12.02.2015 Views

Quantum Harmonic Oscillator Eigenvalues and Wavefunctions:

Quantum Harmonic Oscillator Eigenvalues and Wavefunctions:

Quantum Harmonic Oscillator Eigenvalues and Wavefunctions:

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2 QUantHO_Waven.nb<br />

mechanical momentum operator (p = -i h<br />

2 p<br />

∂<br />

) by recalling the that the relationship between the<br />

∂ x<br />

kinetic energy <strong>and</strong> the momentum is: E kin = m v 2<br />

= p2<br />

. In the case of harmonic oscillator, the<br />

2 2 m<br />

action of a quantum mechanical potential operator is identical to the multiplication with the<br />

classical potential.<br />

In[6]:= Hamiltonian for the <strong>Quantum</strong> <strong>Harmonic</strong> <strong>Oscillator</strong>: H H kin H pot <br />

Hf <br />

h2<br />

Dtf, x, 2 Vho f<br />

8 2 Out[6]=<br />

2f 2 x 2 2 h2 Dtf, x, 2<br />

8 2 <br />

In[7]:= Solving the Vibrational Schrødinger Equation: H E <br />

VibrWF DSolve Hx Energyv x, x, x<br />

Out[7]=<br />

h 2 Energyv<br />

x C2 ParabolicCylinderD , 2 2 x <br />

2h<br />

h<br />

<br />

h 2 Energyv<br />

C1 ParabolicCylinderD , 2 2 x <br />

2h<br />

h<br />

<br />

In[8]:=<br />

Consider solutions with real variables only <br />

solnHerm FunctionExp<strong>and</strong>x . VibrWF . C2 0<br />

Out[8]=<br />

h 2 Energyv<br />

<br />

2<br />

4h<br />

2 2 x 2 <br />

h 2 Energyv<br />

h C1 HermiteH , 2 x <br />

2h<br />

h<br />

<br />

In[9]:=<br />

Obtain allowed energies by restricting Hermite polynomials to integer orders <br />

Env Solve 2 Energyv h <br />

0 v, Energyv<br />

2h<br />

EnHO TableEnergyv .Env, v, 0, 2 Flatten<br />

Out[9]=<br />

Energyv 1 h 1 2v <br />

2<br />

Out[10]=<br />

h <br />

2 , 3h<br />

2 , 5h<br />

2 <br />

ü<br />

We see that the concept of quantized vibrational energy states (v = 0, 1, 2, 3 ... ) arises naturally<br />

from the discrete spectrum of physically realistic eigenvalues of the solution to the vibrational<br />

Schrødinger equation. This spectrum can be experimentally probed using infrared<br />

spectroscopy.<br />

In[11]:=<br />

General vibrational wavefunction <br />

v, x SimplifysolnHerm . Env Flatten<br />

Out[11]=<br />

2 v2 2 2 x 2 <br />

h C1 HermiteHv, 2 x <br />

h

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!