en L, <strong>an</strong>d Schulte H. Long-acting intramuscular testosterone<br />

undec<strong>an</strong>o<strong>at</strong>e f<strong>or</strong> tre<strong>at</strong>ment of female-to-male tr<strong>an</strong>sgender individuals. J Sex Med 4: 1479-1484,<br />

2007.<br />

53. James A, L<strong>or</strong>raine M, Cullen D, Goodm<strong>an</strong> C, Dawson B, Palmer T, <strong>an</strong>d Fournier P.<br />

Muscle glycogen supercompens<strong>at</strong>ion: absence of a gender-rel<strong>at</strong>ed difference. Eur J Appl Physiol<br />

85: 533-538, 2001.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 20<br />

54. Ji H, Zheng W, Menini S, Pesce C, Kim J, Wu X, Mulroney S, <strong>an</strong>d S<strong>an</strong>dberg K.<br />

Female protection in progressive renal disease is associ<strong>at</strong>ed with estradiol <strong>at</strong>tenu<strong>at</strong>ion of<br />

superoxide production. Gender Medicine 4: 56-70, 2007.<br />

55. Ji L, <strong>an</strong>d Fu R. Responses of glut<strong>at</strong>hione system <strong>an</strong>d <strong>an</strong>tioxid<strong>an</strong>t enzymes to exhaustive<br />

exercise <strong>an</strong>d hydroperoxide. J Appl Physiol 72: 549-554, 1992.<br />

56. Kaji H, Kosaka R, Yamauchi M, Kuno K, Chihara K, <strong>an</strong>d Sugimoto T. Effects of<br />

age, grip strength <strong>an</strong>d smoking on f<strong>or</strong>earm volumetric bone mineral density <strong>an</strong>d bone geometry<br />

by peripheral qu<strong>an</strong>tit<strong>at</strong>ive computed tomography: comparisons between female <strong>an</strong>d male.<br />

Endocr J<br />

52: 659-666, 2006.<br />

57. K<strong>an</strong>ehisa H, Ikegawa S, <strong>an</strong>d Fukunaga T. Comparison of muscle cross-sectional area<br />

<strong>an</strong>d strength between untrained women <strong>an</strong>d men. Eur J Appl Physiol Occup Physiol 68: 148-154,<br />

1994.<br />

58. K<strong>an</strong>ehisa H, Okuyama H, Ikegawa S, <strong>an</strong>d Fukunaga T. Sex difference in f<strong>or</strong>ce<br />

gener<strong>at</strong>ion capacity during repe<strong>at</strong>ed maximal knee extensions. Eur J Appl Physiol Occup Physiol<br />

73: 557-562, 1996.<br />

59. Karolkiewicz J, Szczesniak L, Deskur-Smielecko E, Nowak A, Stemplewski R, <strong>an</strong>d<br />

Szeklicki R. Oxid<strong>at</strong>ive stress <strong>an</strong>d <strong>an</strong>tioxid<strong>an</strong>t defense system in healthy, elderly men:<br />

rel<strong>at</strong>ionship to physical activity. Aging Male 6: 100-105, 2003.<br />

60. Kendrick ZV, <strong>an</strong>d Ellis GS. Effect of estradiol on tissue glycogen metabolism <strong>an</strong>d lipid<br />

availability in exercised male r<strong>at</strong>s. J Appl Physiol 71: 1694-1699, 1991.<br />

61. Kendrick ZV, Steffen CA, Rumsey WL, <strong>an</strong>d Goldberg DI. Effect of estradiol on<br />

tissue glycogen metabolism in exercised ooph<strong>or</strong>ectomized r<strong>at</strong>s. J Appl Physiol 63: 492-496,<br />

1987.<br />

62. Kuipers H. Exercise-induced muscle damage. Int J Sp<strong>or</strong>ts Med 15: 132-135, 1994.<br />

63. Maud P, <strong>an</strong>d Schultz B. Gender comparisons in <strong>an</strong>aerobic power <strong>an</strong>d <strong>an</strong>aerobic capacity<br />

test. Br J Sp<strong>or</strong>ts Med 20: 51-54, 1986.<br />

64. McClar<strong>an</strong> S, Harms C, Pegelow D, <strong>an</strong>d Dempsey J. Smaller lungs in women affect<br />

exercise hyperpnea. J Appl Physiol 84: 1872-1881, 1998.<br />

65. Mead J. Dys<strong>an</strong>apsis in n<strong>or</strong>mal lungs assessed by the rel<strong>at</strong>ionship between maximal flow,<br />

st<strong>at</strong>ic recoil, <strong>an</strong>d vital capacity. Am Rev Respir Dis 121: 339-343, 1980.<br />

66. Mittend<strong>or</strong>fer B, H<strong>or</strong>owitz JF, <strong>an</strong>d Klein S. Effect of gender on lipid kinetics during<br />

endur<strong>an</strong>ce exercise of moder<strong>at</strong>e intensity in untrained subjects. Am J Physiol Endocrinol Metab<br />

283: E58-65, 2002.<br />

67. Ramirez I. Estradiol-induced ch<strong>an</strong>ges in lipoprotein lipase, e<strong>at</strong>ing, <strong>an</strong>d body weight in<br />

r<strong>at</strong>s. Am J Physiol (Endocrinol Metab) 240: E533-E538, 1981.<br />

68. Roepst<strong>or</strong>ff C, Thiele M, Hillig T, Pilegaard H, <strong>an</strong>d Richter E. Higher skeletal muscle<br />

alpha-2-AMPK activ<strong>at</strong>ion <strong>an</strong>d lower energy charge <strong>an</strong>d f<strong>at</strong> oxid<strong>at</strong>ion in men th<strong>an</strong> women during<br />

submaximal exercise. J Physiol 574: 2006.<br />

69. Romijn JA, Coyle EF, Sidossis LS, Rosenbl<strong>at</strong>t J, <strong>an</strong>d Wolfe RR. Substr<strong>at</strong>e<br />

metabolism during different exercise intensities in endur<strong>an</strong>ce-trained women. J Appl Physiol 88:<br />

1701-1714, 2000.<br />

70. Rooney TP, Kendrick ZV, Carlson J, Ellis GS, M<strong>at</strong>akevich B, L<strong>or</strong>usso SM, <strong>an</strong>d<br />

McCall JA. Effect of estradiol on the temp<strong>or</strong>al p<strong>at</strong>tern of exercise-induced tissue glycogen<br />

depletion in male r<strong>at</strong>s. J Appl Physiol 75: 1502-1506, 1993.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 21<br />

71. Ruby B, Robergs R, W<strong>at</strong>ers D, Burge M, Mermier C, <strong>an</strong>d Stolarczyk L. Effects of<br />

estradiol on substr<strong>at</strong>e turnover during exercise in amen<strong>or</strong>rheic females. Med Sci Sp<strong>or</strong>ts Exerc 29:<br />

1160-1169, 1997.<br />

72. Salton C, Chu<strong>an</strong>g M, O'<strong>Do</strong>nnell C, Kupka M, Larson M, Kissinger K, Edelm<strong>an</strong> R,<br />

Levy D, <strong>an</strong>d M<strong>an</strong>ning W. Gender differences <strong>an</strong>d n<strong>or</strong>mal left ventricular <strong>an</strong><strong>at</strong>omy in <strong>an</strong> adult<br />

popul<strong>at</strong>ion free of hypertension. A cardiovascular magnetic reson<strong>an</strong>ce study of the Framingham<br />

Heart Study Offspring coh<strong>or</strong>t. J Am Coll Cardiol 39: 1055-1060, 2002.<br />

73. S<strong>an</strong>dstede J, Lipke C, Beer M, Hofm<strong>an</strong>n S, Pabst T, Kenn W, Neubauer S, <strong>an</strong>d<br />

Hahn D. Age- <strong>an</strong>d gender-specific differences in left <strong>an</strong>d right ventricular cardiac function <strong>an</strong>d<br />

mass determined by cine magnetic reson<strong>an</strong>ce imaging. Eur Radiol 10: 438-442, 2000.<br />

74. Sastre J, Asensi M, Gasco E, Pallardo F, Ferrero J, <strong>an</strong>d Furukawa T. Exhaustive<br />

physical exercise causes oxid<strong>at</strong>ion of glut<strong>at</strong>hione st<strong>at</strong>us in blood: Prevention by <strong>an</strong>tioxid<strong>an</strong>t<br />

administr<strong>at</strong>ion. Am J Physiol 263: R992-R995, 1992.<br />

75. Schroeder E, Terk M, <strong>an</strong>d S<strong>at</strong>tler F. Androgen therapy improves muscle mass <strong>an</strong>d<br />

strength but not muscle quality: results from two studies. Am J Physiol Endocrinol Metab 285:<br />

2003.<br />

76. Schwartz J, K<strong>at</strong>z S, Fegley R, <strong>an</strong>d Tockm<strong>an</strong> M. Sex <strong>an</strong>d race differences in the<br />

development of lung function. Am Rev Respir Dis 138: 1415-1421, 1988.<br />

77. Sen C, <strong>an</strong>d Packer L. Antioxid<strong>an</strong>t <strong>an</strong>d redox regul<strong>at</strong>ion of gene tr<strong>an</strong>scription. FASEB J<br />

10: 709-720, 1996.<br />

78. Simoneau J, L<strong>or</strong>tie G, Boulay M, Marcotte M, Thibault M, <strong>an</strong>d Bouchard C. Hum<strong>an</strong><br />

skeletal muscle fiber type alter<strong>at</strong>ion with high-intensity intermittent training. Eur J Appl Physiol<br />

Occup Physiol 54: 250-253, 1985.<br />

79. Simoneau J, L<strong>or</strong>tie G, Boulay M, Thibault M, Theriault G, <strong>an</strong>d Bouchard C.<br />

Skeletal muscle histochemical <strong>an</strong>d biochemical characteristics in sedentary male <strong>an</strong>d female<br />

subjects. C<strong>an</strong> J Physiol Pharmacol 63: 30-35, 1985.<br />

80. Snyder P, Peachey H, H<strong>an</strong>noush P, Berlin J, Loh L, Lenrow D, Holmes J, Dlew<strong>at</strong>i<br />

A, S<strong>an</strong>t<strong>an</strong>na J, Rosen C, <strong>an</strong>d Strom B. Effect of testosterone tre<strong>at</strong>ment on body composition<br />

<strong>an</strong>d muscle strength in men over 65 years of age. J Clin Endocrinol Metab 88: 2647-2653, 1999.<br />

81. Staron R, Hagerm<strong>an</strong> F, Hikida R, Murray T, Hostler D, Crill M, Ragg K, <strong>an</strong>d Toma<br />

K. Fiber type composition of the vastus l<strong>at</strong>eralis muscle of young men <strong>an</strong>d women. J Histochem<br />

Cytochem 48: 623-629, 2000.<br />

82. Staron R, Karapondo D, Kraemer W, Fry A, G<strong>or</strong>don S, Falkel J, Hagerm<strong>an</strong> F, <strong>an</strong>d<br />

Hikida R. Skeletal muscle adapt<strong>at</strong>ions during early phase of heavy-resist<strong>an</strong>ce training in men<br />

<strong>an</strong>d women. J Appl Physiol 76: 1247-1255, 1994.<br />

83. Steffensen CH, Roepst<strong>or</strong>ff C, Madsen M, <strong>an</strong>d Kiens B. Myocellular triacylglycerol<br />

breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab 282:<br />

E634-642, 2002.<br />

84. Stirone C, Duckles S, Krause D, <strong>an</strong>d Procaccio V. Estrogen increases mitochondrial<br />

efficiency <strong>an</strong>d reduces oxid<strong>at</strong>ive stress in cerebral blood vessels. Mol Pharmacol 68: 2005.<br />

85. St<strong>or</strong>er T, Magli<strong>an</strong>o L, Woodhouse L, Lee M, Dzekov C, Dzekov J, Casaburi R, <strong>an</strong>d<br />

Bhasin S. Testosterone dose-dependently increases maximal voluntary strength <strong>an</strong>d leg power,<br />

but does not affect f<strong>at</strong>igability <strong>or</strong> specific tension. J Clin Endocrinol Metab 88: 1478-1485, 2003.<br />

86. Tarnopolsky L, Mac<strong>Do</strong>ugall J, Atkinson ST, Tarnopolsky MA, <strong>an</strong>d Sutton J. Gender<br />

differences in substr<strong>at</strong>e f<strong>or</strong> endur<strong>an</strong>ce exercise. J Appl Physiol 68: 302-308, 1990.


<strong>Tr<strong>an</strong>sitioned</strong> <strong>Athletes</strong> <strong>an</strong>d Competition 22<br />

87. Tarnopolsky M, Zawada C, Richmond L, Carter S, Shearer J, Graham T, <strong>an</strong>d<br />

Phillips S. Gender differences in carbohydr<strong>at</strong>e loading are rel<strong>at</strong>ed to energy intake. J Appl<br />

Physiol 91: 225-230, 2001.<br />

88. Tarnopolsky MA, Atkinson SA, Phillips SA, <strong>an</strong>d Mac<strong>Do</strong>ugall JD. Carbohydr<strong>at</strong>e<br />

loading <strong>an</strong>d metabolism during exercise in men <strong>an</strong>d women. J Appl Physiol 78: 1360-1368,<br />

1995.<br />

89. Tarnopolsky MA, Roy BD, Mac<strong>Do</strong>ugall JD, McKenzie S, Martin J, <strong>an</strong>d Ettinger S.<br />

Sh<strong>or</strong>t-term 17-beta-estradiol administr<strong>at</strong>ion does not affect metabolism in young males. Int J of<br />

Sp<strong>or</strong>ts Med 22: 175-180, 2001.<br />

90. Venables MC, Achten J, <strong>an</strong>d Jeukendrup AE. Determin<strong>an</strong>ts of f<strong>at</strong> oxid<strong>at</strong>ion during<br />

exercise in healthy men <strong>an</strong>d women: a cross-sectional study. J Appl Physiol 98: 160-167, 2005.<br />

91. Wagner A, Schroeter M, <strong>an</strong>d Hecker M. 17beta-estradiol inhibition of NADPH<br />

oxidase expression in hum<strong>an</strong> endothelial cells. FASEB J 15: 2121-2130, 2001.<br />

92. Weber C, <strong>an</strong>d Schneider D. Maximal accumul<strong>at</strong>ed oxygen deficit expressed rel<strong>at</strong>ive to<br />

the active muscle mass f<strong>or</strong> cycling in untrained male <strong>an</strong>d female subjects. Eur J APpl Physiol 82:<br />

255-261, 2000.<br />

93. Wells J. Sexual dim<strong>or</strong>phism of body composition. Best Pract Res Clin Endocrinol Metab<br />

21: 415-430, 2007.<br />

94. White L, Ferguson M, McCoy S, <strong>an</strong>d Kim H. Intramyocellular lipid ch<strong>an</strong>ges in men<br />

<strong>an</strong>d women during aerobic exercise: a (1)H-magnetic reson<strong>an</strong>ce spectroscopy study. J Clin<br />

Endocrinol Metab 88: 5638-5643, 2003.<br />

95. Williams K, Cav<strong>an</strong>agh P, <strong>an</strong>d Ziff J. Biomech<strong>an</strong>ical studies of elite female dist<strong>an</strong>ce<br />

runners. Int J Sp<strong>or</strong>ts Med 8: 107-118, 1987.<br />

96. Wilson D, Flowers C, Carlile S, <strong>an</strong>d Udall K. Estrogen tre<strong>at</strong>ment <strong>an</strong>d gonadal function<br />

in the regul<strong>at</strong>ion of lipoprotein lipase. Atherosclerosis 24: 491-499, 1976.<br />

97. Witt E, Reznick A, Viguie C, Starke-Reed P, <strong>an</strong>d Packer L. Exercise, oxid<strong>at</strong>ive<br />

damage <strong>an</strong>d effects of <strong>an</strong>tioxid<strong>an</strong>t m<strong>an</strong>ipul<strong>at</strong>ion. J Nutr 122: 766-773, 1992.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!