18.02.2015 Views

Effects of soil mesofauna and microclimate on nitrogen dynamics in ...

Effects of soil mesofauna and microclimate on nitrogen dynamics in ...

Effects of soil mesofauna and microclimate on nitrogen dynamics in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

African Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology Vol. 10(35), pp. 6732-6742, 13 July, 2011<br />

Available <strong>on</strong>l<strong>in</strong>e at http://www.academicjournals.org/AJB<br />

ISSN 1684–5315 © 2011 Academic Journals<br />

Full Length Research Paper<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>microclimate</str<strong>on</strong>g> <strong>on</strong> <strong>nitrogen</strong><br />

<strong>dynamics</strong> <strong>in</strong> leaf litter decompositi<strong>on</strong> al<strong>on</strong>g an elevati<strong>on</strong><br />

gradient<br />

Shaojun Wang 1, 2 * <str<strong>on</strong>g>and</str<strong>on</strong>g> H<strong>on</strong>ghua Ruan 2<br />

1 Southwest Forestry University, Bail<strong>on</strong>gsi, Kunm<strong>in</strong>g 650224, People’s Republic <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch<strong>in</strong>a.<br />

2 Key Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry Ecological Eng<strong>in</strong>eer<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Jiangsu Prov<strong>in</strong>ce, Nanj<strong>in</strong>g Forestry University, L<strong>on</strong>gpan Road<br />

159, Nanj<strong>in</strong>g 210037, People’s Republic <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch<strong>in</strong>a.<br />

Accepted 13 April, 2011<br />

The nutrient <strong>dynamics</strong> <strong>in</strong> decompos<strong>in</strong>g litter has proved to play a crucial role <strong>in</strong> regulat<strong>in</strong>g the nutrient<br />

status <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetati<strong>on</strong> productivity. Little is known, however, about the effect mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> decomposer <str<strong>on</strong>g>and</str<strong>on</strong>g> its envir<strong>on</strong>ment <strong>on</strong> the <strong>nitrogen</strong> (N) m<strong>in</strong>eralisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter al<strong>on</strong>g an elevati<strong>on</strong><br />

gradient <strong>in</strong> such sites. We <strong>in</strong>vestigated the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna us<strong>in</strong>g litter bags <strong>on</strong> N <strong>dynamics</strong> <strong>in</strong><br />

decompos<strong>in</strong>g Castanopsis carlesii litter al<strong>on</strong>g an elevati<strong>on</strong> gradient across four types <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems <strong>in</strong><br />

southeastern Ch<strong>in</strong>a: evergreen broadleaf forest (EVB), c<strong>on</strong>iferous forest (COF), dwarf forest (DWF) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

alp<strong>in</strong>e meadow (ALM). The mean c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna to N c<strong>on</strong>centrati<strong>on</strong> was 12.6% at EVB,<br />

10.6% at COF, 5.4% at DWF, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.1% at ALM. The N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter with mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna was<br />

significantly related to H (Shann<strong>on</strong>-Wiener) <str<strong>on</strong>g>and</str<strong>on</strong>g> GN (group number) across the four sites. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <strong>on</strong> N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter were significantly l<strong>in</strong>ked to some special faunal groups,<br />

<strong>in</strong>clud<strong>in</strong>g Oribatida, Mesostigmata <str<strong>on</strong>g>and</str<strong>on</strong>g> Collembola. The N c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> litter bags were positively<br />

related with mean annual air temperature, <str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> litter moisture al<strong>on</strong>g the elevati<strong>on</strong><br />

gradient. We c<strong>on</strong>cluded that the rapid accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> lower elevati<strong>on</strong> sites dur<strong>in</strong>g the first few<br />

m<strong>on</strong>ths can result <strong>in</strong> the retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mobile N <strong>in</strong> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <strong>on</strong> N <strong>dynamics</strong><br />

may be <strong>in</strong>timately associated with <str<strong>on</strong>g>microclimate</str<strong>on</strong>g> (warm <str<strong>on</strong>g>and</str<strong>on</strong>g> humid) <str<strong>on</strong>g>and</str<strong>on</strong>g> faunal diversity al<strong>on</strong>g the<br />

elevati<strong>on</strong> gradient.<br />

Key words: Nitrogen c<strong>on</strong>centrati<strong>on</strong>, mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna, faunal diversity, elevati<strong>on</strong> gradient, Wuyi Nati<strong>on</strong>al Nature<br />

Reserve, Ch<strong>in</strong>a.<br />

INTRODUCTION<br />

The process <str<strong>on</strong>g>of</str<strong>on</strong>g> litter decompositi<strong>on</strong> plays a vital role <strong>in</strong><br />

regulat<strong>in</strong>g ecosystem carb<strong>on</strong> storage <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient cycl<strong>in</strong>g<br />

(Wardle, 2002; Santiago, 2007). The nutrient <strong>dynamics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter related to the decompositi<strong>on</strong> rates directly determ<strong>in</strong>e<br />

the nutrient status <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem, thereby exert<strong>in</strong>g<br />

crucial c<strong>on</strong>trol <strong>on</strong> vegetati<strong>on</strong> productivity (Moretto <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Diste, 2003; Knorr et al., 2005; Van Der Heijden et al.,<br />

2008). Decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient <strong>dynamics</strong> are known<br />

to be regulated by the decomposer activities (Heneghan<br />

et al., 1999; Wang et al., 2003; Strickl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 2009),<br />

*Corresp<strong>on</strong>d<strong>in</strong>g author. E-mail: wanghn2008@yahoo.com.cn.<br />

Tel: + 86-871-386-277-8.<br />

which depend <strong>on</strong> physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical envir<strong>on</strong>mental<br />

factors such as temperature, humidity <str<strong>on</strong>g>and</str<strong>on</strong>g> litter<br />

biochemical quality (Vitousek et al., 1994; Lee <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Bukaveckas, 2002; Ross et al., 2002; Tr<strong>in</strong>der et al.,<br />

2008). It is shown that, the biochemical quality <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

especially <strong>nitrogen</strong> (N) c<strong>on</strong>centrati<strong>on</strong>s as a dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for<br />

decomposers, is believed to be related to the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

decompositi<strong>on</strong> (Enríquez et al., 1993; Vivanco <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Aust<strong>in</strong>, 2008). The slow litter decay with poor N quality<br />

may be a result <str<strong>on</strong>g>of</str<strong>on</strong>g> decomposer activities that are limited<br />

due to a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients. Soil biology can cause N<br />

immobilizati<strong>on</strong> from outside when N c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> the<br />

substrate is low, so the N c<strong>on</strong>tent <strong>in</strong> the litter tends to<br />

<strong>in</strong>crease, to meet microbial dem<str<strong>on</strong>g>and</str<strong>on</strong>g> (Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Huang,<br />

2001; Baker et al., 2001).


Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Ruan 6733<br />

Studies <strong>on</strong> the N cycl<strong>in</strong>g across ecosystem types<br />

revealed that, <strong>in</strong>crease <strong>in</strong> the envir<strong>on</strong>mental temperature<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> moisture generally results <strong>in</strong> greater rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microbial activity (Strickl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 2009), thereby<br />

<strong>in</strong>creas<strong>in</strong>g the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> N m<strong>in</strong>eralizati<strong>on</strong><br />

from plant litter. Vitousek et al. (1994) suggested that,<br />

decompositi<strong>on</strong> rates decrease exp<strong>on</strong>entially as<br />

temperature falls al<strong>on</strong>g elevati<strong>on</strong> gradients. The climatic<br />

variability <strong>in</strong> warm humid z<strong>on</strong>es means that the<br />

<strong>in</strong>teracti<strong>on</strong>s between decomposer <str<strong>on</strong>g>and</str<strong>on</strong>g> its envir<strong>on</strong>ment<br />

may be the str<strong>on</strong>gest determ<strong>in</strong>ants <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong><br />

<strong>dynamics</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> N m<strong>in</strong>eralizati<strong>on</strong> (Lavelle et al., 1993;<br />

Turetsky et al., 2008). Forest <str<strong>on</strong>g>soil</str<strong>on</strong>g>s at warm humid z<strong>on</strong>es<br />

also support a highly diverse microbial community (Lodge<br />

et al., 1996; Lan et al., 2010) <str<strong>on</strong>g>and</str<strong>on</strong>g> the microbial<br />

producti<strong>on</strong> also c<strong>on</strong>tributes to the retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N.<br />

However, because <str<strong>on</strong>g>of</str<strong>on</strong>g> this potential for high N<br />

immobilizati<strong>on</strong> by microbes, microbes may compete with<br />

plants for nutrients <strong>in</strong> N-limit<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s (Zak et al.,<br />

1990).<br />

The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna community to N<br />

<strong>dynamics</strong> can be expected because <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna can<br />

stimulate or <strong>in</strong>hibit microbial producti<strong>on</strong> by graz<strong>in</strong>g some<br />

microbes (Lussenhop, 1992). It was found that, <strong>in</strong> general<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> belowground food web <str<strong>on</strong>g>and</str<strong>on</strong>g> ecosystem<br />

process, the faunal effect <strong>on</strong> decompositi<strong>on</strong> was <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

determ<strong>in</strong>ed by the <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> animals <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microbial populati<strong>on</strong>s (Zheng et al., 1997; Scheu <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Falca, 2000; Scheu <str<strong>on</strong>g>and</str<strong>on</strong>g> Folger, 2004). Whether microbial<br />

producti<strong>on</strong> <strong>in</strong>creases or decreases <strong>in</strong> resp<strong>on</strong>se to graz<strong>in</strong>g<br />

appearances depends <strong>on</strong> the graz<strong>in</strong>g <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

fauna (Hanl<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong>, 1979). A faunal <strong>in</strong>fluence<br />

<strong>on</strong> microbial N accumulati<strong>on</strong> would therefore, result <strong>in</strong><br />

greater or lower N c<strong>on</strong>centrati<strong>on</strong> for a given mass <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

rema<strong>in</strong><strong>in</strong>g, depend<strong>in</strong>g <strong>on</strong> the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> grazers <strong>in</strong> the<br />

system.<br />

However, the <strong>in</strong>teracti<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> microbes for litter decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient<br />

m<strong>in</strong>eralizati<strong>on</strong> are poorly understood (Sulkava <str<strong>on</strong>g>and</str<strong>on</strong>g> Huhta,<br />

1998). Some mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (Collembola <str<strong>on</strong>g>and</str<strong>on</strong>g> Oribatida) are<br />

proved to prefer ectomycorrhizal over saprotrophic fungi<br />

(Shaw, 1992; Hiol et al., 1994; Ruess et al., 2000).<br />

Furthermore, many mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna can modify the physical<br />

envir<strong>on</strong>ments <str<strong>on</strong>g>of</str<strong>on</strong>g> plant litter decomposers. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

trophic <strong>in</strong>teracti<strong>on</strong>s <strong>in</strong>fluence nutrient m<strong>in</strong>eralizati<strong>on</strong>, but<br />

the diversity significance <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna is not well known.<br />

In this paper, carb<strong>on</strong> (C) <str<strong>on</strong>g>and</str<strong>on</strong>g> N <strong>dynamics</strong> <strong>in</strong> decompos<strong>in</strong>g<br />

Castanopsis carlesii litter c<strong>on</strong>f<strong>in</strong>ed <strong>in</strong> litterbags al<strong>on</strong>g an<br />

elevati<strong>on</strong> gradient <strong>in</strong> the Wuyi Mounta<strong>in</strong>s was exam<strong>in</strong>ed.<br />

Our objectives were to exam<strong>in</strong>e: (1) The N <strong>dynamics</strong> <strong>in</strong><br />

decompos<strong>in</strong>g litter al<strong>on</strong>g the elevati<strong>on</strong> gradients; (2) the<br />

relati<strong>on</strong>ships between the compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>and</str<strong>on</strong>g> their c<strong>on</strong>tributi<strong>on</strong> to litter N<br />

c<strong>on</strong>centrati<strong>on</strong> al<strong>on</strong>g the elevati<strong>on</strong> gradient; (3) the<br />

<strong>in</strong>teracti<strong>on</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>and</str<strong>on</strong>g> its <str<strong>on</strong>g>microclimate</str<strong>on</strong>g><br />

(warm <str<strong>on</strong>g>and</str<strong>on</strong>g> humid) <strong>in</strong> regulat<strong>in</strong>g N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

across the four sites.<br />

MATERIALS AND METHODS<br />

Site descripti<strong>on</strong>s<br />

This study was carried out at the Wuyi Nati<strong>on</strong>al Nature Reserve <strong>in</strong><br />

the northern Fujiang prov<strong>in</strong>ce; a 56,527 ha forested area <strong>in</strong> the<br />

southeast <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch<strong>in</strong>a (117°27-117°51E, 27°33- 27°54N). The<br />

vegetati<strong>on</strong>s <strong>in</strong> the Wuyi Mounta<strong>in</strong>s are distributed with clear vertical<br />

z<strong>on</strong>ati<strong>on</strong> al<strong>on</strong>g elevati<strong>on</strong>al gradients. Four sites with a range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elevati<strong>on</strong> from 300 m to 2158 m above sea level were established<br />

to <strong>in</strong>vestigate the relati<strong>on</strong>ships between <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>and</str<strong>on</strong>g> N<br />

<strong>dynamics</strong> across an altitud<strong>in</strong>al gradient. The vegetati<strong>on</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

four sites were evergreen broadleaf forest (EVB), c<strong>on</strong>iferous forest<br />

(COF), dwarf forest (DWF) <str<strong>on</strong>g>and</str<strong>on</strong>g> alp<strong>in</strong>e meadow (ALM), respectively.<br />

A brief summary <str<strong>on</strong>g>of</str<strong>on</strong>g> their characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> climate, vegetati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> are given <strong>in</strong> Table 1.<br />

Experimental design <str<strong>on</strong>g>and</str<strong>on</strong>g> sampl<strong>in</strong>g<br />

Recently senesced leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> C. carlesii, dom<strong>in</strong>ate plant species <strong>in</strong><br />

the Wuyi Field Ecological Research Stati<strong>on</strong>, were collected <strong>in</strong> the<br />

evergreen broadleaf forest at the Wuyi Mounta<strong>in</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

approximately 4 g <str<strong>on</strong>g>of</str<strong>on</strong>g> air-dried litter was placed <strong>in</strong> nyl<strong>on</strong> litter bags<br />

(10 x 10 cm). The orig<strong>in</strong>al N c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the litter was 1.47% <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

<strong>in</strong>itial C c<strong>on</strong>centrati<strong>on</strong> was 50.26% (C: N ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 34). Leaf litter<br />

samples were oven-dried at 60°C to establish the relati<strong>on</strong>ship<br />

between air-dry <str<strong>on</strong>g>and</str<strong>on</strong>g> oven-dry mass.<br />

With<strong>in</strong> an envir<strong>on</strong>mentally homogeneous part <str<strong>on</strong>g>of</str<strong>on</strong>g> each site, a total<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 288 litter bags were placed horiz<strong>on</strong>tally <strong>on</strong> the <str<strong>on</strong>g>soil</str<strong>on</strong>g> surface <strong>in</strong> the<br />

field: 72 <strong>in</strong> each <str<strong>on</strong>g>of</str<strong>on</strong>g> the sites (EVB, COF, DWF <str<strong>on</strong>g>and</str<strong>on</strong>g> ALM). At each<br />

site, 72 litter bags c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g leaf litter <str<strong>on</strong>g>of</str<strong>on</strong>g> C. carlesii were placed <strong>in</strong>to<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> three r<str<strong>on</strong>g>and</str<strong>on</strong>g>om blocks (50 × 60 m). Each block was spaced<br />

about 10 m apart.<br />

With<strong>in</strong> each block, two 4 × 4 m plots were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly set up. Two<br />

treatments were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly assigned to the two plots with<strong>in</strong> each<br />

block: c<strong>on</strong>trol (1.00 mm mesh size) <str<strong>on</strong>g>and</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded (0.01<br />

mm mesh size). 12 litter bags were placed <strong>on</strong> each plot.<br />

Every two m<strong>on</strong>ths for <strong>on</strong>e year, 12 litter bags (six from<br />

mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded litterbags <str<strong>on</strong>g>and</str<strong>on</strong>g> six from c<strong>on</strong>trol <strong>on</strong>es) were<br />

collected at r<str<strong>on</strong>g>and</str<strong>on</strong>g>om from each site <str<strong>on</strong>g>and</str<strong>on</strong>g> six litter bags (two from<br />

each block) per treatment per site were taken to the laboratory for<br />

analyses. All collected litter bags were subjected to faunal<br />

extracti<strong>on</strong> (see further) <str<strong>on</strong>g>and</str<strong>on</strong>g> then, oven-dried at 60°C <str<strong>on</strong>g>and</str<strong>on</strong>g> weighed<br />

to determ<strong>in</strong>e the rema<strong>in</strong><strong>in</strong>g litter mass. Litter moisture with<strong>in</strong> litter<br />

bags at the four sites was surveyed <str<strong>on</strong>g>and</str<strong>on</strong>g> calculated as the difference<br />

between litter wet <str<strong>on</strong>g>and</str<strong>on</strong>g> dry weights divided by the dry weight <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

expressed as a percent [(wet weight - dry weight)/dry weight) × 100].<br />

Four sets <str<strong>on</strong>g>of</str<strong>on</strong>g> HOBO <strong>on</strong>set microclimatic recorders (U23-002) were<br />

used to measure the air temperature at 15 m<strong>in</strong> <strong>in</strong>tervals at each <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the four sites. Soil temperature <strong>in</strong> plots was measured hourly with<br />

data loggers (Onset Computer Corporati<strong>on</strong>, Pocasset, MA, USA)<br />

placed <strong>in</strong> the center <str<strong>on</strong>g>of</str<strong>on</strong>g> each plot 5 cm below the <str<strong>on</strong>g>soil</str<strong>on</strong>g> surface. Soil<br />

moisture was calculated as: <str<strong>on</strong>g>soil</str<strong>on</strong>g> moisture (%) = 100 (wet weightdried<br />

weight)/dried weight. Soil pH <strong>in</strong> the site floor was measured <strong>in</strong><br />

10:1 slurry <str<strong>on</strong>g>of</str<strong>on</strong>g> dei<strong>on</strong>ized water <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.0 g <str<strong>on</strong>g>of</str<strong>on</strong>g> sample. Total C <str<strong>on</strong>g>and</str<strong>on</strong>g> total<br />

N <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> litter were analyzed by combusti<strong>on</strong>, us<strong>in</strong>g a Carlo<br />

Erba C/N analyzer (Carlo Erba, Milan).<br />

Calculati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> statistical analysis<br />

The N c<strong>on</strong>centrati<strong>on</strong> c<strong>on</strong>tributed by mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (NCCM) was<br />

calculated as NCCM = (c<strong>on</strong>trol litter bags-mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded litter<br />

bags) / mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded litter bags. In the laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Wuyi Field Ecological Research Stati<strong>on</strong>, collected litter bags were<br />

immediately placed <strong>in</strong> modified Tullgren extractors to remove the


6734 Afr. J. Biotechnol.<br />

Table 1. Characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> al<strong>on</strong>g the elevati<strong>on</strong> gradients.<br />

Elevati<strong>on</strong> (m)<br />

Dom<strong>in</strong>ant tree<br />

species<br />

Mean annual<br />

temperature<br />

(°C)<br />

Annual mean<br />

ra<strong>in</strong>fall (mm)<br />

EVB COF DWF ALM<br />

500 1150 1750 2100<br />

C.<br />

carlesii<br />

17-19<br />

(He et al.<br />

1994)<br />

P<strong>in</strong>us tanwanensis<br />

Approximately 14.5<br />

(Zheng <str<strong>on</strong>g>and</str<strong>on</strong>g> Fang,<br />

2004)<br />

Symplocos<br />

paniculata<str<strong>on</strong>g>and</str<strong>on</strong>g>Stewartia<br />

s<strong>in</strong>ensis<br />

11.2 (He et al., 1994; Zheng<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Fang, 2004)<br />

1700 2000 2200 3100<br />

Height (m) 14.7 11.4 4.5 0.25<br />

Soil depth (cm) 80 35 70 25<br />

Soil temperature 16.86 a 13.99 b 11.78 c 9.38 d<br />

(°C)<br />

Soil moisture 21.94 a 32.96 b 44.75 c 48.47 d<br />

(%)<br />

Total C (g kg - 1 ) 33.09 a 36.85 a 66.44 b 95.93 c<br />

Total N (g kg - 1 ) 4.96 a 5.10 b 6.41 c 8.12 d<br />

C:N 6.59 a 7.36 b 10.10 c 11.35 d<br />

pH 4.88 a 4.55 a 4.85 a 5.03 b<br />

For example,Calamagrostis<br />

brachytricha, Miscanthus<br />

s<strong>in</strong>ensis,<str<strong>on</strong>g>and</str<strong>on</strong>g>Lycopodium clavatu<br />

Nearly 9.7 (He et al., 1994; Zheng <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Fang, 2004)<br />

Same lowercase letters with<strong>in</strong> a column <strong>in</strong>dicate no significant difference between sites. EVB, evergreen broadleaf forest; COF, c<strong>on</strong>iferous forest;<br />

DWF, dwarf forest; ALM, alp<strong>in</strong>e meadow.<br />

litter <strong>in</strong>vertebrates (Wallwork, 1976). All extracted faunal samples<br />

were preserved <strong>in</strong> 75% ethanol <str<strong>on</strong>g>and</str<strong>on</strong>g> then, sorted under a dissect<strong>in</strong>g<br />

microscope (Leica MZ 125) <strong>in</strong>to broad tax<strong>on</strong>omic groups (Oribatid,<br />

Mesostigmatid <str<strong>on</strong>g>and</str<strong>on</strong>g> Prostigmatid mites, Collembola <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Hymenoptera). Diversity, abundance <str<strong>on</strong>g>and</str<strong>on</strong>g> group number were calculated<br />

for mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna communities <strong>in</strong> the 60-day <strong>in</strong>terval <str<strong>on</strong>g>of</str<strong>on</strong>g> 12<br />

m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong> <strong>in</strong> the four sites. Group number (GN) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

abundance (A) were expressed as the number <str<strong>on</strong>g>of</str<strong>on</strong>g> dw litter. Diversity<br />

was measured with the Shann<strong>on</strong>-Wiener Index (H'): H'=– n i/N × ln<br />

(n i/N) where n i are <strong>in</strong>dividuals <str<strong>on</strong>g>of</str<strong>on</strong>g> group i <str<strong>on</strong>g>and</str<strong>on</strong>g> N totals <str<strong>on</strong>g>of</str<strong>on</strong>g> the groups<br />

<strong>in</strong> community (Whittaker, 1972).<br />

The N c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> each sampl<strong>in</strong>g date at each site was<br />

exam<strong>in</strong>ed with repeated measures analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance. Preplanned<br />

c<strong>on</strong>trasts <str<strong>on</strong>g>of</str<strong>on</strong>g> N c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> the c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded<br />

litterbags were performed with repeated measures analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variance. The difference <strong>in</strong> the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> litter N c<strong>on</strong>tent <strong>in</strong> the<br />

litter was c<strong>on</strong>trasted, us<strong>in</strong>g measured analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance. Pears<strong>on</strong>’s<br />

correlati<strong>on</strong> coefficients were used to express the relati<strong>on</strong>ships<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the N c<strong>on</strong>centrati<strong>on</strong> with the litter mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna abundance,<br />

Shann<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>and</str<strong>on</strong>g> group number. Statistical analyses were<br />

performed us<strong>in</strong>g the SPSS Program (SPSS, 2004). Differences at<br />

the p < 0.05 level were reported as significant.<br />

RESULTS<br />

N <strong>dynamics</strong> across the elevati<strong>on</strong> gradient<br />

The N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <str<strong>on</strong>g>and</str<strong>on</strong>g> C/N ratio <strong>in</strong> the litter<br />

bags, as decompositi<strong>on</strong> proceeded, decreased signifycantly<br />

al<strong>on</strong>g an elevati<strong>on</strong> gradient (p < 0.05; Figure 1).<br />

The N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter (mean value <str<strong>on</strong>g>of</str<strong>on</strong>g> six sampl<strong>in</strong>g)<br />

<strong>in</strong> the c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded litter bags were<br />

2.26 ± 0.64 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.99 ± 0.57%, respectively, <strong>in</strong> EVB was<br />

2.08 ± 0.44, was 1.88 ± 0.48% <strong>in</strong> COF, 1.87 ± 0.34 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

1.75 ± 0.28% <strong>in</strong> DWF <str<strong>on</strong>g>and</str<strong>on</strong>g> was 1.79 ± 0.45 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.71 ±<br />

0.47% <strong>in</strong> ALM. The N c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong>creased up to a<br />

mass loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 to 40% at EVB, COF <str<strong>on</strong>g>and</str<strong>on</strong>g> DWF, where it<br />

<strong>in</strong>creased at a slow rate (Figure 1a, b, c). The N<br />

c<strong>on</strong>centrati<strong>on</strong> at ALM went up to a mass loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 to<br />

30% from which po<strong>in</strong>t it decreased <str<strong>on</strong>g>and</str<strong>on</strong>g> then, <strong>in</strong>creased to<br />

a maximum <strong>in</strong> the end (a mass loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nearly 30 to 40%)<br />

(Figure 1d). The C: N ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the litter decreased until it<br />

reached a mass loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 to 40% but then <strong>in</strong>creased<br />

slightly from approximately 30 to nearly 50% (Figure 1).<br />

Str<strong>on</strong>g <strong>in</strong>itial N immobilizati<strong>on</strong> across the four sites<br />

resulted <strong>in</strong> a rise <strong>in</strong> the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> the litterbags<br />

for the first two m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment (Figure 2). It<br />

was the greatest at EVB, where the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

<strong>in</strong>creased to 148.7% <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<strong>in</strong>al amount <strong>in</strong> the<br />

litterbags with animals. The maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> N immobilizati<strong>on</strong><br />

<strong>in</strong> the c<strong>on</strong>trol litterbags at EVB, COF <str<strong>on</strong>g>and</str<strong>on</strong>g> DWF was found<br />

at 180 days, while that at ALM was at 360 days (Figure<br />

2).<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>and</str<strong>on</strong>g> its diversity <strong>on</strong> the N<br />

m<strong>in</strong>eralisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

Litter N c<strong>on</strong>tent compared with <strong>in</strong>itial N was significantly<br />

<strong>in</strong>fluenced by mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna at EVB, COF <str<strong>on</strong>g>and</str<strong>on</strong>g> DWF, while<br />

fauna had little <strong>in</strong>fluence <strong>on</strong> litter N c<strong>on</strong>tent at ALM<br />

(Figure 2). Litter N c<strong>on</strong>tent at EVB was str<strong>on</strong>gly affected<br />

by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (Figure 2a). After six


Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Ruan 6735<br />

N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry mass (%)<br />

N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry mass (%)<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

3.0<br />

A<br />

B<br />

C<br />

C-NC M-NC C-C/N M-C/N<br />

92.9 67.3 60.5 52.55 49.7 47.95<br />

Mass rema<strong>in</strong><strong>in</strong>g (%)<br />

C-NC M-NC C-C/N M-C/N<br />

92.5 75.15 70.65 65.9 63 60.65<br />

Mass rema<strong>in</strong><strong>in</strong>g (%)<br />

C-NC M-NC C-C/N M-C/N<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

35<br />

C / N ratio<br />

C / N ratio<br />

N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry mass (%)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

91.3 81.25 72.85 70.1 69.2 67.9<br />

Mass rema<strong>in</strong><strong>in</strong>g (%)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

C / N ratio


6736 Afr. J. Biotechnol.<br />

(%)<br />

2.5<br />

D<br />

C-NC M-NC C-C/N M-C/N<br />

35<br />

N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry mass<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

C / N ratio<br />

0.0<br />

90.65 83 77.2 75 74.05 73<br />

Mass rema<strong>in</strong><strong>in</strong>g (%)<br />

0<br />

Figure 1. N c<strong>on</strong>centrati<strong>on</strong>s (+ SD) <strong>in</strong> the c<strong>on</strong>trol (C-NC) <str<strong>on</strong>g>and</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded litter bags (M-<br />

NC), <str<strong>on</strong>g>and</str<strong>on</strong>g> C/N <strong>in</strong> c<strong>on</strong>trol (C-C/N) <str<strong>on</strong>g>and</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded litterbags (M- C/N) <strong>in</strong> relati<strong>on</strong> to mass<br />

rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the leaf litter <str<strong>on</strong>g>of</str<strong>on</strong>g> C. carlesii at. (A), Evergreen broadleaf forest (EVB); (B), c<strong>on</strong>iferous<br />

forest (COF); (C), dwarf forest (DWF); (D), alp<strong>in</strong>e meadow (ALM).<br />

A<br />

C<strong>on</strong>trol<br />

Mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded<br />

250<br />

200<br />

Litter N c<strong>on</strong>tent (%)<br />

150<br />

100<br />

50<br />

0<br />

60 120 180 240 300 360<br />

250<br />

B<br />

Decompos<strong>in</strong>g time (d)<br />

C<strong>on</strong>trol<br />

Mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded<br />

200<br />

Litter N c<strong>on</strong>tent (%)<br />

150<br />

100<br />

50<br />

0<br />

60 120 180 240 300 360<br />

Decompos<strong>in</strong>g time (d)


Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Ruan 6737<br />

C<br />

250<br />

C<strong>on</strong>trol<br />

Mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded<br />

Litter N c<strong>on</strong>tent (%)<br />

Litter N c<strong>on</strong>tent (%)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

60 120 180 240 300 360<br />

Decompos<strong>in</strong>g time (d)<br />

D<br />

C<strong>on</strong>trol<br />

Mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-excluded<br />

60 120 180 240 300 360<br />

Decompos<strong>in</strong>g time (d)<br />

Figure 2. Change <strong>in</strong> litter N c<strong>on</strong>tent (%) (+ SD) compared with <strong>in</strong>itial N dur<strong>in</strong>g the<br />

decompositi<strong>on</strong> process. (A), Evergreen broadleaf forest (EVB); (B), c<strong>on</strong>iferous forest<br />

(COF); (C), dwarf forest (DWF); (D), alp<strong>in</strong>e meadow (ALM).<br />

m<strong>on</strong>ths, 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> the litter bags compared with the<br />

<strong>in</strong>itial N had been fixed when the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna was 14% (Figure 2a; Figure 3). After 180<br />

days <strong>in</strong> the field, the litter N c<strong>on</strong>tent <strong>in</strong> the litter bags from<br />

the c<strong>on</strong>trol sites was 60% at COF <str<strong>on</strong>g>and</str<strong>on</strong>g> 40% at DWF <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna c<strong>on</strong>tributi<strong>on</strong> to the N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

was 11% at COF <str<strong>on</strong>g>and</str<strong>on</strong>g> 8% at DWF, respectively (Figures<br />

2b, c <str<strong>on</strong>g>and</str<strong>on</strong>g> 3). Litter N c<strong>on</strong>tent compared with the <strong>in</strong>itial N<br />

at ALM, however, <strong>in</strong>creased slowly to maximum (<strong>on</strong>ly<br />

30%) <strong>in</strong> the end, while the mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna c<strong>on</strong>tributi<strong>on</strong> to the<br />

N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter was less than 3% (Figures 2d<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 3). The mean c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna to the N<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter was 12.6% at EVB, 10.6% at COF,<br />

5.4% at DWF <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.1% at ALM (Figure 3).<br />

The abundance, Shann<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>and</str<strong>on</strong>g> group number<br />

were surveyed at the four sites <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna diversity <strong>on</strong> the N c<strong>on</strong>centrati<strong>on</strong>s were<br />

exam<strong>in</strong>ed <strong>in</strong> the litter bags from the c<strong>on</strong>trol plots (Figure<br />

4). The N c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> the C. carlesii leaf litter from<br />

the c<strong>on</strong>trol plots was found to be significantly correlated<br />

with the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Mesostigmata mites <strong>in</strong> <strong>on</strong>e year <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

decompositi<strong>on</strong> at the four sites (Table 2). However, it<br />

was <strong>on</strong>ly <strong>in</strong> the c<strong>on</strong>iferous forest that N c<strong>on</strong>centrati<strong>on</strong>s<br />

significantly related to the total <str<strong>on</strong>g>of</str<strong>on</strong>g> all mites, while total<br />

mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <strong>on</strong>ly related to that <strong>in</strong> the Alp<strong>in</strong>e Meadow. The<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Oribatids significantly c<strong>on</strong>tributed to the N<br />

c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong>ly <strong>in</strong> the forest sites (EVB, COF <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

DWF). The <strong>dynamics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the N c<strong>on</strong>centrati<strong>on</strong> was significantly<br />

related to an abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Collembolans <strong>in</strong> the<br />

evergreen broadleaf forest <str<strong>on</strong>g>and</str<strong>on</strong>g> dwarf forests. Furthermore,<br />

the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Prostigmata <str<strong>on</strong>g>and</str<strong>on</strong>g> Astigmata mites<br />

were not significantly correlated with the N c<strong>on</strong>centrati<strong>on</strong><br />

<strong>in</strong> the litterbags from the c<strong>on</strong>trol plots.<br />

There were dist<strong>in</strong>ctively difference <strong>in</strong> the total abundance


6738 Afr. J. Biotechnol.<br />

Mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna c<strong>on</strong>tributi<strong>on</strong> to the N<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter (%)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

EVB COF DWF ALM<br />

60 120 180 240 300 360<br />

Decompositi<strong>on</strong> time (d)<br />

Figure 3. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (+ SD) to the N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter at the<br />

four sites.<br />

Table 2. Correlati<strong>on</strong>s between N c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> litter mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <strong>in</strong> the c<strong>on</strong>trol<br />

treatment litter bags (1 mm) at the four sites. Values are<br />

Pears<strong>on</strong>’s correlati<strong>on</strong> coefficients (n = 6); *P < 0.05, **P<br />

< 0.001.<br />

Parameter EVB COF DWF ALM<br />

Acari 0.447 0.871* 0.559 0.638<br />

Oribatids 0.784* 0.822* 0.805* 0.575<br />

Prostigmata 0.635 0.702 0.148 0.472<br />

Mesostigmata 0.856* 0.778* 0.840* 0.884*<br />

Astigmata 0.353 0.225 0.447 0.156<br />

Collembola 0.884** 0.624 0.863* 0.546<br />

Others 0.851* 0.527 -0.375 0.832*<br />

Total 0.668 0.104 0.653 0.812*<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna with elevati<strong>on</strong> (F=46.647, p < 0.002) but<br />

not was significantly related to the N c<strong>on</strong>centrati<strong>on</strong>s al<strong>on</strong>g<br />

the elevati<strong>on</strong> gradients. The Shann<strong>on</strong> <strong>in</strong>dex (F=5.455, p =<br />

0.043) <str<strong>on</strong>g>and</str<strong>on</strong>g> group number (F=5.830, p = 0.046) both<br />

decreased with elevati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the N c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> the<br />

litter bags with mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna were significantly related to H<br />

(r 2 =0.867, p = 0.032) <str<strong>on</strong>g>and</str<strong>on</strong>g> GN (r 2 =0.853, p=0.038) across<br />

the four sites (Figure 4).<br />

Microclimate effects <strong>on</strong> N <strong>dynamics</strong> across the<br />

elevati<strong>on</strong> gradient<br />

The mean N c<strong>on</strong>centrati<strong>on</strong> al<strong>on</strong>g the elevati<strong>on</strong> gradient<br />

was found to be positively associated with mean annual<br />

air temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature (Figure 5, p < 0.05).<br />

There was no difference <strong>in</strong> the litter moisture between the<br />

c<strong>on</strong>trol litterbags <str<strong>on</strong>g>and</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>uana-excluded litter bags at<br />

the four sites (P > 0.05). Litter moisture which was<br />

decreased al<strong>on</strong>g the elevati<strong>on</strong> gradient, had a significant<br />

<strong>in</strong>fluence <strong>on</strong> the change <str<strong>on</strong>g>of</str<strong>on</strong>g> N c<strong>on</strong>centrati<strong>on</strong> across the<br />

four sites (Figure 5, P < 0.05). The litter moisture <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

temperature at EVB with the highest group number,<br />

abundance <str<strong>on</strong>g>and</str<strong>on</strong>g> Shann<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna, were<br />

higher than those at the other three sites, suggest<strong>in</strong>g that<br />

the <str<strong>on</strong>g>microclimate</str<strong>on</strong>g> (moisture <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature ) affected N<br />

<strong>dynamics</strong> via its effect <strong>on</strong> the compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (Figures 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5) .<br />

DISCUSSION<br />

N c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> the litter bags across an<br />

elevati<strong>on</strong> gradient<br />

The N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter or C to N ratio has been<br />

shown to be a useful predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> N m<strong>in</strong>eralizati<strong>on</strong> from<br />

plant litter (Aber <str<strong>on</strong>g>and</str<strong>on</strong>g> Melillo, 1980; Högberg et al., 2007).<br />

This study illustrated that, N c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> decompos<strong>in</strong>g<br />

litter are as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter mass rema<strong>in</strong><strong>in</strong>g.<br />

The changes <strong>in</strong> the N c<strong>on</strong>tents closely followed the mass<br />

loss <strong>dynamics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the decompos<strong>in</strong>g litter. The N c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the litter <strong>in</strong>creased with litter decompositi<strong>on</strong>, as<br />

has been comm<strong>on</strong>ly observed <strong>in</strong> other research studies<br />

(Titus <str<strong>on</strong>g>and</str<strong>on</strong>g> Malcolm, 1999; Hyvönen <str<strong>on</strong>g>and</str<strong>on</strong>g> Olss<strong>on</strong>, 2000;<br />

P<str<strong>on</strong>g>and</str<strong>on</strong>g>ey et al., 2007), but the extent <str<strong>on</strong>g>and</str<strong>on</strong>g> emergence<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum value <str<strong>on</strong>g>of</str<strong>on</strong>g> N c<strong>on</strong>centrati<strong>on</strong> was<br />

different at the four sites <strong>in</strong> our study. N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter at EVB which was the highest am<strong>on</strong>g the four sites,<br />

<strong>in</strong>creased quickly to maximum at six m<strong>on</strong>ths when 70%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> the litter bags compared with the <strong>in</strong>itial N had


Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Ruan 6739<br />

H GN A NC<br />

Group number <str<strong>on</strong>g>and</str<strong>on</strong>g> Shann<strong>on</strong> <strong>in</strong>dex (x1/10)<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

EVB COF DWF ALM<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Abundance (<strong>in</strong>d.d. w. litter)<br />

Sites<br />

Figure 4. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Shann<strong>on</strong> <strong>in</strong>dex (H), the group number (GN) <str<strong>on</strong>g>and</str<strong>on</strong>g> abundance (A) <strong>on</strong> the N<br />

c<strong>on</strong>centrati<strong>on</strong> (NC) <strong>in</strong> C. carlesii leaf litter <strong>in</strong> the c<strong>on</strong>trol litterbags at the four sites. Values are means +<br />

SD <str<strong>on</strong>g>of</str<strong>on</strong>g> the three replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> each.<br />

LM MAT ST NC<br />

Mean annual air temperature,<br />

75<br />

65<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature, <str<strong>on</strong>g>and</str<strong>on</strong>g> litter<br />

temperature, moisture<br />

litter<br />

55<br />

45<br />

35<br />

25<br />

15<br />

5<br />

-5<br />

EVB COF DWF ALM<br />

sites<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

N c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter (%)<br />

Figure 5. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature (ST, °C), mean annual air temperature (MAT, °C) <str<strong>on</strong>g>and</str<strong>on</strong>g> litter moisture (LM) <strong>on</strong> the<br />

N c<strong>on</strong>centrati<strong>on</strong> (NC) al<strong>on</strong>g the elevati<strong>on</strong> gradient. Values are means + SD <str<strong>on</strong>g>of</str<strong>on</strong>g> the three replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> each.<br />

been fixed. The rapid N accumulati<strong>on</strong> <strong>in</strong> lower elevati<strong>on</strong><br />

sites dur<strong>in</strong>g the first few m<strong>on</strong>ths could have resulted <strong>in</strong><br />

the retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mobile N <strong>in</strong> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s. N reta<strong>in</strong>ed <strong>in</strong> the <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

can be significant at a time when leaf flush creates a<br />

dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for nutrients (Heneghan et al., 1999).<br />

Decomposer immobilizati<strong>on</strong>, <strong>in</strong>itial C: N ratios <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

N availability <strong>in</strong> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s may be resp<strong>on</strong>sible for the N<br />

accumulati<strong>on</strong> <strong>in</strong> litter. N c<strong>on</strong>centrati<strong>on</strong>s tended to


6740 Afr. J. Biotechnol.<br />

<strong>in</strong>crease <strong>in</strong> the decompos<strong>in</strong>g leaf litter, which was<br />

c<strong>on</strong>sidered to be related to external biological immobilizati<strong>on</strong><br />

(Gessner, 2000; Liu et al., 2000; Aerts, 2006).<br />

Biological immobilizati<strong>on</strong> was an important process that<br />

c<strong>on</strong>trolled the nutrient <strong>dynamics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter dur<strong>in</strong>g<br />

decompositi<strong>on</strong> (Gessner, 2000; Part<strong>on</strong> et al., 2007). In<br />

our study, there were significant difference between the N<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>in</strong> the c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> the mes<str<strong>on</strong>g>of</str<strong>on</strong>g>aunaexcluded<br />

litter bags, <strong>in</strong>dicat<strong>in</strong>g that mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna<br />

immobilizati<strong>on</strong> can also be expected. As a result, the<br />

nutrient c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> even the c<strong>on</strong>tents <strong>in</strong> the litter<br />

tended to <strong>in</strong>crease. Also, it was found that this process<br />

was regulated by the <strong>in</strong>itial C: N ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the litter <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

N availability <strong>in</strong> the various envir<strong>on</strong>ments (Köchy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Wils<strong>on</strong>, 1997). In this study, because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>itially higher C:<br />

N ratio, the decomposer took available N from the<br />

surround<strong>in</strong>gs to ma<strong>in</strong>ta<strong>in</strong> its activities, <strong>in</strong>dicat<strong>in</strong>g that the<br />

<strong>in</strong>itial C: N ratio was an important <strong>in</strong>dex <strong>in</strong> <strong>in</strong>dicat<strong>in</strong>g the<br />

<strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> N accumulati<strong>on</strong> or release. The mes<str<strong>on</strong>g>of</str<strong>on</strong>g>aunas<br />

were likely to immobilize N <strong>in</strong> the litter with low N %<br />

dur<strong>in</strong>g decompositi<strong>on</strong> (Baker et al., 2001).<br />

In the study, the total mass loss <str<strong>on</strong>g>and</str<strong>on</strong>g> N c<strong>on</strong>centrati<strong>on</strong><br />

decreased al<strong>on</strong>g the elevati<strong>on</strong> gradient, while all the sites<br />

had N immobilizati<strong>on</strong> <strong>in</strong> the decompositi<strong>on</strong> process. The<br />

Wuyi Mounta<strong>in</strong>s are located <strong>in</strong> the humid <str<strong>on</strong>g>and</str<strong>on</strong>g> warm<br />

subtropics <str<strong>on</strong>g>of</str<strong>on</strong>g> southeast Ch<strong>in</strong>a with a str<strong>on</strong>g climatic<br />

variati<strong>on</strong> al<strong>on</strong>g the elevati<strong>on</strong> gradients. The climatic<br />

variability <strong>in</strong> warm <str<strong>on</strong>g>and</str<strong>on</strong>g> humid z<strong>on</strong>es means that the<br />

<strong>in</strong>teracti<strong>on</strong>s between decomposer <str<strong>on</strong>g>and</str<strong>on</strong>g> its envir<strong>on</strong>ment<br />

may be the str<strong>on</strong>gest determ<strong>in</strong>ants <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong><br />

<strong>dynamics</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> N m<strong>in</strong>eralizati<strong>on</strong> (Lavelle et al., 1993; Ross<br />

et al., 2002). In this study, <str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> annual air<br />

temperature decreased <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> C: N <strong>in</strong>creased al<strong>on</strong>g an<br />

elevati<strong>on</strong> gradient. An <strong>in</strong>crease <strong>in</strong> <str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature,<br />

annual air temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> C/N ratio<br />

generally results <strong>in</strong> greater rates <str<strong>on</strong>g>of</str<strong>on</strong>g> decomposer activity,<br />

thus, <strong>in</strong>creas<strong>in</strong>g the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mass loss <str<strong>on</strong>g>and</str<strong>on</strong>g> N m<strong>in</strong>eralizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plant litter (van Cleve et al., 1990; Sharifi et<br />

al., 2007).<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>microclimate</str<strong>on</strong>g> <strong>on</strong><br />

immobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> the sites<br />

Abundance <str<strong>on</strong>g>and</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna are known to<br />

play a vital role <strong>in</strong> the nutrient m<strong>in</strong>eralizati<strong>on</strong> processes<br />

through the direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> their own metabolism (Verhoef<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Brussaard, 1990; De Ruiter et al., 1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

<strong>in</strong>direct modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure <str<strong>on</strong>g>and</str<strong>on</strong>g> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

microbial community (Coleman <str<strong>on</strong>g>and</str<strong>on</strong>g> Cole, 1983;<br />

Anders<strong>on</strong>, 1987; Wolters, 1991). The especially complicated<br />

makeup <str<strong>on</strong>g>of</str<strong>on</strong>g> faunal decomposers stimulated the<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient m<strong>in</strong>eralizati<strong>on</strong> process<br />

through their effect <strong>on</strong> microorganisms (Mikola et al.,<br />

2002; Adeduntan, 2009).<br />

This study has illustrated that the N accumulati<strong>on</strong> <strong>in</strong> the<br />

litterbags can be accelerated by <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna. Soil<br />

mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna had a significant <strong>in</strong>fluence <strong>on</strong> the <strong>dynamics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter N c<strong>on</strong>tent at EVB, COF <str<strong>on</strong>g>and</str<strong>on</strong>g> DWF, but no statistic<br />

difference at ALM. The mean c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna to litter N c<strong>on</strong>tent ranked EVB, COF, DWF<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ALM. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> high-diversity mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <strong>in</strong><br />

the sites can cause a greater <strong>in</strong>itial immobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>nitrogen</strong>, while some faunal activities may enhance<br />

nutrient mobilizati<strong>on</strong> (Tian et al., 1992; Verhoef, 1996;<br />

Adeduntan, 2009). In our study, the Shann<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

group number were found to be decreased al<strong>on</strong>g the<br />

elevati<strong>on</strong> gradient, which resulted <strong>in</strong> the highest N<br />

c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> the evergreen broadleaf forest. The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna at ALM was <strong>on</strong>ly marg<strong>in</strong>ally<br />

significant where there was the lowest faunal diversity.<br />

Hence, dist<strong>in</strong>ctive abundance <str<strong>on</strong>g>and</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna am<strong>on</strong>g sites resulted <strong>in</strong> the different effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <strong>on</strong> N <strong>dynamics</strong>.<br />

Different faunal groups can exhibit different effects <strong>on</strong><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> processes. Fungivores, for example, Oribatida <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Collembola, which are highly abundant <str<strong>on</strong>g>and</str<strong>on</strong>g> usually dom<strong>in</strong>ate<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> communities, feed <strong>on</strong> both mycorrhizal <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

saprotrophic fungi to accelerate nutrient transfers<br />

between plant litter, m<strong>in</strong>eral <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> plant roots (Tiunov<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Scheu, 2005). Selective graz<strong>in</strong>g affects fungal<br />

biomass <str<strong>on</strong>g>and</str<strong>on</strong>g> activity, regulat<strong>in</strong>g the fungal successi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient transfer <strong>in</strong> decompos<strong>in</strong>g litter (Park<strong>in</strong>s<strong>on</strong> et<br />

al., 1979; Lussenhop, 1992). In the experiment, it was<br />

found that the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Mesostigmata mites<br />

significantly correlated with the N c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> C.<br />

carlesii leaf litter at the four sites, while the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oribatids significantly c<strong>on</strong>tributed to N c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong><br />

the forest sites (EVB, COF <str<strong>on</strong>g>and</str<strong>on</strong>g> DWF). However, it was<br />

<strong>on</strong>ly at COF that N c<strong>on</strong>centrati<strong>on</strong>s was significantly<br />

related to the total Acari as well as the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Collembolans at EVB <str<strong>on</strong>g>and</str<strong>on</strong>g> DWF. The results <strong>in</strong>dicated<br />

that, some special groups <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna had a<br />

significant c<strong>on</strong>tributi<strong>on</strong> to N c<strong>on</strong>centrati<strong>on</strong>s but the effect<br />

varied across the envir<strong>on</strong>mental gradients.<br />

Decomposer effect <strong>on</strong> nutrient <strong>dynamics</strong> was <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

c<strong>on</strong>sidered to depend <strong>on</strong> the envir<strong>on</strong>mental factors <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

decompositi<strong>on</strong> (Vitousek et al., 1994; Lee <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Bukaveckas, 2002; Ross et al., 2002). In the study, N<br />

c<strong>on</strong>centrati<strong>on</strong> al<strong>on</strong>g the elevati<strong>on</strong> gradient was found to<br />

be positively associated with mean annual air temperature,<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> litter moisture, <strong>in</strong>dicat<strong>in</strong>g that<br />

the <str<strong>on</strong>g>microclimate</str<strong>on</strong>g> had significant effects <strong>on</strong> N <strong>dynamics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter. The litter moisture <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature at low<br />

elevati<strong>on</strong> sites with the highest diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna<br />

were higher than <strong>in</strong> the high <strong>on</strong>e, suggest<strong>in</strong>g that the<br />

<str<strong>on</strong>g>microclimate</str<strong>on</strong>g> (moisture <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature) may have<br />

favored the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> fauna, thus, affected the N<br />

m<strong>in</strong>eralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter.<br />

Acknowledgements<br />

The research was supported by the Nati<strong>on</strong>al Science


Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Ruan 6741<br />

Foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch<strong>in</strong>a (No.30670313), <str<strong>on</strong>g>and</str<strong>on</strong>g> Public Science<br />

Program <strong>in</strong> Forestry (No. 200704005/wb02-01), <str<strong>on</strong>g>and</str<strong>on</strong>g> Key<br />

Subject Foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology <strong>in</strong> Southwest Forestry<br />

University (No. XKX200902). We thank members <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

project at the Wuyi Nati<strong>on</strong>al Nature Reserve, <strong>in</strong>clud<strong>in</strong>g<br />

Jiashe Wang, Zikun Xu, Xiangen Xu, <str<strong>on</strong>g>and</str<strong>on</strong>g> Yan Zhou for<br />

their assistance.<br />

REFERENCES<br />

Aber JD, Melillo JM (1980). Litter decompositi<strong>on</strong>: measur<strong>in</strong>g relative<br />

c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>nitrogen</strong> to forest <str<strong>on</strong>g>soil</str<strong>on</strong>g>s. Can. J.<br />

Bot. 58: 416-421.<br />

Aerts R (2006). The freezer defrost<strong>in</strong>g: global warm<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> litter<br />

decompositi<strong>on</strong> rates <strong>in</strong> cold biomes. J. Ecol. 94: 713-724.<br />

Adeduntan SA (2009). Diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microbial populati<strong>on</strong> <strong>in</strong> South-Western Nigeria. Afr. J. Plant Sci. 9:<br />

210-216.<br />

Anders<strong>on</strong> JM (1987). Interacti<strong>on</strong>s between <strong>in</strong>vertebrates <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microorganisms: noise or necessity for <str<strong>on</strong>g>soil</str<strong>on</strong>g> processes? In Ecol. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Microbial Communities, ed. Fletcher M, Grag TRG, J<strong>on</strong>es JG,<br />

Cambridge, UK: Cambridge Univ. Press. pp. 125-45.<br />

Baker TT, C<strong>on</strong>ner WH, Lockaby HB, Stanturf JA, Burke MK (2001). Leaf<br />

litter decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient <strong>dynamics</strong> <strong>in</strong> four southern forested<br />

floodpla<strong>in</strong> communities. Soil Sci. Soc. Am. J. 65: 1334-1347.<br />

Coleman DC, Cole CV (1983). Biological strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient cycl<strong>in</strong>g <strong>in</strong><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> systems. In Advances <strong>in</strong> Ecological Research, ed. Macfadyen A,<br />

Ford ED, New York: Academic. pp. 1-55.<br />

De Ruiter PC, Moore JC, Zwart KB, Bouwman LA, Hass<strong>in</strong>k J, Bloem J,<br />

de Vos JA, Mar<strong>in</strong>issen JCY, Didden WAM (1993). Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>nitrogen</strong> m<strong>in</strong>eralizati<strong>on</strong> <strong>in</strong> the belowground food webs <str<strong>on</strong>g>of</str<strong>on</strong>g> two w<strong>in</strong>ter<br />

wheat fields. J. Appl. Ecol. 30: 95-106.<br />

Enriquez S, Duarte CM, S<str<strong>on</strong>g>and</str<strong>on</strong>g>-Jensen K (1993). Patterns <strong>in</strong><br />

decompositi<strong>on</strong> rates am<strong>on</strong>g photosynthetic organisms: the<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> detritus C: N: P c<strong>on</strong>tent. Oecologia 94: 457-471.<br />

Gessner MO (2000). Breakdown <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient <strong>dynamics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged<br />

Phragmites shoots <strong>in</strong> the littoral z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a temperate hardwater lake.<br />

Aquat. Bot. 66: 9-20.<br />

Hanl<strong>on</strong> RDG <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong> JM (1979). The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Collembolan<br />

graz<strong>in</strong>g <strong>on</strong> microbial activity <strong>in</strong> decompos<strong>in</strong>g leaf litter. Oecol. 38: 93-<br />

99.<br />

Heneghan L, Coleman DC, Crossley Jr. DA, Zou XM (1999). Nitrogen<br />

<strong>dynamics</strong> <strong>in</strong> decompos<strong>in</strong>g chestnut oak (Quercits pr<strong>in</strong>us L.) <strong>in</strong> mesic<br />

temperate <str<strong>on</strong>g>and</str<strong>on</strong>g> tropical forest. Appl Soil Ecol. 13: 169-175.<br />

Heneghan L, Coleman DC, Zou XM, Crossley Jr. DA, Ha<strong>in</strong>es BL (1999).<br />

Soil microarthropod c<strong>on</strong>tributi<strong>on</strong>s to decompositi<strong>on</strong> <strong>dynamics</strong>:<br />

tropical-temperate comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a s<strong>in</strong>gle substrate. Ecology, 80:<br />

1873-1882.<br />

Hiol FH, Dix<strong>on</strong> RK, Curl EA (1994). The feed<strong>in</strong>g preference <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mycophagous Collembola varies with the fungal symbi<strong>on</strong>t.<br />

Mycorrhiza, 5: 99-103.<br />

Högberg MN, Högberg P, Myrold DD (2007). Is microbial community<br />

compositi<strong>on</strong> <strong>in</strong> boreal forest <str<strong>on</strong>g>soil</str<strong>on</strong>g>s determ<strong>in</strong>ed by pH, C-to-N ratio, the<br />

trees, or all three? Oecologia, 150: 590-601.<br />

Hyvönen R, Olss<strong>on</strong> HBA, Lundkvist, H S (2000). Decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

nutrient release from Picea abies (L.) Karst, <str<strong>on</strong>g>and</str<strong>on</strong>g> P<strong>in</strong>us sylvestris L.<br />

logg<strong>in</strong>g residues. For. Ecol. Manage. 126: 97-112.<br />

Knorr M, Frey SD, Curtis PS (2005). Nitrogen additi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> litter<br />

decompositi<strong>on</strong>: a meta analysis. Ecology, 86: 3252-3253.<br />

Köchy M <str<strong>on</strong>g>and</str<strong>on</strong>g> Wils<strong>on</strong> SD (1997). Litter decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>nitrogen</strong><br />

<strong>dynamics</strong> <strong>in</strong> Aspen forest <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed-grass prairie. Ecology, 78: 732-<br />

739.<br />

Lan WS, Li H, Wang WD (2010). Microbial Community Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fresh <str<strong>on</strong>g>and</str<strong>on</strong>g> Old Microbial Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms <strong>on</strong> Bay<strong>on</strong> Temple S<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Angkor Thom, Cambodia. Microbial Ecol. 60: 105-115.<br />

Lavelle P, Blanchart E, Mart<strong>in</strong> A, Mart<strong>in</strong> S, Spa<strong>in</strong> A, Touta<strong>in</strong> F, Barois I,<br />

Schaefer R (1993). A hierarchical model <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong> <strong>in</strong><br />

terrestrial ecosystems: applicati<strong>on</strong> to <str<strong>on</strong>g>soil</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the humid tropics.<br />

Biotropica, 25: 130-150.<br />

Lee AA, Bukaveckas PA (2002). Surface water nutrient c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> litter decompositi<strong>on</strong> rates <strong>in</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s impacted by agriculture<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g activities. Aquat. Bot. 74: 273-285.<br />

Liu JS, Sun XL,Yu JB (2000). Nitrogen c<strong>on</strong>tent variati<strong>on</strong> <strong>in</strong> litters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Deyeuxia angustifolia <str<strong>on</strong>g>and</str<strong>on</strong>g> Carex lasiocarpa <strong>in</strong> Sanjiang Pla<strong>in</strong>.<br />

Ch<strong>in</strong>ese J. Appl. Ecol. 11: 898-902.<br />

Lodge DJ, Hawksworth DL (1996). Microbial diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> tropical forest<br />

functi<strong>on</strong><strong>in</strong>g. In: Orians GH, Dirzo R, Cushman JH (Eds.), Biodiversity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Ecosystem Processes <strong>in</strong> Tropical Forests. Ecol. Studies 122.<br />

Spr<strong>in</strong>ger-Verlag. Berl<strong>in</strong>.<br />

Lussenhop J (1992). Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> microarthropod-microbial<br />

<strong>in</strong>teracti<strong>on</strong>s <strong>in</strong> the <str<strong>on</strong>g>soil</str<strong>on</strong>g>. Adv. Ecol. Res. 23: 1-33.<br />

Mikola J, Bardgett RD, Mikola J, Hedlund K (2002). Biodiversity,<br />

ecosystem functi<strong>on</strong><strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> decomposer food webs. In<br />

Biodiversity <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecosystem Functi<strong>on</strong><strong>in</strong>g-Synthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> Perspectives,<br />

ed. Loreau M, Naeem S, Inchausti P, Oxford: Oxford Univ. Press. pp.<br />

169-80.<br />

Moretto AS, Diste RA (2003). Decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient <strong>dynamics</strong> <strong>in</strong><br />

leaf litter <str<strong>on</strong>g>and</str<strong>on</strong>g> roots <str<strong>on</strong>g>of</str<strong>on</strong>g> Poa ligularis <str<strong>on</strong>g>and</str<strong>on</strong>g> Stipa gyneriodes. J. Arid<br />

Envir<strong>on</strong>. 55: 503-514.<br />

P<str<strong>on</strong>g>and</str<strong>on</strong>g>ey RR, Sharma G, Tripathi SK, S<strong>in</strong>gh AK (2007). Litterfall, litter<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient <strong>dynamics</strong> <strong>in</strong> a subtropical natural oak<br />

forest <str<strong>on</strong>g>and</str<strong>on</strong>g> managed plantati<strong>on</strong> <strong>in</strong> northeastern India. Forest Ecol.<br />

Manage. 240: 96-104.<br />

Park<strong>in</strong>s<strong>on</strong> D, Suzanne V, Whittakerb JB (1979). <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> collembolan<br />

graz<strong>in</strong>g <strong>on</strong> fungal col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf litter. Soil Biol. Biochem. 11:<br />

529-35.<br />

Part<strong>on</strong> W, Silver WL, Burke IC. (2007). Global-scale similarities <strong>in</strong><br />

<strong>nitrogen</strong> release patterns dur<strong>in</strong>g l<strong>on</strong>g-term decompositi<strong>on</strong>. Science,<br />

315: 361-364.<br />

Ross DJ, Tate KR, Newt<strong>on</strong> PCD, Clark H (2002). Decomposability <str<strong>on</strong>g>of</str<strong>on</strong>g> C3<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> C4 grass litter sampled under different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atmospheric carb<strong>on</strong> dioxide at natural CO2 spr<strong>in</strong>g. Plant Soil, 240:<br />

275-286.<br />

Ruess L, Garcia Zapata EJ, Dight<strong>on</strong> J (2000). Food preferences <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

fungal-feed<strong>in</strong>g Aphelenchoides species. Nematology, 2: 223-230.<br />

Santiago LS (2007). Extend<strong>in</strong>g the leaf ec<strong>on</strong>omics spectrum to<br />

decompositi<strong>on</strong>: evidence from a tropical forest. Ecol. 88: 1126-1131.<br />

Scheu S, Falca M (2000). The <str<strong>on</strong>g>soil</str<strong>on</strong>g> food web <str<strong>on</strong>g>of</str<strong>on</strong>g> two beech forests<br />

(Fagus sylvatica) <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trast<strong>in</strong>g humus type: stable isotope analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a macro- <str<strong>on</strong>g>and</str<strong>on</strong>g> a mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-dom<strong>in</strong>ated community. Oecologia, 123:<br />

285-296.<br />

Scheu S, Folger M (2004). S<strong>in</strong>gle <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed diets <strong>in</strong> Collembola: effects<br />

<strong>on</strong> reproducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> stable isotope fracti<strong>on</strong>ati<strong>on</strong>. Funct. Ecol. 18: 94-<br />

102.<br />

Shaw PJA (1992). Fungi, fungivores, <str<strong>on</strong>g>and</str<strong>on</strong>g> fungal food webs. In The<br />

Fungal Community, ed. Carroll GC, Wicklow DT, New York: Marcel<br />

Dekker. pp. 295-310.<br />

SPSS.2004. SPSS s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware v. 13.0 for W<strong>in</strong>dows. SPSS, Chicago.<br />

Strickl<str<strong>on</strong>g>and</str<strong>on</strong>g> MS, Lauber C, Fierer N (2009). Test<strong>in</strong>g the functi<strong>on</strong>al<br />

significance <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial community compositi<strong>on</strong>. Ecol. 90(2): 441-<br />

451.<br />

Sulkava P, Huhta V (1998). Habitat patch<strong>in</strong>ess affects decompositi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> faunal diversity: a microcosm experiment <strong>on</strong> forest floor.<br />

Oecologia, 116: 390-96.<br />

Titus BD, Malcolm DC (1999). The l<strong>on</strong>g-term decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sitka<br />

spruce needles <strong>in</strong> brash. Forestry, 72, 207-221.<br />

Tian G, Kang BT, Brussaard L (1992). Biological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> plant residues<br />

with c<strong>on</strong>trast<strong>in</strong>g chemical compositi<strong>on</strong>s under humid tropical<br />

c<strong>on</strong>diti<strong>on</strong>s-decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient release. Soil Biol. Biochem.<br />

24: 1051-1060.<br />

Tiunov AV <str<strong>on</strong>g>and</str<strong>on</strong>g> Scheu S (2005). Arbuscular mycorrhiza <str<strong>on</strong>g>and</str<strong>on</strong>g> Collembola<br />

<strong>in</strong>teract <strong>in</strong> affect<strong>in</strong>g community compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> saprotrophic<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ungi. Oecologia, 142: 636-42.<br />

Tr<strong>in</strong>der CJ, Johns<strong>on</strong> D, Artz RRE (2008). Interacti<strong>on</strong>s am<strong>on</strong>g fungal<br />

community structure, litter decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water table <strong>in</strong><br />

a cutover Peatl<str<strong>on</strong>g>and</str<strong>on</strong>g>. FEMS Microbiol. Ecol. 64, 433-448.<br />

Turetsky MR, Crow SE, Evans RJ (2008). Trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs <strong>in</strong> resource<br />

allocati<strong>on</strong> am<strong>on</strong>g moss species c<strong>on</strong>trol decompositi<strong>on</strong> <strong>in</strong> boreal<br />

peatl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. J. Ecol. 96: 1297-1305.<br />

Van Cleve K, Oechel WC, Hom J L (1990). Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> black spruce<br />

(Picea mariana) ecosystems to <str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature modificati<strong>on</strong> <strong>in</strong>


6742 Afr. J. Biotechnol.<br />

<strong>in</strong>terior Alaska. Can. J. For. Res. 20: 1530-1535.<br />

Van Der Heijden MGA, Marcel GA, Bardgett RD (2008). Soil microbes<br />

as drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> plant diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> productivity <strong>in</strong> terrestrial ecosystems.<br />

Ecol. Lett. 11: 296-310.<br />

Verhoef HA <str<strong>on</strong>g>and</str<strong>on</strong>g> Brussaard L (1990). Decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>nitrogen</strong><br />

m<strong>in</strong>eralizati<strong>on</strong> <strong>in</strong> natural <str<strong>on</strong>g>and</str<strong>on</strong>g> agroecosystems: the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

animals. Biol. Geo. Chem. 11: 175-212.<br />

Verhoef HA (1996). The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> microcosms <strong>in</strong> the study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ecosystem processes. Ecol. 77: 685-690.<br />

Vitousek PM <str<strong>on</strong>g>and</str<strong>on</strong>g> Howanh RW (1994). Nitrogen limitati<strong>on</strong> <strong>on</strong> l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>in</strong><br />

the sea: how can it occur? Biol. Geo. Chem. 13: 87-115.<br />

Vitousek PM, Turner DR, Part<strong>on</strong> WJ, Sanford RL (1994). Litter<br />

decompositi<strong>on</strong> <strong>on</strong> the Mauna Loa envir<strong>on</strong>mental matrix, Hawaii .<br />

Patterns, mechanisms, <str<strong>on</strong>g>and</str<strong>on</strong>g> models. Ecology, 75: 418-429.<br />

Vivanco L, Aust<strong>in</strong> AT (2008). Tree species identity alters forest litter<br />

decompositi<strong>on</strong> through l<strong>on</strong>g-term plant <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <strong>in</strong>teracti<strong>on</strong>s <strong>in</strong><br />

Patag<strong>on</strong>ia, Argent<strong>in</strong>a. J. Ecol. 96 : 727-736.<br />

Wallwork JA (1976). The distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> fauna.<br />

Academic Press, New York, p. 355<br />

Wang J, Huang JH (2001). Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> major nutrient release<br />

patterns <strong>in</strong> leaf litter decompositi<strong>on</strong> <strong>in</strong> warm temperature z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ch<strong>in</strong>a. Acta Phys. S<strong>in</strong>. 25: 375-380.<br />

Wang LX, Wang S, Huang JH (2003). Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> major nutrient<br />

release patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> Quercus liaotungensis leaf litter decompositi<strong>on</strong> <strong>in</strong><br />

different climatic z<strong>on</strong>es. Acta Bot. S<strong>in</strong>. 45: 399-407.<br />

Wardle DA (2002). Communities <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecosystems: L<strong>in</strong>k<strong>in</strong>g the<br />

Aboveground <str<strong>on</strong>g>and</str<strong>on</strong>g> Belowground Comp<strong>on</strong>ents. Pr<strong>in</strong>cet<strong>on</strong> University<br />

Press, New Jersey, USA.<br />

Whittaker RH (1972). Evoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> species diversity.<br />

Tax<strong>on</strong>, 21:213-225.<br />

Wolters V (1991). Soil <strong>in</strong>vertebrates: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> nutrient turnover <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> structure-a review. Z. Pflanzenern. Bodenk. 154: 389-402.<br />

Zak DR, Gr<str<strong>on</strong>g>of</str<strong>on</strong>g>fman PM, Pregitzer KS, Christensen S, Tiedje JM (1990).<br />

The vernal dam: plant-microbe competiti<strong>on</strong> for <strong>nitrogen</strong> <strong>in</strong> northern<br />

hardwood forests. Ecology, 71: 651-656.<br />

Zheng DW (1997). Soil food webs <str<strong>on</strong>g>and</str<strong>on</strong>g> ecosystem processes:<br />

decompositi<strong>on</strong> <strong>in</strong> d<strong>on</strong>or c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> Lotka-Volterra systems. Am. Nat.<br />

149: 125-148.<br />

Zheng CY, Fang JY (2004). Changs <strong>in</strong> air temperature varibles al<strong>on</strong>g<br />

altitud<strong>in</strong>al gradient <strong>in</strong> Mt. Hunggang, Ch<strong>in</strong>a. Acta Meteorologica<br />

S<strong>in</strong>ica, 62: 251-256.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!