21.02.2015 Views

Proceedings of the 44th Symposium on Ring Theory and ... - FUJI

Proceedings of the 44th Symposium on Ring Theory and ... - FUJI

Proceedings of the 44th Symposium on Ring Theory and ... - FUJI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g><br />

<strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong><br />

September 25(Sun.) - 27(Tue.), 2011<br />

Okayama University, Japan<br />

Edited by<br />

Osamu Iyama<br />

Nagoya University<br />

March, 2012<br />

Nagoya, JAPAN


: ()


Organizing Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> The <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong><br />

The <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> has been held annually in<br />

Japan <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> have been published by <str<strong>on</strong>g>the</str<strong>on</strong>g> organizing committee. The first<br />

<str<strong>on</strong>g>Symposium</str<strong>on</strong>g> was organized in 1968 by H.Tominaga, H.Tachikawa, M.Harada <strong>and</strong> S.Endo.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g>ir retirement, a new committee was organized in 1997 for managing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g><br />

<strong>and</strong> committee members are listed in <str<strong>on</strong>g>the</str<strong>on</strong>g> web page<br />

http://fuji.cec.yamanashi.ac.jp/˜ring/h-<str<strong>on</strong>g>of</str<strong>on</strong>g>-ringsymp.html.<br />

The present members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> committee are H.Asashiba (Shizuoka Univ.), S.Ikehata (Okayama<br />

Univ.), S.Kawata (Osaka City Univ.), M.Sato (Yamanashi Univ.) <strong>and</strong> K.Yamagata<br />

(Tokyo Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <strong>and</strong> Technology).<br />

The <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> is edited by program organizer. Any<strong>on</strong>e who wants<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> should ask to <str<strong>on</strong>g>the</str<strong>on</strong>g> program organizer <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> or <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

committee members.<br />

The <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> in 2012 will be held at Shinshu University for Sep. 7(Fri.)–9(Sun.)<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> program will be arranged by K.Koike (Okinawa Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Tech.).<br />

C<strong>on</strong>cerning several informati<strong>on</strong> <strong>on</strong> ring <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> group <strong>and</strong><br />

algebras c<strong>on</strong>taining schedules <str<strong>on</strong>g>of</str<strong>on</strong>g> meetings <strong>and</strong> symposiums as well as ring mailing list<br />

service for registered members, you should refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> following ring homepage, which is<br />

arranged by M.Sato (Yamanashi Univ.):<br />

http://fuji.cec.yamanashi.ac.jp/˜ring/ (in Japanese)<br />

(Mirror site: www.cec.yamanashi.ac.jp/˜ring/)<br />

http://fuji.cec.yamanashi.ac.jp/˜ring/japan/ (in English)<br />

Masahisa Sato<br />

Yamanashi Japan<br />

December, 2011<br />

<br />

–iii–


CONTENTS<br />

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii<br />

Program (Japanese) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii<br />

Program (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi<br />

Tilting modules arising from two-term tilting complexes<br />

Hiroki Abe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

Takuma Aihara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

Quiver presentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s<br />

Hideto Asashiba, Mayumi Kimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

The Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products for dihedral two-groups<br />

Erik Darpö, Christopher C. Gill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Example <str<strong>on</strong>g>of</str<strong>on</strong>g> categorificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster algebra<br />

Laurent Dem<strong>on</strong>et . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> types A n <strong>and</strong> D n<br />

Takahiko Furuya, Takao Hayami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

Derived autoequivalences <strong>and</strong> braid relati<strong>on</strong>s<br />

Joseph Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

n-representati<strong>on</strong> infinite algebras<br />

Martin Herschend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

On a degenerati<strong>on</strong> problem for Cohen-Macaulay modules<br />

Naoya Hiramatsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

Weak Gorenstein dimensi<strong>on</strong> for modules <strong>and</strong> Gorenstein algebras<br />

Mitsuo Hoshino, Hirotaka Koga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68<br />

On Ω-perfect modules <strong>and</strong> sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers<br />

Otto Kerner, Dan Zacharia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis<br />

Yoshiyuki Kimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

Weakly closed graph<br />

Kazunori Matsuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99<br />

–iv–


Polycyclic codes <strong>and</strong> sequential codes<br />

Manabu Matsuoka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106<br />

A note <strong>on</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories<br />

Hiroyuki Minamoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111<br />

APR tilting modules <strong>and</strong> quiver mutati<strong>on</strong>s<br />

Yuya Mizuno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

The example by Stephens<br />

Kaoru Motose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Hom-orthog<strong>on</strong>al partial tilting modules for Dynkin quivers<br />

Hiroshi Nagase, Makoto Nagura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

The Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <strong>on</strong> central 2-arrangements<br />

Norihiro Nakashima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong> a quantum-like relati<strong>on</strong><br />

Daiki Obara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals <strong>and</strong> Eliahou-Kervaire type resoluti<strong>on</strong><br />

Ryota Okazaki, Kohji Yanagawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

Sharp bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

Kazuho Ozeki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

Preprojective algebras <strong>and</strong> crystal bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups<br />

Yoshihisa Saito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Matrix factorizati<strong>on</strong>s, orbifold curves <strong>and</strong> mirror symmetry<br />

Atsushi Takahashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196<br />

On a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

Yasuhiko Takehana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

Graded Frobenius algebras <strong>and</strong> quantum Beilins<strong>on</strong> algebras<br />

Kenta Ueyama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to <str<strong>on</strong>g>the</str<strong>on</strong>g> foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

Jay A. Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223<br />

Realizing stable categories as derived categories<br />

Kota Yamaura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246<br />

–v–


Algebraic stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories <strong>and</strong> derived simple algebras<br />

D<strong>on</strong>g Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256<br />

Recollements generated by idempotents <strong>and</strong> applicati<strong>on</strong> to singularity categories<br />

D<strong>on</strong>g Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262<br />

Introducti<strong>on</strong> to representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir degenerati<strong>on</strong>s<br />

Yuji Yoshino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268<br />

Subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules related to Serre subcategories<br />

Takeshi Yoshizawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282<br />

–vi–


Preface<br />

The <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> was held at Okayama<br />

University <strong>on</strong> September 25th - 27th, 2011. The symposium <strong>and</strong> this proceeding are<br />

financially supported by<br />

Kunio Yamagata (Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <strong>and</strong> Technology )<br />

Grant-in-Aid for Scientific Research (B), No.21340003, JSPS,<br />

Kazutoshi Koike (Okinawa Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology)<br />

Grant-in-Aid for Scientific Research (C), No.23540064, JSPS,<br />

Yoshitomo Baba (Osaka Kyouiku University)<br />

Grant-in-Aid for Scientific Research (C), No.23540047, JSPS,<br />

Shuichi Ikehata (Okayama University)<br />

Grant-in-Aid for Scientific Research (C), No.23540049, JSPS,<br />

Shigeto Kawata (Osaka City University)<br />

Grant-in-Aid for Scientific Research (C), No.23540054, JSPS,<br />

Tsunekazu Nishinaka (Okayama Shoka University)<br />

Grant-in-Aid for Scientific Research (C), No.23540063, JSPS.<br />

We would like to thanks Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors Hideto Asashiba, Shuichi Ikahata, Shigeto Kawata,<br />

Masahisa Sato <strong>and</strong> Kunio Yamagata for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir helpful suggesti<strong>on</strong>s c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> symposium.<br />

Finally we would like to express our thanks to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors Akihiko Hida <strong>and</strong><br />

Shuichi Ikahata for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir great effort <strong>and</strong> preparati<strong>on</strong> to hold <str<strong>on</strong>g>the</str<strong>on</strong>g> symposium in Okayama<br />

University.<br />

Masahisa Sato<br />

Yamanashi<br />

December, 2011<br />

–vii–


8:40–9:30 Dan ZachariaSyracuse University<br />

On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective algebras I<br />

9:40–10:30 D<strong>on</strong>g Yang<br />

On derived simple algebras<br />

10:50–11:40 <br />

I<br />

13:00–13:40<br />

21 <br />

Tilting modules arising from two-term tilting complexes<br />

24 Erik Darpö<br />

The representati<strong>on</strong> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups<br />

13:50–14:30<br />

21 <br />

APR tilting modules <strong>and</strong> quiver mutati<strong>on</strong>s<br />

24 <br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong><br />

a quantum-like relati<strong>on</strong><br />

14:50–15:30<br />

21 Joseph Grant<br />

Derived autoequivalences <strong>and</strong> braid relati<strong>on</strong>s<br />

24 <br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> types A n <strong>and</strong> D n<br />

15:40–16:20<br />

21 Martin Herschend<br />

n-representati<strong>on</strong> infinite algebras<br />

24 <br />

Subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules related to Serre subcategories<br />

16:40–17:30 <br />

Cohen-Macaulay I<br />

17:40–18:30 Jay A. WoodWestern Michigan University<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory I<br />

–viii–


8:40–9:30 Dan ZachariaSyracuse University<br />

On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective algebras II<br />

9:40–10:30 D<strong>on</strong>g Yang<br />

Recollements generated by idempotents<br />

10:50–11:40 <br />

II<br />

13:00–13:40<br />

21 <br />

A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

24 <br />

A note <strong>on</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories<br />

13:50–14:30<br />

21 <br />

Quiver presentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s<br />

24 <br />

Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

14:50–15:30<br />

21 <br />

Graded Frobenius algebras <strong>and</strong> quantum Beilins<strong>on</strong> algebras<br />

24 <br />

Weak Gorenstein dimensi<strong>on</strong> for modules <strong>and</strong> Gorenstein algebras<br />

15:40–16:20<br />

21 <br />

Polycyclic codes <strong>and</strong> sequential codes<br />

24 )<br />

On a degenerati<strong>on</strong> problem for Cohen-Macaulay modules<br />

16:40–17:30 <br />

Cohen-Macaulay II<br />

17:40–18:30 Jay A. WoodWestern Michigan University<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory II<br />

19:00– <br />

–ix–


8:40–9:30 <br />

Matrix Factorizati<strong>on</strong>s, Orbifold Curves And Mirror Symmetry<br />

9:40–10:30 <br />

Hidden Hecke Algebras <strong>and</strong> Koszul Duality<br />

10:50–11:30<br />

21 <br />

Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for stable graded module categories over graded self-injective<br />

algebras<br />

24 <br />

The Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <strong>on</strong> central<br />

2-arrangements<br />

12:50–13:30<br />

21 <br />

Hom-orthog<strong>on</strong>al partial tilting modules for Dynkin quivers<br />

24 <br />

Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals <strong>and</strong> Eliahou-Kervaire type<br />

resoluti<strong>on</strong><br />

13:40–14:20<br />

21 Laurent Dem<strong>on</strong>et<br />

Categorificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebra structures <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinate rings <str<strong>on</strong>g>of</str<strong>on</strong>g> simple<br />

Lie groups<br />

24 <br />

Weakly closed graph<br />

14:40–15:20<br />

21 <br />

Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis<br />

24 <br />

Sharp bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

15:30–16:20 <br />

The Example by Stephens<br />

–x–


The <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> On <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong><br />

<strong>Theory</strong> (2011)<br />

Program<br />

Sunday September 25<br />

8:40–9:30 Dan Zacharia (Syracuse University)<br />

On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective algebras I<br />

9:40–10:30 D<strong>on</strong>g Yang<br />

On derived simple algebras<br />

10:50–11:40 Yoshihisa Saito (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo)<br />

Preprojective algebras <strong>and</strong> crystal bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups I<br />

13:00–13:40<br />

Room 21 Hiroki Abe (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba)<br />

Tilting modules arising from two-term tilting complexes<br />

Room 24 Erik Darpö (Nagoya University)<br />

The representati<strong>on</strong> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups<br />

13:50–14:30<br />

Room 21 Yuya Mizuno (Nagoya University)<br />

APR tilting modules <strong>and</strong> quiver mutati<strong>on</strong>s<br />

Room 24 Daiki Obara (Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science)<br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong><br />

a quantum-like relati<strong>on</strong><br />

14:50–15:30<br />

Room 21 Joseph Grant (Nagoya University)<br />

Derived autoequivalences <strong>and</strong> braid relati<strong>on</strong>s<br />

Room 24 Takahiko Furuya, Takao Hayami (Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

Hokkai-Gakuen University)<br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> types A n <strong>and</strong> D n<br />

15:40–16:20<br />

Room 21 Martin Herschend (Nagoya University)<br />

n-representati<strong>on</strong> infinite algebras<br />

Room 24 Takeshi Yoshizawa (Okayama University)<br />

Subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules related to Serre subcategories<br />

16:40–17:30 Yuji Yoshino (Okayama University)<br />

Introducti<strong>on</strong> to reresentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

degenerati<strong>on</strong>s I<br />

17:40–18:30 Jay A. Wood (Western Michigan University)<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory I<br />

–xi–


M<strong>on</strong>day September 26<br />

8:40–9:30 Dan Zacharia (Syracuse University)<br />

On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective algebras II<br />

9:40–10:30 D<strong>on</strong>g Yang<br />

Recollements generated by idempotents<br />

10:50–11:40 Yoshihisa Saito (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo)<br />

Preprojective algebras <strong>and</strong> crystal bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups II<br />

13:00–13:40<br />

Room 21 Yasuhiko Takehana (Hakodate Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology)<br />

A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

Room 24 Hiroyuki Minamoto (Kyoto University)<br />

A note <strong>on</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories<br />

13:50–14:30<br />

Room 21 Mayumi Kimura, Hideto Asashiba (Shizuoka University)<br />

Quiver presentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s<br />

Room 24 Takuma Aihara, Ryo Takahashi (Chiba University, Shinshu University)<br />

Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

14:50–15:30<br />

Room 21 Kenta Ueyama (Shizuoka University)<br />

Graded Frobenius algebras <strong>and</strong> quantum Beilins<strong>on</strong> algebras<br />

Room 24 Hirotaka Koga, Mitsuo Hoshino (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba)<br />

Weak Gorenstein dimensi<strong>on</strong> for modules <strong>and</strong> Gorenstein algebras<br />

15:40–16:20<br />

Room 21 Matsuoka Manabu (Yokkaichi Highschool)<br />

Polycyclic codes <strong>and</strong> sequential codes<br />

Room 24 Naoya Hiramatsu (Kure Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology)<br />

On a degenerati<strong>on</strong> problem for Cohen-Macaulay modules<br />

16:40–17:30 Yuji Yoshino (Okayama University)<br />

Introducti<strong>on</strong> to reresentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

degenerati<strong>on</strong>s II<br />

17:40–18:30 Jay A. WoodWestern Michigan University<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory II<br />

19:00– C<strong>on</strong>ference dinner<br />

–xii–


Tuesday September 27<br />

8:40–9:30 Atsushi Takahashi (Osaka University)<br />

Matrix Factorizati<strong>on</strong>s, Orbifold Curves And Mirror Symmetry<br />

9:40–10:30 Hyohe Miyachi (Nagoya University)<br />

Hidden Hecke Algebras <strong>and</strong> Koszul Duality<br />

10:50–11:30<br />

Room 21 Kota Yamaura (Nagoya University)<br />

Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for stable graded module categories over graded self-injective<br />

algebras<br />

Room 24 Nakashima Norihiro (Hokkaido University)<br />

The Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <strong>on</strong> central<br />

2-arrangements<br />

12:50–13:30<br />

Room 21 Hiroshi Nagase, Nagura, Makoto (Tokyo Gakugei University,<br />

Nara Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology)<br />

Hom-orthog<strong>on</strong>al partial tilting modules for Dynkin quivers<br />

Room 24 Ryota Okazaki, Kohji Yanagawa (Osaka University, Kansai University)<br />

Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals <strong>and</strong> Eliahou-Kervaire type<br />

resoluti<strong>on</strong><br />

13:40–14:20<br />

Room 21 Laurent Dem<strong>on</strong>et (Nagoya University)<br />

Categorificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebra structures <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinate rings <str<strong>on</strong>g>of</str<strong>on</strong>g> simple<br />

Lie groups<br />

Room 24 Kazunori Matsuda (Nagoya University)<br />

Weakly closed graph<br />

14:40–15:20<br />

Room 21 Yoshiyuki Kimura (Kyoto University)<br />

Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis<br />

Room 24 Kazuho Ozeki (Meiji University)<br />

Sharp bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

15:30–16:20 Kaoru Motose<br />

The Example by Stephens<br />

–xiii–


TILTING MODULES ARISING FROM TWO-TERM TILTING<br />

COMPLEXES<br />

HIROKI ABE<br />

Abstract. We see that every two-term tilting complex over an Artin algebra has a<br />

tilting module over a certain factor algebra as a homology group. Also, we determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> such a homology group, which is given as a certain factor<br />

algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two-term tilting complex. Thus, every<br />

derived equivalence between Artin algebras given by a two-term tilting complex induces<br />

a derived equivalence between <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding factor algebras.<br />

Let A be an Artin algebra. We denote by mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated right<br />

A-modules <strong>and</strong> by P A <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules.<br />

Definiti<strong>on</strong> 1. A pair (T , F) <str<strong>on</strong>g>of</str<strong>on</strong>g> full subcategories T , F in mod-A is said to be a torsi<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A if <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are satisfied:<br />

(1) T ∩ F = {0};<br />

(2) T is closed under factor modules;<br />

(3) F is closed under submodules; <strong>and</strong><br />

(4) for any X ∈ mod-A, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an exact sequence 0 → X ′ → X → X ′′ → 0 with<br />

X ′ ∈ T <strong>and</strong> X ′′ ∈ F.<br />

If T is stable under <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor ν, <str<strong>on</strong>g>the</str<strong>on</strong>g>n (T , F) is said to be a stable torsi<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A.<br />

Let T • ∈ K b (P A ) be a two-term complex:<br />

T • : · · · → 0 → T −1 α → T 0 → 0 → · · · ,<br />

<strong>and</strong> set <str<strong>on</strong>g>the</str<strong>on</strong>g> following subcategories in mod-A:<br />

T (T • ) = Ker Hom K(A) (T • [−1], −) ∩ mod-A,<br />

F(T • ) = Ker Hom K(A) (T • , −) ∩ mod-A.<br />

Propositi<strong>on</strong> 2 ([1, Propositi<strong>on</strong>s 5.5 <strong>and</strong> 5.7]). The following are equivalent.<br />

(1) T • is a tilting complex.<br />

(2) (T (T • ), F(T • )) is a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, if <str<strong>on</strong>g>the</str<strong>on</strong>g>se equivalent c<strong>on</strong>diti<strong>on</strong>s hold, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) T (T • ) = gen(H 0 (T • )), <str<strong>on</strong>g>the</str<strong>on</strong>g> generated class by H 0 (T • ), <strong>and</strong> H 0 (T • ) is Ext-projective<br />

in T (T • ).<br />

(2) F(T • ) = cog(H −1 (νT • )), <str<strong>on</strong>g>the</str<strong>on</strong>g> cogenerated class by H −1 (νT • ) <strong>and</strong> H −1 (νT • ) is Extinjective<br />

in F(T • ).<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this note has been submitted for publicati<strong>on</strong> elsewhere.<br />

–1–


C<strong>on</strong>versely, let (T , F) be a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A.<br />

Propositi<strong>on</strong> 3 ([1, Theorem 5.8]). Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist X ∈ T <strong>and</strong> Y ∈ F satisfying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s:<br />

(1) T = gen(X) <strong>and</strong> X is Ext-projective in T ; <strong>and</strong><br />

(2) F = cog(Y ) <strong>and</strong> Y is Ext-injective in F.<br />

Let P X • be a minimal projective presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X <strong>and</strong> I• Y be a minimal injective presentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Y , <strong>and</strong> set T X,Y • = P X • ⊕ ν−1 I Y • [1]. Then T X,Y • ∈ Kb (P A ) is a tilting complex such<br />

that T = T (T X,Y • ) <strong>and</strong> F = F(T X,Y • ).<br />

Let T • be a two-term tilting complex. We set a = ann A (H 0 (T • )), <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> H 0 (T • ). Note that H 0 (T • ) is faithful in mod-A/a <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical full embedding<br />

mod-A/a ↩→ mod-A induces gen(H 0 (T • ) A/a ) = gen(H 0 (T • ) A ) which is closed under extensi<strong>on</strong>s.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> next lemma follows from Propositi<strong>on</strong> 2.<br />

Lemma 4. The following hold.<br />

(1) proj dim H 0 (T • ) A/a ≤ 1.<br />

(2) Ext 1 A/a(H 0 (T • ), H 0 (T • )) = 0.<br />

(3) There exists an exact sequence 0 → A/a → X 0 → X 1 → 0 in mod-A/a such<br />

that X 0 ∈ add(H 0 (T • ) A/a ) <strong>and</strong> X 1 ∈ gen(H 0 (T • ) A/a ) which is Ext-projective in<br />

gen(H 0 (T • ) A/a ).<br />

We set a ′ = ann A (H −1 (νT • )), <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator <str<strong>on</strong>g>of</str<strong>on</strong>g> H −1 (νT • ). The next lemma follows by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dual arguments <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 4<br />

Lemma 5. The following hold.<br />

(1) inj dim H −1 (νT • ) A/a ′ ≤ 1.<br />

(2) Ext 1 A/a ′(H−1 (νT • ), H −1 (νT • )) = 0.<br />

(3) There exists an exact sequence 0 → Y 1 → Y 0 → A/a ′ → 0 in mod-A/a ′ such<br />

that Y 0 ∈ add(H −1 (νT • ) A/a ′) <strong>and</strong> Y 1 ∈ cog(H −1 (νT • ) A/a ′) which is Ext-injective<br />

in cog(H −1 (νT • ) A/a ′).<br />

Let X be <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all indecomposable n<strong>on</strong>-projective Ext-projective modules<br />

in gen(H 0 (T • )) which are not c<strong>on</strong>tained in add(H 0 (T • )). Then add(H 0 (T • )⊕X) coincides<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> all Ext-projective modules in gen(H 0 (T • )). Also, since gen(H 0 (T • )) =<br />

gen(H 0 (T • ) ⊕ X), <str<strong>on</strong>g>the</str<strong>on</strong>g> pair (gen(H 0 (T • ) ⊕ X), cog(H −1 (νT • )) is a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

in mod-A. Let P • be <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal projective presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H 0 (T • ) ⊕ X <strong>and</strong> I • be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

minimal injective presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H −1 (νT • ), <strong>and</strong> set U • = P • ⊕ ν −1 I • [1]. Then U • is<br />

a tilting complex such that T (U • ) = gen(H 0 (T • ) ⊕ X) <strong>and</strong> F(U • ) = cog(H −1 (νT • )) by<br />

Propositi<strong>on</strong> 3. Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory induced by U • coincides with that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T • . From this fact, we can prove that add(H 0 (U • )) = add(H 0 (T • )). Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exist <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong>s add(H 0 (T • )) ⊂ add(H 0 (T • ) ⊕ X) ⊂ add(H 0 (U • )), we c<strong>on</strong>clude that<br />

add(H 0 (T • )) = add(H 0 (T • ) ⊕ X). Thus, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> next lemma.<br />

Lemma 6. For any M, N ∈ mod-A, <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) M ∈ add(H 0 (T • )) if <strong>and</strong> <strong>on</strong>ly if M is Ext-projective in gen(H 0 (T • )).<br />

(2) N ∈ add(H −1 (νT • )) if <strong>and</strong> <strong>on</strong>ly if N is Ext-injective in cog(H −1 (νT • )).<br />

–2–


The next <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous three lemmas.<br />

Theorem 7. The following hold.<br />

(1) H 0 (T • ) is a tilting module in mod-A/a.<br />

(2) H −1 (νT • ) is a cotilting module in mod-A/a ′ , i.e., D(H −1 (νT • )) is a tilting module<br />

in mod-(A/a ′ ) op .<br />

We determine <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> H 0 (T • ). Set B = End K(A) (T • ). Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a surjective algebra homomorphism<br />

θ : B → End A/a (H 0 (T • )),<br />

which is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> functor H 0 (−), we have an algebra isomorphism<br />

End A/a (H 0 (T • )) ∼ = B/Ker θ.<br />

Also, we can prove that Ker θ = ann B (Hom K(A) (A, T • )) = ann B (H 0 (T • )). Thus, we have<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> next <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 8. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following algebra isomorphisms.<br />

(1) End A/a (H 0 (T • )) ∼ = B/b, where b = ann B (H 0 (T • )).<br />

(2) End A/a ′(H −1 (νT • )) ∼ = B/b ′ , where b ′ = ann B (H −1 (νT • )).<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> final <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, we dem<strong>on</strong>strate our results through an example.<br />

Example 9. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

2 ❂ ❂❂❂❂❂❂<br />

α<br />

γ<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ 4<br />

❂ ❂❂❂❂❂<br />

β<br />

3<br />

✁ ✁✁✁✁✁✁ δ<br />

with relati<strong>on</strong>s αγ = βδ = 0. We denote by e i <str<strong>on</strong>g>the</str<strong>on</strong>g> empty path corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex<br />

i = 1, · · · , 4. The Ausl<strong>and</strong>er–Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> A is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

2<br />

4<br />

3<br />

1<br />

❄ ❄❄❄❄❄<br />

❄ ❄❄❄❄❄ 2 ❄ ❄❄❄❄❄❄<br />

8 888888 8 88888 8 88888<br />

4❄ 2 3<br />

1<br />

❄❄❄❄❄❄ 4 ❄ 2 3<br />

1<br />

❄❄❄❄❄ ❄ ❄❄❄❄❄<br />

3 8 88888 8 88888<br />

4<br />

2<br />

1 8 888888<br />

3<br />

where each indecomposable module is represented by its compositi<strong>on</strong> factors. It is not<br />

difficult to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> following pair gives a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A:<br />

T = { 1<br />

2 3 , 1 2 , 1 3 , 1 } <strong>and</strong> F = { 4 , 2 4 , 3 4 , 2 3<br />

4 , 3 , 2 },<br />

where T is a torsi<strong>on</strong> class <strong>and</strong> F is a torsi<strong>on</strong>-free class. We set<br />

X = 1<br />

2 3 , Y = 2 3<br />

4 ⊕ 3 ⊕ 2 .<br />

–3–


Then T = gen(X) <strong>and</strong> X is Ext-projective in T , <strong>and</strong> F = cog(Y ) <strong>and</strong> Y is Ext-injective in<br />

F. According to Propositi<strong>on</strong> 3, we have a two-term tilting complex T • = T • 1 ⊕T • 2 ⊕T • 3 ⊕T • 4 ,<br />

where<br />

Thus, we have<br />

T • 1 = 0 → 1<br />

2 3 , T • 2 = 2 4 → 1<br />

2 3 , T • 3 = 3 4 → 1<br />

2 3 , T • 4 = 4 → 0.<br />

H 0 (T • ) = 1<br />

2 3 ⊕ 1 3 ⊕ 1 2<br />

as a right A-module. Since a = ann A (H 0 (T • )) is a two-sided ideal generated by e 4 , γ, δ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> factor algebra A/a is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

α<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ ❂❂❂❂❂❂<br />

β<br />

without relati<strong>on</strong>s. Next, it is not difficult to see that B = End K(A) (T • ) is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quiver<br />

without relati<strong>on</strong>s. Then we have<br />

2<br />

3<br />

2 ❂ ❂❂❂❂❂❂<br />

λ<br />

ν<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ 4<br />

❂❂❂❂❂❂<br />

µ<br />

Hom K(A) (A, T • ) =<br />

ξ<br />

<br />

✁ ✁✁✁✁✁✁<br />

3<br />

4⊕<br />

Hom K(A) (e i A, T • )<br />

i=1<br />

= 1<br />

2 3 ⊕ 1 3 ⊕ 1 2 ⊕ 0<br />

as a left B-module. Thus, b = ann B (Hom K(A) (A, T • )) is a two-sided ideal generated by<br />

ν, ξ <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> empty path corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex 4. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> factor algebra B/b<br />

is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

λ<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ ❂❂❂❂❂❂<br />

µ<br />

without relati<strong>on</strong>s. It follows by Theorems 7 <strong>and</strong> 8 that A/a <strong>and</strong> B/b are derived equivalent<br />

to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

–4–<br />

2<br />

3


References<br />

[1] M. Hoshino, Y. Kato, J. Miyachi, On t-structure <strong>and</strong> torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ories induced by compact objects,<br />

J. Pure <strong>and</strong> App. Algebra 167 (2002), 15–35.<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba<br />

Ibaraki 305-8571 JAPAN<br />

E-mail address: abeh@math.tsukuba.ac.jp<br />

–5–


DIMENSIONS OF DERIVED CATEGORIES<br />

TAKUMA AIHARA AND RYO TAKAHASHI<br />

Abstract. Several years ago, B<strong>on</strong>dal, Rouquier <strong>and</strong> Van den Bergh introduced <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category, <strong>and</strong> Rouquier proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves <strong>on</strong> a separated scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect<br />

field has finite dimensi<strong>on</strong>. In this paper, we study <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. The main<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper asserts that it is finite over a complete local ring c<strong>on</strong>taining a field<br />

with perfect residue field.<br />

1. Introducti<strong>on</strong><br />

The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category has been introduced by B<strong>on</strong>dal,<br />

Rouquier <strong>and</strong> Van den Bergh [4, 14]. Roughly speaking, it measures how quickly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category can be built from a single object. The dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves<br />

<strong>on</strong> a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian scheme are called <str<strong>on</strong>g>the</str<strong>on</strong>g> derived dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> scheme,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity category (in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Orlov [12]; <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable derived category in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Buchweitz [5]) is called <str<strong>on</strong>g>the</str<strong>on</strong>g> stable dimensi<strong>on</strong>. These<br />

dimensi<strong>on</strong>s have been in <str<strong>on</strong>g>the</str<strong>on</strong>g> spotlight in <str<strong>on</strong>g>the</str<strong>on</strong>g> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated<br />

categories.<br />

The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> derived dimensi<strong>on</strong> was first recognized by B<strong>on</strong>dal<br />

<strong>and</strong> Van den Bergh [4] in relati<strong>on</strong> to representability <str<strong>on</strong>g>of</str<strong>on</strong>g> functors. They proved that<br />

smooth proper commutative/n<strong>on</strong>-commutative varieties have finite derived dimensi<strong>on</strong>,<br />

which yields that every c<strong>on</strong>travariant cohomological functor <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type to vector spaces<br />

is representable.<br />

As to upper bounds, <str<strong>on</strong>g>the</str<strong>on</strong>g> derived dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring is at most its Loewy length [14]. In<br />

particular, Artinian rings have finite derived dimensi<strong>on</strong>. Christensen, Krause <strong>and</strong> Kussin<br />

[6, 9] showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> derived dimensi<strong>on</strong> is bounded above by <str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong>, whence<br />

rings <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global dimensi<strong>on</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g> finite derived dimensi<strong>on</strong>. In relati<strong>on</strong> to a c<strong>on</strong>jecture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Orlov [13], a series <str<strong>on</strong>g>of</str<strong>on</strong>g> studies by Ballard, Favero <strong>and</strong> Katzarkov [1, 2, 3] gave in several<br />

cases upper bounds for derived <strong>and</strong> stable dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes. For instance, <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

obtained an upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an isolated hypersurface singularity<br />

by using <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Tjurina algebra. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a lot <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triangulated categories having infinite dimensi<strong>on</strong>. The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> perfect complexes over a ring (respectively, a quasi-projective scheme) is infinite unless<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>. Primary 13D09; Sec<strong>on</strong>dary 14F05, 16E35, 18E30.<br />

Key words <strong>and</strong> phrases. dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category, derived category, singularity category,<br />

stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules.<br />

The sec<strong>on</strong>d author was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 22740008.<br />

–6–


<str<strong>on</strong>g>the</str<strong>on</strong>g> ring has finite global dimensi<strong>on</strong> (respectively, <str<strong>on</strong>g>the</str<strong>on</strong>g> scheme is regular) [14]. It has turned<br />

out by work <str<strong>on</strong>g>of</str<strong>on</strong>g> Oppermann <strong>and</strong> Šťovíček [11] that over a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra (respectively,<br />

a projective scheme) all proper thick subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finitely generated modules (respectively, coherent sheaves) c<strong>on</strong>taining perfect complexes<br />

have infinite dimensi<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se do not apply for <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-regular Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <str<strong>on</strong>g>of</str<strong>on</strong>g> positive Krull dimensi<strong>on</strong>.<br />

As a main result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [14], Rouquier gave <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 1 (Rouquier). Let X be a separated scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect field.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves <strong>on</strong> X has finite dimensi<strong>on</strong>.<br />

Applying this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem to an affine scheme, <strong>on</strong>e obtains:<br />

Corollary 2. Let R be a commutative ring which is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect<br />

field k. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category D b (mod R) <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules has<br />

finite dimensi<strong>on</strong>, <strong>and</strong> so does <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity category D Sg (R) <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

The main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <strong>and</strong> generators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. We<br />

will give lower bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s over general rings under some mild assumpti<strong>on</strong>s,<br />

<strong>and</strong> over some special rings we will also give upper bounds <strong>and</strong> explicit generators. The<br />

main result <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. (See Definiti<strong>on</strong> 5 for <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong>.)<br />

Main Theorem. Let R be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a complete local ring c<strong>on</strong>taining a field with perfect<br />

residue field or a ring that is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist<br />

a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n <str<strong>on</strong>g>of</str<strong>on</strong>g> R <strong>and</strong> an integer m ≥ 1 such that<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

In particular, D b (mod R) <strong>and</strong> D Sg (R) have finite dimensi<strong>on</strong>.<br />

In Rouquier’s result stated above, <str<strong>on</strong>g>the</str<strong>on</strong>g> essential role is played, in <str<strong>on</strong>g>the</str<strong>on</strong>g> affine case, by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra R ⊗ k R. The result does not apply to a<br />

complete local ring, since it is in general far from being (essentially) <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra is n<strong>on</strong>-Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Our methods not <strong>on</strong>ly show finiteness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s over a complete local ring but also give a ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary<br />

2.<br />

2. Preliminaries<br />

This secti<strong>on</strong> is devoted to stating our c<strong>on</strong>venti<strong>on</strong>, giving some basic notati<strong>on</strong> <strong>and</strong> recalling<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category.<br />

We assume <str<strong>on</strong>g>the</str<strong>on</strong>g> following throughout this paper.<br />

C<strong>on</strong>venti<strong>on</strong> 3. (1) All subcategories are full <strong>and</strong> closed under isomorphisms.<br />

(2) All rings are associative <strong>and</strong> with identities.<br />

(3) A Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring, an Artinian ring <strong>and</strong> a module mean a right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring,<br />

a right Artinian ring <strong>and</strong> a right module, respectively.<br />

(4) All complexes are cochain complexes.<br />

We use <str<strong>on</strong>g>the</str<strong>on</strong>g> following notati<strong>on</strong>.<br />

–7–


Notati<strong>on</strong> 4. (1) Let A be an abelian category.<br />

(a) For a subcategory X <str<strong>on</strong>g>of</str<strong>on</strong>g> A, <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> A c<strong>on</strong>taining X which<br />

is closed under finite direct sums <strong>and</strong> direct summ<strong>and</strong>s is denoted by add A X .<br />

(b) We denote by C(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> objects <str<strong>on</strong>g>of</str<strong>on</strong>g> A. The derived<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> A is denoted by D(A). The left bounded, <str<strong>on</strong>g>the</str<strong>on</strong>g> right bounded<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> A are denoted by D + (A), D − (A) <strong>and</strong><br />

D b (A), respectively. We set D ∅ (A) = D(A), <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten write D ⋆ (A) with<br />

⋆ ∈ {∅, +, −, b} to mean D ∅ (A), D + (A), D − (A) <strong>and</strong> D b (A).<br />

(2) Let R be a ring. We denote by Mod R <strong>and</strong> mod R <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules, respectively. For a subcategory X<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mod R (when R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian), we put add R X = add mod R X .<br />

The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category has been introduced by Rouquier<br />

[14]. Now we recall its definiti<strong>on</strong>.<br />

Definiti<strong>on</strong> 5. Let T be a triangulated category.<br />

(1) A triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T is called thick if it is closed under direct summ<strong>and</strong>s.<br />

(2) Let X , Y be two subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> T . We denote by X ∗ Y <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> all objects M that admit exact triangles<br />

X → M → Y → ΣX<br />

with X ∈ X <strong>and</strong> Y ∈ Y. We denote by 〈X 〉 <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T<br />

c<strong>on</strong>taining X which is closed under finite direct sums, direct summ<strong>and</strong>s <strong>and</strong> shifts.<br />

For a n<strong>on</strong>-negative integer n, we define <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory 〈X 〉 n<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T by<br />

⎧<br />

⎪⎨ {0} (n = 0),<br />

〈X 〉 n<br />

= 〈X 〉 (n = 1),<br />

⎪⎩<br />

〈〈X 〉 ∗ 〈X 〉 n−1<br />

〉 (2 ≤ n < ∞).<br />

Put 〈X 〉 ∞<br />

= ∪ n≥0 〈X 〉 n<br />

. When <str<strong>on</strong>g>the</str<strong>on</strong>g> ground category T should be specified, we<br />

write 〈X 〉 T n<br />

instead <str<strong>on</strong>g>of</str<strong>on</strong>g> 〈X 〉 n<br />

. For a ring R <strong>and</strong> a subcategory X <str<strong>on</strong>g>of</str<strong>on</strong>g> D(Mod R), we<br />

put 〈X 〉 R R)<br />

n<br />

= 〈X 〉D(Mod<br />

n<br />

.<br />

(3) The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T , denoted by dim T , is <str<strong>on</strong>g>the</str<strong>on</strong>g> infimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers d such that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object M ∈ T with 〈M〉 d+1<br />

= T .<br />

3. Upper bounds<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to find explicit generators <strong>and</strong> upper bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s<br />

for derived categories in several cases.<br />

We observe that <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated<br />

modules over quotient singularities are at most <str<strong>on</strong>g>the</str<strong>on</strong>g>ir (Krull) dimensi<strong>on</strong>s, particularly that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are finite.<br />

Propositi<strong>on</strong> 6. Let S be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring k[x 1 , . . . , x n ] or <str<strong>on</strong>g>the</str<strong>on</strong>g> formal power<br />

series ring k[[x 1 , . . . , x n ]] over a field k. Let G be a finite subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> general linear<br />

–8–


group GL n (k), <strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> k does not divide <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> G. Let<br />

R = S G be <str<strong>on</strong>g>the</str<strong>on</strong>g> invariant subring. Then D b (mod R) = 〈S〉 n+1<br />

holds, <strong>and</strong> hence <strong>on</strong>e has<br />

dim D b (mod R) ≤ n = dim R < ∞.<br />

For a commutative ring R, we denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal prime ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R by Min R.<br />

As is well-known, Min R is a finite set whenever R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Also, we denote by<br />

λ(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> infimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers n ≥ 0 such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a filtrati<strong>on</strong><br />

0 = I 0 ⊆ I 1 ⊆ · · · ⊆ I n = R<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R with I i /I i−1<br />

∼ = R/pi for 1 ≤ i ≤ n, where p i ∈ Spec R. If R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n such a filtrati<strong>on</strong> exists <strong>and</strong> λ(R) is a n<strong>on</strong>-negative integer.<br />

Propositi<strong>on</strong> 7. Let R be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative ring.<br />

(1) Suppose that for every p ∈ Min R <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist an R/p-complex G(p) <strong>and</strong> an integer<br />

n(p) ≥ 0 such that D b (mod R/p) = 〈G(p)〉 n(p)<br />

. Then D b (mod R) = 〈G〉 n<br />

holds,<br />

where G = ⊕ p∈Min R<br />

G(p) <strong>and</strong> n = λ(R) · max{ n(p) | p ∈ Min R }.<br />

(2) There is an inequality<br />

dim D b (mod R) ≤ λ(R) · sup{ dim D b (mod R/p) + 1 | p ∈ Min R } − 1.<br />

Let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. We set<br />

ll(R) = inf{ n ≥ 0 | (rad R) n = 0 },<br />

r(R) = min{ n ≥ 0 | (nil R) n = 0 },<br />

where rad R <strong>and</strong> nil R denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobs<strong>on</strong> radical <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nilradical <str<strong>on</strong>g>of</str<strong>on</strong>g> R, respectively.<br />

The first number is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> R <strong>and</strong> is finite if (<strong>and</strong> <strong>on</strong>ly if) R is Artinian,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d <strong>on</strong>e is always finite. Let R red = R/ nil R be <str<strong>on</strong>g>the</str<strong>on</strong>g> associated reduced ring.<br />

When R is reduced, we denote by R <str<strong>on</strong>g>the</str<strong>on</strong>g> integral closure <str<strong>on</strong>g>of</str<strong>on</strong>g> R in <str<strong>on</strong>g>the</str<strong>on</strong>g> total quotient ring<br />

Q <str<strong>on</strong>g>of</str<strong>on</strong>g> R. Let C R denote <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> R, i.e., C R is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> elements x ∈ Q with<br />

xR ⊆ R. We can give an explicit generator <strong>and</strong> an upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a <strong>on</strong>e-dimensi<strong>on</strong>al complete<br />

local ring.<br />

Propositi<strong>on</strong> 8. Let R be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong><br />

<strong>on</strong>e with residue field k. Then it holds that D b (mod R) = 〈R red ⊕k〉 r(R)·(2 ll(Rred /C Rred )+2) .<br />

In particular,<br />

dim D b (mod R) ≤ r(R) · (2 ll(R red /C Rred ) + 2) − 1 < ∞.<br />

Let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong> d with maximal ideal<br />

d!<br />

m. We denote by e(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> R, that is, e(R) = lim n→∞ l<br />

n d R (R/m n+1 ). Recall<br />

that a numerical semigroup is defined as a subsemigroup H <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive semigroup<br />

N = {0, 1, 2, . . . } c<strong>on</strong>taining 0 such that N\H is a finite set. For a numerical semigroup<br />

H, let c(H) denote <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> H, that is,<br />

c(H) = max{ i ∈ N | i − 1 /∈ H }.<br />

For a real number α, put ⌈α⌉ = min{ n ∈ Z | n ≥ α }. Making use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above<br />

propositi<strong>on</strong>, <strong>on</strong>e can get an upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category<br />

–9–


<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a numerical semigroup ring k[[H]] over a field k, in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> semigroup <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring.<br />

Corollary 9. Let k be a field <strong>and</strong> H be a numerical semigroup. Let R be <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical<br />

semigroup ring k[[H]], that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> subring k[[t h |h ∈ H]] <str<strong>on</strong>g>of</str<strong>on</strong>g> S = k[[t]]. Then D b (mod R) =<br />

〈S ⊕ k〉 2 ⌈ holds. Hence c(H)<br />

e(R) ⌉+2<br />

⌈ ⌉ c(H)<br />

dim D b (mod R) ≤ 2 + 1.<br />

e(R)<br />

4. Finiteness<br />

In this secti<strong>on</strong>, we c<strong>on</strong>sider finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a complete local ring. Let R be a commutative algebra<br />

over a field k. Rouquier [14] proved <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R) when<br />

R is an affine k-algebra, where <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra R ⊗ k R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

played a crucial role. The problem in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where R is a complete local ring is that <strong>on</strong>e<br />

cannot hope that R ⊗ k R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Our methods instead use <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

enveloping algebra, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> complete tensor product R ̂⊗ k R, which is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

ring whenever R is a complete local ring with coefficient field k.<br />

Let R <strong>and</strong> S be commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian complete local rings with maximal ideals m<br />

<strong>and</strong> n, respectively. Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>y c<strong>on</strong>tain fields <strong>and</strong> have <str<strong>on</strong>g>the</str<strong>on</strong>g> same residue field k,<br />

i.e., R/m ∼ = k ∼ = S/n. Then Cohen’s structure <str<strong>on</strong>g>the</str<strong>on</strong>g>orem yields isomorphisms<br />

R ∼ = k[[x 1 , . . . , x m ]]/(f 1 , . . . , f a ),<br />

S ∼ = k[[y 1 , . . . , y n ]]/(g 1 , . . . , g b ).<br />

We denote by R ̂⊗ k S <str<strong>on</strong>g>the</str<strong>on</strong>g> complete tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> R <strong>and</strong> S over k, namely,<br />

R ̂⊗ k S = lim ←− i,j<br />

(R/m i ⊗ k S/n j ).<br />

For r ∈ R <strong>and</strong> s ∈ S, we denote by r ̂⊗ s <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> r ⊗ s by <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical ring<br />

homomorphism R ⊗ k S → R ̂⊗ k S. Note that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a natural isomorphism<br />

R ̂⊗ k S ∼ = k[[x 1 , . . . , x m , y 1 , . . . , y n ]]/(f 1 , . . . , f a , g 1 , . . . , g b ).<br />

Details <str<strong>on</strong>g>of</str<strong>on</strong>g> complete tensor products can be found in [15, Chapter V].<br />

Recall that a ring extensi<strong>on</strong> A ⊆ B is called separable if B is projective as a B ⊗ A B-<br />

module. This is equivalent to saying that <str<strong>on</strong>g>the</str<strong>on</strong>g> map B ⊗ A B → B given by x ⊗ y ↦→ xy is<br />

a split epimorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> B ⊗ A B-modules.<br />

Now, let us prove our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 10. Let R be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian complete local commutative ring c<strong>on</strong>taining a field<br />

with perfect residue field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n ∈<br />

Spec R <strong>and</strong> an integer m ≥ 1 such that<br />

Hence <strong>on</strong>e has dim D b (mod R) < ∞.<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

–10–


Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We use inducti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull dimensi<strong>on</strong> d := dim R. If d = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R<br />

is an Artinian ring, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> follows from [14, Propositi<strong>on</strong> 7.37]. Assume d ≥ 1.<br />

By [10, Theorem 6.4], we have a sequence<br />

0 = I 0 ⊆ I 1 ⊆ · · · ⊆ I n = R<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that for each 1 ≤ i ≤ n <strong>on</strong>e has I i /I i−1<br />

∼ = R/pi with p i ∈ Spec R. Then<br />

every object X <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R) possesses a sequence<br />

0 = XI 0 ⊆ XI 1 ⊆ · · · ⊆ XI n = X<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-subcomplexes. Decompose this into exact triangles<br />

XI i−1 → XI i → XI i /XI i−1 → ΣXI i−1 ,<br />

in D b (mod R), <strong>and</strong> note that each XI i /XI i−1 bel<strong>on</strong>gs to D b (mod R/p i ). Hence <strong>on</strong>e may<br />

assume that R is an integral domain. By [16, Definiti<strong>on</strong>-Propositi<strong>on</strong> (1.20)], we can take a<br />

formal power series subring A = k[[x 1 , . . . , x d ]] <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that R is a finitely generated A-<br />

module <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> Q(A) ⊆ Q(R) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient fields is finite <strong>and</strong> separable.<br />

Claim 1. We have natural isomorphisms<br />

R ∼ = k[[x]][t]/(f(x, t)) = k[[x, t]]/(f(x, t)),<br />

S := R ⊗ A R ∼ = k[[x]][t, t ′ ]/(f(x, t), f(x, t ′ )) = k[[x, t, t ′ ]]/(f(x, t), f(x, t ′ )),<br />

U := R ̂⊗ k A ∼ = k[[x, t, x ′ ]]/(f(x, t)),<br />

T := R ̂⊗ k R ∼ = k[[x, t, x ′ , t ′ ]]/(f(x, t), f(x ′ , t ′ )).<br />

Here x = x 1 , . . . , x d , x ′ = x ′ 1, . . . , x ′ d , t = t 1, . . . , t n , t ′ = t ′ 1, . . . , t ′ n are indeterminates over<br />

k, <strong>and</strong> f(x, t) = f 1 (x, t), . . . , f m (x, t) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> k[[x]][t] ⊆ k[[x, t]]. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rings S, T, U are Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative complete local rings.<br />

There is a surjective ring homomorphism µ : S = R ⊗ A R → R which sends r ⊗ r ′ to<br />

rr ′ . This makes R an S-module. Using Claim 1, we observe that µ corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

map k[[x, t, t ′ ]]/(f(x, t), f(x, t ′ )) → k[[x, t]]/(f(x, t)) given by t ′ ↦→ t. Taking <str<strong>on</strong>g>the</str<strong>on</strong>g> kernel,<br />

we have an exact sequence<br />

0 → I → S µ −→ R → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated S-modules. Al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> injective ring homomorphism A → S sending<br />

a ∈ A to a ⊗ 1 = 1 ⊗ a ∈ S, we can regard A as a subring <str<strong>on</strong>g>of</str<strong>on</strong>g> S. Note that S is a finitely<br />

generated A-module. Put W = A \ {0}. This is a multiplicatively closed subset <str<strong>on</strong>g>of</str<strong>on</strong>g> A, R<br />

<strong>and</strong> S, <strong>and</strong> <strong>on</strong>e can take localizati<strong>on</strong> (−) W .<br />

Claim 2. The S W -module R W is projective.<br />

There are ring epimorphisms<br />

α : U → R,<br />

r ̂⊗ a ↦→ ra,<br />

β : T → S, r ̂⊗ r ′ ↦→ r ⊗ r ′ ,<br />

γ : T → R, r ̂⊗ r ′ ↦→ rr ′ .<br />

Identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> rings R, S, T <strong>and</strong> U with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding residue rings <str<strong>on</strong>g>of</str<strong>on</strong>g> formal power<br />

series rings made in Claim 1, we see that α, β are <str<strong>on</strong>g>the</str<strong>on</strong>g> maps given by x ′ ↦→ x, <strong>and</strong> γ<br />

–11–


is <str<strong>on</strong>g>the</str<strong>on</strong>g> map given by x ′ ↦→ x <strong>and</strong> t ′ ↦→ t. Note that γ = µβ. The map α is naturally<br />

a homomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, A)-bimodules, <strong>and</strong> β, γ are naturally homomorphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, R)-<br />

bimodules. The ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated U-module through α. The<br />

Koszul complex <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> U-regular sequence x ′ − x gives a free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> U-module<br />

R:<br />

(4.1) 0 → U → U ⊕d → U ⊕ ( d 2) → · · · → U<br />

⊕( d 2) → U<br />

⊕d x ′ −x<br />

−−→ U α −→ R → 0.<br />

This is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, A)-bimodules. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> natural homomorphisms<br />

A ∼ = k[[x ′ ]] → k[[x ′ ]][x, t]/(f(x, t)),<br />

k[[x ′ ]][x, t]/(f(x, t)) → k[[x ′ ]][[x, t]]/(f(x, t)) ∼ = U<br />

are flat, so is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong>. Therefore U is flat as a right A-module. The exact sequence<br />

(4.1) gives rise to a chain map η : F → R <str<strong>on</strong>g>of</str<strong>on</strong>g> U-complexes, where<br />

F = (0 → U → U ⊕d → U ⊕ ( d 2) → · · · → U<br />

⊕( d 2) → U<br />

⊕d<br />

x ′ −x<br />

−−→ U → 0)<br />

is a complex <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated free U-modules. By Claim 1, we have isomorphisms<br />

U ⊗ A R ∼ = U ⊗ A A[t]/(f(x, t)) ∼ = U[t ′ ]/(f(x ′ , t ′ )) ∼ = U[[t ′ ]]/(f(x ′ , t ′ ))<br />

∼ = (k[[x, t, x ′ ]]/(f(x, t)))[[t ′ ]]/(f(x ′ , t ′ )) ∼ = k[[x, t, x ′ , t ′ ]]/(f(x, t), f(x ′ , t ′ )) ∼ = T.<br />

Note from [17, Exercise 10.6.2] that R ⊗ L A R is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D− (R-Mod-R) = D − (Mod R ⊗ k R).<br />

(Here, R-Mod-R denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, R)-bimodules, which can be identified with<br />

Mod R ⊗ k R.) There are isomorphisms<br />

R ⊗ L A R ∼ = F ⊗ A R<br />

∼ = (0 → U ⊗A R → (U ⊗ A R) ⊕d → · · · → (U ⊗ A R) ⊕d<br />

∼ = (0 → T → T ⊕d → · · · → T ⊕d<br />

x ′ −x<br />

−−→ T → 0) =: C<br />

x ′ −x<br />

−−→ U ⊗ A R → 0)<br />

in D − (Mod R ⊗ k R). Note that C can be regarded as an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod T ). Taking <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tensor product η ⊗ A R, <strong>on</strong>e gets a chain map λ : C → S <str<strong>on</strong>g>of</str<strong>on</strong>g> T -complexes. Thus, <strong>on</strong>e has<br />

a commutative diagram<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exact triangles in D b (mod T ).<br />

K −−−→ C −−−→ R −−−→ ΣK<br />

⏐ ⏐<br />

⏐<br />

↓ λ↓<br />

∥<br />

ξ↓<br />

I<br />

−−−→ S<br />

µ<br />

−−−→ R<br />

δ<br />

ε<br />

−−−→ ΣI<br />

Claim 3. There exists an element a ∈ W such that δ·(1 ̂⊗ a) = 0 in Hom D b (mod T )(R, ΣK).<br />

One can choose it as a n<strong>on</strong>-unit element <str<strong>on</strong>g>of</str<strong>on</strong>g> A, if necessary.<br />

Let a ∈ W be a n<strong>on</strong>-unit element <str<strong>on</strong>g>of</str<strong>on</strong>g> A as in Claim 3. Since we regard R as a T -module<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism γ, we have an exact sequence 0 → R 1 ̂⊗ a<br />

−−→ R → R/(a) → 0.<br />

–12–


The octahedral axiom makes a diagram in D b (mod T )<br />

R<br />

∥<br />

R<br />

⏐<br />

↓<br />

R<br />

⏐<br />

↓<br />

1 ̂⊗ a<br />

−−−→ R −−−→ R/(a) −−−→ ΣR<br />

⏐<br />

⏐<br />

δ↓<br />

↓<br />

∥<br />

0<br />

−−−→ ΣK −−−→ ΣK ⊕ ΣR −−−→ ΣR<br />

⏐<br />

⏐<br />

∥<br />

↓<br />

↓<br />

δ<br />

−−−→ ΣK −−−→ ΣC −−−→ ΣR<br />

⏐<br />

⏐<br />

↓<br />

∥<br />

↓<br />

R/(a) −−−→ ΣK ⊕ ΣR −−−→ ΣC −−−→ ΣR/(a)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom row being an exact triangle. Rotating it, we obtain an exact triangle<br />

K ⊕ R → C → R/(a) → Σ(K ⊕ R)<br />

in D b (mod T ). The exact functor D b (mod T ) → D − (Mod R ⊗ k R) induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical<br />

ring homomorphism R ⊗ k R → T sends this to an exact triangle<br />

(4.2) K ⊕ R → R ⊗ L A R → R/(a) → Σ(K ⊕ R)<br />

in D − (Mod R ⊗ k R). As R is a local domain <strong>and</strong> a is a n<strong>on</strong>-zero element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal<br />

ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R, we have dim R/(a) = d − 1 < d. Hence <strong>on</strong>e can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> inducti<strong>on</strong> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R/(a), <strong>and</strong> sees that<br />

D b (mod R/(a)) = 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R/(a)<br />

m<br />

for some integer m ≥ 1 <strong>and</strong> some prime ideals p 1 , · · · , p h <str<strong>on</strong>g>of</str<strong>on</strong>g> R that c<strong>on</strong>tain a. Now, let X<br />

be any object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R). Applying <str<strong>on</strong>g>the</str<strong>on</strong>g> exact functor X ⊗ L R − to (4.2) gives an exact<br />

triangle in D − (Mod R)<br />

(4.3) (X ⊗ L R K) ⊕ X → X ⊗ L A R → X ⊗ L R R/(a) → Σ((X ⊗ L R K) ⊕ X).<br />

Note that X ⊗ L R R/(a) is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> Db (mod R/(a)) = 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R/(a)<br />

m<br />

. As<br />

an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R), <str<strong>on</strong>g>the</str<strong>on</strong>g> complex X ⊗ L R R/(a) bel<strong>on</strong>gs to 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R m . We<br />

observe from (4.3) that X is in 〈R⊕R/p 1 ⊕· · ·⊕R/p h 〉 R d+1+m . Thus we obtain Db (mod R) =<br />

〈R⊕R/p 1 ⊕· · ·⊕R/p h 〉 d+1+m<br />

. (As R is a domain, <str<strong>on</strong>g>the</str<strong>on</strong>g> zero ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R is a prime ideal.) □<br />

Now, we make sure that <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 10 also gives a ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

affine case <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. Actually, we obtain a more detailed result as follows.<br />

Recall that a commutative ring R is said to be essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a field k if<br />

R is a localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated k-algebra. Of course, every finitely generated<br />

k-algebra is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over k.<br />

Theorem 11. (1) Let R be a finitely generated algebra over a perfect field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exist a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n ∈ Spec R <strong>and</strong> an integer m ≥ 1<br />

such that<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

–13–


(2) Let R be a commutative ring which is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect field.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n ∈ Spec R <strong>and</strong> an integer<br />

m ≥ 1 such that<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

Now <str<strong>on</strong>g>the</str<strong>on</strong>g> following result due to Rouquier (cf.<br />

recovered by Theorem 11(2).<br />

[14, Theorem 7.38]) is immediately<br />

Corollary 12 (Rouquier). Let R be a commutative ring essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a<br />

perfect field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category D b (mod R) has finite dimensi<strong>on</strong>.<br />

Remark 13. In Corollary 12, <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> base field is perfect can be removed;<br />

see [7, Propositi<strong>on</strong> 5.1.2]. We do not know whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r we can also remove <str<strong>on</strong>g>the</str<strong>on</strong>g> perfectness<br />

assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> residue field in Theorem 10. It seems that <str<strong>on</strong>g>the</str<strong>on</strong>g> techniques in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> [7, Propositi<strong>on</strong> 5.1.2] do not directly apply to that case.<br />

5. Lower bounds<br />

In this secti<strong>on</strong>, we will mainly study lower bounds for <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules. We shall refine a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier over an<br />

affine algebra, <strong>and</strong> also give a similar lower bound over a general commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

ring.<br />

Throughout this secti<strong>on</strong>, let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. First, we c<strong>on</strong>sider<br />

refining a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier.<br />

Theorem 14. Let R be a finitely generated algebra over a field. Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists<br />

p ∈ Assh R such that R p is a field. Then <strong>on</strong>e has <str<strong>on</strong>g>the</str<strong>on</strong>g> inequality dim D b (mod R) ≥ dim R.<br />

The following result <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier [14, Propositi<strong>on</strong> 7.16] is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem<br />

14.<br />

Corollary 15 (Rouquier). Let R be a reduced finitely generated algebra over a field. Then<br />

dim D b (mod R) ≥ dim R.<br />

Next, we try to extend Theorem 14 to n<strong>on</strong>-affine algebras. We do not know whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inequality in Theorem 14 itself holds over n<strong>on</strong>-affine algebras; we can prove that a<br />

similar but slightly weaker inequality holds over <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

Now we can show <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 16. Let R be a ring <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Krull dimensi<strong>on</strong> such that R p is a field for all<br />

p ∈ Assh R. Then we have dim D b (mod R) ≥ dim R − 1.<br />

Here is an obvious c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Corollary 17. Let R be a reduced ring <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Krull dimensi<strong>on</strong>. Then dim D b (mod R) ≥<br />

dim R − 1.<br />

–14–


References<br />

[1] M. Ballard; D. Favero, Hochschild dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting objects, Preprint (2009),<br />

http://arxiv.org/abs/0905.1444.<br />

[2] M. Ballard; D. Favero; L. Katzarkov, Orlov spectra: bounds <strong>and</strong> gaps, Preprint (2010),<br />

http://arxiv.org/abs/1012.0864.<br />

[3] M. Ballard; D. Favero; L. Katzarkov, A category <str<strong>on</strong>g>of</str<strong>on</strong>g> kernels for graded matrix factorizati<strong>on</strong>s<br />

<strong>and</strong> Hodge <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Preprint (2011), http://arxiv.org/abs/1105.3177.<br />

[4] A. B<strong>on</strong>dal; M. van den Bergh, Generators <strong>and</strong> representability <str<strong>on</strong>g>of</str<strong>on</strong>g> functors in commutative <strong>and</strong><br />

n<strong>on</strong>commutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.<br />

[5] R.-O. Buchweitz, Maximal Cohen-Macaulay modules <strong>and</strong> Tate-cohomology over Gorenstein rings,<br />

Preprint (1986), http://hdl.h<strong>and</strong>le.net/1807/16682.<br />

[6] J. D. Christensen, Ideals in triangulated categories: phantoms, ghosts <strong>and</strong> skeleta, Adv. Math.<br />

136 (1998), no. 2, 284–339.<br />

[7] B. Keller; M. Van den Bergh, On two examples by Iyama <strong>and</strong> Yoshino, <str<strong>on</strong>g>the</str<strong>on</strong>g> first versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [8],<br />

http://arxiv.org/abs/0803.0720v1.<br />

[8] B. Keller; D. Murfet; M. Van den Bergh, On two examples by Iyama <strong>and</strong> Yoshino, Compos.<br />

Math. 147 (2011), no. 2, 591–612.<br />

[9] H. Krause; D. Kussin, Rouquier’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>on</strong> representati<strong>on</strong> dimensi<strong>on</strong>, Trends in representati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> related topics, 95–103, C<strong>on</strong>temp. Math., 406, Amer. Math. Soc., Providence,<br />

RI, 2006.<br />

[10] H. Matsumura, Commutative ring <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Translated from <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese by M. Reid, Sec<strong>on</strong>d<br />

editi<strong>on</strong>, Cambridge Studies in Advanced Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, 8, Cambridge University Press, Cambridge,<br />

1989.<br />

[11] S. Oppermann; J. Šťovíček, Generating <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <strong>and</strong> perfect ghosts,<br />

Preprint (2010), http://arxiv.org/abs/1006.3568.<br />

[12] D. Orlov, Derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves <strong>and</strong> triangulated categories <str<strong>on</strong>g>of</str<strong>on</strong>g> singularities, Algebra,<br />

arithmetic, <strong>and</strong> geometry: in h<strong>on</strong>or <str<strong>on</strong>g>of</str<strong>on</strong>g> Yu. I. Manin. Vol. II, 503–531, Progr. Math., 270,<br />

Birkhäuser Bost<strong>on</strong>, Inc., Bost<strong>on</strong>, MA, 2009.<br />

[13] D. Orlov, Remarks <strong>on</strong> generators <strong>and</strong> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories, Moscow Math. J. 9<br />

(2009), no. 1, 153–159.<br />

[14] R. Rouquier, Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories, J. K-<strong>Theory</strong> 1 (2008), 193–256.<br />

[15] J.-P. Serre, Local algebra, Translated from <str<strong>on</strong>g>the</str<strong>on</strong>g> French by CheeWhye Chin <strong>and</strong> revised by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

author, Springer M<strong>on</strong>ographs in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Springer-Verlag, Berlin, 2000.<br />

[16] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society<br />

Lecture Note Series, 146, Cambridge University Press, Cambridge, 1990.<br />

[17] C. A. Weibel, An introducti<strong>on</strong> to homological algebra, Cambridge Studies in Advanced Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

38, Cambridge University Press, Cambridge, 1994.<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Science <strong>and</strong> Physics<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <strong>and</strong> Technology<br />

Chiba University<br />

Yayoi-cho, Chiba 263-8522, Japan<br />

E-mail address: taihara@math.s.chiba-u.ac.jp<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Sciences<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

Shinshu University<br />

3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan<br />

E-mail address: takahasi@math.shinshu-u.ac.jp<br />

–15–


QUIVER PRESENTATIONS OF GROTHENDIECK CONSTRUCTIONS<br />

HIDETO ASASHIBA AND MAYUMI KIMURA<br />

Abstract. We give quiver presentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> functors<br />

from a small category to <str<strong>on</strong>g>the</str<strong>on</strong>g> 2-category <str<strong>on</strong>g>of</str<strong>on</strong>g> k-categories for a commutative ring k.<br />

Key Words: Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>, functors, quivers.<br />

1. Introducti<strong>on</strong><br />

Throughout this report I is a small category, k is a commutative ring, <strong>and</strong> k-Cat<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> 2-category <str<strong>on</strong>g>of</str<strong>on</strong>g> all k-categories, k-functors between <str<strong>on</strong>g>the</str<strong>on</strong>g>m <strong>and</strong> natural transformati<strong>on</strong>s<br />

between k-functors.<br />

The Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> is a way to form a single category Gr(X) from a diagram<br />

X <str<strong>on</strong>g>of</str<strong>on</strong>g> small categories indexed by a small category I, which first appeared in [4, §8 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Exposé VI]. As is exposed by Tamaki [7] this c<strong>on</strong>structi<strong>on</strong> has been used as a useful tool<br />

in homotopy <str<strong>on</strong>g>the</str<strong>on</strong>g>ory (e.g., [8]) or topological combinatorics (e.g., [9]). This can be also<br />

regarded as a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> orbit category c<strong>on</strong>structi<strong>on</strong> from a category with a group<br />

acti<strong>on</strong>.<br />

In [2] we defined a noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> derived equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> (oplax) functors from I to k-Cat,<br />

<strong>and</strong> in [3] we have shown that if (oplax) functors X, X ′ : I → k-Cat are derived equivalent,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n so are <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s Gr(X) <strong>and</strong> Gr(X ′ ). An easy example <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

derived equivalent pair <str<strong>on</strong>g>of</str<strong>on</strong>g> functors is given by using diag<strong>on</strong>al functors: For a category<br />

C define <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor ∆(C): I → k-Cat to be a functor sending all objects <str<strong>on</strong>g>of</str<strong>on</strong>g> I<br />

to C <strong>and</strong> all morphisms in I to <str<strong>on</strong>g>the</str<strong>on</strong>g> identity functor <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Then if categories C <strong>and</strong> C ′<br />

are derived equivalent, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so are <str<strong>on</strong>g>the</str<strong>on</strong>g>ir diag<strong>on</strong>al functors ∆(C) <strong>and</strong> ∆(C ′ ). Therefore,<br />

to compute examples <str<strong>on</strong>g>of</str<strong>on</strong>g> derived equivalent pairs using this result, it will be useful to<br />

present Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> functors by quivers with relati<strong>on</strong>s. We already<br />

have computati<strong>on</strong>s in two special cases. First for a k-algebra A, which we regard as a<br />

k-category with a single object, we noted in [3] that if I is a semigroup G, a poset S, or<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> free category PQ <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver Q, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(∆(A)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

diag<strong>on</strong>al functor ∆(A) is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> semigroup algebra AG, <str<strong>on</strong>g>the</str<strong>on</strong>g> incidence algebra<br />

AS, or <str<strong>on</strong>g>the</str<strong>on</strong>g> path-algebra AQ, respectively. Sec<strong>on</strong>d in [1] we gave a quiver presentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit category C/G for each k-category C with an acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a semigroup G in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case that k is a field, which can be seen as a computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(X) <str<strong>on</strong>g>of</str<strong>on</strong>g> each functor X : G → k-Cat.<br />

In this report we generalize <str<strong>on</strong>g>the</str<strong>on</strong>g>se two results as follows:<br />

(1) We compute <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(∆(A)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor<br />

∆(A) for each k-algebra A <strong>and</strong> each small category I.<br />

The final versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–16–


(2) We give a quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(X) for each<br />

functor X : I → k-Cat <strong>and</strong> each small category I when k is a field.<br />

2. Preliminaries<br />

Throughout this report Q = (Q 0 , Q 1 , t, h) is a quiver, where t(α) ∈ Q 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> tail <strong>and</strong><br />

h(α) ∈ Q 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> head <str<strong>on</strong>g>of</str<strong>on</strong>g> each arrow α <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. For each path µ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, <str<strong>on</strong>g>the</str<strong>on</strong>g> tail <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> head<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> µ is denoted by t(µ) <strong>and</strong> h(µ), respectively. For each n<strong>on</strong>-negative integer n <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q <str<strong>on</strong>g>of</str<strong>on</strong>g> length at least n is denoted by Q ≥n . In particular Q ≥0 denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

A category C is called a k-category if for each x, y ∈ C, C(x, y) is a k-module <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compositi<strong>on</strong>s are k-bilinear.<br />

Definiti<strong>on</strong> 1. Let Q be a quiver.<br />

(1) The free category PQ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> category whose underlying quiver is (Q 0 , Q ≥0 , t, h)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> usual compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> paths.<br />

(2) The path k-category <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> k-linearizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PQ <strong>and</strong> is denoted by kQ.<br />

Definiti<strong>on</strong> 2. Let C be a category. We set<br />

∪<br />

Rel(C) := C(i, j) × C(i, j),<br />

(i,j)∈C 0 ×C 0<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> which are called relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Let R ⊆ Rel(C). For each i, j ∈ C 0 we set<br />

R(i, j) := R ∩ (C(i, j) × C(i, j)).<br />

(1) The smallest c<strong>on</strong>gruence relati<strong>on</strong><br />

∪<br />

R c := {(dac, dbc) | c ∈ C(−, i), d ∈ C(j, −), (a, b) ∈ R(i, j)}<br />

(i,j)∈C 0 ×C 0<br />

c<strong>on</strong>taining R is called <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>gruence relati<strong>on</strong> generated by R.<br />

(2) For each i, j ∈ C 0 we set<br />

R −1 (i, j) := {(g, f) ∈ C(i, j) × C(i, j) | (f, g) ∈ R(i, j)}<br />

1 C(i,j) := {(f, f) | f ∈ C(i, j)}<br />

S(i, j) := R(i, j) ∪ R −1 (i, j) ∪ 1 C(i,j)<br />

S(i, j) 1 := S(i, j)<br />

S(i, j) n := {(h, f) | ∃g ∈ C(i, j), (g, f) ∈ S(i, j), (h, g) ∈ S(i, j) n−1 } (for all n ≥ 2)<br />

S(i, j) ∞ := ∪ n≥1<br />

S(i, j) n , <strong>and</strong> set<br />

R e :=<br />

∪<br />

(i,j)∈C 0 ×C 0<br />

S(i, j) ∞ .<br />

R e is called <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence relati<strong>on</strong> generated by R.<br />

(3) We set R # := (R c ) e (cf. [5]).<br />

The following is well known (cf. [6]).<br />

–17–


Propositi<strong>on</strong> 3. Let C be a category, <strong>and</strong> R ⊆ Rel(C). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> category C/R # <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

functor F : C → C/R # defined above satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s.<br />

(i) For each i, j ∈ C 0 <strong>and</strong> each (f, f ′ ) ∈ R(i, j) we have F f = F f ′ .<br />

(ii) If a functor G : C → D satisfies Gf = Gf ′ for all f, f ′ ∈ C(i, j) <strong>and</strong> all i, j ∈ C 0<br />

with (f, f ′ ) ∈ R(i, j), <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a unique functor G ′ : C/R # → D such that<br />

G ′ ◦ F = G.<br />

Definiti<strong>on</strong> 4. Let Q be a quiver <strong>and</strong> R ⊆ Rel(PQ). We set<br />

The following is straightforward.<br />

〈Q | R〉 := PQ/R # .<br />

Propositi<strong>on</strong> 5. Let C be a category, Q <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> C, <strong>and</strong> set<br />

R := {(e i , 1l i ), (µ, [µ]) | i ∈ Q 0 , µ ∈ Q ≥2 } ⊆ Rel(PQ),<br />

where e i is <str<strong>on</strong>g>the</str<strong>on</strong>g> path <str<strong>on</strong>g>of</str<strong>on</strong>g> length 0 at each vertex i ∈ Q 0 , <strong>and</strong> [µ] := α n ◦· · ·◦α 1 (<str<strong>on</strong>g>the</str<strong>on</strong>g> composite<br />

in C) for all paths µ = α n . . . α 1 ∈ Q ≥2 with α 1 , . . . , α n ∈ Q 1 . Then<br />

C ∼ = 〈Q | R〉.<br />

By this statement, an arbitrary category is presented by a quiver <strong>and</strong> relati<strong>on</strong>s. Throughout<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this report I is a small category with a presentati<strong>on</strong> I = 〈Q | R〉.<br />

3. Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Diag<strong>on</strong>al functors<br />

Definiti<strong>on</strong> 6. Let X : I → k-Cat be a functor. Then a category Gr(X), called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndiek c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X, is defined as follows:<br />

(i) (Gr(X)) 0 := ∪<br />

{(i, x) | x ∈ X(i) 0 }<br />

i∈I 0<br />

(ii) For (i, x), (j, y) ∈ (Gr(X)) 0<br />

Gr(X)((i, x), (j, y)) :=<br />

⊕<br />

X(j)(X(a)x, y)<br />

a∈I(i,j)<br />

(iii) For f = (f a ) a∈I(i,j) ∈ Gr(X)((i, x), (j, y)) <strong>and</strong> g = (g b ) b∈I(j,k) ∈ Gr(X)((j, y), (k, z))<br />

g ◦ f := ( ∑ c=ba<br />

a∈I(i,j)<br />

b∈I(j,k)<br />

g b X(b)f a ) c∈I(i,k)<br />

Definiti<strong>on</strong> 7. Let C ∈ k-Cat 0 . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor ∆(C) <str<strong>on</strong>g>of</str<strong>on</strong>g> C is a functor from I<br />

to k-Cat sending each arrow a: i → j in I to 1l C : C → C in k-Cat.<br />

In this secti<strong>on</strong>, we fix a k-algebra A which we regard as a k-category with a single<br />

object ∗ <strong>and</strong> with A(∗, ∗) = A. The quiver algebra AQ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q over A is <str<strong>on</strong>g>the</str<strong>on</strong>g> A-linearizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> PQ, namely AQ := A ⊗ k kQ.<br />

Theorem 8. We have an isomorphism Gr(∆(A)) ∼ = AQ/〈R〉 A , where 〈R〉 A is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> AQ generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> elements g − h with (g, h) ∈ R.<br />

Remark 9. Theorem 8 can be written in <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

Gr(∆(A)) ∼ = A ⊗ k (kQ/〈R〉 k ).<br />

–18–


4. The quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s<br />

In this secti<strong>on</strong> we give a quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

arbitrary functor I → k-Cat. Throughout this secti<strong>on</strong> we assume that k is a field.<br />

Theorem 10. Let X : I → k-Cat be a functor, <strong>and</strong> for each i ∈ I set X(i) = kQ (i) /<br />

〈R (i) 〉 with Φ (i) : kQ (i) → X(i) <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical morphism, where R (i) ⊆ kQ (i) , 〈R (i) 〉 ∩ {e x |<br />

x ∈ Q(i) 0<br />

} = ∅. Then Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> is presented by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver with relati<strong>on</strong>s<br />

(Q, R ′ ) defined as follows.<br />

Quiver: Q ′ = (Q ′ 0, Q ′ 1, t ′ , h ′ ), where<br />

(i) Q ′ 0 := ∪ i∈I<br />

(ii) Q ′ 1 := ∪ i∈I<br />

{ i x | x ∈ Q (i)<br />

0 }.<br />

{{ i α | α ∈ Q (i)<br />

1 } ∪ {(a, i x) : i x → j (ax) | a : i → j ∈ Q 1 , x ∈ Q (i)<br />

0 , ax ≠<br />

0}},<br />

where we set ax := X(a)(x).<br />

(iii) For α ∈ Q (i)<br />

1 , t ′ ( i α) = t (i) (α) <strong>and</strong> h ′ ( i α) = h (i) (α).<br />

(iv) For a : i → j ∈ Q 1 , x ∈ Q (i)<br />

0 , t ′ (a, i x) = i x <strong>and</strong> h ′ (a, i x) = j (ax).<br />

Relati<strong>on</strong>s: R ′ := R 1 ′ ∪ R 2 ′ ∪ R 3, ′ where<br />

(i) R 1 ′ := {σ (i) (µ) | i ∈ Q 0 , µ ∈ R (i) },<br />

where we set σ (i) : kQ (i) ↩→ kQ ′ .<br />

(ii) R 2 ′ := {π(g, i x) − π(h, i x) | i, j ∈ Q 0 , (g, h) ∈ R(i, j), x ∈ Q (i)<br />

0 }, where for each<br />

path a in Q we set<br />

π(a, i x) := (a n , in−1 (a n−1 a n−2 . . . a 1 x)) . . . (a 2 , i1 (a 1 x))(a 1 , i x)<br />

if a = a n . . . a 2 a 1 for some a 1 , . . . , a n arrows in Q, <strong>and</strong><br />

π(a, i x) := e i x<br />

if a = e i for some i ∈ Q 0 .<br />

(iii) R 3 ′ := {(a, i y) i α − j (aα)(a, i x) | a : i → j ∈ Q 1 , α : x → y ∈ Q (i)<br />

1 }, where we take<br />

aα : ax → ay so that Φ (j) (aα) ∈ X(a)Φ (i) (α):<br />

α ∈ kQ (i)<br />

aα ∈ kQ (j)<br />

Φ (i) X(i)<br />

X(a)<br />

Φ (j) X(j).<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal 〈R ′ 〉 is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> aα because R ′ 1 ⊆ R ′ .<br />

5. Examples<br />

In this secti<strong>on</strong>, we illustrate Theorems 8 <strong>and</strong> 10 by some examples.<br />

–19–


Example 11. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

2 ❂ ❂❂❂❂❂❂<br />

a<br />

b<br />

✁ ✁✁✁✁✁✁ c<br />

1 d<br />

3 <br />

❂ 5<br />

❂❂❂❂❂❂<br />

e<br />

4<br />

✁ ✁✁✁✁✁✁ f<br />

<strong>and</strong> let R = {(ba, dc)}. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> category I := 〈Q | R〉 is not given as a semigroup, as a<br />

poset or as <str<strong>on</strong>g>the</str<strong>on</strong>g> free category <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver. For any algebra A c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor<br />

∆(A): I → k-Cat. Then by Theorem 8 <str<strong>on</strong>g>the</str<strong>on</strong>g> category Gr(∆(A)) is given by<br />

AQ/〈ba − dc〉.<br />

Remark 12. Let Q <strong>and</strong> Q ′ be quivers having nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r double arrows nor loops, <strong>and</strong> let<br />

f : Q 0 → Q ′ 0 be a map (a vertex map between Q <strong>and</strong> Q ′ ). If Q(x, y) ≠ ∅ (x, y ∈ Q 0 )<br />

implies Q ′ (f(x), f(y)) ≠ ∅ or f(x) = f(y), <str<strong>on</strong>g>the</str<strong>on</strong>g>n f induces a k-functor ˆf : kP → kP ′<br />

defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> following corresp<strong>on</strong>dence: For each x ∈ Q 0 , ˆf(ex ) := e f(x) , <strong>and</strong> for each<br />

arrow a: x → y in Q, f(a) is <str<strong>on</strong>g>the</str<strong>on</strong>g> unique arrow f(x) → f(y) (resp. e f(x) ) if f(x) ≠ f(y)<br />

(resp. if f(x) = f(y)).<br />

Example 13. Let I = 〈Q | R〉 be as in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous example. Define a functor X :<br />

I → k-Cat by <str<strong>on</strong>g>the</str<strong>on</strong>g> k-linearizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following quivers in frames <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> k-functors<br />

induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex maps expressed by broken arrows between <str<strong>on</strong>g>the</str<strong>on</strong>g>m:<br />

1<br />

α<br />

X(a)<br />

2<br />

♣ ♣ ♦ ♦ ♥ ♠ ♠ ❧ ❧ ❦ ❦ ❥ ✐ ❯ ❚ ❚ ❙ ❘ ❘ ◗ X(b) ◗<br />

X(a)<br />

1 1<br />

α α<br />

♣ ♣ ♦ ♦ ♥ ♠ ♠ ❧ ❧ ❦ ❦ ❥ ✐ ❭ ❬ <br />

❬ ❩ ❨ ❖<br />

❨ ❳ ❳ ❖ ❲ ◆<br />

X(b) ❲ ❱ ❱ ◆<br />

X(2)<br />

❯ ▼ ❚ ❚▲<br />

▲<br />

❭ ❬ ❬ ❩ ❨<br />

❢<br />

▼ ❨ ❳ X(c)<br />

◆ ❳<br />

❢ ❢ ❢<br />

❲ ◆ ❲ X(3)<br />

X(d) ❢<br />

❱ ❢ ❢ ❢<br />

❖ ❱ ❯ ❢ ❢ ❢<br />

❖ X(c)<br />

❚ ❚ ❢ ❢ ❢<br />

<br />

2 ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ◗<br />

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ 1 ❢ ❢ ❢<br />

2<br />

◗ ❘ X(f)<br />

X(e) ❘ ❙ ❚ ❚ ❯ ♣ ♣ ♦ ♦ ♥ ♠ ♠ ❧ ❧ ❦ ❦ ❥ ✐<br />

X(1)<br />

X(5)<br />

1<br />

▲ ▼ ◆ ◆ ❖ ❖ ◗ ◗<br />

X(e) ❘ ❘ ❙ ❚ ❚ ❯<br />

2<br />

X(4)<br />

–20–<br />

X(f)<br />

α<br />

✐ ❥ ❦ ❦ ❧ ❧ ♠ ♠ ♥ ♦ ♦ ♣ ♣


Then by Theorem 10 Gr(X) is presented by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

⎛<br />

21<br />

2α<br />

(a, 1 1)<br />

22<br />

♣ ♦ ♦ ♥ ♥ ♠ ♠ ❧ ❦ ❦ ❥ ❥ ❚ ❚ ❙ ❙ ❘ ❘ ◗ (b, 2 1)<br />

(a, 1 2)<br />

11 51<br />

Q ′ =<br />

1α<br />

♣ ♦ ♦ ♥ ♥ ♠ ♠ ❧ ❦ ❦ ❥ ❥ ❬ ❬ <br />

❩ ❩ ❨ ❖<br />

❨ ❳ ❳ ❖ ❲ ◆<br />

(b, 2 2) ❲ ❱ ❯ ▼ ❯ ▼ ❚ ❚▲ <br />

❬<br />

<br />

▲ ❬ ❩ ❩ ❨ ❨ ❳ (c, 1 1)<br />

❢ ❢<br />

▼<br />

▼ ❳ ❲ ❲<br />

(d, 3 1) ❢ ❢ ❢<br />

◆ ❱ ❢ ❢ ❢<br />

❖ ❯ ❯ ❢ ❢ ❢<br />

❖ (c,1 2)<br />

❚ ❚<br />

❢ ❢ ❢<br />

<br />

12 ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ <br />

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❢ ❢ ❢<br />

▲ 31 52<br />

▼ ◗ ▼ ❘ (f, 4 1)<br />

◆ (e, 1 1) ❘ ❙ ❖ ❙ ❚ ❖ ❚ ♣ ♦ ♦ ♥ ♥ ♠ ♠ ❧ ❦ ❦ ❥ ❥ <br />

41<br />

◗<br />

(e,<br />

⎜<br />

1 2) ❘ ❘<br />

(f, 4 2)<br />

4α<br />

⎝<br />

❙ ❙ ❚ ❚ ❥<br />

42<br />

❥ ❦ ❦ ❧ ♠ ♠ ♥ ♥ ♦ ♦ ♣ <br />

with relati<strong>on</strong>s<br />

R ′ = {π(ba, 1 1) − π(dc, 1 1), π(ba, 1 2) − π(dc, 1 2)}<br />

∪{(a, i y) i α − j (aα)(a, i x) | a : i → j ∈ Q 1 , α : x → y ∈ Q (i)<br />

1 },<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> new arrows are presented by broken arrows.<br />

a<br />

Example 14. Let Q = ( 1 2 ) <strong>and</strong> I := 〈Q〉. Define functors X, X ′ : I → k-Cat by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> k-linearizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following quivers in frames <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> k-functors induced by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vertex maps expressed by dotted arrows between <str<strong>on</strong>g>the</str<strong>on</strong>g>m:<br />

5α<br />

⎞<br />

⎟<br />

⎠<br />

X :<br />

1 ✼ 2<br />

✼✼✼✼✼✼✼✼<br />

X(a)<br />

α β<br />

✞ ✞✞✞✞✞✞✞✞<br />

3<br />

X(a)<br />

X(1)<br />

X ′ :<br />

1 ✼ ✼✼✼✼✼✼✼✼<br />

α<br />

β<br />

✞ ✞✞✞✞✞✞✞✞<br />

2 X ′ (a) 3<br />

X ′ (1)<br />

X(a)<br />

1<br />

X(2),<br />

X ′ (a)<br />

1<br />

X ′ (a)<br />

X ′ (2).<br />

Then by Theorem 10 Gr(X) is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver with no relati<strong>on</strong>s<br />

⎛<br />

⎞ ⎛<br />

⎞<br />

11<br />

❅ 12<br />

11 ❅❅❅❅❅❅<br />

❅ 12<br />

1α 1β<br />

❅❅❅❅❅❅<br />

1α 1β<br />

7 777777<br />

(a, 13<br />

1 1)<br />

(a, 1 2) , (a, 1 3) 1 α − (a, 1 1), (a, 1 3) 1 β − (a, 1 2)<br />

∼ 7 777777<br />

= 13<br />

,<br />

⎜<br />

⎝<br />

(a, 1<br />

⎟ ⎜<br />

3)<br />

⎠ ⎝<br />

(a, 1<br />

⎟<br />

3)<br />

⎠<br />

21<br />

–21–<br />

21


<strong>and</strong> Gr(X ′ ) is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver with a commutativity relati<strong>on</strong><br />

⎛<br />

⎞ ⎛<br />

⎞<br />

11<br />

❅ 11<br />

❅❅❅❅❅❅<br />

❅<br />

1α<br />

1β<br />

❅❅❅❅❅❅<br />

1α<br />

1β<br />

7 777777<br />

12 (a, 1 1) 13 , (a, 1 2) 1 α − (a, 1 1), (a, 1 3) 1 β − (a, 1 1)<br />

∼ 7 777777<br />

= 12 13<br />

.<br />

⎜<br />

⎟ ⎜<br />

⎟<br />

⎝<br />

(a, 1 2) (a, 1<br />

⎠ ⎝<br />

3)<br />

(a, 1 2) (a, 1<br />

⎠<br />

3)<br />

21<br />

21<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem in [3] derived equivalences between X(1) <strong>and</strong> X ′ (1) <strong>and</strong><br />

between X(2) <strong>and</strong> X ′ (2) are glued toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to have a derived equivalence between Gr(X)<br />

<strong>and</strong> Gr(X ′ ).<br />

References<br />

[1] Asashiba, H.: A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gabriel’s Galois covering functors <strong>and</strong> derived equivalences, J.<br />

Algebra 334 (2011), 109–149.<br />

[2] : Derived equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a category, arXiv:1111.2239.<br />

[3] : Gluing derived equivalences toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, in preparati<strong>on</strong>.<br />

[4] Revêtements étales et groupe f<strong>on</strong>damental, Springer-Verlag, Berlin, 1971. Séminaire de Géométrie<br />

Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alex<strong>and</strong>re Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck. Augmenté de<br />

deux exposés de M. Raynaud, Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 224.<br />

[5] Howie, J. M.: Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> Semigroup <strong>Theory</strong>, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society M<strong>on</strong>ographs New<br />

Series, 12. Oxford Science Publicati<strong>on</strong>s. The Clarend<strong>on</strong> Press, Oxford University Press, New York,<br />

1995.<br />

[6] Mac Lane, S.: Categories for <str<strong>on</strong>g>the</str<strong>on</strong>g> Working Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matician, Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

5.Springer-Verlag, New York,1998.<br />

[7] Tamaki, D.: The Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> <strong>and</strong> gradings for enriched categories, arXiv:0907.0061.<br />

[8] Thomas<strong>on</strong>, R. W.: Homotopy colimits in <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> small categories, Math. Proc. Cambridge<br />

Philos. Soc., 85(1), 91–109, 1979.<br />

[9] Welker, V., Ziegler, G. M. <strong>and</strong> Zǐvaljević,R. T.: Homotopy colimits—comparis<strong>on</strong> lemmas for combinatorial<br />

applicati<strong>on</strong>s, J. Reine Angew. Math., 509, 117–149, 1999.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

Shizuoka University,<br />

Suruga-ku, Shizuoka 422-8529 JAPAN<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Science <strong>and</strong> Technology,<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <strong>and</strong> Technology,<br />

Shizuoka University,<br />

Suruga-ku, Shizuoka 422-8529 JAPAN<br />

E-mail address: shasash@ipc.shizuoka.ac.jp<br />

E-mail address: f5144005@ipc.shizuoka.ac.jp<br />

–22–


THE LOEWY LENGTH OF TENSOR PRODUCTS FOR DIHEDRAL<br />

TWO-GROUPS<br />

ERIK DARPÖ AND CHRISTOPHER C. GILL<br />

Abstract. The indecomposable modules <str<strong>on</strong>g>of</str<strong>on</strong>g> a dihedral 2-group over a field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

2 were classified by <strong>Ring</strong>el over 30 years ago. However, relatively little is known<br />

about <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> such modules, except in certain special cases. We describe<br />

here <str<strong>on</strong>g>the</str<strong>on</strong>g> main result <str<strong>on</strong>g>of</str<strong>on</strong>g> our recent work determining <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modules for a dihedral 2-group. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this result, we can determine<br />

precisely when a tensor product has a projective direct summ<strong>and</strong>.<br />

1. Introducti<strong>on</strong><br />

Let k be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> positive characteristic p <strong>and</strong> let G be a finite group. The group algebra<br />

kG is a Hopf algebra with coproduct <strong>and</strong> co-unit given by ∆( ∑ g∈G r gg) = ∑ g∈G r gg ⊗ g<br />

<strong>and</strong> ɛ( ∑ g∈G r gg) = ∑ g∈G r g for r g ∈ k. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a tensor product operati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules. If M <strong>and</strong> N are kG-modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong><br />

N is <str<strong>on</strong>g>the</str<strong>on</strong>g> module with underlying vector space M ⊗ k N <strong>and</strong> module structure given by<br />

g(m ⊗ n) = ∆(g)(m ⊗ n) = gm ⊗ gn for g ∈ G, m ∈ M, n ∈ N. The tensor product is a<br />

frequently used tool in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two modules <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group G<br />

– <str<strong>on</strong>g>the</str<strong>on</strong>g> Clebsch-Gordan problem – can be extremely difficult.<br />

One approach to underst<strong>and</strong>ing tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules goes via <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong><br />

ring, or Green ring, <str<strong>on</strong>g>of</str<strong>on</strong>g> kG. The isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al kG-modules<br />

form a semiring, with additi<strong>on</strong> given by <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum, <strong>and</strong> multiplicati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules. The Green ring, A(kG), is <str<strong>on</strong>g>the</str<strong>on</strong>g> Groe<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck ring <str<strong>on</strong>g>of</str<strong>on</strong>g> this semiring,<br />

i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> ring obtained by formally adjoining additive inverses to all elements in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

semiring. Research in this directi<strong>on</strong> was pi<strong>on</strong>eered by J. A. Green [6], who proved <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Green ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a cyclic p-group is semisimple. The questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semisimplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green<br />

ring for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r finite groups has been studied by several authors since. Bens<strong>on</strong> <strong>and</strong> Carls<strong>on</strong><br />

[2] gave a method to produce nilpotent elements in a Green ring, <strong>and</strong> determined a quotient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green ring which has no nilpotent elements.<br />

This so-called Bens<strong>on</strong>–Carls<strong>on</strong> quotient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green ring was studied by Archer [1] in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups, who realised it as an integral group ring <str<strong>on</strong>g>of</str<strong>on</strong>g> an abelian,<br />

infinitely generated, torsi<strong>on</strong>-free group. Archer gave a precise statement relating <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two elements in this infinite group to <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er–Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

kD 4q . The Green ring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Klein four group V 4 was completely determined by C<strong>on</strong>l<strong>on</strong><br />

[4]; a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> this result can be found in [1].<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups D 4q , <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable modules, over fields <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

2, were classified by <strong>Ring</strong>el [7] over 30 years ago. However, very little progress has been<br />

made towards underst<strong>and</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> kD 4q -modules. In<br />

–23–


particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two indecomposable kD 4q -modules is<br />

not known, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than in some very special cases. One example is <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Bessenrodt<br />

[3], classifying <str<strong>on</strong>g>the</str<strong>on</strong>g> endotrivial kD 4q -modules, thus determining <str<strong>on</strong>g>the</str<strong>on</strong>g> kD 4q -modules M for<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> M with its dual M ∗ is <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a trivial <strong>and</strong> a<br />

projective module.<br />

In recent work [5], we have c<strong>on</strong>tinued <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> kD 4q -modules, determining<br />

completely <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> any two indecomposable<br />

kD 4q -modules. This provides an additi<strong>on</strong>al piece <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> towards <str<strong>on</strong>g>the</str<strong>on</strong>g> underst<strong>and</strong>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green rings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups, <strong>and</strong> gives certain bounds <strong>on</strong> which modules<br />

can occur as direct summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product. In particular, it determines precisely<br />

when a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two modules has a projective direct summ<strong>and</strong>.<br />

The Loewy length l(M) <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M is, by definiti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radical series <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> socle series <str<strong>on</strong>g>of</str<strong>on</strong>g> M, that is, l(M) = min{t ∈ N | rad t (kD 4q )M = 0}.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, we recall <strong>Ring</strong>el’s classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable kD 4q -modules.<br />

Secti<strong>on</strong> 3 gives a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results in [5], <strong>and</strong> in Secti<strong>on</strong> 4, we give examples illuminating<br />

our results <strong>and</strong> showing how <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be used to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product in certain cases.<br />

2. The indecomposable modules <str<strong>on</strong>g>of</str<strong>on</strong>g> dihedral 2-groups<br />

Let q be a 2-power, <strong>and</strong> write D 4q = 〈x, y | x 2 = y 2 = 1, (xy) q = (yx) q 〉 for <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> order 4q. There is an isomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras<br />

kD 4q ˜→ Λ q :=<br />

k〈X, Y 〉<br />

(X 2 , Y 2 , (XY ) q − (Y X) q ) ,<br />

given by x ↦→ 1 + X <strong>and</strong> y ↦→ 1 + Y . Setting ∆(X) = 1 ⊗ X + X ⊗ 1 + X ⊗ X <strong>and</strong><br />

∆(Y ) = 1 ⊗ Y + Y ⊗ 1 + Y ⊗ Y defines a coproduct <strong>on</strong> Λ q corresp<strong>on</strong>ding under this<br />

isomorphism to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hopf algebra structure <str<strong>on</strong>g>of</str<strong>on</strong>g> kD 4q . Owing to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Λ q is a special<br />

biserial algebra, its n<strong>on</strong>-projective modules split into two classes, known as string modules<br />

<strong>and</strong> b<strong>and</strong> modules. We describe both classes <str<strong>on</strong>g>of</str<strong>on</strong>g> modules below.<br />

Let ¯W be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> words in letters a, b <strong>and</strong> inverse letters a −1 , b −1 such that a or a −1<br />

are always followed by b or b −1 <strong>and</strong> b or b −1 are always followed by a or a −1 . A directed<br />

subword <str<strong>on</strong>g>of</str<strong>on</strong>g> a word w ∈ ¯W is a word w ′ in ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> letters {a, b} or {a −1 , b −1 } such that<br />

w = w 1 w ′ w 2 for some words w 1 , w 2 ∈ ¯W. Let W be <str<strong>on</strong>g>the</str<strong>on</strong>g> subset <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯W c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> words<br />

in which all directed subwords are <str<strong>on</strong>g>of</str<strong>on</strong>g> length strictly less than 2q. Define an equivalence<br />

relati<strong>on</strong> ∼ 1 <strong>on</strong> W by w ∼ 1 w ′ if, <strong>and</strong> <strong>on</strong>ly if, w ′ = w or w ′ = w −1 . Given w = l 1 . . . l n ∈ W,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> string module determined by w, denoted by M(w), is <str<strong>on</strong>g>the</str<strong>on</strong>g> n + 1-dimensi<strong>on</strong>al module<br />

with basis e 0 , . . . , e n <strong>and</strong> Λ q -acti<strong>on</strong> given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following schema:<br />

l 1<br />

l<br />

ke 0<br />

ke 1<br />

2<br />

ke 2 . . .<br />

l n−1<br />

l<br />

ke n−1<br />

n<br />

ke n .<br />

If l i ∈ {a −1 , b −1 }, <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding arrow should be interpreted as going in <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite<br />

directi<strong>on</strong>, from ke i−1 to ke i , <strong>and</strong> having <str<strong>on</strong>g>the</str<strong>on</strong>g> label l −1<br />

i . Now X maps e i to e j (j ∈ {i −<br />

1, i + 1}) if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an arrow ke a i → ke j , <strong>and</strong> as zero if no arrow labelled with a starting<br />

in ke i exists. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Y is given by arrows labelled with b. Two modules<br />

M(w) <strong>and</strong> M(w ′ ), w, w ′ ∈ W, are isomorphic if, <strong>and</strong> <strong>on</strong>ly if, w ∼ 1 w ′ .<br />

–24–


Next, let W ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> subset <str<strong>on</strong>g>of</str<strong>on</strong>g> W c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> words w <str<strong>on</strong>g>of</str<strong>on</strong>g> even positive length c<strong>on</strong>taining<br />

letters from both {a, b} <strong>and</strong> {a −1 , b −1 }, <strong>and</strong> such that w is not a power <str<strong>on</strong>g>of</str<strong>on</strong>g> a word <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller<br />

length. Given w = l 1 . . . l m ∈ W ′ , <strong>and</strong> ϕ an indecomposable linear automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> k n ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>and</strong> module determined by w <strong>and</strong> ϕ, M(w, ϕ), is <str<strong>on</strong>g>the</str<strong>on</strong>g> Λ q -module with underlying<br />

vector space ⊕ m−1<br />

i=0 V i where V i = k n , <strong>and</strong> Λ q -acti<strong>on</strong> specified by <str<strong>on</strong>g>the</str<strong>on</strong>g> following schema:<br />

l m−2<br />

l m−1<br />

V l 1 =ϕ l<br />

0 V 1<br />

2<br />

V 2 · · · V m−2<br />

<br />

V m−1 .<br />

l m<br />

The interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> schema is similar to that for string modules. The elements<br />

l 2 , . . . , l m act as <str<strong>on</strong>g>the</str<strong>on</strong>g> identity map <strong>on</strong> k n , l 1 acts as <str<strong>on</strong>g>the</str<strong>on</strong>g> linear automorphism ϕ (this means<br />

that if l 1 ∈ {a −1 , b −1 } <str<strong>on</strong>g>the</str<strong>on</strong>g>n V 0 is mapped <strong>on</strong>to V 1 by ϕ −1 under ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r X or Y ).<br />

Define ∼ 2 to be <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence relati<strong>on</strong> <strong>on</strong> W ′ defined by w ∼ 2 w ′ if, <strong>and</strong> <strong>on</strong>ly if,<br />

w <str<strong>on</strong>g>of</str<strong>on</strong>g> w −1 is a cyclic permutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> w ′ . Two b<strong>and</strong> modules M(w, ϕ) <strong>and</strong> M(w ′ , ψ) are<br />

isomorphic if, <strong>and</strong> <strong>on</strong>ly if, w ∼ 2 w ′ <strong>and</strong> ϕ = φψφ −1 for some linear automorphism φ.<br />

It may be noted that for every w ∈ W ′ <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a w ′ ∈ W with an even number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal directed subwords such that w ∼ 2 w ′ . While <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several different choices<br />

for w ′ , its maximal directed subwords are uniquely determined, as elements in W/ ∼ 1 , by<br />

w.<br />

Every indecomposable n<strong>on</strong>-projective kD 4q -module is isomorphic ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r to a string<br />

or a b<strong>and</strong> module, but not both. There is a single, indecomposable projective module,<br />

kD4q kD 4q . The Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> any n<strong>on</strong>-projective module is at most 2q, while<br />

l( kD4q kD 4q ) = 2q + 1.<br />

3. Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products<br />

Here, we give an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results in [5]. We fix <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>venti<strong>on</strong>s<br />

<strong>and</strong> notati<strong>on</strong>. The least natural number is 0. For l < 2q, A l ∈ W is <str<strong>on</strong>g>the</str<strong>on</strong>g> (unique) word <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

length l in <str<strong>on</strong>g>the</str<strong>on</strong>g> letters a, b ending in a, <strong>and</strong> similarly B l ∈ W is <str<strong>on</strong>g>the</str<strong>on</strong>g> word <str<strong>on</strong>g>of</str<strong>on</strong>g> length l in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

letters a, b ending in b.<br />

If M is a module <strong>and</strong> X ⊂ M any set <str<strong>on</strong>g>of</str<strong>on</strong>g> generators, <str<strong>on</strong>g>the</str<strong>on</strong>g>n l(M) = max{l(〈x〉) | x ∈ X},<br />

<strong>and</strong> if N is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r module <str<strong>on</strong>g>the</str<strong>on</strong>g>n, in a similar fashi<strong>on</strong>, l(M ⊗ N) = max{l(〈x〉 ⊗ N) |<br />

x ∈ X}. Any kD 4q -module that is generated by a single element is isomorphic to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

M(A l B −1<br />

m ) or M(A l B −1<br />

m , ρ) for some l, m < 2q <strong>and</strong> ρ ∈ k {0}, hence it is sufficient<br />

to determine Loewy lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se types <str<strong>on</strong>g>of</str<strong>on</strong>g> modules, to solve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

problem for arbitrary modules M <strong>and</strong> N. Refining <str<strong>on</strong>g>the</str<strong>on</strong>g>se ideas a little, <strong>on</strong>e can prove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following results.<br />

Propositi<strong>on</strong> 1. Let M <strong>and</strong> N be kD 4q -modules. If M is a string module corresp<strong>on</strong>ding<br />

to a word w ∈ W with maximal directed subwords w i , i ∈ {1, . . . , m}, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M ⊗ N) = max{l(M(w i ) ⊗ N) | i ∈ {1, . . . , m}}.<br />

Propositi<strong>on</strong> 2. Let M = M(w, ϕ), where w ∈ W ′ <strong>and</strong> ϕ is an indecomposable automorphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> k n , n 1. Let w ′ ∈ W ′ be a word with an even number <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal directed<br />

subwords w i , i ∈ {1, . . . , 2m}, such that w ∼ 2 w ′ . If m <strong>and</strong> n are not both equal to 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M(w, ϕ) ⊗ N) = max{l(M(w i ) ⊗ N) | i ∈ {1, . . . , 2m}}.<br />

–25–


Propositi<strong>on</strong> 1 <strong>and</strong> 2 leave us with determining <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> types M(A l ), M(B m ) <strong>and</strong> M(A l Bm −1 , ρ) for l, m < 2q, ρ ∈ k {0}. One<br />

can note that <str<strong>on</strong>g>the</str<strong>on</strong>g>se are precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-projective kD 4q -modules whose top <strong>and</strong> socle<br />

are simple modules.<br />

Given x ∈ N, denote by [x] i <str<strong>on</strong>g>the</str<strong>on</strong>g> ith term <str<strong>on</strong>g>of</str<strong>on</strong>g> its binary expansi<strong>on</strong>, i.e., [x] i ∈ {0, 1} such<br />

that x = ∑ i∈N [x] i2 i . Let l, m ∈ N, <strong>and</strong> take a ∈ N to be <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest number such that<br />

[l] i + [m] i 1 for all i a. Set λ = ∑ ia [l] i2 i <strong>and</strong> µ = ∑ ja [m] j2 j . Now define a binary<br />

operati<strong>on</strong> # <strong>on</strong> N by setting<br />

l#m = λ + µ + 2 a − 1 .<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> binary expansi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> l <strong>and</strong> m are disjoint, that is, if [l] i + [m] i 1 for all i ∈ N, we<br />

write l ⊥ m. Now observe that if l ⊥ m <str<strong>on</strong>g>the</str<strong>on</strong>g>n a = 0 <strong>and</strong> l#m = l + m, while l#m < l + m<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Example 3. We have 85#38 = 119. Namely, 85 = 2 0 +2 2 +2 4 +2 6 <strong>and</strong> 38 = 2 1 +2 2 +2 5 ,<br />

hence a = 3 for <str<strong>on</strong>g>the</str<strong>on</strong>g>se two numbers, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore 85#38 = (2 4 + 2 6 ) + 2 5 + 2 3 − 1 = 119.<br />

Clearly, 85#38 = 119 < 123 = 85 + 38, which was to be expected, since 85 ̸⊥ 38.<br />

The relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong> # is that it neatly describes <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> uniserial modules, that is, modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type M(A l ) <strong>and</strong> M(B l ). If u is a<br />

generating element in <str<strong>on</strong>g>the</str<strong>on</strong>g> module M(A l ), <strong>and</strong> v a generating element in M(A m ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(〈u ⊗ v〉) = l#m + 1 (observe that u ⊗ v does not generate M(A l ) ⊗ M(A m ), unless l<br />

or m equals zero). Showing this is <str<strong>on</strong>g>the</str<strong>on</strong>g> most important step in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> our principal<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem, which gives <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> kD 4q -modules with simple<br />

top <strong>and</strong> simple socle.<br />

Theorem 4. Let l, m ∈ N, l 1 , l 2 , m 1 , m 2 ∈ N {0}, ρ, σ ∈ k {0}.<br />

1. String with string:<br />

{<br />

1 + l#m = 1 + l + m if l ⊥ m,<br />

l(M(A l ) ⊗ M(B m )) =<br />

2 + l#m if l ̸⊥ m,<br />

{<br />

1 + l#m if [l] t = [m] t = 0 for all 0 t < a − 1,<br />

l(M(A l ) ⊗ M(A m )) =<br />

2 + l#m o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

where a = min{r ∈ N | [l] t + [m] t 1, ∀t r}.<br />

2. B<strong>and</strong> with string:<br />

l ( M(A l1 B −1<br />

l 2<br />

, ρ) ⊗ M(A m ) ) =<br />

⎧<br />

⎪⎨ 2 + (l 1 − 1)#m if ρ = 1, l 1 = l 2 <strong>and</strong><br />

l 1 ⊥ m, l 1 ⊥ (m − 1),<br />

⎪⎩<br />

l ( M ( )<br />

A l1 B −1<br />

l 2 ⊗ M(Am ) ) o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

3. B<strong>and</strong> with b<strong>and</strong>: Let M = M ( A l1 B −1<br />

l 2<br />

, ρ ) , N = M ( A m1 Bm −1<br />

2<br />

, σ ) .<br />

(a) If l 1 ≠ l 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M ⊗ N) = l(M ( )<br />

A l1 B −1<br />

l 2 ⊗ N).<br />

–26–


Assume l 1 = l 2 , m 1 = m 2 .<br />

(b) If l 1 ̸⊥ m 1 , l 1 ̸⊥ (m 1 − 1), (l 1 − 1) ̸⊥ m 1 <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M ⊗ N) = 2 + (l 1 − 1)#(m 1 − 1).<br />

(c) If l 1 ⊥ m 1 , (l 1 − 1) ⊥ m 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

{<br />

2 + (l 1 − 1)#(m 1 − 1) if σ = 1,<br />

l(M ⊗ N) =<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

(d) If l 1 ⊥ m 1 , l 1 ⊥ (m 1 − 1), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

{<br />

2 + (l 1 − 1)#(m 1 − 1) if ρ = 1,<br />

l(M ⊗ N) =<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

(e) If (l 1 − 1) ⊥ m 1 , l 1 ⊥ (m 1 − 1), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

⎧<br />

⎪⎨ 2 + (l 1 − 1)#(m 1 − 1) if ρ = σ = 1,<br />

l(M ⊗ N) = l 1 + m 1 if ρ = σ ≠ 1,<br />

⎪⎩<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

We remark that if any <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> statements l ⊥ m, (l − 1) ⊥ m <strong>and</strong> l ⊥ (m − 1) holds<br />

true, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so does precisely <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining <strong>on</strong>es. Hence 3(b)–3(e) in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

give a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> cases. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 4:1, it is not difficult to prove<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> inequalities:<br />

(3.1) l(M(A l ) ⊗ M(A m )) l(M(A l ) ⊗ M(B m )) l(M(A l ) ⊗ M(A m+1 )) .<br />

It is entirely possible that each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se inequalities are identities. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for<br />

example if l = 8, m = 9: l(M(A 8 ) ⊗ M(A 9 )) = 2 + 8#9 = 2 + 15 = 2 + 8#10 =<br />

l(M(A 8 ) ⊗ M(A 10 )).<br />

Corollary 5. Let l, m < 2q, 0 < l 1 , l 2 , m 1 , m 2 < 2q, <strong>and</strong> ρ, σ ∈ k {0}.<br />

1. M(A l ) ⊗ M(B m ) has a projective direct summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if, l + m 2q,<br />

2. M(A l ) ⊗ M(A m ) has a projective direct summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if, l + m 2q + 1.<br />

3. M(A l1 B −1<br />

l 2<br />

, ρ) ⊗ M(A m ) has a projective direct summ<strong>and</strong> precisely when<br />

max{l 1 + m − 1, l 2 + m} 2q.<br />

4. If l 1 ≠ l 2 or m 1 ≠ m 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ( A l1 B −1<br />

l 2<br />

, ρ ) ⊗ M ( A m1 Bm −1<br />

2<br />

, σ ) has a projective direct<br />

summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if,<br />

max{l 1 + m 1 − 1, l 1 + m 2 , l 2 + m 1 , l 2 + m 2 − 1} 2q .<br />

5. If l 1 = l 2 , m 1 = m 2 <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ( A l1 B −1<br />

l 2<br />

, ρ ) ⊗ M ( A m1 Bm −1<br />

2<br />

, σ ) has projective direct<br />

summ<strong>and</strong>s if, <strong>and</strong> <strong>on</strong>ly if,<br />

(a) l 1 ⊥ (m 1 − 1), ρ ≠ σ <strong>and</strong> l 1 + m 1 = 2q, or<br />

(b) l 1 ̸⊥ (m 1 − 1), <strong>and</strong> l 1 + m 1 2q.<br />

We remark that, for l, m < 2q, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> l + m 2q implies l ̸⊥ m. Thus, in<br />

particular, in 5(a) above, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> l 1 ⊥ (m 1 − 1) is equivalent to (l 1 − 1) ⊥ m 1 , <strong>and</strong><br />

similarly, in 5(b), l 1 ̸⊥ (m 1 − 1) could be replaced by (l 1 − 1) ̸⊥ m 1 .<br />

–27–


4. Examples<br />

Example 6. Let M = M(A 5 B7 −1 B 4 ), N = M(A 6 B4 −1 ). By Propositi<strong>on</strong> 1,<br />

l(M ⊗ N) = max { l(M(w) ⊗ M(w ′ )) | w ∈ {A 5 , B7 −1 , B 4 }, w ′ ∈ {A 6 , B4 −1 } }<br />

= l(M(B −1<br />

7 ) ⊗ M(A 6 )) = l(M(B 7 ) ⊗ M(A 6 )) .<br />

Since 7 ̸⊥ 6, by Theorem 4:1 we have, l(M(B 7 ) ⊗ M(A 6 )) = 2 + 7#6 = 9. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> M ⊗ N is 9 <strong>and</strong>, seen as a kD 16 -module, M ⊗ N has a projective direct<br />

summ<strong>and</strong>.<br />

Example 7. By Propositi<strong>on</strong> 1 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> inequality (3.1), we have<br />

l(M(A l ) ⊗ M(A m+1 B −1<br />

m )) = max{l(M(A l ) ⊗ M(A m+1 )), l(M(A l ) ⊗ M(B m ))}<br />

= l(M(A l ) ⊗ M(A m+1 )) .<br />

for all l, m ∈ N.<br />

Example 8. While it is clear that l(M(A l B −1<br />

l<br />

, 1)⊗N) l(M(A l B −1<br />

l<br />

)⊗N), <str<strong>on</strong>g>the</str<strong>on</strong>g> difference<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two tensor products may be zero, or arbitrarily large. For<br />

example, if N = M(A m ) <strong>and</strong> l ̸⊥ m, <str<strong>on</strong>g>the</str<strong>on</strong>g>n l(M(A l B −1<br />

l<br />

, 1) ⊗ N) = l(M(A l B −1<br />

l<br />

) ⊗ N) by<br />

Theorem 4:2. If, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, l = 2 r <strong>and</strong> m = 2 s with r > s <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

while<br />

l(M(A l B −1<br />

l<br />

, 1) ⊗ M(A m )) = 2 + (l − 1)#m = 2 + 2 r − 1 = 1 + 2 r ,<br />

l(M(A l B −1<br />

l<br />

) ⊗ M(A m )) = l(M(B l ) ⊗ M(A m )) = 1 + l + m = 1 + 2 r + 2 s .<br />

Example 9. Let M = M(a) = M(A 1 ) <strong>and</strong> N = M(b(ab) l ) = M(B 2l+1 ) for some l ∈ N.<br />

Now 1 ̸⊥ (2l + 1), <strong>and</strong> 1#(2l + 1) = 2l + 1, so by Theorem 4:1, l(M ⊗ N) = 2l + 3. In this<br />

case, <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length actually provides <str<strong>on</strong>g>the</str<strong>on</strong>g> missing piece <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> to compute <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

isomorphism type <str<strong>on</strong>g>of</str<strong>on</strong>g> M ⊗ N.<br />

Namely, since k is <str<strong>on</strong>g>the</str<strong>on</strong>g> unique simple module, we have<br />

<strong>and</strong> similarly,<br />

dim soc(M ⊗ N) = dim Hom kD4q (k, M ⊗ N) = dim Hom kD4q (N ∗ , M)<br />

= dim Hom kD4q (N, M) = 1<br />

dim top(M ⊗ N) = dim Hom kD4q (M ⊗ N, k) = 1 .<br />

Hence M ⊗ N is a module with simple top <strong>and</strong> simple socle, <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> 4(l + 1), <strong>and</strong><br />

Loewy length 2l + 3. A module satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s is indecomposable, <strong>and</strong> must<br />

be isomorphic to M(A 2l+2 B −1<br />

2l+2<br />

, ρ) for some ρ ∈ k {0}. Now if k is <str<strong>on</strong>g>the</str<strong>on</strong>g> prime field, that<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> Galois field with two elements, this means that ρ = 1. From this follows that ρ = 1<br />

also in <str<strong>on</strong>g>the</str<strong>on</strong>g> general case, since extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scalars commutes with taking tensor products.<br />

Hence, we have M ⊗ N ≃ M(A 2l+2 B −1<br />

2l+2 , 1).<br />

–28–


References<br />

[1] L. Archer. On certain quotients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green rings <str<strong>on</strong>g>of</str<strong>on</strong>g> dihedral 2-groups. J. Pure Appl. Algebra,<br />

212(8):1888–1897, 2008.<br />

[2] D. J. Bens<strong>on</strong> <strong>and</strong> J. F. Carls<strong>on</strong>. Nilpotent elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> Green ring. J. Algebra, 104(2):329–350,<br />

1986.<br />

[3] Christine Bessenrodt. Endotrivial modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver. In Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups <strong>and</strong> finite-dimensi<strong>on</strong>al algebras (Bielefeld, 1991), volume 95 <str<strong>on</strong>g>of</str<strong>on</strong>g> Progr. Math., pages<br />

317–326. Birkhäuser, 1991.<br />

[4] S. B. C<strong>on</strong>l<strong>on</strong>. Certain representati<strong>on</strong> algebras. J. Austral. Math. Soc., 5:83–99, 1965.<br />

[5] E. Darpö <strong>and</strong> C. C. Gill. The Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> modules <str<strong>on</strong>g>of</str<strong>on</strong>g> a dihedral two-group,<br />

2012. http://arxiv.org/abs/1202.5385.<br />

[6] J. A. Green. The modular representati<strong>on</strong> algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group. Illinois J. Math, 6:607–619, 1962.<br />

[7] C. M. <strong>Ring</strong>el. The indecomposable representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups. Math. Ann., 214:19–34,<br />

1975.<br />

Darpö: Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Nagoya University, Furocho, Chikusaku,<br />

Nagoya, Japan<br />

E-mail address: darpo@math.nagoya-u.ac.jp<br />

Gill: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Algebra, Charles University, Sokolovska 83, Praha 8, 186 75,<br />

Czech Republic<br />

E-mail address: gill@karlin.mff.cuni.cz<br />

–29–


EXAMPLE OF CATEGORIFICATION OF A CLUSTER ALGEBRA<br />

LAURENT DEMONET<br />

Abstract. We present here two detailed examples <str<strong>on</strong>g>of</str<strong>on</strong>g> additive categorificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cluster algebra structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a coordinate ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a maximal unipotent subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

simple Lie group. The first <strong>on</strong>e is <str<strong>on</strong>g>of</str<strong>on</strong>g> simply-laced type (A 3 ) <strong>and</strong> relies <strong>on</strong> an article by<br />

Geiß, Leclerc <strong>and</strong> Schröer. The sec<strong>on</strong>d is <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> simply-laced type (C 2 ) <strong>and</strong> relies <strong>on</strong> an<br />

article by <str<strong>on</strong>g>the</str<strong>on</strong>g> author <str<strong>on</strong>g>of</str<strong>on</strong>g> this note. This is aimed to be accessible, specially for people<br />

who are not familiar with this subject.<br />

1. Introducti<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> total positivity problem<br />

Let N be <str<strong>on</strong>g>the</str<strong>on</strong>g> subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> SL 4 (C) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> upper triangular matrices with diag<strong>on</strong>al<br />

1. We say that X ∈ N is totally positive if its 12 n<strong>on</strong>-trivial minors are positive real<br />

numbers (a minor is n<strong>on</strong>-trivial if it is not c<strong>on</strong>stant <strong>on</strong> N <strong>and</strong> not product <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

minors). As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> various results <str<strong>on</strong>g>of</str<strong>on</strong>g> Fomin <strong>and</strong> Zelevinsky [3] (see also [1]), in<br />

a (very) special case, we get<br />

Propositi<strong>on</strong> 1 (Fomin-Zelevinsky). X ∈ N is totally positive if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> minors<br />

∆ 1 4(X), ∆ 12<br />

34(X), ∆ 123<br />

234(X), ∆ 12<br />

24(X), ∆ 2 4(X), ∆ 3 4(X) are positive.<br />

where ∆ l 1...l k<br />

c 1 ...c k<br />

(X) is <str<strong>on</strong>g>the</str<strong>on</strong>g> minor <str<strong>on</strong>g>of</str<strong>on</strong>g> X with rows l 1 , . . . , l k <strong>and</strong> columns c 1 , . . . , c k .<br />

Remark that, as <str<strong>on</strong>g>the</str<strong>on</strong>g> algebraic variety N has dimensi<strong>on</strong> 6, we can not expect to find a<br />

criteri<strong>on</strong> with less than 6 inequalities to check <str<strong>on</strong>g>the</str<strong>on</strong>g> total positivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a matrix.<br />

To prove this, just remark that we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following equality:<br />

∆ 12<br />

24∆ 23<br />

34 = ∆ 123<br />

234∆ 2 4 + ∆ 3 4∆ 12<br />

34<br />

which immediately implies that ∆ 1 4(X), ∆ 12<br />

34(X), ∆ 123<br />

234(X), ∆ 12<br />

24(X), ∆ 2 4(X), ∆ 3 4(X) are<br />

positive if <strong>and</strong> <strong>on</strong>ly if ∆ 1 4(X), ∆ 12<br />

34(X), ∆ 123<br />

234(X), ∆ 23<br />

34(X), ∆ 2 4(X), ∆ 3 4(X) are positive.<br />

Such an equality is called an exchange identity. In Figure 1, we wrote 14 sets <str<strong>on</strong>g>of</str<strong>on</strong>g> minors<br />

which are related by exchange identities whenever <str<strong>on</strong>g>the</str<strong>on</strong>g>y are linked by an edge. As every<br />

minor appears in this graph, it induces <str<strong>on</strong>g>the</str<strong>on</strong>g> previous propositi<strong>on</strong>.<br />

These observati<strong>on</strong>s lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster algebra [4]. A cluster algebra is an<br />

algebra endowed with an additi<strong>on</strong>al combinatorial structure. Namely, a (generally infinite)<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> distinguished elements called cluster variables grouped into subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

cardinality n, called clusters <strong>and</strong> a finite set {x n+1 , x n+2 , . . . , x m } called <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients.<br />

For each cluster {x 1 , x 2 , . . . , x n }, <str<strong>on</strong>g>the</str<strong>on</strong>g> extended cluster {x 1 , . . . , x n , x n+1 , . . . , x m }<br />

is a transcendence basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra. Moreover, each cluster {x 1 , x 2 , . . . , x n } has n<br />

The paper is in a final form <strong>and</strong> no versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it will be submitted for publicati<strong>on</strong> elsewhere.<br />

–30–


✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

13<br />

34 , 1 2 , 1 3<br />

✎<br />

✴<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

✎ ✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴<br />

✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞<br />

13<br />

34 , 23<br />

34 , ✎<br />

✎<br />

1 ✎<br />

✎<br />

3❄ ✎<br />

❄❄❄❄❄❄❄❄<br />

✎<br />

✎<br />

1<br />

4 , 12<br />

34 , 123<br />

234<br />

❞<br />

,<br />

13<br />

34 , 1 2 , 3 1<br />

4<br />

4 , 12<br />

34 , 123<br />

234 ❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞<br />

,<br />

13<br />

34 , 23<br />

34 , 3 4<br />

✬ ✬✬✬✬✬✬✬✬✬<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

12<br />

1<br />

24 , 1 2 , 3 4<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

❉<br />

1 ♦♦♦♦♦ ❉❉❉❉❉❉❉<br />

23<br />

4 , 12<br />

34 , 123<br />

34 , 2 4 , 3 ❩❩❩<br />

4<br />

234 ,<br />

☛<br />

12<br />

24 , 2 4 , 3 4<br />

1<br />

☛<br />

☛<br />

❄<br />

☛<br />

❄❄❄❄❄❄<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

☛<br />

12<br />

24 , 1 2 , 12<br />

23<br />

❩❩❩❩❩❩ 1<br />

☛<br />

☛<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

☛<br />

☛<br />

1 ❧❧❧❧❧❧❧<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

12<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

23 , 1 2 , 1 3<br />

12<br />

23<br />

24 , 2 4 , 12<br />

23<br />

34 , 2 4 , 2 3<br />

✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚<br />

1 ♦♦♦♦♦♦♦♦<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

23<br />

34 , 2 3 , 1 3<br />

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖ ✒ ✒✒✒✒✒✒✒✒✒<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

12<br />

23 , 2 4 , 2 3<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖ ❖<br />

1<br />

4 , 12<br />

34 , 8 88888888888888888888888888888888888888888<br />

123<br />

234 ,<br />

12<br />

23 , 2 3 , 1 3<br />

Figure 1. Exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> minors<br />

neighbours obtained by replacing <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its elements x k by a new <strong>on</strong>e x ′ k<br />

relati<strong>on</strong><br />

related by a<br />

x k x ′ k = M 1 + M 2<br />

where M 1 <strong>and</strong> M 2 are mutually prime m<strong>on</strong>omials in {x 1 , . . . , x k−1 , x k+1 , . . . , x m }, given<br />

by precise combinatorial rules. These replacements, called mutati<strong>on</strong>s <strong>and</strong> denoted by µ k<br />

are involutive. For precise definiti<strong>on</strong>s <strong>and</strong> details about <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>structi<strong>on</strong>s, we refer to<br />

[4].<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous example, <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients are ∆ 1 4, ∆ 12<br />

34 <strong>and</strong> ∆ 123<br />

234 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster variables<br />

are all <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-trivial minors. The extended clusters are <str<strong>on</strong>g>the</str<strong>on</strong>g> sets appearing at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1.<br />

–31–


The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following secti<strong>on</strong>s is to describe examples <str<strong>on</strong>g>of</str<strong>on</strong>g> additive categorificati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebras. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster algebra structure with an additive<br />

category, some objects <str<strong>on</strong>g>of</str<strong>on</strong>g> which reflect <str<strong>on</strong>g>the</str<strong>on</strong>g> combinatorial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster algebra;<br />

moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an explicit formula, <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster character associating to <str<strong>on</strong>g>the</str<strong>on</strong>g>se particular<br />

objects elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra, in a way which is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> combinatorial<br />

structure. The examples we develop here rely <strong>on</strong> (abelian) module categories. They are<br />

particular cases <str<strong>on</strong>g>of</str<strong>on</strong>g> categorificati<strong>on</strong>s by exact categories appearing in [6] (simply-laced case)<br />

<strong>and</strong> [2] (n<strong>on</strong> simply-laced case). The study <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir categorificati<strong>on</strong>s<br />

has been particularly successful <str<strong>on</strong>g>the</str<strong>on</strong>g>se last years. For a survey <strong>on</strong> categorificati<strong>on</strong> by<br />

triangulated categories <strong>and</strong> a much more complete bibliography, see [7].<br />

2. The preprojective algebra <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster character<br />

Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver (oriented graph):<br />

α<br />

1 2 3<br />

α ∗<br />

As usual, denote by CQ <str<strong>on</strong>g>the</str<strong>on</strong>g> C-algebra, a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> which is formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> paths (including<br />

0-length paths supported by each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three vertices) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which is<br />

defined by c<strong>on</strong>catenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> paths when it is possible <strong>and</strong> vanishes when paths can not be<br />

composed (we write here <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> from left to right, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary to <str<strong>on</strong>g>the</str<strong>on</strong>g> usual<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maps). Thus, a (right) CQ-module is naturally graded by idempotents<br />

(0-length paths) corresp<strong>on</strong>ding to vertices <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows seen as elements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra can naturally be identified with linear maps between <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

homogeneous subspaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong>. We shall use <str<strong>on</strong>g>the</str<strong>on</strong>g> following right-h<strong>and</strong> side<br />

c<strong>on</strong>venient notati<strong>on</strong>:<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

β<br />

β ∗<br />

0 0 0<br />

⎝ ⎠ ⎝ ⎠<br />

−1 1 0<br />

C C 2 C 2<br />

( ) ⎛<br />

1 0<br />

⎞<br />

1 0<br />

⎝ ⎠<br />

0 1<br />

=<br />

2<br />

✂ ✂✂ ❁ ❁❁<br />

1❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

❁ ❁❁<br />

3<br />

where each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> digits represents a basis vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <strong>and</strong> each arrow a<br />

n<strong>on</strong>-zero scalar (1 when not specified) in <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding matrix entry.<br />

Let us now introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> preprojective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Q:<br />

Definiti<strong>on</strong> 2. The preprojective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is defined by<br />

Π Q =<br />

−1<br />

CQ<br />

(αα ∗ , α ∗ α + β ∗ β, ββ ∗ )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> which are seen as particular representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CQ (in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

words, mod Π Q is a full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod CQ).<br />

–32–


Example 3. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> following representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CQ, <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d<br />

<strong>on</strong>e are representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Π Q :<br />

2<br />

1❁ ❁❁<br />

2<br />

✂<br />

2❁ ❁❁<br />

;<br />

✂✂ ❁ ❁❁<br />

✂ ✂✂ ❁ ❁❁<br />

1❁ 1❁ 3 ; ❁<br />

−1 ✂<br />

3 2<br />

✂✂ 1 2 ;<br />

3 ❁<br />

−1 ✂<br />

2<br />

✂✂ .<br />

❁ ❁❁<br />

3<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> property, which is discussed in many places (for example in [6]), <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preprojective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, fundamental for this categorificati<strong>on</strong>, is<br />

Propositi<strong>on</strong> 4. The category mod Π Q is stably 2-Calabi-Yau. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, for every<br />

X, Y ∈ mod Π Q ,<br />

Ext 1 (X, Y ) ≃ Ext 1 (Y, X) ∗<br />

functorially in X <strong>and</strong> Y , where Ext 1 (Y, X) ∗ is <str<strong>on</strong>g>the</str<strong>on</strong>g> C-dual <str<strong>on</strong>g>of</str<strong>on</strong>g> Ext 1 (Y, X). In particular, it<br />

is a Frobenius category (is has enough projective objects <strong>and</strong> enough injective objects <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y coincide).<br />

Let us now define <str<strong>on</strong>g>the</str<strong>on</strong>g> three following <strong>on</strong>e-parameter subgroups <str<strong>on</strong>g>of</str<strong>on</strong>g> N:<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

1 t 0 0<br />

1 0 0 0<br />

1 0 0 0<br />

x 1 (t) = ⎜0 1 0 0<br />

⎟<br />

⎝0 0 1 0⎠ x 2(t) = ⎜0 1 t 0<br />

⎟<br />

⎝0 0 1 0⎠ x 3(t) = ⎜0 1 0 0<br />

⎟<br />

⎝0 0 1 t⎠ .<br />

0 0 0 1<br />

0 0 0 1<br />

0 0 0 1<br />

For X ∈ mod Π Q <strong>and</strong> any sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices a 1 , a 2 , . . . , a n <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, we denote by<br />

{<br />

}<br />

X i<br />

Φ X,a1 a 2 ...a n<br />

= 0 = X 0 ⊂ X 1 ⊂ · · · ⊂ X n−1 ⊂ X n = X | ∀i ∈ {1, 2, . . . , n}, ≃ S ai<br />

X i−1<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> variety <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong> series <str<strong>on</strong>g>of</str<strong>on</strong>g> X <str<strong>on</strong>g>of</str<strong>on</strong>g> type a 1 a 2 . . . a n (S ai is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dimensi<strong>on</strong> 1, supported at vertex a i ). This is a closed algebraic subvariety <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Grassmannians<br />

Gr 1 (X) × Gr 2 (X) × · · · × Gr n (X).<br />

We denote by χ <str<strong>on</strong>g>the</str<strong>on</strong>g> Euler characteristic. Using results <str<strong>on</strong>g>of</str<strong>on</strong>g> Lusztig <strong>and</strong> Kashiwara-Saito,<br />

Geiß-Leclerc-Schroër proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following result:<br />

Theorem 5 ([6]). Let X ∈ mod Π Q . There is a unique ϕ X ∈ C[N] such that<br />

ϕ X (x a1 (t 1 )x a2 (t 2 ) . . . x a6 (t 6 )) =<br />

∑<br />

i 1 ,i 2 ,...,i 6 ∈N<br />

(<br />

) t<br />

i 1<br />

χ Φ 1 t i 2<br />

2 . . . t i 6<br />

6<br />

i X,a 1<br />

1 a i 2<br />

2 ...a i 6<br />

6 i 1 !i 2 ! . . . i 6 !<br />

for every word a 1 a 2 a 3 a 4 a 5 a 6 representing <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gest element <str<strong>on</strong>g>of</str<strong>on</strong>g> S 4 (a i k<br />

k<br />

i k times <str<strong>on</strong>g>of</str<strong>on</strong>g> a k ).<br />

The map ϕ : mod Π Q → C[N] is called a cluster character.<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> repetiti<strong>on</strong><br />

Remark 6. (1) The uniqueness in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is easy because it is well known<br />

that<br />

x a1 (t 1 )x a2 (t 2 ) . . . x a6 (t 6 )<br />

runs over a dense subset <str<strong>on</strong>g>of</str<strong>on</strong>g> N ;<br />

–33–


X ∈ mod Π Q S 1 S 2 S 3<br />

1 ❁ ❁❁<br />

2<br />

✂ ✂✂2<br />

1<br />

2 ❁ ❁❁<br />

3<br />

✂ ✂✂3<br />

2<br />

ϕ X ∈ C[N] ∆ 1 2 ∆ 2 3 ∆ 3 4 ∆ 12<br />

23 ∆ 1 3 ∆ 23<br />

34 ∆ 2 4<br />

1[dr]<br />

2❁ 2❁ X ∈ mod Π ❁❁ 1❁ 3<br />

❁❁<br />

✂ ✂✂<br />

Q ❁<br />

1❁ 3<br />

✂<br />

1 ✂✂<br />

3<br />

✂<br />

2<br />

✂✂<br />

2 ❁ ❁❁<br />

3<br />

❁ ❁ ✂<br />

2<br />

✂✂<br />

✂ ✂✂3<br />

✂ ✂✂2<br />

1<br />

ϕ X ∈ C[N] ∆ 13<br />

34 ∆ 12<br />

24 ∆ 123<br />

234 ∆ 12<br />

34 ∆ 1 4<br />

Figure 2. Cluster character<br />

(2) <str<strong>on</strong>g>the</str<strong>on</strong>g> existence is much harder <strong>and</strong> str<strong>on</strong>gly relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semican<strong>on</strong>ical<br />

bases by Lusztig [8]. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that it does not depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1 a 2 a 3 a 4 a 5 a 6 is not clear a priori (see <str<strong>on</strong>g>the</str<strong>on</strong>g> following examples).<br />

Example 7. We suppose that a 1 a 2 a 3 a 4 a 5 a 6 = 213213. Then<br />

⎛<br />

⎞<br />

1 t 2 + t 5 t 2 t 4 t 2 t 4 t 6<br />

x a1 (t 1 )x a2 (t 2 )x a3 (t 3 )x a4 (t 4 )x a5 (t 5 )x a6 (t 6 ) = ⎜0 1 t 1 + t 4 t 1 t 3 + t 1 t 6 + t 4 t 6<br />

⎟<br />

⎝0 0 1 t 3 + t 6<br />

⎠ .<br />

0 0 0 1<br />

• The module S 1 has <strong>on</strong>ly <strong>on</strong>e compositi<strong>on</strong> series, <str<strong>on</strong>g>of</str<strong>on</strong>g> type 1. Therefore Φ 1 (S 1 ) is<br />

<strong>on</strong>e point <strong>and</strong> Φ a (S 1 ) = ∅ for any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r a. Identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> two members in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formula <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

ϕ S1 (x a1 (t 1 )x a2 (t 2 )x a3 (t 3 )x a4 (t 4 )x a5 (t 5 )x a6 (t 6 )) = t 2 + t 5 = ∆ 1 2.<br />

• The module<br />

2❁ ❁❁<br />

✂<br />

P 2 = 1<br />

✂✂<br />

❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

has two compositi<strong>on</strong> series, <str<strong>on</strong>g>of</str<strong>on</strong>g> type 2312 <strong>and</strong> 2132. Therefore,<br />

ϕ P2 (x a1 (t 1 )x a2 (t 2 )x a3 (t 3 )x a4 (t 4 )x a5 (t 5 )x a6 (t 6 )) = t 1 t 2 t 3 t 4 = ∆ 12<br />

34.<br />

Remark that, in this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly compositi<strong>on</strong> series which is playing a role<br />

is 2132, even if <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> is symmetric. This justify <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

previous remark.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r indecomposable representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Π Q <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir cluster character values are<br />

collected in Figure 2.<br />

Two important properties <str<strong>on</strong>g>of</str<strong>on</strong>g> this cluster character were proved by Geiß-Leclerc-Schroër<br />

(see for example [6]):<br />

Propositi<strong>on</strong> 8. Let X, Y ∈ mod Π Q .<br />

(1) ϕ X⊕Y = ϕ X ϕ Y .<br />

–34–


(2) Suppose that dim Ext 1 (X, Y ) = 1 (<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore dim Ext 1 (Y, X) = 1) <strong>and</strong> let<br />

0 → X → T a → Y → 0 <strong>and</strong> 0 → Y → T b → X → 0<br />

be two (unique up to isomorphism) n<strong>on</strong>-split short exact sequences. Then<br />

ϕ X ϕ Y = ϕ Ta + ϕ Tb .<br />

3. Minimal approximati<strong>on</strong>s<br />

This secti<strong>on</strong> recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <strong>and</strong> elementary properties <str<strong>on</strong>g>of</str<strong>on</strong>g> approximati<strong>on</strong>s. It is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re for <str<strong>on</strong>g>the</str<strong>on</strong>g> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> ease. In what follows, mod Π Q can be replaced by any additive<br />

Hom-finite category over a field.<br />

Definiti<strong>on</strong> 9. Let X <strong>and</strong> T be two objects <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Π Q . A left add(T )-approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

X is a morphism f : X → T ′ such that<br />

• T ′ ∈ add(T ) (which means that every indecomposable summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T ′ is an indecomposable<br />

summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T ) ;<br />

• every morphism g : X → T factors through f.<br />

If, moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no strict direct summ<strong>and</strong> T ′′ <str<strong>on</strong>g>of</str<strong>on</strong>g> T ′ <strong>and</strong> left add(T )-approximati<strong>on</strong><br />

f ′ : X → T ′′ , <str<strong>on</strong>g>the</str<strong>on</strong>g>n f is said to be a minimal left add(T )-approximati<strong>on</strong>.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, we can define<br />

Definiti<strong>on</strong> 10. Let X <strong>and</strong> T be two objects in mod Π Q . A right add(T )-approximati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X is a morphism f : T ′ → X such that<br />

• T ′ ∈ add(T ) ;<br />

• every morphism g : T → X factors through f.<br />

If, moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no strict direct summ<strong>and</strong> T ′′ <str<strong>on</strong>g>of</str<strong>on</strong>g> T ′ <strong>and</strong> right add(T )-approximati<strong>on</strong><br />

f ′ : T ′′ → X, <str<strong>on</strong>g>the</str<strong>on</strong>g>n f is said to be a minimal right add(T )-approximati<strong>on</strong>.<br />

Now, a classical propositi<strong>on</strong> which permits to explicitly compute approximati<strong>on</strong>s:<br />

Propositi<strong>on</strong> 11. Let X <strong>and</strong> T ≃ T i 1<br />

1 ⊕ T i 2<br />

2 ⊕ · · · ⊕ T i n n be two objects in mod Π Q (<str<strong>on</strong>g>the</str<strong>on</strong>g> T i ’s<br />

are n<strong>on</strong>-isomorphic indecomposable). For i, j ∈ {1, . . . , n}, we denote by I ij <str<strong>on</strong>g>the</str<strong>on</strong>g> subvector<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> Hom(T i , T j ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-invertible morphisms (I ij = Hom(T i , T j ) if<br />

i ≠ j). Thus, for j ∈ {1, . . . , n}, we obtain a linear map<br />

⊕<br />

i∈{1,...,n}<br />

I ij ⊗ Hom(X, T i ) ϕ j<br />

−→ Hom(X, T j )<br />

(g, f) ↦→ g ◦ f.<br />

Let B j be a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> coker ϕ j lifted to Hom(X, T j ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism<br />

X (f) j∈{1,...,n},f∈B j<br />

−−−−−−−−−−→<br />

⊕<br />

j∈{1,...,n}<br />

T #B j<br />

j<br />

is a minimal left add(T )-approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X. Moreover, any minimal left add(T )-<br />

approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X is isomorphic to it.<br />

–35–


The previous propositi<strong>on</strong> has a dual versi<strong>on</strong> which permits to compute minimal right<br />

approximati<strong>on</strong>s. In practice, this computati<strong>on</strong> relies <strong>on</strong> searching morphisms up to factorizati<strong>on</strong><br />

through o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objects. There is an explicit example <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong> in Example<br />

19.<br />

4. Maximal rigid objects <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mutati<strong>on</strong>s<br />

Let us introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> objects <str<strong>on</strong>g>the</str<strong>on</strong>g> combinatorics <str<strong>on</strong>g>of</str<strong>on</strong>g> which will play <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster<br />

algebra structure.<br />

Definiti<strong>on</strong> 12. Let X ∈ mod Π Q .<br />

• The module X is said to be rigid if it has no self-extensi<strong>on</strong>, (i.e., Ext 1 (X, X) = 0).<br />

• The module X is said to be basic maximal rigid if it is basic (i.e., it does not<br />

have two isomorphic indecomposable summ<strong>and</strong>s), rigid, <strong>and</strong> maximal for <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

two properties.<br />

Remark 13. A basic maximal rigid Π Q -module c<strong>on</strong>tains Π Q as a direct summ<strong>and</strong> (because<br />

Π Q is both projective <strong>and</strong> injective <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore has no extensi<strong>on</strong> with any module).<br />

Example 14. The object<br />

1❁ 3 ❁ ✂<br />

2<br />

✂✂ ⊕ ✂<br />

2<br />

✂✂3<br />

⊕ 1 1[dr]<br />

❁ ❁❁<br />

2 ⊕<br />

2❁ ❁❁<br />

3<br />

2❁ ❁❁<br />

✂<br />

⊕ 1<br />

✂✂<br />

✂<br />

❁ 3 ⊕<br />

✂✂3<br />

❁ ✂<br />

2<br />

✂✂ ✂<br />

1<br />

✂✂2 ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> last three summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> which are <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective-injective Π Q -modules,<br />

is basic maximal rigid. It is easy to check that it is basic <strong>and</strong> rigid, but more difficult to<br />

prove that it is maximal for <str<strong>on</strong>g>the</str<strong>on</strong>g>se properties (see [6] for more details).<br />

Remark 15. We can prove that all basic maximal rigid objects have <str<strong>on</strong>g>the</str<strong>on</strong>g> same number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

indecomposable summ<strong>and</strong>s (six in <str<strong>on</strong>g>the</str<strong>on</strong>g> example we are talking about).<br />

The following result permits to define a mutati<strong>on</strong> <strong>on</strong> basic maximal rigid objects. C<strong>on</strong>sidered<br />

as an operati<strong>on</strong> <strong>on</strong> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic maximal rigid objects, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced<br />

combinatorial structure will corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster algebra.<br />

Theorem 16 ([6]). Let T ≃ T 1 ⊕ T 2 ⊕ T 3 ⊕ P 1 ⊕ P 2 ⊕ P 3 ∈ mod Π Q be basic maximal<br />

rigid such that P 1 , P 2 <strong>and</strong> P 3 are <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective Π Q -modules <strong>and</strong> T 1 , T 2<br />

<strong>and</strong> T 3 are indecomposable n<strong>on</strong>-projective Π Q -modules. Then, for i ∈ {1, 2, 3}, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

two (unique) short exact sequences<br />

f f<br />

0 → T i −→ ′<br />

Ta −→ Ti ∗ → 0 <strong>and</strong> 0 → Ti<br />

∗ g g<br />

−→ T ′<br />

b −→ T i → 0<br />

such that<br />

(1) f <strong>and</strong> g are minimal left add(T/T i )-approximati<strong>on</strong>s ;<br />

(2) f ′ <strong>and</strong> g ′ are minimal right add(T/T i )-approximati<strong>on</strong>s ;<br />

(3) Ti ∗ is indecomposable <strong>and</strong> n<strong>on</strong>-projective ;<br />

(4) dim Ext 1 (T i , Ti ∗ ) = dim Ext 1 (T ∗<br />

split ;<br />

(5) µ i (T ) = T/T i ⊕ T ∗<br />

i is basic maximal rigid ;<br />

i , T i ) = 1 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two short exact sequences do not<br />

–36–


(6) T a <strong>and</strong> T b do not have comm<strong>on</strong> summ<strong>and</strong>s.<br />

Remark 17. In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <strong>and</strong> uniqueness, regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

two c<strong>on</strong>diti<strong>on</strong>s, are automatic, except <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> extremities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two short exact<br />

sequences coincide up to order. This fact str<strong>on</strong>gly relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stably 2-Calabi-Yau<br />

property. It implies that µ i is involutive.<br />

Definiti<strong>on</strong> 18. In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, µ i is called <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong> in directi<strong>on</strong> i. The<br />

short exact sequences appearing are called exchange sequences.<br />

Example 19. Let<br />

T = 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂ ⊕ ✂<br />

2<br />

✂✂3<br />

⊕ 1 1[dr]<br />

❁ ❁❁<br />

2 ⊕<br />

(<br />

Using Propositi<strong>on</strong> 11, we get a left add T/<br />

2❁ ❁❁<br />

✂<br />

2❁ ⊕ ❁❁<br />

1<br />

✂✂<br />

❁ 3 ⊕ ❁ ✂ ✂✂<br />

3 2<br />

)<br />

-approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

✂<br />

2<br />

✂✂3<br />

✂<br />

2<br />

✂✂3 → 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

<strong>and</strong> computing <str<strong>on</strong>g>the</str<strong>on</strong>g> cokernel, we get <str<strong>on</strong>g>the</str<strong>on</strong>g> exchange sequence:<br />

so that<br />

µ 2 (T ) = 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

0 → 3<br />

✂ ✂✂<br />

2<br />

⊕ S 1 ⊕ 1 1[dr]<br />

❁ ❁❁<br />

2 ⊕<br />

Doing mutati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse directi<strong>on</strong>:<br />

0 → S 1 →<br />

→ 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂ → S 1 → 0<br />

✂ ✂✂3<br />

✂<br />

1<br />

✂✂2<br />

2 ❁ ❁❁<br />

3<br />

→ 3<br />

✂ ✂✂<br />

2<br />

✂ ✂✂3<br />

✂<br />

1<br />

✂✂2 .<br />

✂<br />

2<br />

✂✂3 :<br />

2❁ ❁❁<br />

✂<br />

⊕ 1<br />

✂✂<br />

✂<br />

❁ 3 ⊕<br />

✂✂3<br />

❁ ✂<br />

2<br />

✂✂ ✂<br />

1<br />

✂✂2 .<br />

→ 0.<br />

Let us now compute µ 1 µ 2 (T ) with its two exchange sequences:<br />

µ 1 µ 2 (T ) =<br />

0 → 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂ → S 1 ⊕<br />

0 → 2<br />

✂ ✂✂<br />

1<br />

✂ ✂✂2<br />

1<br />

1<br />

2❁ ❁❁<br />

✂ ✂✂<br />

❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

→ 2<br />

✂ ✂✂<br />

1<br />

→ 0<br />

→ 1<br />

3<br />

❁ ❁❁<br />

2 ⊕ ✂ ✂✂<br />

✂<br />

1<br />

✂✂2 → 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂ → 0<br />

⊕ S 1 ⊕ 1 1[dr]<br />

2❁ ❁❁<br />

❁ ❁❁<br />

2 ⊕ ✂<br />

2❁ ⊕ ❁❁<br />

1<br />

✂✂<br />

❁ 3 ⊕ ❁ ✂ ✂✂<br />

3 2<br />

–37–<br />

✂ ✂✂3<br />

✂<br />

1<br />

✂✂2 .


Computing inductively all <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong>s, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal<br />

rigid objects <str<strong>on</strong>g>of</str<strong>on</strong>g> Π Q (Figure 3).<br />

Then, using Propositi<strong>on</strong> 8 <strong>and</strong> Theorem 16 toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r technical results, we<br />

get <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>:<br />

Propositi<strong>on</strong> 20 ([6]). If we project <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal rigid objects to C[N] through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cluster character ϕ, we get a cluster algebra structure <strong>on</strong> C[N] (in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [4]).<br />

Moreover, this structure is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e proposed combinatorially in [1]. Under this projecti<strong>on</strong>,<br />

we get <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dence:<br />

{n<strong>on</strong> projective indecomposable objects} ↔ {cluster variables}<br />

{projective indecomposable objects} ↔ {coefficients}<br />

{basic maximal rigid objects} ↔ {extended clusters}<br />

Example 21. Taking <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Example 19 <strong>and</strong> looking at Figure 2, we get:<br />

<strong>and</strong><br />

∆ 12<br />

∆ 1 2∆ 2 4 = ϕ S1 ϕ 3<br />

✂ ✂✂<br />

2<br />

24∆ 1 3 = ϕ 1 ❁ 3ϕ ❁ ✂<br />

2<br />

✂✂ 2<br />

✂<br />

1<br />

✂✂<br />

= ϕ S1 ϕ 2❁ ❁❁<br />

✂<br />

1<br />

✂✂<br />

❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

= ϕ 1 ❁ 3 + ϕ<br />

❁ ✂<br />

2<br />

✂✂<br />

3<br />

✂ ✂✂<br />

✂<br />

1<br />

✂✂2<br />

= ϕ<br />

S 1 ⊕<br />

1<br />

2❁ ❁❁<br />

✂ ✂✂<br />

❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

+ ϕ 1 ϕ<br />

❁ ❁❁ 3<br />

✂<br />

2<br />

✂✂<br />

✂<br />

1<br />

✂✂2<br />

+ ϕ<br />

1 ❁ ❁❁<br />

= ∆ 12<br />

24 + ∆ 1 4<br />

3<br />

2 ⊕ ✂ ✂✂<br />

✂<br />

1<br />

✂✂2<br />

= ∆ 1 2∆ 12<br />

34 + ∆ 12<br />

23∆ 1 4.<br />

which can be easily checked by h<strong>and</strong>. These are part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equalities which appear in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Propositi<strong>on</strong> 1.<br />

5. From simply-laced case to general <strong>on</strong>e<br />

Define <str<strong>on</strong>g>the</str<strong>on</strong>g> following symplectic form:<br />

⎛<br />

⎞<br />

0 0 0 1<br />

Ψ = ⎜ 0 0 −1 0<br />

⎟<br />

⎝ 0 1 0 0⎠<br />

−1 0 0 0<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> subgroup<br />

N ′ = {M ∈ N| t MΨM = Ψ} or, equivalently N ′ = N Z/2Z<br />

where Z/2Z = 〈g〉 acts <strong>on</strong> N by M ↦→ Ψ −1 ( t M −1 ) Ψ. The group N ′ is a maximal<br />

unipotent subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> a symplectic group <str<strong>on</strong>g>of</str<strong>on</strong>g> type C 2 .<br />

–38–


✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

<br />

2<br />

✂<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ ✂ ❁ ✴<br />

1 3 ⊕ S ✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴<br />

1 ⊕ ✂ ✂ 2<br />

1<br />

2<br />

✂ ✂ ❁ ❄ ❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄<br />

✎<br />

✎<br />

1 3 ⊕ 2 ❁ <br />

3 ⊕ ✂ ✂ 2<br />

1<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✂ ❞ ✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ ✂ ❁ <br />

1 3 ⊕ S 1 ⊕ S 3<br />

2<br />

✂ ✂ ❁ ✬<br />

1 3 ⊕ 2 ❁ ✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬ <br />

3 ⊕ S 3<br />

1❁ 3 ✂ ❉ ❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉<br />

♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ✂ ⊕ S 1 ⊕ S 3<br />

2<br />

2❁ <br />

3 ⊕ ✂ ✂ 3<br />

2<br />

❩❩❩❩❩❩❩❩❩❩❩❩❩❩❄ 1❁ 3 ✂ ✂ ❄❄❄❄❄❄❄❄❄❄❄❄❄❄<br />

⊕ ✂ ✂ 3 ⊕ S 3<br />

2 2<br />

1❁ 3 ✂ ❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩<br />

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧ ✂ ⊕ S 1 ⊕ 1 ❁ <br />

2<br />

2 1❁ <br />

☛<br />

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖✒ ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛<br />

1❁ 3 ✂ ✂ ⊕ ✂ ✂ 3 ⊕ 1 2 ⊕ S 1 ⊕ ✂ ✂ 2<br />

1<br />

❁<br />

2❁ <br />

<br />

2 2 2<br />

3 ⊕ ✂ ✂ 3 ⊕ S 2<br />

2<br />

2❁ ✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚<br />

<br />

3 ⊕ S 2 ⊕ ✂ ✂ 2<br />

1<br />

✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒<br />

⊕ S 3<br />

2<br />

1 ✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖<br />

❁ <br />

2 ⊕ ✂ ✂ 3 ⊕ S 2<br />

2<br />

1❁ ❖✩<br />

8 8888888888888888888888888888888888888888888888888<br />

<br />

2 ⊕ S 2 ⊕ ✂ ✂ 2<br />

1<br />

Figure 3. Exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal rigid objects (up to projective summ<strong>and</strong>s)<br />

The <strong>on</strong>ly n<strong>on</strong>-trivial acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Z/2Z <strong>on</strong> Q induces an acti<strong>on</strong> <strong>on</strong> Π Q <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <strong>on</strong><br />

mod Π Q . Denote by π : C[N] → C[N ′ ] <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical projecti<strong>on</strong>. We can now formulate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following result:<br />

Theorem 22 ([2]). (1) If T is a Z/2Z-stable basic maximal rigid Π Q -module, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

µ 1 µ 3 (T ) = µ 3 µ 1 (T ). Moreover, µ 1 µ 3 (T ) <strong>and</strong> µ 2 (T ) are also Z/2Z-stable.<br />

(2) If X ∈ mod Π Q , <str<strong>on</strong>g>the</str<strong>on</strong>g>n π (ϕ X ) = π (ϕ gX ).<br />

(3) If we denote ¯µ 2 = µ 2 <strong>and</strong> ¯µ 1 = µ 1 µ 3 = µ 3 µ 1 , acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> Z/2Z-stable<br />

maximal rigid Π Q -modules, ¯µ induces through π ◦ ϕ <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster<br />

algebra <strong>on</strong> C[N ′ ], <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> which are projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Z/2Z-stable <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

C[N].<br />

–39–


Example 23. We have<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

1 a 12 a 13 a 14<br />

1 a 12 a 13 a 14<br />

∆ 12 ⎜0 1 a 23 a 24<br />

⎟<br />

23 ⎝0 0 1 a 34<br />

⎠ = a 12a 23 − a 13 <strong>and</strong> ∆ 2 ⎜0 1 a 23 a 24<br />

⎟<br />

4 ⎝0 0 1 a 34<br />

⎠ = a 24.<br />

0 0 0 1<br />

0 0 0 1<br />

Moreover,<br />

t ⎛ ⎞−1<br />

1 a 12 a 13 a 14<br />

⎜<br />

Ψ −1 ⎜⎝ 0 1 a 23 a 24<br />

⎟<br />

0 0 1 a 34<br />

⎠ Ψ<br />

0 0 0 1<br />

⎛<br />

⎞<br />

1 a 34 a 23 a 34 − a 24 a 12 a 23 a 34 − a 12 a 24 − a 13 a 34 + a 14<br />

= ⎜0 1 a 23 a 12 a 23 − a 13<br />

⎟<br />

⎝0 0 1 a 12<br />

⎠<br />

0 0 0 1<br />

which implies that, as expected,<br />

π ( )<br />

∆ 12<br />

23 = πϕ1<br />

❁ ❁❁<br />

<br />

2<br />

= πϕ 3<br />

✂ ✂✂<br />

2<br />

= π ( ∆ 2 4)<br />

.<br />

The exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Z/2Z-stable basic maximal rigid objects <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Π Q is presented<br />

<strong>on</strong> Figure 4, in relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> basic maximal rigid objects.<br />

It permits, in view <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1 to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> C[N ′ ]:<br />

<br />

∆ 1 4 = ∆123 234 , ∆12 34 ,<br />

∆ 12<br />

24 , ∆2 4 = ∆12 23<br />

∆ 1 4 = ∆123 234 , ∆12 34 ,<br />

∆ 12<br />

24 , ∆1 2 = ∆3 4 ▼▼▼▼▼▼<br />

∆ 1 4 = ∆123<br />

∆ 13<br />

34 , ∆1 2 = ∆3 4<br />

234 , ∆12 34 ,<br />

.<br />

∆ 1 4 = ∆123 234 , ∆12 34 ,<br />

∆ 2 3 , ∆2 4 = ∆12 23 ▼▼▼▼▼▼<br />

∆ 1 4 = ∆123<br />

∆ 1 4 = ∆123 234 , ∆12 34 ,<br />

∆ 13<br />

34 , ∆23 34 = ∆1 3<br />

<br />

<br />

234 , ∆12 34 ,<br />

∆ 2 3 , ∆23 34 = ∆1 3<br />

6. Scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se results <strong>and</strong> c<strong>on</strong>sequences<br />

The example presented here can be generalized to <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate rings <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

• The groups <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

N(w) = N ∩ ( w −1 N − w ) <strong>and</strong> N w = N ∩ (B − wB − )<br />

–40–


✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦<br />

<br />

2<br />

✂<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ ✂ ❁ ✴<br />

1 3 ⊕ S ✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴<br />

1 ⊕ ✂ ✂ 2<br />

1<br />

2<br />

✂ ✂ ❁ ❄ ❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄<br />

✎<br />

✎<br />

1 3 ⊕ 2 ❁ <br />

3<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨<br />

⊕ ✂ ✂ 2<br />

1<br />

✂ ❞ ✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ ✂ ❁ <br />

1 3 ⊕ S 1 ⊕ S 3<br />

2<br />

✂ ✂ ❁ ✬<br />

1 3 ⊕ 2 ❁ ✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬ <br />

3 ⊕ S 3<br />

1❁ 3 ✂ ❉ ❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉<br />

♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ✂ ⊕ ✚<br />

✚✚<br />

S 1 ⊕ S 3<br />

2<br />

✚<br />

✚<br />

2❁ ✚<br />

✚<br />

✚<br />

✚<br />

❩❩❩❩❩❩❩❩❩❩❩❩❩❩❄ ✚<br />

✚<br />

3 ⊕ ✂ ✂ 3<br />

2<br />

1❁ 3 ❄❄❄❄❄❄❄❄❄❄❄❄❄❄ ✚<br />

✚<br />

✂ ✂ ⊕ ✂ ✂ 3 ⊕ S 3<br />

✚<br />

✚<br />

✚<br />

2 2 ✚<br />

✚<br />

✚✚<br />

✚<br />

1<br />

✚<br />

✚<br />

✚<br />

❁ 3<br />

✚ ✂<br />

✚<br />

✚<br />

❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩<br />

✚<br />

✚<br />

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧ ✂ ⊕ S 1 ⊕ 1 ❁ <br />

2<br />

2 1❁ ☛<br />

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖✒ ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛<br />

✚<br />

✚✚<br />

✚<br />

<br />

1❁ 3 ✂ ✂ ⊕ ✚✂ ✂ 3 ⊕ 1 2 ⊕ S 1 ⊕ ✂ ✂ 2<br />

1<br />

❁<br />

2❁ <br />

<br />

2 2 2<br />

3 ⊕ ✂ ✂ 3 ⊕ S 2<br />

2<br />

2❁ ✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚ ❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬<br />

✒✩<br />

✩<br />

✒ ✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖<br />

<br />

3 ⊕ S 2 ⊕ ✂ ✂ 2<br />

1<br />

1❁ ✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒<br />

<br />

2 ⊕ ✂ ✂ 3 ⊕ S 2<br />

2<br />

1❁ ❖✩<br />

8 8888888888888888888888888888888888888888888888888<br />

<br />

2 ⊕ S 2 ⊕ ✂ ✂ 2<br />

1<br />

⊕ S 3<br />

2<br />

Figure 4. Exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> Z/2Z-stable maximal rigid objects<br />

where N is a maximal unipotent subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> a Kac-Moody group, N − its opposite<br />

unipotent group, B − <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding Borel subgroup, <strong>and</strong> w is an element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corresp<strong>on</strong>ding Weyl group. In particular, if N is <str<strong>on</strong>g>of</str<strong>on</strong>g> Lie type <strong>and</strong> w is <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gest<br />

element, <str<strong>on</strong>g>the</str<strong>on</strong>g>n N(w) = N.<br />

• Partial flag varieties corresp<strong>on</strong>ding to classical Lie groups.<br />

These results were obtained in [5] <strong>and</strong> [6] for <str<strong>on</strong>g>the</str<strong>on</strong>g> simply-laced cases <strong>and</strong> in [2] for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

n<strong>on</strong> simply-laced cases.<br />

It permits for example to prove in <str<strong>on</strong>g>the</str<strong>on</strong>g>se cases that all <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster m<strong>on</strong>omials (products<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> a same extended cluster) are linearly independent (result which is now<br />

generalized but was new at that time) <strong>and</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r more specific results (for example <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

–41–


classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> partial flag varieties <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate rings <str<strong>on</strong>g>of</str<strong>on</strong>g> which have finite cluster type,<br />

that is a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters).<br />

References<br />

[1] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras. III. Upper bounds <strong>and</strong> double Bruhat cells,<br />

Duke Math. J. 126 (2005), no. 1, 1–52.<br />

[2] L. Dem<strong>on</strong>et, Categorificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> skew-symmetrizable cluster algebras, Algebr. Represent. <strong>Theory</strong> 14<br />

(2011), no. 6, 1087–1162.<br />

[3] S. Fomin, A. Zelevinsky, Double Bruhat cells <strong>and</strong> total positivity, J. Amer. Math. Soc. 12 (1999), no.<br />

2, 335–380.<br />

[4] , Cluster algebras. I. Foundati<strong>on</strong>s, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529.<br />

[5] C. Geiß, B. Leclerc, J. Schröer, Partial flag varieties <strong>and</strong> preprojective algebras, Ann. Inst. Fourier<br />

(Grenoble) 58 (2008), no. 3, 825–876.<br />

[6] , Kac-Moody groups <strong>and</strong> cluster algebras, Adv. Math. 228 (2011), no. 1, 329–433.<br />

[7] B. Keller, Cluster algebras <strong>and</strong> derived categories, arXiv:1202.4161 [math.RT].<br />

[8] G. Lusztig, Semican<strong>on</strong>ical bases arising from enveloping algebras, Adv. Math. 151 (2000), no. 2,<br />

129–139.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

Furocho, Chikusaku, Nagoya, 464-8602 Japan<br />

E-mail address: Laurent.Dem<strong>on</strong>et@normalesup.org<br />

–42–


HOCHSCHILD COHOMOLOGY OF CLUSTER-TILTED ALGEBRAS OF<br />

TYPES A n AND D n<br />

TAKAHIKO FURUYA AND TAKAO HAYAMI<br />

Abstract. In this note, we study <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology for cluster-tilted algebras<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin types A n <strong>and</strong> D n . We first show that all cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n<br />

are (D, A)-stacked m<strong>on</strong>omial algebras (with D = 2 <strong>and</strong> A = 1), <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n investigate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hochschild cohomology rings modulo nilpotence. Also we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild<br />

cohomology rings modulo nilpotence for some cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n which<br />

are derived equivalent to a (D, A)-stacked m<strong>on</strong>omial algebra. Finally we determine <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence for algebras in a class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some special biserial algebras which c<strong>on</strong>tains a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 .<br />

1. Introducti<strong>on</strong><br />

The purpose in this note is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology for cluster-tilted algebras<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin types A n <strong>and</strong> D n .<br />

Throughout this note, let K denote an algebraically closed field. Let A be a finitedimensi<strong>on</strong>al<br />

K-algebra, <strong>and</strong> let A e be <str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra A op ⊗ K A <str<strong>on</strong>g>of</str<strong>on</strong>g> A (hence right<br />

A e -modules corresp<strong>on</strong>d to A-A-bimodules). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring HH ∗ (A)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring<br />

HH ∗ (A) := Ext ∗ A e(A, A) = ⊕ i≥0<br />

Ext i Ae(A, A),<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> product is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> Y<strong>on</strong>eda product. It is well-known that HH ∗ (A) is a<br />

graded commutative K-algebra.<br />

Let N A be <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal in HH ∗ (A) generated by all homogeneous nilpotent elements. The<br />

following questi<strong>on</strong> is important in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings for finitedimensi<strong>on</strong>al<br />

algebras:<br />

Questi<strong>on</strong> ([23]). When is <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence HH ∗ (A)/N A<br />

finitely generated as an algebra?<br />

It is shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence are finitely generated<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> following cases: blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> a group ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group [12, 25], m<strong>on</strong>omial algebras<br />

[16], self-injective algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type [17], finite-dimensi<strong>on</strong>al hereditary<br />

algebras ([19]). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, Xu [26] gave an algebra whose Hochschild cohomology<br />

ring modulo nilpotence is infinitely generated (see also [23]).<br />

In [7], Buan, Marsh <strong>and</strong> Reiten introduced cluster-tilted algebras, <strong>and</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

have been <str<strong>on</strong>g>the</str<strong>on</strong>g> subjects <str<strong>on</strong>g>of</str<strong>on</strong>g> many investigati<strong>on</strong>s (see for example [1, 3, 6, 7, 8, 9, 10, 11, 21]).<br />

We briefly recall <str<strong>on</strong>g>the</str<strong>on</strong>g>ir definiti<strong>on</strong>. Let H = KQ be <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite acyclic<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–43–


quiver Q over K, <strong>and</strong> let D b (H) <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> H. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster<br />

category C H associated with H is defined to be <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit category D b (H)/τ −1 [1], where τ<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in D b (H), <strong>and</strong> [1] is <str<strong>on</strong>g>the</str<strong>on</strong>g> shift functor in D b (H)<br />

([5, 10]). Note that, by [5], C H is a Krull-Schmidt category, <strong>and</strong> by Keller [20] it is also a<br />

triangulated category. A basic object T in C H is called a cluster tilting object, if it satisfies<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s ([5]):<br />

(1) Ext 1 C H<br />

(T, T ) = 0; <strong>and</strong><br />

(2) <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> T equals <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

Let ∆ be <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying graph <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism ring End CH (T ) <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster<br />

tilting object T in C H is called a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type ∆ ([7]). In this note, we deal<br />

with cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin types A n <strong>and</strong> D n . Note that by [7] <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type.<br />

In Secti<strong>on</strong> 2, we show that cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are (D, A)-stacked m<strong>on</strong>omial<br />

algebras (with D = 2 <strong>and</strong> A = 1) <str<strong>on</strong>g>of</str<strong>on</strong>g> [18] (Lemma 3), <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n describe <str<strong>on</strong>g>the</str<strong>on</strong>g> structures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hochschild cohomology rings modulo nilpotence by using [18] (Theorem 4). In<br />

Secti<strong>on</strong> 3, we determine <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence for some<br />

cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n which are derived equivalent to a (D, A)-stacked m<strong>on</strong>omial<br />

algebra (Propositi<strong>on</strong> 7). We also describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for algebras in a class <str<strong>on</strong>g>of</str<strong>on</strong>g> some special biserial algebras which c<strong>on</strong>tains a clustertilted<br />

algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 (Theorem 9).<br />

2. Cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

rings modulo nilpotence<br />

In this secti<strong>on</strong> we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n (n ≥ 1).<br />

First we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> presentati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong> relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

type A n given in [3, 9]. For a vertex x in a quiver Γ , <str<strong>on</strong>g>the</str<strong>on</strong>g> neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> x is <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

subquiver <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> x <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertices which are end-points <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows starting<br />

at x or start-points <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows ending with x. Let n ≥ 2 be an integer, <strong>and</strong> let Q n be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

class <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers Q satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

(1) Q has n vertices.<br />

(2) The neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> each vertex v <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following forms:<br />

v❄ ❄❄❄❄ • ❄ ❄❄❄❄ • ❄ ❄❄❄❄<br />

<br />

• v❄ ❄❄❄❄ v<br />

8<br />

• •<br />

8888<br />

• ❄ ❄❄❄❄ • ❄ ❄❄❄❄ • ❄ ❄❄❄❄<br />

v<br />

v❄ ❄❄❄❄ v<br />

8<br />

• •<br />

8888<br />

–44–<br />

• ❄ ❄❄❄❄<br />

v❄ ❄❄❄❄<br />

88 888<br />

• •<br />

• ❄ ❄❄❄❄<br />

v❄ ❄❄❄❄<br />

8<br />

• 8888 •<br />

• ❄ ❄❄❄❄ •<br />

8<br />

v❄ 8888<br />

❄❄❄❄<br />

8<br />

• 8888 •


(3) There is no cycles in <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying graph <str<strong>on</strong>g>of</str<strong>on</strong>g> Q apart from those induced by<br />

oriented cycles c<strong>on</strong>tained in neighborhoods <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

Let Q 1 = {Q ′ }, where Q ′ is <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver which has a single vertex <strong>and</strong> no arrows. It is<br />

shown in [9, Propositi<strong>on</strong> 2.4] that a quiver Γ is mutati<strong>on</strong> equivalent A n if <strong>and</strong> <strong>on</strong>ly if<br />

Γ ∈ Q n .<br />

In [9], Buan <strong>and</strong> Vatne proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following (see also [3]):<br />

Propositi<strong>on</strong> 1 ([9, Propositi<strong>on</strong> 3.1]). The cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are exactly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> algebras KQ/I, where Q ∈ Q n , <strong>and</strong><br />

(2.1) I = 〈p | p is a path <str<strong>on</strong>g>of</str<strong>on</strong>g> length 2, <strong>and</strong> <strong>on</strong> an oriented 3-cycle in Q〉<br />

As a c<strong>on</strong>sequence we see that cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are gentle algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> [2]:<br />

Corollary 2 ([9, Corollary 3.2]). The cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are gentle algebras.<br />

Green <strong>and</strong> Snashall [18] introduced (D, A)-stacked m<strong>on</strong>omial algebras by using <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> overlaps <str<strong>on</strong>g>of</str<strong>on</strong>g> paths, where D <strong>and</strong> A are positive integers with D ≥ 2 <strong>and</strong> A ≥ 1, <strong>and</strong><br />

gave generators <strong>and</strong> relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence for<br />

(D, A)-stacked m<strong>on</strong>omial algebras completely. (In this note, we do not state <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> (D, A)-stacked algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> [18]; see for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir details [13, Secti<strong>on</strong> 1], [18,<br />

Secti<strong>on</strong> 3], or [23, Secti<strong>on</strong> 3].)<br />

It is known that (2, 1)-stacked m<strong>on</strong>omial algebras are precisely Koszul m<strong>on</strong>omial algebras<br />

(equivalently, quadratic m<strong>on</strong>omial algebras), <strong>and</strong> also (D, 1)-stacked m<strong>on</strong>omial<br />

algebras are exactly D-Koszul m<strong>on</strong>omial algebras (see [4]). By <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>, we directly<br />

see that all gentle algebras are (2, 1)-stacked m<strong>on</strong>omial algebras (see [13]). Hence, by<br />

Corollary 2, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 3. All cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are (2, 1)-stacked m<strong>on</strong>omial algebras, <strong>and</strong><br />

so are Koszul m<strong>on</strong>omial algebras.<br />

By Lemma 3, we can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> [18] to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochshild cohomology rings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n . Applying [18, Theorem 3.4] with Propositi<strong>on</strong> 1, we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem:<br />

Theorem 4. Let n be a positive integer, <strong>and</strong> let Λ = KQ/I be a cluster-tilted algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> type A n , where Q ∈ Q n <strong>and</strong> I is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal given by (2.1). Suppose that char K ≠ 2.<br />

Moreover, let r be <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oriented 3-cycles in Q. Then<br />

{<br />

HH ∗ K[x 1 , . . . , x r ]/〈x i x j | i ≠ j〉 if r > 0<br />

(Λ)/N Λ ≃<br />

K if r = 0,<br />

where deg x i = 6 for i = 1, . . . , r.<br />

Example 5. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver with 17 vertices <strong>and</strong> five oriented 3-cycles:<br />

• ✷ ✷✷✷✷<br />

• ✷ ✷✷✷✷ •<br />

✷ ✷✷✷✷✷✷✷✷✷✷ • ✷ ✷✷✷✷<br />

☞<br />

• • ☞☞☞☞ • • ☞<br />

• ☞☞☞☞ • ☞<br />

• ☞☞☞☞ • <br />

☞<br />

• • ☞☞☞☞ •<br />

–45–<br />

☞<br />

• ✷ ☞☞☞☞<br />

✷✷✷✷<br />


Then Q ∈ Q 17 . Suppose char K ≠ 2, <strong>and</strong> let Λ := KQ/I, where I is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated<br />

by all possible paths <str<strong>on</strong>g>of</str<strong>on</strong>g> length 2 <strong>on</strong> oriented 3-cycles. Then Λ is a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

type A 17 , <strong>and</strong> by Theorem 4 we have HH ∗ (Λ)/N Λ ≃ K[x 1 , . . . , x 5 ]/〈x i x j | i ≠ j〉, where<br />

deg x i = 6 (1 ≤ i ≤ 5).<br />

3. Cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

rings modulo nilpotence<br />

The purpose in this secti<strong>on</strong> is to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for some cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n (n ≥ 4) which are derived equivalent<br />

to a (D, A)-stacked m<strong>on</strong>omial algebra.<br />

In [3, Theorem 2.3], Bastian, Holm <strong>and</strong> Ladkani introduced specific quivers, called<br />

“st<strong>and</strong>ard forms” for derived equivalences, <strong>and</strong> proved that any cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

type D n is derived equivalent to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n whose quiver is<br />

a st<strong>and</strong>ard form.<br />

It is known that Hochschild cohomology ring is invariant under derived equivalence, so<br />

that it suffices to deal with cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n whose quivers are st<strong>and</strong>ard<br />

forms. In this note, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following quivers Γ i (1 ≤ i ≤ 4). Clearly <str<strong>on</strong>g>the</str<strong>on</strong>g>se quivers<br />

are st<strong>and</strong>ard forms <str<strong>on</strong>g>of</str<strong>on</strong>g> [3, Theorem 2.3].<br />

Γ 1 :<br />

Γ 2 :<br />

• ❑ ❑❑❑<br />

• • · · · • • with m (≥ 4) vertices,<br />

• <br />

• ❄ ❄❄❄❄❄❄❄❄<br />

a 1 a 0<br />

8<br />

•<br />

88888888 a 2 = b 2<br />

•<br />

❄ ❄❄❄❄❄❄❄❄<br />

with m vertices, where m (≥ 5) is odd, or m = 4,<br />

Γ 3 :<br />

Γ 4 :<br />

b 0 b<br />

8 1<br />

•<br />

88888888<br />

8888 • • ❄ ❄❄❄❄<br />

8<br />

•<br />

•<br />

.<br />

• ❄ ❄❄❄❄ •<br />

• 8<br />

•<br />

8888<br />

• ❄ ❄❄<br />

8<br />

• •<br />

88 • ❄ ❄❄❄❄ •<br />

8<br />

•<br />

8888 • ❄ ❄❄<br />

.<br />

• with 2m vertices, where m ≥ 3.<br />

8<br />

• ❄ ❄❄❄❄ •<br />

88<br />

• • 8<br />

❄ •<br />

8888<br />

❄<br />

•<br />

8<br />

•<br />

88<br />

–46–


Remark 6. For i = 1, . . . , 4, let Λ i = KΓ i /I i be <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n<br />

corresp<strong>on</strong>ding to Γ i . Then we see from [3, 24] that<br />

(1) Λ 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a Dynkin quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type D m .<br />

(2) Λ 2 is <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 , <strong>and</strong> I 2 = 〈a 1 a 2 , b 1 b 2 , a 2 a 0 , b 2 b 0 , a 0 a 1 − b 0 b 1 〉. We immediately see<br />

that Λ 2 is a special biserial algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> [22], but not a self-injective algebra.<br />

(3) Λ 3 is <str<strong>on</strong>g>of</str<strong>on</strong>g> type D m , <strong>and</strong> I 3 = 〈p | p is a path <str<strong>on</strong>g>of</str<strong>on</strong>g> length m − 1〉. Hence Λ 3 is a<br />

(m−1, 1)-stacked m<strong>on</strong>omial algebra, <strong>and</strong> is also a self-injective Nakayama algebra.<br />

(4) Λ 4 is <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 2m , <strong>and</strong> it follows by [3, Lemma 4.5] that Λ 4 is derived equivalent<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> (2m − 1, 1)-stacked m<strong>on</strong>omial algebra Λ ′ = KQ ′ /I ′ , where Q ′ is <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic<br />

quiver with 2m vertices<br />

1 2<br />

• • ❄ ❄❄❄❄<br />

2m 8<br />

•<br />

8888 • 3<br />

.<br />

7 • ❄ ❄❄❄❄ • 4<br />

• 8<br />

•<br />

8888<br />

6 5<br />

<strong>and</strong> I ′ is generated by all paths <str<strong>on</strong>g>of</str<strong>on</strong>g> length 2m − 1. Note that Λ ′ is a self-injective<br />

Nakayama algebra, <strong>and</strong> moreover is a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 2m ([21, 24]).<br />

In [19], Happel described <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology for path algebras. Using this result<br />

<strong>and</strong> [18, Theorem 3.4], we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>:<br />

Propositi<strong>on</strong> 7. For <str<strong>on</strong>g>the</str<strong>on</strong>g> algebras Λ 1 , Λ 3 <strong>and</strong> Λ 4 above, we have<br />

HH ∗ (Λ 1 ) ≃ HH ∗ (Λ 1 )/N Λ1 ≃ K<br />

HH ∗ (Λ 3 )/N Λ3 ≃ HH ∗ (Λ 4 )/N Λ4 ≃ K[x].<br />

Finally we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra<br />

A k := Γ 2 /J k , where k ≥ 0 <strong>and</strong> J k is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following elements:<br />

(a 1 a 2 a 0 ) k a 1 a 2 , b 1 b 2 , (a 2 a 0 a 1 ) k a 2 a 0 , b 2 b 0 , (a 0 a 1 a 2 ) k a 0 a 1 − b 0 b 1 .<br />

If k = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n J 0 = I 2 , <strong>and</strong> so A 0 = Γ 2 /J 0 coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra Λ 2 . Note that, for<br />

all k ≥ 0, A k is a special biserial algebra <strong>and</strong> not a self-injective algebra.<br />

Now <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology groups <str<strong>on</strong>g>of</str<strong>on</strong>g> A k are given as follows:<br />

Theorem 8 ([14]). For k ≥ 0 <strong>and</strong> i ≥ 0 we have<br />

⎧<br />

k + 1 if i ≡ 0 (mod 6)<br />

k + 1 if i ≡ 1 (mod 6)<br />

k if i ≡ 2 (mod 6)<br />

⎪⎨<br />

dim K HH i k + 1 if i ≡ 3 (mod 6) <strong>and</strong> char K | 3k + 2<br />

(A k ) =<br />

k if i ≡ 3 (mod 6) <strong>and</strong> char K ∤ 3k + 2<br />

k + 1 if i ≡ 4 (mod 6) <strong>and</strong> char K | 3k + 2<br />

k if i ≡ 4 (mod 6) <strong>and</strong> char K ∤ 3k + 2<br />

⎪⎩<br />

k if i ≡ 5 (mod 6).<br />

–47–


Moreover <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> A k is given as follows:<br />

Theorem 9 ([15]). For k ≥ 0, we have<br />

HH ∗ (A k )/N Ak ≃ K[x], where deg x =<br />

Hence HH ∗ (A k )/N Ak<br />

(k ≥ 0) is finitely generated as an algebra.<br />

{<br />

3 if k = 0 <strong>and</strong> char K = 2<br />

6 o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Remark 10. It seems that most <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n except those in <str<strong>on</strong>g>the</str<strong>on</strong>g> derived equivalence<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ i (1 ≤ i ≤ 4) are open questi<strong>on</strong>s.<br />

References<br />

[1] I. Assem, T. Brüstle <strong>and</strong> R. Schiffler, Cluster-tilted algebras as trivial extensi<strong>on</strong>s, Bull. L<strong>on</strong>d<strong>on</strong> Math.<br />

Soc. 40 (2008), 151–162.<br />

[2] I. Assem <strong>and</strong> A. Skowroński, Iterated tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ãn, Math. Z. 195 (1987), 269–290.<br />

[3] J. Bastian, T. Holm <strong>and</strong> S. Ladkani, Derived equivalences for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin type D,<br />

arXiv:1012.4661.<br />

[4] R. Berger, Koszulity for n<strong>on</strong>quadratic algebras, J. Algebra 239 (2001), 705–734.<br />

[5] A. B. Buan, R. Marsh, M. Reineke, I. Reiten <strong>and</strong> G. Todorov, Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> cluster combinatorics,<br />

Adv. Math. 204 (2006), 572–618.<br />

[6] A. B. Buan, R. Marsh <strong>and</strong> I. Reiten, Cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type, J. Algebra<br />

306 (2006), 412–431.<br />

[7] A. B. Buan, R. Marsh <strong>and</strong> I. Reiten, Cluster-tilted algebras, Trans. Amer. Math Soc. 359, (2007),<br />

323–332 (electr<strong>on</strong>ic).<br />

[8] A. B. Buan, R. Marsh <strong>and</strong> I. Reiten, Cluster mutati<strong>on</strong> via quiver representati<strong>on</strong>s, Comment. Math.<br />

Helv. 83 (2008), 143–177.<br />

[9] A. B. Buan <strong>and</strong> D. F. Vatne, Derived equivalence classificati<strong>on</strong> for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n ,<br />

J. Algebra 319 (2008), 2723–2738.<br />

[10] P. Caldero, F. Chapot<strong>on</strong> <strong>and</strong> R. Schiffler, Quivers with relati<strong>on</strong>s arising from clusters (A n case),<br />

Trans. Amer. Math. Soc. 358 (2006), 1347–1364.<br />

[11] P. Caldero, F. Chapot<strong>on</strong> <strong>and</strong> R. Schiffler, Quivers with relati<strong>on</strong>s <strong>and</strong> cluster tilted algebras, Algebr.<br />

Represent. <strong>Theory</strong> 9 (2006), 359–376.<br />

[12] L. Evens, The cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239.<br />

[13] T. Furuya <strong>and</strong> N. Snashall, Support varieties modules over stacked m<strong>on</strong>omial algebras, Comm. Algebra<br />

39 (2011), 2926–2942.<br />

[14] T. Furuya, A projective bimodule resoluti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology for a cluster-tilted algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 , preprint.<br />

[15] T. Furuya <strong>and</strong> T. Hayami, Hochschild cohomology rings for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 , in<br />

preparati<strong>on</strong>.<br />

[16] E. L. Green, N. Snashall <strong>and</strong> Ø. Solberg, The Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-injective algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type, Proc. Amer. Math. Soc. 131 (2003), 3387–3393.<br />

[17] E. L. Green, N. Snashall <strong>and</strong> Ø. Solberg, The Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

m<strong>on</strong>omial algebra, J. Algebra Appl. 5 (2006), 153–192.<br />

[18] E. L. Green <strong>and</strong> N. Snashall, The Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> a stacked m<strong>on</strong>omial<br />

algebra, Colloq. Math. 105 (2006), 233–258.<br />

[19] D. Happel, The Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, Springer Lecture Notes in<br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics 1404 (1989), 108–126.<br />

[20] B. Keller, On triangulated orbit categories, Documenta Math. 10 (2005), 551–581.<br />

[21] C. M. <strong>Ring</strong>el, The self-injective cluster-tilted algebras, Arch. Math. 91 (2008), 218–225.<br />

–48–


[22] A. Skowroński <strong>and</strong> J. Waschbüsch, Representati<strong>on</strong>-finite biserial algebras, J. Reine und Angew. Math.<br />

345 (1983), 172–181.<br />

[23] N. Snashall, Support varieties <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild ohomology ring modulo nilpotence <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 41st <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong>, 68–82, Symp. <strong>Ring</strong> <strong>Theory</strong><br />

Represent. <strong>Theory</strong> Organ. Comm., Tsukuba, 2009.<br />

[24] D. F. Vatne, The mutati<strong>on</strong> class <str<strong>on</strong>g>of</str<strong>on</strong>g> D n quivers, Comm. Algebra 38 (2010), 1137–1146.<br />

[25] B. B. Venkov, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk SSSR 127 (1959),<br />

943–944.<br />

[26] F. Xu, Hochschild <strong>and</strong> ordinary cohomology rings <str<strong>on</strong>g>of</str<strong>on</strong>g> small categories, Adv. Math. 219 (2008), 1872–<br />

1893.<br />

Takahiko Furuya<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 JAPAN<br />

E-mail address: furuya@ma.kagu.tus.ac.jp<br />

Takao Hayami<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

Hokkai-Gakuen University<br />

4-1-40, Asahi-machi, Toyohira-ku, Sapporo, JAPAN<br />

E-mail address: hayami@ma.kagu.tus.ac.jp<br />

–49–


DERIVED AUTOEQUIVALENCES AND BRAID RELATIONS<br />

JOSEPH GRANT<br />

Abstract. We will c<strong>on</strong>sider braid relati<strong>on</strong>s between autoequivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> symmetric algebras. We first recall <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spherical twists for<br />

symmetric algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> braid relati<strong>on</strong>s that <str<strong>on</strong>g>the</str<strong>on</strong>g>y satisfy, as illustrated by Brauer<br />

tree algebras. Then we explain <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic twists, which generalise<br />

spherical twists for symmetric algebras. Finally, we explain a lifting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for periodic<br />

twists, <strong>and</strong> show how this gives a new interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived<br />

Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> lifts <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gest elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric group to <str<strong>on</strong>g>the</str<strong>on</strong>g> braid group.<br />

1. Preliminaries<br />

Let k be an algebraically closed field. All algebras we c<strong>on</strong>sider will be finite-dimensi<strong>on</strong>al<br />

k-algebras, <strong>and</strong> for simplicity we will also assume that A is basic. We will denote <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al left A-modules by A -mod, <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al right<br />

A-modules by mod- A.<br />

Given an algebra A <strong>and</strong> a left (or right) A-module M, we have a right (or left, respectively)<br />

A-module M ∗ = Hom k (M, k) with A-acti<strong>on</strong> fa(m) = f(am) for m ∈ M, f ∈ M ∗ ,<br />

<strong>and</strong> a ∈ A. This gives a duality<br />

(−) ∗ : A -mod ∼ → mod- A.<br />

Similarly, if M is an A-B-bimodule for algebras A <strong>and</strong> B, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∗ is a B-A-bimodule.<br />

There is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r way to c<strong>on</strong>struct a right module from M ∈ A -mod: we set M ∨ =<br />

Hom A (M, A), where <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> is given here by fa(m) = f(m)a for m ∈ M, f ∈ M ∨ ,<br />

<strong>and</strong> a ∈ A. This defines a functor<br />

(−) ∨ : A -mod → mod- A.<br />

but in general this is not an equivalence. However, in <str<strong>on</strong>g>the</str<strong>on</strong>g> cases we c<strong>on</strong>sider below this<br />

will be an equivalence.<br />

Any algebra A has a natural structure <str<strong>on</strong>g>of</str<strong>on</strong>g> an A-A-bimodule given by <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicati<strong>on</strong>.<br />

We say that A is a symmetric algebra if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an isomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules<br />

A ∼ → A ∗ . Symmetric algebras have various equivalent definiti<strong>on</strong>s: <strong>on</strong>e is that (−) ∗ <strong>and</strong><br />

(−) ∨ are natually isomorphic functors, <strong>and</strong> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r is a Calabi-Yau type c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

derived category. For more informati<strong>on</strong> <strong>on</strong> this, we refer <str<strong>on</strong>g>the</str<strong>on</strong>g> reader to [Ric2, Secti<strong>on</strong> 3].<br />

We will be interested in bounded derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> module categories over algebras<br />

A, which we will denote D b (A). We refer <str<strong>on</strong>g>the</str<strong>on</strong>g> reader to [Wei, Chapter 10] for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir definiti<strong>on</strong><br />

<strong>and</strong> basic properties. In partuicular, we will study autoequivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (A). Clearly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

autoequivalences form a group, but in fact we can restrict ourselves to a particular subset.<br />

One way to define an end<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (A) is to take <str<strong>on</strong>g>the</str<strong>on</strong>g> derived tensor product with<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–50–


a cochain complex X <str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules. If this gives us an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated<br />

categories, we call X a two-sided tilting complex [Ric1]. Rickard showed that tensoring<br />

with two-sided tilting complexes does give a subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> autoequivalences<br />

[Ric1]. We call this subgroup <str<strong>on</strong>g>the</str<strong>on</strong>g> derived Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> A, <strong>and</strong> denote it DPic(A). Here<br />

we can work with ordinary tensor products, <strong>and</strong> will not need to c<strong>on</strong>sider derived tensor<br />

products, as all our two-sided tilting complexes will be presented as cochain complexes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A-A-bimodules which are projective <strong>on</strong> both sides.<br />

2. Spherical Twists <strong>and</strong> Braid Relati<strong>on</strong>s<br />

Let A be a symmetric algebra <strong>and</strong> let P be a projective A-module. Following [ST], we<br />

say that P is spherical if End A (P ) ∼ = k[x]/〈x 2 〉. In this case, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> cochain complex<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules<br />

P ⊗ k P ∨ → A<br />

c<strong>on</strong>centrated in degrees 1 <strong>and</strong> 0, where <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>zero map is given by evaluati<strong>on</strong>. We will<br />

denote this complex by X P . It defines an object in <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category D b (A),<br />

which we will also denote by X P . Then tensoring with X P defines an end<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor<br />

which we denote by F P .<br />

X P ⊗ A − : D b (A) → D b (A)<br />

Theorem 1 ([RZ] for Brauer tree algebras, [ST] in general). If <str<strong>on</strong>g>the</str<strong>on</strong>g> projective A-module<br />

P is spherical <str<strong>on</strong>g>the</str<strong>on</strong>g>n F P is an autoequivalence.<br />

Now let P 1 , . . . , P n be a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n spherical projective A-modules. Following [ST],<br />

we say that {P 1 , . . . , P n } is an A n -collecti<strong>on</strong> if<br />

{<br />

0 if |i − j| > 1;<br />

dim k Hom A (P i , P j ) =<br />

1 if |i − j| = 1<br />

for all 1 ≤ i, j ≤ n.<br />

Theorem 2 ([RZ] for Brauer tree algebras, [ST] in general). If {P 1 , . . . , P n } is an A n -<br />

collecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists F i = F Pi satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> braid relati<strong>on</strong>s<br />

• F i F j<br />

∼ = Fj F i if |i − j| > 1;<br />

• F i F j F i<br />

∼ = Fj F i F j if |i − j| = 1<br />

for all 1 ≤ i, j ≤ n.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r way to say this is as follows: let B n+1 be <str<strong>on</strong>g>the</str<strong>on</strong>g> braid group <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> letters<br />

{1, . . . , n, n + 1}. This is generated by elements s 1 , . . . , s n <strong>and</strong> has relati<strong>on</strong>s<br />

• s i s j = s j s i if |i − j| > 1;<br />

• s i s j s i = s j s i s j if |i − j| = 1.<br />

If A has an A n -collecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have a group homomorphism<br />

B n+1 → DPic(A)<br />

which sends s i to <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twist F i .<br />

Let S n+1 be <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric group <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> letters {1, . . . , n, n + 1}. We also denote <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

generators <str<strong>on</strong>g>of</str<strong>on</strong>g> S i by s 1 , . . . , s n , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an obvious group epimorphism B n+1 ↠ S n+1 .<br />

–51–


3. Periodic Twists<br />

We now describe a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists described above.<br />

An algebra E is called twisted periodic if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an algebra automorphism σ : E ∼ → E<br />

<strong>and</strong> an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> E-E-bimodules<br />

0 → E σ → Y n−1 → Y n−2 → · · · → Y 1 → Y 0 → E → 0<br />

where each Y i is a projective E-E-bimodule. This just says that <str<strong>on</strong>g>the</str<strong>on</strong>g> E-E-bimodule E has<br />

a periodic resoluti<strong>on</strong> which is projective up to some automorphism (twist). We say that<br />

E has a period n.<br />

Let A be a symmetric algebra <strong>and</strong> P a projective A-module. Let E = End A (P ) op , so<br />

P is an A-E-bimodule, <strong>and</strong> suppose that E is a periodic algebra. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> cochain<br />

complex<br />

Y n−1 → Y n−2 → · · · → Y 1 → Y 0<br />

c<strong>on</strong>centrated in degrees n−1 to 0 by Y . Then we have a natural map f : Y → E <str<strong>on</strong>g>of</str<strong>on</strong>g> cochain<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> E-E-bimodules. We use this to c<strong>on</strong>struct a map g : P ⊗ E Y ⊗ E P ∨ → A <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cochain complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> following compositi<strong>on</strong><br />

P ⊗ E Y ⊗ E P ∨ → P ⊗ E E ⊗ E P ∨<br />

∼ → P ⊗ E P ∨ → A<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> first map is given by P ⊗ E f ⊗ E P ∨ <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> last is given by an evaluati<strong>on</strong> map.<br />

We take <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> map g to obtain a cochain complex<br />

P ⊗ E Y n−1 ⊗ E P ∨ → P ⊗ E Y n−2 ⊗ E P ∨ → · · · → P ⊗ E Y 0 ⊗ E P ∨ → A<br />

c<strong>on</strong>centrated in degrees n to 0, which we denote X. By tensoring over A we obtain an<br />

end<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor<br />

which we denote by Ψ P .<br />

X ⊗ A − : D b (A) → D b (A)<br />

Theorem 3 ([Gra]). If <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra E is twisted periodic <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ψ P is an autoequivalence.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> functor Ψ P depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> Y that we choose.<br />

If E ∼ = k[x]/〈x 2 〉 <str<strong>on</strong>g>the</str<strong>on</strong>g>n we recover <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists described above by using <str<strong>on</strong>g>the</str<strong>on</strong>g> exact<br />

sequence<br />

0 → E σ → E ⊗ k E → E → 0<br />

where σ is <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra automorphism which sends x to −x.<br />

4. Brauer Tree Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Lines<br />

We define a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras Γ n , n ≥ 1, which are isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> Brauer tree<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> lines without multiplicity. Let Γ 1 = k[x]/〈x 2 〉 <strong>and</strong> let Γ 2 = kQ 2 /I 2 , where Q 2<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

Q 2 = 1<br />

–52–<br />

α<br />

β<br />

2


<strong>and</strong> I 2 is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by αβα <strong>and</strong> βαβ. For n ≥ 3, let Γ n = kQ n /I n where Q n is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

Q n = 1<br />

α 1<br />

β 2<br />

<strong>and</strong> I n is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by α i−1 α i , β i+1 β i , <strong>and</strong> α i β i+1 − β i α i−1 for 2 ≤ i ≤ n − 1.<br />

Note that if we take <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective Γ n -modules P i , P i+1 , . . . , P j for 1 ≤<br />

i < j ≤ n, we have End A (P i ⊕ P i+1 ⊕ . . . ⊕ P j ) op ∼ = Γj−i .<br />

One can check that for all n ≥ 1, each indecomposable projective Γ n -module is spherical.<br />

Spherical twists for <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras were studied in detail in [RZ].<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following observati<strong>on</strong>:<br />

Lemma 4. Let A be a symmetric algebra. A collecti<strong>on</strong> {P 1 , . . . , P n } <str<strong>on</strong>g>of</str<strong>on</strong>g> projective A-<br />

modules is an A n -collecti<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if<br />

n⊕<br />

End A ( P i ) op ∼ = Γn .<br />

i=1<br />

The algebras Γ n are <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type, <strong>and</strong> hence are twisted periodic, but<br />

in fact we can say more.<br />

Theorem 5 ([BBK]). The algebra n is twisted periodic with period n <strong>and</strong> automorphism<br />

σ n induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver automorphism which sends <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex i to n − i + 1.<br />

A natural questi<strong>on</strong> is: what do <str<strong>on</strong>g>the</str<strong>on</strong>g> associated periodic twists look like? It was noted<br />

in [Gra] that periodic twists associated to Γ 2 are isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> F 1 F 2 F 1<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spherical twists. We will show that this pattern c<strong>on</strong>tinues.<br />

2<br />

α 2<br />

β 3<br />

· · ·<br />

5. A Lifting Theorem<br />

Let A be a symmetric algebra <strong>and</strong> let P 1 , . . . , P n be a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable<br />

projective A-modules. We will use <str<strong>on</strong>g>the</str<strong>on</strong>g> following notati<strong>on</strong>:<br />

• P = ⊕ n<br />

i=1 P i;<br />

• E = End A (P ) op ;<br />

• E i = End A (P i ) op ;<br />

• Q i = Hom A (P, P i ),<br />

• Q = ⊕ n<br />

i=1 Q i;<br />

so {Q i |1 ≤ i ≤ n} is a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> representatives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isoclasses <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable<br />

projective E-modules. Note that End E (Q i ) op ∼ = Ei . We will explain a c<strong>on</strong>necti<strong>on</strong> between<br />

compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic twists for E <strong>and</strong> compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding periodic twists<br />

for A.<br />

Theorem 6 (Lifting Theorem). Suppose that E <strong>and</strong> each E i are twisted periodic with<br />

fixed truncated resoluti<strong>on</strong>s Y <strong>and</strong> Y i . Let Ψ i = Ψ Pi : D b (A) ∼ → D b (A) <strong>and</strong> Ψ ′ i = Ψ Qi :<br />

D b (E) ∼ → D b (E). If<br />

Ψ Q<br />

∼ = Ψ<br />

′<br />

il<br />

. . . Ψ ′ i 2<br />

Ψ ′ i 1<br />

for some 1 ≤ i 1 , . . . , i l ≤ n <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

Ψ P<br />

∼ = Ψil . . . Ψ i2 Ψ i1 .<br />

–53–<br />

α n−1<br />

β n<br />

n


We now specialise to <str<strong>on</strong>g>the</str<strong>on</strong>g> case where {P 1 , . . . , P n } is an A n -collecti<strong>on</strong>, so E ∼ = Γ n , <strong>and</strong><br />

F i = Ψ i <strong>and</strong> F i ′ = Ψ ′ i are spherical twists.<br />

Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric group S n+1 has a unique l<strong>on</strong>gest element, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten denoted w 0 .<br />

We choose a particular presentati<strong>on</strong><br />

w 0 = s 1 (s 2 s 1 ) . . . (s n . . . s 2 s 1 ) ∈ S n+1<br />

<strong>and</strong> define an element w 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> braid group by <str<strong>on</strong>g>the</str<strong>on</strong>g> same presentati<strong>on</strong>. Rouquier <strong>and</strong><br />

Zimmermann showed how this element acts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> an algebra Γ n :<br />

Theorem 7 ([RZ, Theorem 4.5]). The image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element w 0 under <str<strong>on</strong>g>the</str<strong>on</strong>g> group morphism<br />

B n+1 → DPic(Γ n ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> functor − σn [n] which twists <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right by <str<strong>on</strong>g>the</str<strong>on</strong>g> automorphism σ n<br />

<strong>and</strong> shifts cochain complexes n places to <str<strong>on</strong>g>the</str<strong>on</strong>g> left.<br />

By Theorem 5 we see that Ψ Γn : D b (Γ n ) → D b (Γ n ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> same functor, <strong>and</strong> hence by<br />

applying <str<strong>on</strong>g>the</str<strong>on</strong>g> lifting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Corollary 8. Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric algebra A has an A n -collecti<strong>on</strong> {P 1 , . . . , P n }. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> w 0 in <str<strong>on</strong>g>the</str<strong>on</strong>g> group morphism B n+1 → DPic(A) is Ψ P , where P = ⊕ n<br />

i=1 P i.<br />

We also obtain a new pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> braid relati<strong>on</strong>s by using Theorem 7 in <str<strong>on</strong>g>the</str<strong>on</strong>g> case n = 2,<br />

or alternatively by performing a straightforward calculati<strong>on</strong> with Γ 2 , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n applying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lifting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

References<br />

[BBK] S. Brenner, M. Butler, <strong>and</strong> A. King, Periodic algebras which are almost Koszul, Algebr. Represent.<br />

<strong>Theory</strong> 5 (2002), no. 4, 331-367<br />

[Gra] J. Grant, Derived autoequivalences from periodic algebras, arXiv:1106.2733v1 [math.RT]<br />

[Ric1] J. Rickard, Derived equivalences as derived functors, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. (2) 43 (1991) 37-48<br />

[Ric2] J. Rickard, Equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories for symmetric algebras, J. Algebra 257 (2002), no.<br />

2, 460-481<br />

[RZ] R. Rouquier <strong>and</strong> A. Zimmermann, Picard groups for derived module categories, Proc. L<strong>on</strong>d<strong>on</strong> Math.<br />

Soc. (3) 87 (2003), no. 1, 197-225<br />

[ST] P. Seidel <strong>and</strong> R. Thomas, Braid group acti<strong>on</strong>s <strong>on</strong> derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves, Duke Math.<br />

J. 108 (2001), no. 1, 37-108<br />

[Wei] C. A. Weibel, An introducti<strong>on</strong> to homological algebra, Cambridge studies in advanced ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

38, 1994<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

Chikusa-ku, Nagoya, 464-8602, Japan<br />

E-mail address: joseph.grant@gmail.com<br />

–54–


n-REPRESENTATION INFINITE ALGEBRAS<br />

MARTIN HERSCHEND<br />

Abstract. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras <strong>and</strong> discuss some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir homological properties. We also present <str<strong>on</strong>g>the</str<strong>on</strong>g> family <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã.<br />

1. Introducti<strong>on</strong><br />

This brief survey c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> results from my presentati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> in Okayama. It is based <strong>on</strong> joint work Osamu<br />

Iyama <strong>and</strong> Steffen Oppermann. A detailed final versi<strong>on</strong> will be published elsewhere.<br />

The class <str<strong>on</strong>g>of</str<strong>on</strong>g> hereditary finite dimensi<strong>on</strong>al algebras is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> best understood in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. This applies<br />

in particular to representati<strong>on</strong> finite hereditary algebras. In higher dimensi<strong>on</strong>al Ausl<strong>and</strong>er-<br />

Reiten <str<strong>on</strong>g>the</str<strong>on</strong>g>ory an analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finite<br />

algebras [1, 2]. Recall that a finite dimensi<strong>on</strong>al algebra is called n-representati<strong>on</strong> finite<br />

if it has global dimensi<strong>on</strong> at most n <strong>and</strong> admits an n-cluster tilting module. Since a<br />

1-cluster tilting module is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as an additive generator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> module category,<br />

1-representati<strong>on</strong> finite means precisely hereditary <strong>and</strong> representati<strong>on</strong> finite.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this report is to define <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras, that will<br />

in a similar way be a higher dimensi<strong>on</strong>al analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary<br />

algebras. To do this we begin by recalling some properties <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finite<br />

algebras.<br />

Let K be a field <strong>and</strong> Λ a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. We always<br />

assume that Λ is ring indecomposable. Denote by mod Λ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al<br />

left Λ-modules <strong>and</strong> by D b (Λ) <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Λ. Combining <str<strong>on</strong>g>the</str<strong>on</strong>g> K-<br />

dual D := Hom K (−, K) with <str<strong>on</strong>g>the</str<strong>on</strong>g> Λ-dual we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor<br />

ν := DRHom(−, Λ) : D b (Λ) → D b (Λ).<br />

It is a Serre functor in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a functorial ismorphism<br />

Hom D b (Λ)(X, Y ) ≃ D Hom D b (Λ)(Y, ν(X)).<br />

We combine ν with <str<strong>on</strong>g>the</str<strong>on</strong>g> shift functor <strong>on</strong> D b (Λ) to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> autoequivalence<br />

ν n := ν ◦ [−n] : D b (Λ) → D b (Λ).<br />

It plays <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> higher Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in D b (Λ). More precisely,<br />

define<br />

τ n := D Ext n Λ(−, Λ) : mod Λ → mod Λ<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–55–


<strong>and</strong><br />

τ − n := Ext n Λ(DΛ, −) : mod Λ → mod Λ.<br />

Then τ n = H 0 (ν n −) <strong>and</strong> τn<br />

− = H 0 (νn<br />

−1 −). Using <str<strong>on</strong>g>the</str<strong>on</strong>g>se functors we can capture <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finiteness in <str<strong>on</strong>g>the</str<strong>on</strong>g> following way.<br />

Propositi<strong>on</strong> 1. [3] Let Λ be a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. Then <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(a) Λ is n-representati<strong>on</strong> finite.<br />

(b) For every indecomposable projective Λ-module P , <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a n<strong>on</strong>-negative integer<br />

l P such that ν −l P<br />

n P is an indecomposable injective Λ-module.<br />

We remark that if c<strong>on</strong>diti<strong>on</strong> (b) is satisfied <str<strong>on</strong>g>the</str<strong>on</strong>g>n νn −i P ≃ τn<br />

−i P for all 0 ≤ i ≤ l P <strong>and</strong><br />

⊕<br />

P<br />

l P<br />

⊕<br />

i=0<br />

τn<br />

−i P = ⊕ P<br />

l P<br />

⊕<br />

i=0<br />

ν −i<br />

n P<br />

is an n-cluster tilting Λ-module [1]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, since ν −1 sends injectives to projectives<br />

we have<br />

ν −(l P +1)<br />

n P = ν −1 (ν −l P<br />

n P )[n] = P ′ [n] ∈ mod Λ[n]<br />

for some indecomposable projective P ′ . We c<strong>on</strong>clude that knowing <str<strong>on</strong>g>the</str<strong>on</strong>g> τn − -orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

indecomposable projectives in mod Λ is enough to determine <str<strong>on</strong>g>the</str<strong>on</strong>g>ir νn<br />

−1 -orbits. Comparing<br />

this to <str<strong>on</strong>g>the</str<strong>on</strong>g> classical case n = 1 gives us a hint how to define n-representati<strong>on</strong> infinite<br />

algebras.<br />

2. n-representati<strong>on</strong> infinite algebras<br />

Recall that if n = 1 <strong>and</strong> Λ is representati<strong>on</strong> infinite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n τ −i P is never injective for<br />

an indecomposable projective Λ-module P . In fact ν1 −i P = τ −i P ∈ mod Λ for all i ≥ 0.<br />

Inspired by this we make <str<strong>on</strong>g>the</str<strong>on</strong>g> following definiti<strong>on</strong>.<br />

Definiti<strong>on</strong> 2. Let Λ be a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. We say that<br />

Λ is n-representati<strong>on</strong> infinite if<br />

ν −i<br />

n Λ ∈ mod Λ<br />

for all i ≥ 0.<br />

We remark that this c<strong>on</strong>diti<strong>on</strong> is equivalent to ν i n(DΛ) ∈ mod Λ for all i ≥ 0. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

classical setting <str<strong>on</strong>g>of</str<strong>on</strong>g> n = 1 every indecomposable module is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r preprojective, preinjective<br />

or regular. We define higher analogues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se classes <str<strong>on</strong>g>of</str<strong>on</strong>g> modules as follows.<br />

Definiti<strong>on</strong> 3. Let Λ be an n-representati<strong>on</strong> infinite algebra. The full subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n-preprojective, n-preinjective <strong>and</strong> n-regular modules are defined as<br />

respectively.<br />

P := add{ν −i<br />

n Λ | i ≥ 0},<br />

I := add{ν i n(DΛ) | i ≥ 0},<br />

R := {X ∈ mod Λ | Ext i Λ(P, X) = 0 = Ext i Λ(X, I) for all i ≥ 0},<br />

–56–


Note that P <strong>and</strong> I are well-defined as subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Λ since Λ is n-representati<strong>on</strong><br />

infinite. Many properties <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary algebras generalize to n-<br />

representati<strong>on</strong> infinite algebras. For instance n-regular modules can be characterized by<br />

R = {X ∈ mod Λ | ν i n(X) ∈ mod Λ for all i ∈ Z}. Moreover, <strong>on</strong>e has <str<strong>on</strong>g>the</str<strong>on</strong>g> following result<br />

about vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> homomorphisms <strong>and</strong> extensi<strong>on</strong>s.<br />

Theorem 4. Let Λ be an n-representati<strong>on</strong> infinite algebra. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following holds:<br />

Hom Λ (R, P) = 0, Hom Λ (I, P) = 0, Hom Λ (I, R) = 0,<br />

Ext n Λ(P, R) = 0, Ext n Λ(P, I) = 0, Ext n Λ(R, I) = 0.<br />

3. n-representati<strong>on</strong> infinite algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã<br />

In this secti<strong>on</strong> we assume that K is an algebraically closed field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic zero.<br />

We shall present a family <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras by generalizing <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simplest classes <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary algebras, namely path algebras <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extended Dynkin quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã.<br />

On can c<strong>on</strong>struct extended Dynkin quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> type à by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps.<br />

Start with <str<strong>on</strong>g>the</str<strong>on</strong>g> double quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞:<br />

· · · −2 −1 0 1 2 · · ·<br />

Identify vertices <strong>and</strong> arrows modulo m for some m ≥ 1 <strong>and</strong> remove <strong>on</strong>e arrow from each<br />

2-cycle. For instance, choosing m = 2 <strong>and</strong> removing <str<strong>on</strong>g>the</str<strong>on</strong>g> arrows starting in <str<strong>on</strong>g>the</str<strong>on</strong>g> odd vertex<br />

gives <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver:<br />

<br />

0 1.<br />

We shall c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type à similarly. First we<br />

define <str<strong>on</strong>g>the</str<strong>on</strong>g> covering quiver Q. As vertices in Q we take <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice<br />

{ ∣ }<br />

∣∣∣∣ ∑n+1<br />

Q 0 = G := v ∈ Z n+1 v i = 0 .<br />

It is freely generated as an abelian group by <str<strong>on</strong>g>the</str<strong>on</strong>g> elements f i := e i+1 − e i for 1 ≤ i ≤ n.<br />

We also define f n+1 := e 1 − e n+1 , so that ∑ n+1<br />

i=1 f i = 0. As arrows in Q we take<br />

i=1<br />

Q 1 := {a i : v → v + f i | v ∈ G, 1 ≤ i ≤ n + 1}.<br />

Then Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> double <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞ for n = 1. For n ≥ 2 we need to introduce certain relati<strong>on</strong>s.<br />

Let v ∈ Q 0 <strong>and</strong> i, j ∈ {1, . . . , n + 1}. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> r v ij := a i a j − a j a i from v to<br />

v + f i + f j <strong>and</strong> let I be <str<strong>on</strong>g>the</str<strong>on</strong>g> two-sided ideal in KQ generated by<br />

{r v ij | v ∈ Q 0 , 1 ≤ i, j ≤ n + 1}.<br />

Since G is an abelian group it acts <strong>on</strong> itself by translati<strong>on</strong>s. This extends to a unique<br />

G-acti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver Q. We say that a subgroup B ≤ G is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite if G/B is finite.<br />

In that case we define Γ(B) as <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> KQ/I. More explicitly we define<br />

Q/B := (Q 0 /B, Q 1 /B) <strong>and</strong> set<br />

Γ(B) := K(Q/B)/〈r v ij | v ∈ Q 0 /B, 1 ≤ i, j ≤ n + 1〉<br />

–57–


where r v ij := a i a j −a j a i <strong>and</strong> a denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> B-orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> a. As motivati<strong>on</strong> for this c<strong>on</strong>structi<strong>on</strong><br />

we remark that Γ(B) is isomorphic to a skew group algebra K[x 1 , . . . , x n+1 ] ∗ H for some<br />

finite abelian subgroup H < SL n+1 (K).<br />

Next we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-cycles. For every v ∈ Q 0 <strong>and</strong> permutati<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1, . . . , n + 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a cyclic path a σ(1) · · · a σ(n+1) from v to v. We call such cyclic paths<br />

small cycles. A subset C ⊂ Q 1 is called a cut if it c<strong>on</strong>tains precisely <strong>on</strong>e arrow from every<br />

small cycle. The symmetry group <str<strong>on</strong>g>of</str<strong>on</strong>g> C is defined as<br />

S C := {g ∈ G | gC = C} ≤ G.<br />

We say that a cut C is acyclic if all paths in Q C := (Q 0 , Q 1 \ C) have length bounded<br />

by some N ≥ 0, <strong>and</strong> periodic if S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite in G. If both <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s are satisfied<br />

<strong>and</strong> B ≤ S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite we say that<br />

Γ(B) C := Γ(B)/〈a | a ∈ C/B〉<br />

is n-representati<strong>on</strong> finite <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã. The name is justified by <str<strong>on</strong>g>the</str<strong>on</strong>g> following Theorem.<br />

Theorem 5. If C is an acyclic periodic cut <strong>and</strong> B ≤ S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Γ(B) C is<br />

n-representati<strong>on</strong> finite.<br />

We remark that if n = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Γ(B) C is a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an acyclic quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã<br />

c<strong>on</strong>structed exactly as explained above. For n = 2, Q 0 is a triangular lattice in <str<strong>on</strong>g>the</str<strong>on</strong>g> plane<br />

<strong>and</strong> Q is<br />

.<br />

.<br />

• ✶ • • • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

· · · • • • • • <br />

✶ • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• ✶ • • • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

· · · • ✶ • • • • • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• • • • • • •<br />

.<br />

.<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> small cycles are formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> small triangles.<br />

Finally we shall generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> alternating orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞. To do this define ω : G →<br />

Z/(n + 1)Z by ω(f i ) = 1 <strong>and</strong> set<br />

C := {a i : v → v + f i | ω(v) = 0, 1 ≤ i ≤ n + 1}.<br />

Then every path in Q <str<strong>on</strong>g>of</str<strong>on</strong>g> length n+1 intersects C <strong>and</strong> so C is acyclic. Moreover, S C = ker ω<br />

<strong>and</strong> so C is periodic.<br />

For n = 1, Q C is<br />

· · · −2 −1 0 1 2 · · ·<br />

–58–


For n = 2, Q C is<br />

.<br />

.<br />

• ✶ • • • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

· · · • • • • <br />

✶ • • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• • • <br />

✶ • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ · · · • ✶ • • • • • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• • • • • • •<br />

.<br />

.<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> dotted lines indicate commutativity relati<strong>on</strong>s in Γ/〈C〉.<br />

Now let’s c<strong>on</strong>sider Γ(B) C for B = S C . Then we can identify Q 0 /B with Z/(n + 1)Z via<br />

ω <strong>and</strong> C/B c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> all arrows from n + 1 to 1. Hence Γ(B) C is <str<strong>on</strong>g>the</str<strong>on</strong>g> Beilins<strong>on</strong> algebra:<br />

1<br />

a 1<br />

.<br />

2<br />

a n+1<br />

a 1<br />

.<br />

3 · · · n<br />

a n+1<br />

a 1<br />

.<br />

a n+1<br />

<strong>and</strong> for n = 1 we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker algebra:<br />

<br />

1 2.<br />

References<br />

n + 1 , a i a j = a j a i .<br />

[1] O. Iyama, Cluster tilting for higher Ausl<strong>and</strong>er algebras, Adv. Math. 226(1) (2011), 1–61.<br />

[2] O. Iyama, S. Oppermann, n-representati<strong>on</strong>-finite algebras <strong>and</strong> n-APR tilting, Trans. Amer. Math.<br />

Soc. 363(12) (2011), 6575–6614.<br />

[3] O. Iyama, S. Oppermann, Stable categories <str<strong>on</strong>g>of</str<strong>on</strong>g> higher preprojective algebras, arXiv:0912.3412.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

Chikusa-ku, Nagoya, 464-8602 JAPAN<br />

E-mail address: martinh@math.nagoya-u.ac.jp<br />

–59–


ON A DEGENERATION PROBLEM FOR COHEN-MACAULAY<br />

MODULES<br />

NAOYA HIRAMATSU<br />

1. Introducti<strong>on</strong><br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this article is to give an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [3], which is a joint work with<br />

Yuji Yoshino.<br />

In this note, we would like to give several examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-<br />

Macaulay modules <strong>and</strong> to show how we can describe <str<strong>on</strong>g>the</str<strong>on</strong>g>m (Theorem 12). This result<br />

depends heavily <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> recent work by Yoshino about <str<strong>on</strong>g>the</str<strong>on</strong>g> stable analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s<br />

for Cohen-Macaulay modules over a Gorenstein local algebra [9]. In Secti<strong>on</strong> 3 we<br />

also investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> extended versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> order, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> order <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> AR order (Theorem 22).<br />

2. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s<br />

In this secti<strong>on</strong>, we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> <strong>and</strong> state several known results<br />

<strong>on</strong> degenerati<strong>on</strong>s.<br />

Definiti<strong>on</strong> 1. Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra over a field k, <strong>and</strong> let M <strong>and</strong> N be finitely<br />

generated left R-modules. We say that M degenerates to N, or N is a degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M,<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a discrete valuati<strong>on</strong> ring (V, tV, k) that is a k-algebra (where t is a prime element)<br />

<strong>and</strong> a finitely generated left R ⊗ k V -module Q which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s:<br />

(1) Q is flat as a V -module.<br />

(2) Q/tQ ∼ = N as a left R-module.<br />

(3) Q[1/t] ∼ = M ⊗ k V [1/t] as a left R ⊗ k V [1/t]-module.<br />

The following characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s has been proved by Yoshino [7].<br />

Theorem 2. [7, Theorem 2.2] The following c<strong>on</strong>diti<strong>on</strong>s are equivalent for finitely generated<br />

left R-modules M <strong>and</strong> N.<br />

(1) M degenerates to N.<br />

(2) There is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

( ϕ<br />

ψ)<br />

0 −−−→ Z −−−→ M ⊕ Z −−−→ N −−−→ 0,<br />

such that <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism ψ <str<strong>on</strong>g>of</str<strong>on</strong>g> Z is nilpotent, i.e. ψ n = 0 for n ≫ 1.<br />

Remark 3. Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra.<br />

(1) Suppose that a finitely generated R-module M degenerates to a finitely generated<br />

module N. Then as a discrete valuati<strong>on</strong> ring V in Definiti<strong>on</strong> 1 we can always take<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring k[t] (t) . See [7, Corollary 2.4.]. Thus we always take k[t] (t) as V .<br />

–60–


(2) Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0.<br />

Then M degenerates to L ⊕ N. See [7, Remark 2.5] for <str<strong>on</strong>g>the</str<strong>on</strong>g> detail.<br />

(3) Let M <strong>and</strong> N be finitely generated R-modules <strong>and</strong> suppose that M degenerates<br />

to N. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> modules M <strong>and</strong> N give <str<strong>on</strong>g>the</str<strong>on</strong>g> same class in <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck group,<br />

i.e. [M] = [N] as an element <str<strong>on</strong>g>of</str<strong>on</strong>g> K 0 (mod(R)), where mod(R) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules <strong>and</strong> R-homomorphisms.<br />

We are mainly interested in degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over commutative rings. Henceforth,<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, all <str<strong>on</strong>g>the</str<strong>on</strong>g> rings are assumed to be commutative.<br />

Definiti<strong>on</strong> 4. Let M <strong>and</strong> N be finitely generated modules over a commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

k-algebra R.<br />

(1) We denote by M ≤ deg N if N is obtained from M by iterative degenerati<strong>on</strong>s,<br />

i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules L 0 , L 1 , . . . , L r such that<br />

M ∼ = L 0 , N ∼ = L r <strong>and</strong> each L i degenerates to L i+1 for 0 ≤ i < r.<br />

(2) We say that M degenerates by an extensi<strong>on</strong> to N if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a short exact sequence<br />

0 → U → M → V → 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules such that N ∼ = U ⊕ N.<br />

We denote by M ≤ ext N if N is obtained from M by iterative degenerati<strong>on</strong>s by<br />

extensi<strong>on</strong>s, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules L 0 , L 1 , . . . , L r<br />

such that M ∼ = L 0 , N ∼ = L r <strong>and</strong> each L i degenerates by an extensi<strong>on</strong> to L i+1 for<br />

0 ≤ i < r.<br />

If R is a local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ≤ deg <strong>and</strong> ≤ ext are known to be partial orders <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules, which are called <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong><br />

order <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> order respectively. See [6] for <str<strong>on</strong>g>the</str<strong>on</strong>g> detail.<br />

Remark 5. By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Remark 3, if M ≤ ext N <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ deg N. However <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse is<br />

not necessarily true.<br />

For example, c<strong>on</strong>sider a ring R = k[[x, y]]/(x 2 ). A pair <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices over k[[x, y]];<br />

(( ) ( ))<br />

x y<br />

2 x −y<br />

2<br />

(ϕ, ψ) = ,<br />

0 x 0 x<br />

is a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> x 2 , hence it gives a maximal Cohen-Macaulay R-<br />

module N that is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal (x, y 2 )R. It is known that N is indecomposable.<br />

Then we can show that R degenerates to (x, y 2 )R in this case, <strong>and</strong> hence R ≤ deg (x, y 2 )R.<br />

See [3, Remark 2.5.].<br />

In general if M ≤ ext N <strong>and</strong> if M ≁ = N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n N is a n<strong>on</strong>-trivial direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> modules.<br />

Since N ∼ = (x, y 2 )R is indecomposable, we see that R ≤ ext (x, y 2 )R can never happen.<br />

Remark 6. We remark that if finitely generated R-modules M <strong>and</strong> N satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong><br />

M ≤ ext N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M degenerates to N.<br />

Now we note that <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma holds.<br />

Lemma 7. Let I be a two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra R, <strong>and</strong> let M <strong>and</strong> N be<br />

finitely generated left R/I-modules. Then M ≤ deg N (resp. M ≤ ext N) as R-modules if<br />

<strong>and</strong> <strong>on</strong>ly if so does as R/I-modules.<br />

□<br />

–61–


We make several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r remarks <strong>on</strong> degenerati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> later use.<br />

Remark 8. Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra, <strong>and</strong> let M <strong>and</strong> N be finitely generated R-<br />

modules. Suppose that M degenerates to N. The ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> M c<strong>on</strong>tains that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N for all i ≥ 0. Namely, denoting <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-module M by F R i (M), we<br />

have F R i (M) ⊇ F R i (N) for all i ≧ 0. (See [9, Theorem 2.5]).<br />

Let R = k[[x]] be a formal power series ring over a field k with <strong>on</strong>e variable x <strong>and</strong> let<br />

M be an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> length n. It is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an isomorphism<br />

(2.1) M ∼ = R/(x p 1<br />

) ⊕ · · · ⊕ R/(x p n<br />

),<br />

where<br />

(2.2) p 1 ≥ p 2 ≥ · · · ≥ p n ≥ 0 <strong>and</strong><br />

n∑<br />

p i = n.<br />

In this case <str<strong>on</strong>g>the</str<strong>on</strong>g> finite presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is given as follows:<br />

⎛<br />

x p ⎞<br />

1<br />

⎜<br />

. .. ⎟<br />

⎝<br />

x p ⎠<br />

n<br />

0 −−−→ R n −−−−−−−−−−−−−→ R n −−−→ M −−−→ 0.<br />

Note that we can easily compute <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> M from this presentati<strong>on</strong>;<br />

i=1<br />

F R i (M) = (x p i+1+···+p n<br />

) (i ≥ 0).<br />

We denote by p M <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers. Recall that such<br />

a sequence satisfying (2.2) is called a partiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n.<br />

C<strong>on</strong>versely, given a partiti<strong>on</strong> p = (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n, we can associate an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

length n by (2.1), which we denote by M(p). In such a way we see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-<strong>on</strong>e<br />

corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> length n.<br />

Definiti<strong>on</strong> 9. Let n be a positive integer <strong>and</strong> let p = (p 1 , p 2 , · · · , p n ) <strong>and</strong> q = (q 1 , q 2 , · · · , q n )<br />

be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n. Then we denote p ≽ q if it satisfies ∑ j<br />

i=1 p i ≥ ∑ j<br />

i=1 q i for all 1 ≤ j ≤ n.<br />

We note that ≽ is known to be a partial order <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> called<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order (see for example [4, page 7]).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> we show <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> order for R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> length n<br />

coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding partiti<strong>on</strong>s.<br />

Propositi<strong>on</strong> 10. Let R = k[[x]] as above, <strong>and</strong> let M, N be R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> length n. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(1) M ≤ deg N,<br />

(2) M ≤ ext N,<br />

(3) p M ≽ p N .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, we assume M degenerates to N, <strong>and</strong> let p M = (p 1 , p 2 , · · · , p n ) <strong>and</strong><br />

p N = (q 1 , q 2 , · · · , q n ). Then, by definiti<strong>on</strong>, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> equalities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Fitting ideals;<br />

Fi R (M) = (x p i+1+···+p n<br />

) <strong>and</strong> Fi R (M) = (x q i+1+···+q n<br />

) for all i ≥ 0. Since M degenerates<br />

–62–


to N, it follows from Remark 8 that Fi R (M) ⊇ Fi R (N) for all i. Thus p i+1 + · · · + p n ≤<br />

q i+1 + · · · + q n . Since ∑ n<br />

i=1 p i = n = ∑ n<br />

i=1 q i, it follows that p 1 + · · · + p i ≥ q 1 + · · · + q i<br />

for all i ≥ 0. Therefore p M ≽ p N , so that we have proved <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1) ⇒ (3).<br />

Finally we shall prove (3) ⇒ (2). To this end let p = (p 1 , p 2 , · · · , p n ) <strong>and</strong> q =<br />

(q 1 , q 2 , · · · , q n ) be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n. Note that it is enough to prove that <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

R-module M(p) degenerates by an extensi<strong>on</strong> to M(q) whenever q is a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> p<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order. (Recall that q is called a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> p if p ≽ q <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

are no partiti<strong>on</strong>s r with p ≽ r ≽ q o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than p <strong>and</strong> q.)<br />

Assume that q is a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> p under <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order. Then it is easy to<br />

see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are numbers 1 ≤ i < j ≤ n with p i − p j ≥ 2, p i > p i+1 , p j−1 > p j such<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> equality q = (p 1 , · · · , p i − 1, p i+1 , · · · , p j + 1, · · · , p n ) holds. In this case, setting<br />

L = M((p 1 , · · · , p i−1 , p i+1 , · · · , p j−1 , p j , · · · , p n )), we have M(p) = L ⊕ M((p i , p j )) <strong>and</strong><br />

M(q) = L ⊕ M((p i − 1, p j + 1)). Note that, in general, if M degenerates by an extensi<strong>on</strong><br />

to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊕ L degenerates by an extensi<strong>on</strong> to N ⊕ L, for any R-modules L. Hence<br />

it is enough to show that M((a, b)) degenerates by an extensi<strong>on</strong> to M((a − 1, b + 1)) if<br />

a ≥ b + 2. However <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form:<br />

0 −−−→ R/(x a−1 ) −−−→ R/(x a ) ⊕ R/(x b ) −−−→ R/(x b+1 ) −−−→ 0<br />

1 −−−→ (x, 1)<br />

Thus M((a, b)) = R/(x a ) ⊕ R/(x b ) degenerates by an extensi<strong>on</strong> to M((a − 1, b + 1)) =<br />

R/(x a−1 ) ⊕ R/(x b+1 ).<br />

□<br />

Combining Propositi<strong>on</strong> 10 with Lemma 7, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary which will<br />

be used latter.<br />

Corollary 11. Let R = k[[x]]/(x m ), where k is a field <strong>and</strong> m is a positive integer, <strong>and</strong><br />

let M, N be finitely generated R-modules. Then M ≤ deg N holds if <strong>and</strong> <strong>on</strong>ly if M ≤ ext N<br />

holds.<br />

□<br />

Next we describe ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r example.<br />

Let k be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0 <strong>and</strong> R = k[[x 0 , x 1 , x 2 , · · · , x d ]]/(f), where f is a<br />

polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

f = x n+1<br />

0 + x 2 1 + x 2 2 + · · · + x 2 d (n ≥ 1).<br />

Recall that such a ring R is call <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> simple singularity <str<strong>on</strong>g>of</str<strong>on</strong>g> type (A n ). Note that R<br />

is a Gorenstein complete local ring <strong>and</strong> has finite Cohen-Macaulay representati<strong>on</strong> type.<br />

(Recall that a Cohen-Macaulay k-algebra R is said to be <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Cohen-Macaulay representati<strong>on</strong><br />

type if <str<strong>on</strong>g>the</str<strong>on</strong>g>re are <strong>on</strong>ly a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> objects in<br />

CM(R). See [5].) We shall show <str<strong>on</strong>g>the</str<strong>on</strong>g> following whose pro<str<strong>on</strong>g>of</str<strong>on</strong>g> will be given in <str<strong>on</strong>g>the</str<strong>on</strong>g> last part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>.<br />

Theorem 12. Let k be an algebraically closed field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0 <strong>and</strong> let R =<br />

k[[x 0 , x 1 , x 2 , · · · , x d ]]/(x n+1<br />

0 + x 2 1 + x 2 2 + · · · + x 2 d ) as above, where we assume that d is<br />

even. For maximal Cohen-Macaulay R-modules M <strong>and</strong> N, if M ≤ deg N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ ext N.<br />

To prove <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we need several results c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong> which<br />

was introduced by Yoshino in [9].<br />

–63–


Let A be a commutative Gorenstein ring. We denote by CM(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

maximal Cohen-Macaulay A-module with all A-homomorphisms. And we also denote by<br />

CM(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A). For a maximal Cohen-Macaulay module M we<br />

denote it by M to indicate that it is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A). Since A is Gorenstein, it is<br />

known that CM(A) has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category.<br />

The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem proved by Yoshino [9] shows <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between stable degenerati<strong>on</strong>s<br />

<strong>and</strong> ordinary degenerati<strong>on</strong>s.<br />

Theorem 13. [9, Theorem 5.1, 6.1, 7.1] Let (R, m, k) be a Gorenstein complete local k-<br />

algebra, where k is an infinite field. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following four c<strong>on</strong>diti<strong>on</strong>s for maximal<br />

Cohen-Macaulay R-modules M <strong>and</strong> N:<br />

(1) R m ⊕ M degenerates to R n ⊕ N for some m, n ∈ N.<br />

(2) There is a triangle<br />

Z<br />

( ϕ<br />

ψ)<br />

−−−→ M ⊕ Z<br />

−−−→ N −−−→ Z[1]<br />

in CM(R), where ψ is a nilpotent element <str<strong>on</strong>g>of</str<strong>on</strong>g> End R (Z).<br />

(3) M stably degenerates to N.<br />

(4) There exists an X ∈ CM(R) such that M ⊕ R m ⊕ X degenerates to N ⊕ R n ⊕ X<br />

for some m, n ∈ N.<br />

Then, in general, <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s (1) ⇒ (2) ⇒ (3) ⇒ (4) hold. If R is an isolated<br />

singularity, <str<strong>on</strong>g>the</str<strong>on</strong>g>n (2) <strong>and</strong> (3) are equivalent. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, if R is an artinian ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s (1), (2) <strong>and</strong> (3) are equivalent.<br />

Corollary 14. [9, Corollary 6.6] Let (R 1 , m 1 , k) <strong>and</strong> (R 2 , m 2 , k) be Gorenstein complete<br />

local k-algebras. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> both R 1 <strong>and</strong> R 2 are isolated singularities, <strong>and</strong> that k<br />

is an infinite field. Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a k-linear equivalence F : CM(R 1 ) → CM(R 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triangulated categories. Then, for M, N ∈ CM(R 1 ), M stably degenerates to N if <strong>and</strong><br />

<strong>on</strong>ly if F (M) stably degenerates to F (N).<br />

□<br />

We now c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> stable analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> by an extensi<strong>on</strong>.<br />

Definiti<strong>on</strong> 15.<br />

(1) We denote by M ≤ st N if N is obtained from M by iterative stable degenerati<strong>on</strong>s,<br />

i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> objects L 0 , L 1 , . . . , L r in CM(R) such that M ∼ = L 0 ,<br />

N ∼ = L r <strong>and</strong> each L i stably degenerates to L i+1 for 0 ≤ i < r.<br />

(2) We say that M stably degenerates by a triangle to N, if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form U → M → V → U[1] in CM(R) such that U ⊕ V ∼ = N. We denote by<br />

M ≤ tri N if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a finite sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> modules L 0 , L 1 , · · · , L r in CM(R) such<br />

that M ∼ = L 0 , N ∼ = L r <strong>and</strong> each L i stably degenerates by a triangle to L i+1 for<br />

0 ≤ i < r.<br />

Remark 16. Let R be a Gorenstein local ring that is a k-algebra.<br />

(1) Let M, N ∈ CM(R). If M degenerates to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M stably degenerates to N.<br />

Therefore that M ≤ deg N forces that M ≤ st N. (See [9, Lemma 4.2].)<br />

–64–


(2) Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle<br />

L −−−→ M −−−→ N −−−→ L[1],<br />

in CM(R). Then M stably degenerates to L ⊕ N, thus M ≤ st L ⊕ N. (See [9,<br />

Propositi<strong>on</strong> 4.3].)<br />

We need <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> to prove Theorem 12.<br />

Propositi<strong>on</strong> 17. Let (R, m, k) be a Gorenstein complete local ring <strong>and</strong> let M, N ∈<br />

CM(R). Assume [M] = [N] in K 0 (mod(R)). Then M ≤ tri N if <strong>and</strong> <strong>on</strong>ly if M ≤ ext N. □<br />

Now we proceed to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 12.<br />

Let k be an algebraically closed field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0 <strong>and</strong> let<br />

R = k[[x 0 , x 1 , x 2 , · · · , x d ]]/(x n+1<br />

0 + x 2 1 + x 2 2 + · · · + x 2 d)<br />

as in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, where we assume that d is even. Suppose that M ≤ deg N for maximal<br />

Cohen-Macaulay R-modules M <strong>and</strong> N. We want to show M ≤ ext N.<br />

Since M ≤ deg N, we have M ≤ st N in CM(R) <strong>and</strong> [M] = [N] in K 0 (mod(R)), by<br />

Remarks 16(1) <strong>and</strong> 3(3). Now let us denote R ′ = k[[x 0 ]]/(x n+1<br />

0 ), <strong>and</strong> we note that CM(R)<br />

<strong>and</strong> CM(R ′ ) are equivalent to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r as triangulated categories. In fact this equivalence<br />

is given by using <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Knörrer’s periodicity (cf. [5]), since d is even. Let<br />

Ω : CM(R) → CM(R ′ ) be a triangle functor which gives <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence. Then, by virtue<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 14, we have Ω(M) ≤ st Ω(N) in CM(R ′ ). Since R ′ is an artinian algebra, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

equivalence (1) ⇔ (3) holds in Theorem 13, <strong>and</strong> thus we have ˜M ⊕ R ′m ≤ deg Ñ ⊕ R ′n ,<br />

where ˜M (resp. Ñ) is a module in CM(R ′ ) with ˜M ∼ = Ω(M) (resp. Ñ ∼ = Ω(N)) <strong>and</strong> m, n<br />

are n<strong>on</strong>-negative integers. It <str<strong>on</strong>g>the</str<strong>on</strong>g>n follows from Corollary 11 that ˜M ⊕ R ′m ≤ ext Ñ ⊕ R ′n .<br />

Hence, by Propositi<strong>on</strong> 17, we have that Ω(M) ≤ tri Ω(N) in CM(R ′ ). Noting that <str<strong>on</strong>g>the</str<strong>on</strong>g> partial<br />

order ≤ tri is preserved under a triangle functor, we see that M ≤ tri N in CM(R). Since<br />

[M] = [N] in K 0 (mod(R)), applying Propositi<strong>on</strong> 17, we finally obtain that M ≤ ext N. □<br />

Example 18. Let R = k[[x 0 , x 1 , x 2 ]]/(x 3 0 + x 2 1 + x 2 2), where k is an algebraically closed<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0. Let p <strong>and</strong> q be <str<strong>on</strong>g>the</str<strong>on</strong>g> ideals generated by (x 0 , x 1 − √ −1 x 2 ) <strong>and</strong><br />

(x 2 0, x 1 + √ −1 x 2 ) respectively. It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> set {R, p, q} is a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable maximal Cohen-Macaulay modules over R. The<br />

Hasse diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-Macaulay R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> rank 3 is a<br />

disjoint uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagrams:<br />

p ⊕ p ⊕ p<br />

❄ ❄❄❄❄❄<br />

8 88888<br />

R ⊕ p ⊕ q<br />

q ⊕ q ⊕ q<br />

p ⊕ p ⊕ q<br />

R ⊕ q ⊕ q<br />

p ⊕ q ⊕ q<br />

R ⊕ p ⊕ p<br />

R 3 ,<br />

–65–<br />

R 2 ⊕ p,<br />

R 2 ⊕ q.


3. Extended orders<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper R denotes a (commutative) Cohen-Macaulay complete local<br />

k-algebra, where k is any field.<br />

We shall show that any extended degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-Macaulay R-modules<br />

are generated by extended degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten (abbr.AR) sequences if R is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite Cohen-Macaulay representati<strong>on</strong> type. For <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> AR sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal<br />

Cohen-Macaulay modules, we refer to [5]. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extended orders generated respectively by degenerati<strong>on</strong>s, extensi<strong>on</strong>s <strong>and</strong> AR sequences.<br />

Definiti<strong>on</strong> 19. [6, Definiti<strong>on</strong> 4.11, 4.13] The relati<strong>on</strong> ≤ DEG <strong>on</strong> CM(R), which is called<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extended degenerati<strong>on</strong> order, is a partial order generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following rules:<br />

(1) If M ≤ deg N <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ DEG N.<br />

(2) If M ≤ DEG N <strong>and</strong> if M ′ ≤ DEG N ′ <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊕ M ′ ≤ DEG N ⊕ N ′<br />

(3) If M ⊕ L ≤ DEG N ⊕ L for some L ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ DEG N.<br />

(4) If M n ≤ DEG N n for some natural number n <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ DEG N.<br />

Definiti<strong>on</strong> 20. [6, Definiti<strong>on</strong> 3.6] The relati<strong>on</strong> ≤ EXT <strong>on</strong> CM(R), which is called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extended extensi<strong>on</strong> order, is a partial order generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following rules:<br />

(1) If M ≤ ext N <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ EXT N.<br />

(2) If M ≤ EXT N <strong>and</strong> if M ′ ≤ EXT N ′ <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊕ M ′ ≤ EXT N ⊕ N ′<br />

(3) If M ⊕ L ≤ EXT N ⊕ L for some L ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ EXT N.<br />

(4) If M n ≤ EXT N n for some natural number n <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ EXT N.<br />

Definiti<strong>on</strong> 21. [6, Definiti<strong>on</strong> 5.1] The relati<strong>on</strong> ≤ AR <strong>on</strong> CM(R), which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> extended<br />

AR order, is a partial order generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following rules:<br />

(1) If 0 → X → E → Y → 0 is an AR sequence in CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>n E ≤ AR X ⊕ Y .<br />

(2) If M ≤ AR N <strong>and</strong> if M ′ ≤ AR N ′ <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊕ M ′ ≤ AR N ⊕ N ′<br />

(3) If M ⊕ L ≤ AR N ⊕ L for some L ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ AR N.<br />

(4) If M n ≤ AR N n for some natural number n <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ AR N.<br />

The following is <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>.<br />

Theorem 22. Let R be a Cohen-Macaulay complete local k-algebra as above. Adding to<br />

this, we assume that R is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Cohen-Macaulay representati<strong>on</strong> type.Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>s are equivalent for M, N ∈ CM(R):<br />

(1) M ≤ DEG N,<br />

(2) M ≤ EXT N,<br />

(3) M ≤ AR N.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The implicati<strong>on</strong>s (3) ⇒ (2) ⇒ (1) are clear from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s.<br />

To prove (1) ⇒ (2), it suffices to show that M ≤ EXT N whenever M degenerates to<br />

N. If M degenerates to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2, we have a short exact sequence<br />

0 → Z → M ⊕ Z → N → 0 with Z ∈ CM(R). Thus M ⊕ Z ≤ ext N ⊕ Z, hence<br />

M ≤ EXT N.<br />

It remains to prove that (2) ⇒ (3), for which we need <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma which is<br />

essentially due to Ausl<strong>and</strong>er <strong>and</strong> Reiten [1].<br />

–66–


Lemma 23. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> same assumpti<strong>on</strong>s <strong>on</strong> R as in Theorem 22, let 0 → L → M →<br />

N → 0 be a short exact sequence in CM(R). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> AR<br />

sequences in CM(R);<br />

0 → X i → E i → Y i → 0 (1 ≤ i ≤ n),<br />

such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an equality in G(CM(R));<br />

n∑<br />

L − M + N = (X i − E i + Y i ).<br />

i=1<br />

Here, G(CM(R)) = ⊕ Z · X where X runs through all isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable<br />

objects in CM(R).<br />

To prove this lemma, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> functor category Mod(CM(R)) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er<br />

category mod(CM(R)) <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R).<br />

□<br />

Remark 24. In <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [6], Yoshino introduced <str<strong>on</strong>g>the</str<strong>on</strong>g> order relati<strong>on</strong> ≤ hom as well. Adding<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that R is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Cohen-Macaulay representati<strong>on</strong> type, if we assume<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> R, such as R is an integral domain <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> 1 or R is <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong><br />

2, <str<strong>on</strong>g>the</str<strong>on</strong>g>n he showed that ≤ hom is also equal to any <str<strong>on</strong>g>of</str<strong>on</strong>g> ≤ AR , ≤ EXT <strong>and</strong> ≤ DEG .<br />

References<br />

1. M. Ausl<strong>and</strong>er <strong>and</strong> I. Reiten, Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck groups <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> orders. J. Pure Appl. Algebra<br />

39 (1986), 1–51.<br />

2. K. B<strong>on</strong>gartz, On degenerati<strong>on</strong>s <strong>and</strong> extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules. Adv. Math. 121<br />

(1996), 245–287.<br />

3. N. Hiramatsu <strong>and</strong> Y. Yoshino, Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, to appear<br />

in Proc. Amer. Math. Soc., arXiv1012.5346.<br />

4. I.G.Macd<strong>on</strong>ald, Symmetric functi<strong>on</strong>s <strong>and</strong> Hall polynomials, Sec<strong>on</strong>d editi<strong>on</strong>. With c<strong>on</strong>tributi<strong>on</strong>s by<br />

A. Zelevinsky, Oxford Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical M<strong>on</strong>ographs. Oxford Science Publicati<strong>on</strong>s. The Clarend<strong>on</strong> Press,<br />

Oxford University Press, New York, 1995. x+475 pp.<br />

5. Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay <strong>Ring</strong>s, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society<br />

Lecture Note Series 146. Cambridge University Press, Cambridge, 1990. viii+177 pp.<br />

6. Y. Yoshino, On degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules. J. Algebra 248 (2002), 272–290.<br />

7. Y. Yoshino, On degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules. J. Algebra 278 (2004), 217–226.<br />

8. Y. Yoshino, Degenerati<strong>on</strong> <strong>and</strong> G-dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules. Lecture Notes Pure Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

vol. 244, ‘Commutative algebra’ Chapman <strong>and</strong> Hall/CRC (2006), 259–265.<br />

9. Y. Yoshino, Stable degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, to appear in J. Algebra (2011),<br />

arXiv1012.4531.<br />

10. G. Zwara, Degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules are given by extensi<strong>on</strong>s. Compositio Math.<br />

121 (2000), 205–218.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> general educati<strong>on</strong>,<br />

Kure Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

2-2-11 Agaminami, Kure, Hiroshima, 737-8506 JAPAN<br />

E-mail address: hiramatsu@kure-nct.ac.jp<br />

–67–


WEAK GORENSTEIN DIMENSION FOR MODULES AND<br />

GORENSTEIN ALGEBRAS<br />

MITSUO HOSHINO AND HIROTAKA KOGA<br />

Abstract. We will generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong> <strong>and</strong> introduce that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weak Gorenstein dimensi<strong>on</strong>. Using this noti<strong>on</strong>, we will characterize Gorenstein algebras.<br />

1. Introducti<strong>on</strong><br />

1.1. Notati<strong>on</strong> <strong>and</strong> definiti<strong>on</strong>s. For a ring A we denote by rad(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobs<strong>on</strong> radical<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A. Also, we denote by Mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> right A-modules, by mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely presented modules <strong>and</strong> by P A <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules. For each X ∈ Mod-A we denote by E A (X)<br />

its injective envelope. Left A-modules are c<strong>on</strong>sidered as right A op -modules, where A op<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite ring <str<strong>on</strong>g>of</str<strong>on</strong>g> A. In particular, we denote by inj dim A (resp., inj dim A op )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> injective dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A as a right (resp., left) A-module <strong>and</strong> by Hom A (−, −) (resp.,<br />

Hom A op(−, −)) <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> homomorphisms in Mod-A (resp., Mod-A op ). Sometimes, we<br />

use <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> X A (resp., A X) to stress that <str<strong>on</strong>g>the</str<strong>on</strong>g> module c<strong>on</strong>sidered is a right (resp.,<br />

left) A-module.<br />

In this note, complexes are cochain complexes <strong>and</strong> modules are c<strong>on</strong>sidered as complexes<br />

c<strong>on</strong>centrated in degree zero. For a complex X • <strong>and</strong> an integer n ∈ Z, we denote by H n (X • )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> nth cohomology. We denote by K(Mod-A) <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes<br />

over Mod-A, by K − (P A ) (resp., K b (P A )) <str<strong>on</strong>g>the</str<strong>on</strong>g> full triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> K(Mod-A)<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded above (resp., bounded) complexes over P A <strong>and</strong> by K −,b (P A ) <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> K − (P A ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes with bounded cohomology.<br />

We denote by D(Mod-A) <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes over Mod-A. Also, we denote<br />

by Hom • A(−, −) (resp., − ⊗ • −) <str<strong>on</strong>g>the</str<strong>on</strong>g> associated single complex <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> double hom (resp.,<br />

tensor) complex <strong>and</strong> by RHom • A(−, A) <str<strong>on</strong>g>the</str<strong>on</strong>g> right derived functor <str<strong>on</strong>g>of</str<strong>on</strong>g> Hom • A(−, A). We refer<br />

to [4], [9] <strong>and</strong> [15] for basic results in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories.<br />

Definiti<strong>on</strong> 1 ([5]). A module X ∈ Mod-A is said to be coherent if it is finitely generated<br />

<strong>and</strong> every finitely generated submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> it is finitely presented. A ring A is said to be<br />

left (resp., right) coherent if it is coherent as a left (resp., right) A-module.<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> first three secti<strong>on</strong>s, A is a left <strong>and</strong> right coherent ring. Note that<br />

mod-A c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coherent modules <strong>and</strong> is a thick abelian subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-A in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [9].<br />

We denote by D b (mod-A) <str<strong>on</strong>g>the</str<strong>on</strong>g> full triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D(Mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complexes over mod-A with bounded cohomology.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–68–


Definiti<strong>on</strong> 2 ([9]). A complex X • ∈ D b (mod-A) is said to have finite projective dimensi<strong>on</strong><br />

if Hom D(Mod-A) (X • [i], −) vanishes <strong>on</strong> mod-A for i ≪ 0. We denote by D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

épaisse subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite projective dimensi<strong>on</strong>.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical functor K(Mod-A) → D(Mod-A) gives rise to equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triangulated categories<br />

K −,b (P A ) ∼ → D b (mod-A) <strong>and</strong> K b (P A ) ∼ → D b (mod-A) fpd .<br />

We denote by D(−) both RHom • A(−, A) <strong>and</strong> RHom • Aop(−, A). There exists a bifunctorial<br />

isomorphism<br />

θ M • ,X • : Hom D(Mod-A op )(M • , DX • ) ∼ → Hom D(Mod-A) (X • , DM • )<br />

for X • ∈ D(Mod-A) <strong>and</strong> M • ∈ D(Mod-A op ). For each X • ∈ D(Mod-A) we set<br />

η X • = θ DX • ,X •(id DX •) : X• → D 2 X • = D(DX • ).<br />

Definiti<strong>on</strong> 3. A complex X • ∈ D b (mod-A) is said to have bounded dual cohomology if<br />

DX • ∈ D b (mod-A op ). We denote by D b (mod-A) bdh <str<strong>on</strong>g>the</str<strong>on</strong>g> full triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes with bounded dual cohomology.<br />

Definiti<strong>on</strong> 4 ([2] <strong>and</strong> [12]). A complex X • ∈ D b (mod-A op ) bdh is said to have finite<br />

Gorenstein dimensi<strong>on</strong> if η X • is an isomorphism. We denote by D b (mod-A) fGd <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Gorenstein dimensi<strong>on</strong>.<br />

For a module X ∈ D b (mod-A) fGd , we set<br />

G-dim X = sup{ i ≥ 0 | Ext i A(X, A) ≠ 0}<br />

if X ≠ 0, <strong>and</strong> G-dim X = 0 if X = 0. Also, we set G-dim X = ∞ for a module<br />

X ∈ mod-A with X /∈ D b (mod-A) fGd . Then G-dim X is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-A. We denote by G A <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong> zero.<br />

Remark 5. A module X ∈ mod-A has Gorenstein dimensi<strong>on</strong> zero if <strong>and</strong> <strong>on</strong>ly if X is<br />

reflexive, i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical homomorphism<br />

X → Hom A op(Hom A (X, A), A), x ↦→ (f ↦→ f(x))<br />

is an isomorphism <strong>and</strong> Ext i A(X, A) = Ext i A op(Hom A(X, A), A) = 0 for i ≠ 0.<br />

Remark 6. The following hold.<br />

(1) D b (mod-A) fpd ⊆ D b (mod-A) fGd ⊆ D b (mod-A) bdh <strong>and</strong> P A ⊆ G A .<br />

(2) The pair <str<strong>on</strong>g>of</str<strong>on</strong>g> functors RHom • A(−, A) <strong>and</strong> RHom • Aop(−, A) defines a duality between<br />

D b (mod-A) fGd <strong>and</strong> D b (mod-A op ) fGd <strong>and</strong> a duality between D b (mod-A) fpd<br />

<strong>and</strong> D b (mod-A op ) fpd .<br />

(3) The pair <str<strong>on</strong>g>of</str<strong>on</strong>g> functors Hom A (−, A) <strong>and</strong> Hom A op(−, A) defines a duality between G A<br />

<strong>and</strong> G A op <strong>and</strong> a duality between P A <strong>and</strong> P A op.<br />

–69–


1.2. Introducti<strong>on</strong>. The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong> has played an important role in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein algebras (see e.g. [2], [10], [11] <strong>and</strong> so <strong>on</strong>). In this note, generalizing<br />

this, we will introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong> <strong>and</strong> characterize<br />

Gorenstein algebras in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong>.<br />

A complex X • ∈ D b (mod-A) bdh with sup{ i | H i (X • ) ≠ 0} = d < ∞ is said to<br />

have finite weak Gorenstein dimensi<strong>on</strong> if H i (η X •) is an isomorphism for all i < d <strong>and</strong><br />

H d (η X •) is a m<strong>on</strong>omorphism. Obviously, every X • ∈ D b (mod-A) fGd has finite weak<br />

Gorenstein dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse <str<strong>on</strong>g>of</str<strong>on</strong>g> which does not hold true in general (see Example 9<br />

<strong>and</strong> Propositi<strong>on</strong> 15). Extending <str<strong>on</strong>g>the</str<strong>on</strong>g> fact announced by Avramov [3], we will characterize<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite weak Gorenstein dimensi<strong>on</strong>. Denote by G A /P A <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> G A over P A . Also, denote by D b (mod-A) fGd /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

D b (mod-A) fGd over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse subcategory D b (mod-A) fpd . Avramov [3] announced that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> embedding G A → D b (mod-A) fGd gives rise to an equivalence<br />

G A /P A ∼ → D b (mod-A) fGd /D b (mod-A) fpd .<br />

We will extend this fact. Denote by ĜA <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modules X ∈ mod-A with Ext i A(X, A) = 0 for i ≠ 0, by ĜA/P A <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ĝ A over P A <strong>and</strong> by D b (mod-A) bdh /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) bdh<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse subcategory D b (mod-A) fpd . We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding ĜA →<br />

D b (mod-A) bdh gives rise to a full embedding<br />

F : ĜA/P A → D b (mod-A) bdh /D b (mod-A) fpd<br />

(see Propositi<strong>on</strong> 8), that a complex X • ∈ D b (mod-A) bdh has finite weak Gorenstein<br />

dimensi<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a homomorphism Z[m] → X • in D b (mod-A) bdh<br />

inducing an isomorphism in D b (mod-A) bdh /D b (mod-A) fpd for some Z ∈ ĜA <strong>and</strong> m ∈ Z<br />

(see Lemma 12) <strong>and</strong> that F is an equivalence if <strong>and</strong> <strong>on</strong>ly if ĜA = G A (see Propositi<strong>on</strong> 15).<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong>, we will characterize Gorenstein algebras.<br />

Let R be a commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring <strong>and</strong> A a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian R-algebra,<br />

i.e., A is a ring endowed with a ring homomorphism R → A whose image is c<strong>on</strong>tained<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> A <strong>and</strong> A is finitely generated as an R-module. We say that A satisfies<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (G) if <str<strong>on</strong>g>the</str<strong>on</strong>g> following equivalent c<strong>on</strong>diti<strong>on</strong>s are satisfied: (1) Every simple<br />

X ∈ mod-A has finite weak Gorenstein dimensi<strong>on</strong>; <strong>and</strong> (2) A/rad(A) has finite weak<br />

Gorenstein dimensi<strong>on</strong> (see Definiti<strong>on</strong> 18). Our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem states that <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

are equivalent: (1) inj dim A = inj dim A op < ∞; <strong>and</strong> (2) A p satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (G)<br />

for all p ∈ Supp R (A) (see Theorem 19). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, in case A is a local ring, we will<br />

show that for any d ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent: (1) inj dim A = inj dim A op = d;<br />

(2) inj dim A = depth A = d; <strong>and</strong> (3) A/rad(A) has weak Gorenstein dimensi<strong>on</strong> d (see<br />

Theorem 20). Note that if inj dim A = depth A < ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g>n A is a Gorenstein R-algebra<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Goto <strong>and</strong> Nishida [8].<br />

This note is organized as follows. In Secti<strong>on</strong> 2, we will extend <str<strong>on</strong>g>the</str<strong>on</strong>g> fact announced by<br />

Avramov [3] quoted above. Also, we will include an example <str<strong>on</strong>g>of</str<strong>on</strong>g> A with ĜA ≠ G A which<br />

is due to J.-I. Miyachi. In Secti<strong>on</strong> 3, we will introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein<br />

dimensi<strong>on</strong> <strong>and</strong> study finitely presented modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite weak Gorenstein dimensi<strong>on</strong>. In<br />

Secti<strong>on</strong> 4, we will study noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective dimensi<strong>on</strong> <strong>and</strong> prove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

–70–


main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. In Secti<strong>on</strong> 5, we will characterize local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective<br />

dimensi<strong>on</strong>. Also, we will provide several examples showing what rich properties<br />

local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective dimensi<strong>on</strong> enjoy.<br />

2. Full embedding<br />

Let G A /P A be <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category <str<strong>on</strong>g>of</str<strong>on</strong>g> G A over <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory P A <strong>and</strong><br />

D b (mod-A) fGd /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) fGd over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse<br />

subcategory D b (mod-A) fpd . Then, as Avramov [3] announced, <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding G A →<br />

D b (mod-A) fGd gives rise to an equivalence<br />

In this secti<strong>on</strong>, we will extend this fact.<br />

G A /P A ∼ → D b (mod-A) fGd /D b (mod-A) fpd .<br />

Definiti<strong>on</strong> 7. We denote by ĜA <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules X ∈ mod-A with Ext i A(X, A) = 0 for i ≠ 0.<br />

We denote by ĜA/P A <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category <str<strong>on</strong>g>of</str<strong>on</strong>g> ĜA over <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory P A<br />

<strong>and</strong> by D b (mod-A)/D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse<br />

subcategory D b (mod-A) fpd . Also, we denote by D b (mod-A) bdh /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) bdh over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse subcategory D b (mod-A) fpd .<br />

Propositi<strong>on</strong> 8. The embedding ĜA → D b (mod-A) bdh gives rise to a full embedding<br />

F : ĜA/P A → D b (mod-A) bdh /D b (mod-A) fpd .<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, we will characterize a complex X • ∈ D b (mod-A) bdh which admits<br />

a homomorphism Z[m] → X • in D b ∼<br />

(mod-A) bdh inducing an isomorphism Z[m] −→ X •<br />

in D b (mod-A) bdh /D b (mod-A) fpd for some Z ∈ ĜA <strong>and</strong> m ∈ Z. Such a complex does not<br />

necessarily bel<strong>on</strong>g to D b (mod-A) fGd . Namely, Ĝ A ≠ G A in general (see Propositi<strong>on</strong> 15<br />

below), which has been pointed out by J.-I. Miyachi in oral communicati<strong>on</strong>.<br />

Example 9 (Miyachi). Let k be a field <strong>and</strong> fix a n<strong>on</strong>zero element c ∈ k which is not<br />

a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity. Let S = k < x, y > be a n<strong>on</strong>-commutative polynomial ring <strong>and</strong> I =<br />

(x 2 , y 2 , cxy + yx) a two-sided ideal generated by x 2 , y 2 <strong>and</strong> cxy + yx. Set R = S/I,<br />

z n = x + c n y + I ∈ R for n ∈ Z <strong>and</strong> w = xy + I ∈ R. Then R is a selfinjective algebra <strong>and</strong><br />

for each n ∈ Z <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist exact sequences R z n+1<br />

−−→ R z n<br />

−→ R in mod-R <strong>and</strong> R z n<br />

−→ R z n+1<br />

−−→ R<br />

in mod-R op . Since c is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, z n R ≁ = zm R <strong>and</strong> Hom R (z n R, z m R) ∼ = k unless<br />

n = m. Thus, since we have a projective resoluti<strong>on</strong> · · · → R z 3<br />

−→ R z 2<br />

−→ R z 1<br />

−→ z 1 R → 0 in<br />

mod-R, applying Hom R (−, z 0 R) we have Ext i R(z 1 R, z 0 R) = 0 for all i ≥ 1 (see [14]).<br />

Now, we set<br />

A =<br />

( )<br />

k z0 R<br />

0 R<br />

<strong>and</strong> e 1 =<br />

( )<br />

1 0<br />

, e<br />

0 0 2 =<br />

( )<br />

0 0<br />

∈ A.<br />

0 1<br />

Then a module X ∈ mod-A is given by a triple (X 1 , X 2 ; φ) <str<strong>on</strong>g>of</str<strong>on</strong>g> X 1 ∈ mod-k, X 2 ∈ mod-R<br />

<strong>and</strong> φ ∈ Hom R (X 1 ⊗ k z 0 R, X 2 ), <strong>and</strong> a module M ∈ mod-A op is given by a triple<br />

(M 1 , M 2 ; ψ) <str<strong>on</strong>g>of</str<strong>on</strong>g> M 1 ∈ mod-k, M 2 ∈ mod-R op <strong>and</strong> ψ ∈ Hom k (z 0 R ⊗ R M 2 , M 1 ) (see [7]).<br />

z<br />

Set X = (0, z 1 R; 0) ∈ mod-A. Since we have a projective resoluti<strong>on</strong> · · · −→<br />

3<br />

e2 A z 2<br />

−→<br />

–71–


e 2 A z 1<br />

−→ X → 0 in mod-A, it follows that Ext i A(X, e 1 A) ∼ = Ext i R(z 1 R, z 0 R) = 0 <strong>and</strong><br />

Ext i A(X, e 2 A) ∼ = Ext i R(z 1 R, R) = 0 for i > 0. Thus X ∈ ĜA. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, we have<br />

Hom A (X, A) ∼ z<br />

= Ker(Ae<br />

2<br />

2 −→ Ae2 )<br />

∼ = (wR, Rz1 ; 0)<br />

∼ = (wR, 0; 0) ⊕ (0, Rz1 ; 0)<br />

in mod-A op <strong>and</strong> hence Hom A op(Hom A (X, A), A) is decomposable, so that we have X ≇<br />

Hom A op(Hom A (X, A), A) <strong>and</strong> X /∈ G A .<br />

3. Weak Gorenstein dimensi<strong>on</strong><br />

In this secti<strong>on</strong>, we will introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong> for finitely<br />

presented modules <strong>and</strong> study finitely presented modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite weak Gorenstein dimensi<strong>on</strong>.<br />

Definiti<strong>on</strong> 10. A complex X • ∈ D b (mod-A) with sup{ i | H i (X • ) ≠ 0} = d < ∞<br />

is said to have finite weak Gorenstein dimensi<strong>on</strong> if X • ∈ D b (mod-A) bdh , H i (η X •) is an<br />

isomorphism for i < d <strong>and</strong> H d (η X •) is a m<strong>on</strong>omorphism.<br />

For a module X ∈ mod-A <str<strong>on</strong>g>of</str<strong>on</strong>g> finite weak Gorenstein dimensi<strong>on</strong> we set<br />

Ĝ-dim X = sup{ i | Ext i A(X, A) ≠ 0}<br />

if X ≠ 0 <strong>and</strong> Ĝ-dim X = 0 if X = 0. Also, we set Ĝ-dim X = ∞ if X ∈ mod-A does<br />

not have finite weak Gorenstein dimensi<strong>on</strong>. Then Ĝ-dim X is called <str<strong>on</strong>g>the</str<strong>on</strong>g> weak Gorenstein<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-A.<br />

Remark 11. For any X ∈ mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) Ĝ-dim X = 0 if <strong>and</strong> <strong>on</strong>ly if X is embedded in some P ∈ P A, i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical<br />

homomorphism<br />

X → Hom A op(Hom A (X, A), A), x ↦→ (f ↦→ f(x))<br />

is a m<strong>on</strong>omorphism <strong>and</strong> X ∈ ĜA.<br />

(2) If G-dim X = d < ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim X = d.<br />

(3) If Ĝ-dim X = d < ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim X′ ≤ d for all X ′ ∈ add(X), <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive<br />

subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> direct summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite direct sums <str<strong>on</strong>g>of</str<strong>on</strong>g> copies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X.<br />

Lemma 12. A complex X • ∈ D b (mod-A) with sup{ i | H i (X • ) ≠ 0} = d < ∞ has<br />

finite weak Gorenstein dimensi<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a distinguished triangle in<br />

D b (mod-A)<br />

X • → Y • → Z[−d] →<br />

with Y • ∈ K b (P A ), Y i = 0 for i > d, <strong>and</strong> Z ∈ ĜA.<br />

Corollary 13 (cf. [6, Lemma 2.17]). For any X ∈ mod-A with Ĝ-dim X < ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists an exact sequence 0 → X → Y → Z → 0 in mod-A with Ĝ-dim X = proj dim Y<br />

<strong>and</strong> Z ∈ ĜA.<br />

Lemma 14. For any exact sequence 0 → X → Y → Z → 0 in mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

–72–


(1) If Ĝ-dim Z < ∞, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim X < ∞ if <strong>and</strong> <strong>on</strong>ly if Ĝ-dim Y < ∞.<br />

(2) If Ĝ-dim Y < ∞, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim X < ∞ if <strong>and</strong> <strong>on</strong>ly if Z ∈ Db (mod-A) bdh <strong>and</strong><br />

H i (D 2 Z) = 0 for i < −1.<br />

(3) If Ĝ-dim X < ∞ <strong>and</strong> H0 (η X ) is an isomorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim Y < ∞ if <strong>and</strong> <strong>on</strong>ly<br />

if Ĝ-dim Z < ∞.<br />

Propositi<strong>on</strong> 15. The following are equivalent.<br />

(1) G A = ĜA.<br />

(2) Ĝ-dim X = 0 for all X ∈ ĜA.<br />

(3) D b (mod-A) fGd = D b (mod-A) bdh .<br />

(4) The embedding ĜA/P A → D b (mod-A) bdh /D b (mod-A) fpd is dense.<br />

4. Finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> selfinjective dimensi<strong>on</strong><br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, A is a left <strong>and</strong> right noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring.<br />

In this secti<strong>on</strong>, using <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong>, we will characterize<br />

noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective dimensi<strong>on</strong>.<br />

Lemma 16. For any injective I ∈ Mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) flat dim I ≤ inj dim A op <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equality holds if I is an injective cogenerator.<br />

(2) Let d ≥ 0 <strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a direct system ({X λ }, {fµ λ }) in mod-A<br />

over a directed set Λ such that lim X −→ λ<br />

∼ = I <strong>and</strong> Ĝ-dim X λ ≤ d for all λ ∈ Λ.<br />

Then flat dim I ≤ d.<br />

Corollary 17. For any d ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) inj dim A = inj dim A op ≤ d.<br />

(2) Ĝ-dim X ≤ d for all X ∈ mod-A.<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, R is a commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximal ideal m <strong>and</strong> A is a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian R-algebra, i.e., A is a ring endowed with a ring<br />

homomorphism R → A whose image is c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> A <strong>and</strong> A is finitely<br />

generated as an R-module. It should be noted that A/mA is a finite dimensi<strong>on</strong>al algebra<br />

over a field R/m.<br />

We denote by Spec(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R. For each p ∈ Spec(R) we denote<br />

by (−) p <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong> at p <strong>and</strong> for each X ∈ Mod-R we denote by Supp R (X) <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p ∈ Spec(R) with X p ≠ 0. Also, we denote by dim X <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-R.<br />

We refer to [13] for basic commutative ring <str<strong>on</strong>g>the</str<strong>on</strong>g>ory.<br />

Definiti<strong>on</strong> 18. We say that A satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (G) if <str<strong>on</strong>g>the</str<strong>on</strong>g> following equivalent<br />

c<strong>on</strong>diti<strong>on</strong>s are satisfied:<br />

(1) Ĝ-dim X < ∞ for all simple X ∈ mod-A.<br />

(2) Ĝ-dim A/rad(A) < ∞.<br />

Theorem 19. The following are equivalent.<br />

(1) inj dim A = inj dim A op < ∞.<br />

(2) A p satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (G) for all p ∈ Supp R (A).<br />

–73–


5. Gorenstein algebras<br />

In this secti<strong>on</strong>, we will deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> case where inj dim A = inj dim A op = depth A.<br />

In that case, A is a Gorenstein R-algebra in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Goto <strong>and</strong> Nishida (see [8]). Also,<br />

we will characterize local Gorenstein algebras in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong>.<br />

We set S = A/rad(A) <strong>and</strong> denote by depth X <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-R. Throughout<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, we assume that A is a local ring, i.e., S is a divisi<strong>on</strong> ring. Note that<br />

S ∈ mod-A is a unique simple module up to isomorphism <strong>and</strong> that every X ∈ mod-A<br />

admits a minimal projective resoluti<strong>on</strong>.<br />

Theorem 20. For any d ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) inj dim A = inj dim A op = d.<br />

(2) inj dim A = depth A = d.<br />

(3) Ĝ-dim S A = d.<br />

Corollary 21. Assume that inj dim A = inj dim A op = d < ∞. Then A is Cohen-<br />

Macaulay as an R-module <strong>and</strong> I d ∼ = HomR (A, E R (R/m)) for a minimal injective resoluti<strong>on</strong><br />

A → I • in Mod-A.<br />

Example 22. Even if inj dim A = inj dim A op < ∞, it may happen that A is not Cohen-<br />

Macaulay as an R-module. For instance, let R be a Gorenstein local ring with dim R ≥ 1<br />

<strong>and</strong> set<br />

( )<br />

R R/xR<br />

A =<br />

0 R/xR<br />

with x ∈ m a regular element. Then A is not Cohen-Macaulay as an R-module but<br />

inj dim A = inj dim A op < ∞ (see [1, Example 4.7]).<br />

Example 23. Even if A is a Cohen-Macaulay R-module <strong>and</strong> inj dim A = inj dim A op <<br />

∞, it may happen that inj dim A ≠ depth A. For instance, let R be a Gorenstein local<br />

ring with dim R = d <strong>and</strong> set<br />

( )<br />

R R<br />

A = .<br />

0 R<br />

Then A is a Cohen-Macaulay R-module with depth A = d but inj dim A = inj dim A op =<br />

d + 1.<br />

Example 24. Even if A is a Cohen-Macaulay R-module <strong>and</strong> inj dim A = inj dim A op =<br />

depth A = d < ∞, it may happen that I d ≇ Hom R (A, E R (R/m)) for a minimal injective<br />

resoluti<strong>on</strong> A → I • in Mod-A. For instance, let R be a Gorenstein local ring with dim R =<br />

d <strong>and</strong> A a free R-module with a basis {e ij } 1≤i,j≤3 . Define a multiplicati<strong>on</strong> <strong>on</strong> A subject<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> following axioms: (A1) e ij e kl = 0 unless j = k; (A2) e ii e ij = e ij = e ij e jj for all<br />

i, j; (A3) e 12 e 21 = e 11 <strong>and</strong> e 21 e 12 = e 22 ; <strong>and</strong> (A4) e i3 e 3j = e 3j e i3 = 0 for all i, j ≠ 3. Set<br />

e i = e ii for all i. Then A is an R-algebra with 1 = e 1 + e 2 + e 3 <strong>and</strong> Cohen-Macaulay<br />

as an R-module. Also, setting Ω = Hom R (A, R), we have e 1 A ∼ = e 2 A ∼ = e 3 Ω <strong>and</strong> e 1 Ω ∼ =<br />

e 2 Ω ∼ = e 3 A. It follows that inj dim A = inj dim A op = d but I d ∼ = HomR (Ω, E R (R/m)) ≇<br />

Hom R (A, E R (R/m)) in Mod-A.<br />

–74–


References<br />

[1] H. Abe <strong>and</strong> M. Hoshino, Derived equivalences <strong>and</strong> Gorenstein algebras, J. Pure Appl. Algebra 211,<br />

55–69 (2007).<br />

[2] M. Ausl<strong>and</strong>er <strong>and</strong> M. Bridger, Stable module <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Mem. Amer. Math. Soc., 94, Amer. Math. Soc.,<br />

Providence, R.I., 1969.<br />

[3] L. L. Avramov, Gorenstein dimensi<strong>on</strong> <strong>and</strong> complete resoluti<strong>on</strong>s. C<strong>on</strong>ference <strong>on</strong> commutative algebra<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> memory <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Hideyuki Matsumura, Nagoya, Aug 26-28, 1996, Nagoya University:<br />

Nagoya, Japan, 1996, 28–31.<br />

[4] M. Bökstedt <strong>and</strong> A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86<br />

(1993), no. 2, 209–234.<br />

[5] S. U. Chase, Direct products <str<strong>on</strong>g>of</str<strong>on</strong>g> modules, Trans. Amer. Math. Soc. 97 (1960), 457–473.<br />

[6] L. W. Christensen, A. Frankild <strong>and</strong> H. Holm, On Gorenstein projective, injective <strong>and</strong> flat<br />

dimensi<strong>on</strong>s—a functorial descripti<strong>on</strong> with applicati<strong>on</strong>s, J. Algebra 302 (2006), no. 1, 231–279.<br />

[7] R. M. Fossum, Ph. A. Griffith <strong>and</strong> I. Reiten, Trivial extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> abelian categories, Lecture Notes<br />

in Math., 456, Springer, Berlin, 1976.<br />

[8] S. Goto <strong>and</strong> K. Nishida, Towards a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Bass numbers with applicati<strong>on</strong> to Gorenstein algebras,<br />

Colloquium Math. 91 (2002), 191–253.<br />

[9] R. Hartshorne, Residues <strong>and</strong> duality, Lecture Notes in Math., 20, Springer, Berlin, 1966.<br />

[10] M. Hoshino, Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite self-injective dimensi<strong>on</strong>, Proc. Amer. Math. Soc. 112 (1991), 619–622.<br />

[11] M. Hoshino <strong>and</strong> H. Koga, Zaks’ lemma for coherent rings, preprint<br />

[12] Y. Kato, On derived equivalent coherent rings, Comm. Algebra 30 (2002), no. 9, 4437–4454.<br />

[13] H. Matsumura, Commutative <strong>Ring</strong> <strong>Theory</strong> (M. Reid, Trans.), Cambridge Univ. Press, Cambridge,<br />

1986 (original work in Japanese).<br />

[14] R. Schulz, A n<strong>on</strong>projective module without self-extensi<strong>on</strong>s, Arch. Math. (Basel) 62 (1994), no. 6,<br />

497–500.<br />

[15] J. L. Verdier, Catégories dérivées, état 0, in: Cohomologie étale, 262–311, Lecture Notes in Math.,<br />

569, Springer, Berlin, 1977.<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba<br />

Ibaraki, 305-8571, Japan<br />

E-mail address: hoshino@math.tsukuba.ac.jp<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba<br />

Ibaraki, 305-8571, Japan<br />

E-mail address: koga@math.tsukuba.ac.jp<br />

–75–


ON Ω-PERFECT MODULES AND SEQUENCES OF BETTI NUMBERS<br />

OTTO KERNER AND DAN ZACHARIA<br />

Abstract. Let R be a selfinjective algebra. In this paper we c<strong>on</strong>sider Ω-perfect modules<br />

<strong>and</strong> show how to use <str<strong>on</strong>g>the</str<strong>on</strong>g>m to get informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

comp<strong>on</strong>ents c<strong>on</strong>taining modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity. We also look at <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers for modules bel<strong>on</strong>ging to certain types <str<strong>on</strong>g>of</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

comp<strong>on</strong>ents.<br />

1. Introducti<strong>on</strong>, background <strong>and</strong> motivati<strong>on</strong><br />

The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> a module has been around for more than thirty years. In<br />

depth studies have started in parallel at around <str<strong>on</strong>g>the</str<strong>on</strong>g> same time for group representati<strong>on</strong>s<br />

(see [1, 2, 7, 8, 21] for instance) <strong>and</strong> also in commutative algebra (see [4, 5, 16, 23] <strong>and</strong><br />

[24]). In both cases <str<strong>on</strong>g>the</str<strong>on</strong>g> interest in complexity arose from <str<strong>on</strong>g>the</str<strong>on</strong>g> desire to underst<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal projective resoluti<strong>on</strong>s.<br />

We will recall now <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity. For this definiti<strong>on</strong> we d<strong>on</strong>’t need to<br />

restrict ourselves to finite dimensi<strong>on</strong>al algebras, so R can be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a finite dimensi<strong>on</strong>al<br />

algebra over a field k, or R = (R, m, k) can be a local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring with maximal ideal<br />

m <strong>and</strong> residue field k. Let M be a finitely generated R-module <strong>and</strong> let<br />

P • : · · · −→ P 2 δ 2<br />

−→ P 1 δ 1<br />

−→ P 0 δ 0<br />

−→ M → 0<br />

be a minimal projective (free in <str<strong>on</strong>g>the</str<strong>on</strong>g> local case) resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. The i-th Betti number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M, denoted β i (M), is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P i . Then, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> M is defined as<br />

cx M = inf{n ∈ N|β i (M) ≤ ci n−1 for some positive c ∈ Q <strong>and</strong> all i ≥ 0}<br />

For instance cx M = 0 is equivalent to M having finite projective dimensi<strong>on</strong>, <strong>and</strong> cx M = 1<br />

means that <str<strong>on</strong>g>the</str<strong>on</strong>g> Betti numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> M are all bounded. If no such n exists, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we say that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> M is infinite (at some point in time people also used to say that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

complexity does not exist in this case). Let Ω denote <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy operator. Then it is clear<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> that if M is a finitely generated R-module, <str<strong>on</strong>g>the</str<strong>on</strong>g>n cx M = cx ΩM, <strong>and</strong><br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>. Primary 16G70. Sec<strong>on</strong>dary 16D50, 16E05.<br />

The paper is in a final form <strong>and</strong> no versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it will be submitted for publicati<strong>on</strong> elsewhere. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper were presented by <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d author at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong><br />

<strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> in September 2011 in Okayama. He thanks <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers for <str<strong>on</strong>g>the</str<strong>on</strong>g> invitati<strong>on</strong><br />

<strong>and</strong> for giving him <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to present <str<strong>on</strong>g>the</str<strong>on</strong>g>se results. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results were obtained while both<br />

authors were visiting <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bielefeld in 2010 <strong>and</strong> 2011 as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SFB’s “Topologische und<br />

spektrale Strukturen in der Darstellungs<str<strong>on</strong>g>the</str<strong>on</strong>g>orie” program. The sec<strong>on</strong>d author is supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> NSA<br />

grant H98230-11-1-0152.<br />

–76–


an immediate applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> horseshoe lemma also shows that if 0 → A → B → C → 0<br />

is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n cx B ≤ max{cx A, cx C}.<br />

Note also that every Ω-periodic module (that is a module M with <str<strong>on</strong>g>the</str<strong>on</strong>g> property that<br />

Ω k M ∼ = M for some positive integer k) has complexity 1. In fact, Eisenbud has proved<br />

that if R = kG is <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group, or if R is a complete intersecti<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n every module <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity 1 is Ω-periodic [10]. The c<strong>on</strong>verse need not hold in<br />

general, not even in <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric local case; we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following example due to Liu<br />

<strong>and</strong> Schulz, [22]: C<strong>on</strong>sider R = k〈x, y〉/〈x 2 , y 2 , xy + qyx〉 where 0 ≠ q ∈ k is not a root<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1, <strong>and</strong> let T be <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R by Hom k (R, k). Then T is a local symmetric<br />

algebra. Let M be <str<strong>on</strong>g>the</str<strong>on</strong>g> T -module (x+y)T . For all i ∈ Z <str<strong>on</strong>g>the</str<strong>on</strong>g> modules Ω i M have dimensi<strong>on</strong><br />

4, <strong>and</strong> are pairwise n<strong>on</strong>-isomorphic. Since T is symmetric, τM = Ω 2 M holds, where τ is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong>. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> module M has complexity 1 <strong>and</strong> is nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

Ω- nor τ-symmetric. The module M <str<strong>on</strong>g>the</str<strong>on</strong>g>refore is c<strong>on</strong>tained in a ZA ∞ comp<strong>on</strong>ent. There<br />

are also counterexamples in <str<strong>on</strong>g>the</str<strong>on</strong>g> commutative case (see Gasharov <strong>and</strong> Peeva [15]).<br />

Throughout this paper, R will denote a finite dimensi<strong>on</strong>al selfinjective algebra over<br />

an algebraically closed field k with Jacobs<strong>on</strong> radical r. Then, by an inducti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Loewy length, it follows readily from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> above remarks, that for<br />

every finitely generated R-module M, we have cx M ≤ cx R/r. D will denote <str<strong>on</strong>g>the</str<strong>on</strong>g> usual<br />

dualityD = Hom k (−, k), <strong>and</strong> ν will denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama equivalence<br />

ν = DHom R (−, R)<br />

Also, since R is selfinjective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n νΩ = Ων. Moreover in this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

translate τ is given by τ = νΩ 2 . Since ν is a dimensi<strong>on</strong> preserving equivalence that<br />

takes projective modules into projective modules, we have that cx M = cx νM, hence<br />

cx M = cx τM for every finitely generated R-module M.<br />

The paper is organized as follows. In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d secti<strong>on</strong> we talk about <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity as obtained in [20]<br />

<strong>and</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> methods used in approaching this problem. In particular, we talk about<br />

a very special class <str<strong>on</strong>g>of</str<strong>on</strong>g> modules called Ω-perfect. In secti<strong>on</strong> three, we study <str<strong>on</strong>g>the</str<strong>on</strong>g> existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect modules. Finally, in <str<strong>on</strong>g>the</str<strong>on</strong>g> last secti<strong>on</strong> we look at some special cases where we<br />

analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Betti numbers.<br />

2. Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity<br />

We start this secti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> following easy observati<strong>on</strong>:<br />

Lemma 1. Let R be a selfinjective algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

Ausl<strong>and</strong>er-Reiten quiver. The complexity is c<strong>on</strong>stant <strong>on</strong> C s .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let B → C ∈ C s be an irreducible morphism. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an Ausl<strong>and</strong>er-<br />

Reiten sequence 0 → τC → B ⊕ E → C → 0 for some module E. Hence we have<br />

cx B ≤ cx(B ⊕ C) ≤ max{cx C, cx τC} = cx C. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an irreducible morphism<br />

from τC to B we use <str<strong>on</strong>g>the</str<strong>on</strong>g> same reas<strong>on</strong>ing to get <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse inequality. There is also an<br />

“extreme” case to prove: <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly irreducible morphisms to modules C ∈ C s<br />

are from projective modules. But it is not hard to prove that this corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

–77–


when R is a Nakayama algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Loewy length two. In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly n<strong>on</strong> projective<br />

modules are <str<strong>on</strong>g>the</str<strong>on</strong>g> simple modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>y are all periodic, hence <str<strong>on</strong>g>the</str<strong>on</strong>g>ir complexity is 1. □<br />

In order to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining<br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity we recall first <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect modules introduced<br />

in [17, 18]. We observe first that if g : B → C is an irreducible epimorphism between<br />

two n<strong>on</strong>projective modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have an induced irreducible map Ωg : ΩB → ΩC,<br />

see [3] for instance These modules have a particularly nice behaviour under <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy<br />

operator. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no reas<strong>on</strong> why Ωg should be again an epimorphism. Being<br />

irreducible, we know though that it must be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an epimorphism or a m<strong>on</strong>omorphism.<br />

And <strong>on</strong>e could ask <str<strong>on</strong>g>the</str<strong>on</strong>g> same questi<strong>on</strong> about an irreducible m<strong>on</strong>omorphism f: when can<br />

we guarantee that its syzygy Ωf is gain an irreducible m<strong>on</strong>omorphism? We have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following definiti<strong>on</strong>:<br />

Definiti<strong>on</strong>. An irreducible map g : B → C is called Ω-perfect if for all n ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> induced<br />

maps Ω n g : Ω n B → Ω n C are all m<strong>on</strong>omorphisms or are all epimorphisms. An irreducible<br />

map g is eventually Ω-perfect if, for some i > 0, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map Ω i g : Ω i B → Ω i C<br />

is Ω-perfect. An indecomposable n<strong>on</strong> projective R-module C is called Ω-perfect, if each<br />

irreducible map into C is Ω-perfect. We say that C is it eventually Ω-perfect if some<br />

syzygy <str<strong>on</strong>g>of</str<strong>on</strong>g> C is an Ω-perfect module.<br />

It was proved in [17] that if g : B → C is an irreducible epimorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ωg is again an<br />

epimorphism if <strong>and</strong> <strong>on</strong>ly if its kernel is not a simple module. Thus, an irreducible map<br />

g : B → C is eventually Ω-perfect, if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer n such that<br />

for each i ≥ n, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map Ω i g : Ω i B → Ω i C has a n<strong>on</strong> simple kernel. We have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following c<strong>on</strong>sequence, see [18]:<br />

Propositi<strong>on</strong> 2. Let R be a selfinjective algebra having no periodic simple modules. Then<br />

every n<strong>on</strong>projective R-module is eventually Ω-perfect.<br />

□<br />

We can specialize to <str<strong>on</strong>g>the</str<strong>on</strong>g> local finite dimensi<strong>on</strong>al case to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Corollary 3. Let R = (R, m, k) be a local selfinjective algebra, <strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity two or higher. Then every indecomposable n<strong>on</strong> projective R-module<br />

is eventually Ω-perfect.<br />

□<br />

One very nice feature <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect maps is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y behave very nice under <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy<br />

operator. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following (see [17]):<br />

Propositi<strong>on</strong> 4. Let R be a selfinjective algebra, <strong>and</strong> let 0 → A → B → g C → 0 be a<br />

short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where g is an irreducible Ω-perfect map. Then, for<br />

each i ≥ 0 we have induced exact sequences 0 → Ω i A → Ω i B Ωi g<br />

→ Ω i C −→ 0, <strong>and</strong> thus<br />

β i (B) = β i (A) + β i (C) for each i ≥ 0.<br />

□<br />

It turns out that every indecomposable not τ-periodic module <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity <strong>on</strong>e is eventually<br />

Ω-perfect ([17]). The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this result is somehow involved <strong>and</strong> it would be<br />

interesting to have a more direct <strong>and</strong> possibly elementary pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Note also that a recent<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> Dugas ([9]), proves that if a simple module over a selfinjective algebra has complexity<br />

1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it must be periodic. As menti<strong>on</strong>ed above in <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong>, this need<br />

–78–


not hold for all modules with bounded Betti numbers so <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> module<br />

is simple, is essential.<br />

We would also like to menti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following facts. Let C be an Ω-perfect module. Then<br />

it is easy to show that τC is also Ω-perfect. Let now B be an indecomposable module,<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an irreducible m<strong>on</strong>omorphism B → C. Then it was shown in<br />

[17] that B must also be Ω-perfect. We would like to know <str<strong>on</strong>g>the</str<strong>on</strong>g> answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

questi<strong>on</strong>:<br />

Questi<strong>on</strong> 5. Let B <strong>and</strong> C be two indecomposable R-modules, let B → C be an irreducible<br />

epimorphism <strong>and</strong> assume C is Ω-perfect. Is B also Ω-perfect?<br />

We will first look at Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules that are not eventually<br />

Ω-perfect since this is <str<strong>on</strong>g>the</str<strong>on</strong>g> much easier case. We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents<br />

must have a very predictable shape. First, we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> following definiti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

see [19].<br />

Definiti<strong>on</strong>. Let R be an artin algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> its Ausl<strong>and</strong>er-<br />

Reiten quiver. A functi<strong>on</strong> d: C s → Q is additive if it satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties:<br />

(a) d(C) > 0 for each C ∈ C s .<br />

(b) 2d(C) = ∑ i d(E i) for each indecomposable n<strong>on</strong> projective module C, where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence 0 → τC → ⊕ i E i<br />

⊕ P → C → 0 is an Ausl<strong>and</strong>er-Reiten sequence <strong>and</strong> P is a<br />

(possibly 0) projective R-module.<br />

(c) d(C) = d(τC) for each C ∈ C s .<br />

The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem was proved by Happel-Preiser-<strong>Ring</strong>el in [19]:<br />

Theorem 6. Let R be an artin algebra over an algebraically closed field <strong>and</strong> let C s be<br />

a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> its Ausl<strong>and</strong>er-Reiten quiver. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an additive<br />

functi<strong>on</strong> <strong>on</strong> C s . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> tree class <str<strong>on</strong>g>of</str<strong>on</strong>g> C s is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an extended Dynkin diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

à n , ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type A ∞ , D ∞ or A ∞ ∞.<br />

Assume that a n<strong>on</strong>-periodic stable comp<strong>on</strong>ent C s c<strong>on</strong>tains a module C that is not eventually<br />

Ω-perfect. This means that some syzygy <str<strong>on</strong>g>of</str<strong>on</strong>g> C is a simple periodic module. Let<br />

us denote that module by S, <strong>and</strong> let n be <str<strong>on</strong>g>the</str<strong>on</strong>g> Ω-period <str<strong>on</strong>g>of</str<strong>on</strong>g> S. It is clear that S is also<br />

ν-periodic since <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor preserves lengths, so let m denote <str<strong>on</strong>g>the</str<strong>on</strong>g> ν-period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S. Let T = S ⊕ ΩS ⊕ . . . ⊕ Ω n−1 S, <strong>and</strong> let W = T ⊕ νT ⊕ . . . ⊕ ν m−1 T . It is now immediate<br />

that τW = W . Also, it is not hard to show that <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> d: C s → Q given by<br />

d(M) = dimHom R (W, M) is an additive functi<strong>on</strong>, see [13, 20]. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> Happel-Preiser-<br />

<strong>Ring</strong>el <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> above observati<strong>on</strong>s we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following surprising applicati<strong>on</strong><br />

(see [20]):<br />

Theorem 7. Let R be a selfinjective algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R c<strong>on</strong>taining a module that is not eventually Ω-perfect. Assume<br />

in additi<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is not τ-periodic. Then C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form Z∆ where<br />

∆ is <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ãn, ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type D ∞ or A ∞ ∞. □<br />

We should make a few remarks here. First, note <str<strong>on</strong>g>the</str<strong>on</strong>g> excluded case when <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent<br />

is τ-periodic is also well understood. They are ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r infinite tubes or <str<strong>on</strong>g>the</str<strong>on</strong>g>y are periodic<br />

comp<strong>on</strong>ents whose tree class is a Dynkin diagram (see [19, 26]). Note also that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

–79–


says that comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ cannot occur. In fact, we shall see in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong><br />

that we cannot have comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ for ∆ = Ã1, Ẽ6, Ẽ7, or Ẽ8 ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r. At this<br />

point we would like to state a sec<strong>on</strong>d questi<strong>on</strong> that has actually been around in <str<strong>on</strong>g>the</str<strong>on</strong>g> area<br />

for some time.<br />

Questi<strong>on</strong> 8. Let R be a selfinjective algebra <strong>and</strong> assume that its Ausl<strong>and</strong>er-Reiten quiver<br />

c<strong>on</strong>tains a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ where ∆ = Ãn, ˜D n , Ẽ6, Ẽ7, Ẽ8, D ∞ or A ∞ ∞. Does this<br />

imply that R is a tame algebra?<br />

The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> above questi<strong>on</strong> is affirmative in <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra case, see [12]. Therefore<br />

it seems that given a selfinjective algebra, almost all <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable modules are<br />

eventually Ω-perfect. We will discuss more about this phenomen<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>.<br />

C<strong>on</strong>sidering Theorem 2.7, it turns out that a similar result holds for comp<strong>on</strong>ents c<strong>on</strong>taining<br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity. The following result was proved in [20]. It is a<br />

generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Webb’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem who had proved it first for group algebras [28].<br />

Theorem 9. Let R be a selfinjective algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R c<strong>on</strong>taining a module <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity. Assume in additi<strong>on</strong><br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is not τ-periodic. Then C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form Z∆ where ∆ is <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

à n , ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type A ∞ , D ∞ or A ∞ ∞.<br />

□<br />

3. Ω-perfect modules<br />

In this secti<strong>on</strong> we c<strong>on</strong>tinue <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect modules over a selfinjective algebra<br />

<strong>and</strong> show that every comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZẼi for i = 6, 7, 8 or ZÃ1 c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually<br />

Ω-perfect modules. We also give an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent c<strong>on</strong>taining <strong>on</strong>ly modules<br />

that are not Ω-perfect, <strong>and</strong> discuss possible values for complexities. We also pose some<br />

new questi<strong>on</strong>s. We will need <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> τ-perfect irreducible map. It is obviously very<br />

similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect map: we say that an irreducible map g : B → C is called<br />

τ-perfect if for all n ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> induced maps τ n g : τ n B → τ n C are all m<strong>on</strong>omorphisms or<br />

are all epimorphisms.<br />

If C is a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R, we will denote by C s its stable<br />

part, <strong>and</strong> by ΩC <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent c<strong>on</strong>taining all <str<strong>on</strong>g>the</str<strong>on</strong>g> modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ΩX for X ∈ C<br />

n<strong>on</strong> projective. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 10. Let R be a selfinjective artin algebra <strong>and</strong> let C be an Ausl<strong>and</strong>er-Reiten<br />

comp<strong>on</strong>ent. If <str<strong>on</strong>g>the</str<strong>on</strong>g> module X ∈ C does not have any projective or simple predecessors in<br />

C, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ΩX does not have ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r any simple or projective predecessors in ΩC.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Assume that ΩX has a simple predecessor S in <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent ΩC. By applying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inverse syzygy operator we obtain in C a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible maps Ω −1 S → · · · → X.<br />

Denote by P <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective-injective with socle S. We have an Ausl<strong>and</strong>er-<br />

Reiten sequence 0 → rP → P ⊕ rP/S → P/S → 0, <strong>and</strong> since P/S ∼ = Ω −1 S, we see that<br />

P is a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> X in C. Assume now that ΩX has a projective predecessor in its<br />

comp<strong>on</strong>ent, so <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible maps P → P/S → · · · → ΩX where S<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> socle <str<strong>on</strong>g>of</str<strong>on</strong>g> P . As before, we have that P/S ∼ = Ω −1 S, so <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible<br />

maps in Ω 2 C from S to Ω 2 X. Applying <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor, we obtain that τX, <strong>and</strong><br />

hence X have a simple predecessor since <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor preserves lengths. □<br />

–80–


One can prove in a similar fashi<strong>on</strong> that for a selfinjective algebra, a comp<strong>on</strong>ent C c<strong>on</strong>tains<br />

a simple (projective) module, if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent ΩC c<strong>on</strong>tains a projective<br />

(respectively simple) module.<br />

Remark 11. Let C be an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent having a boundary, that is, a<br />

comp<strong>on</strong>ent c<strong>on</strong>taining indecomposable modules whose Ausl<strong>and</strong>er-Reiten sequences have<br />

indecomposable middle terms. Assume that C is not a tube, <strong>and</strong> let C be an indecomposable<br />

module lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality we may assume<br />

that nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r C nor ΩC has a simple module in <str<strong>on</strong>g>the</str<strong>on</strong>g> positive directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir τ-orbit. This<br />

means that if 0 → τC → B → C → 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at C,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n both maps τC → B <strong>and</strong> B → C are Ω-perfect <strong>and</strong> so C is an Ω-perfect module. So<br />

we see that n<strong>on</strong>periodic comp<strong>on</strong>ents with boundaries, always c<strong>on</strong>tain Ω-perfect maps <strong>and</strong><br />

Ω-perfect modules. As we will see so<strong>on</strong>, this need not happen in comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type<br />

ZA ∞ ∞.<br />

Lemma 12. Let g : B → C be an irreducible map that is not eventually Ω-perfect, where<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r B nor C has a n<strong>on</strong>zero projective summ<strong>and</strong>. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer<br />

α such that for each i ≥ 0 we have |l(Ω i B) − l(Ω i C)| ≤ α.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By taking enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translate τ, we may assume<br />

without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality that g is <strong>on</strong>to, <strong>and</strong> that its kernel S is a simple periodic module.<br />

Note that by applying Ω we obtain an induced exact sequence 0 → ΩB −→ Ωg<br />

ΩC → S → 0.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map Ω 2 g is again a m<strong>on</strong>omorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we get <str<strong>on</strong>g>the</str<strong>on</strong>g> commutative exact<br />

diagram<br />

0<br />

0<br />

0<br />

0 Ω 2 B<br />

Ω 2 g Ω 2 C<br />

L<br />

0<br />

0 P ΩB<br />

0 ΩB<br />

Ωg<br />

P ΩC<br />

ΩC<br />

Q<br />

S<br />

0 0 0<br />

0<br />

0<br />

hence <str<strong>on</strong>g>the</str<strong>on</strong>g> two modules L <strong>and</strong> ΩS are isomorphic, <strong>and</strong> we have a short exact sequence<br />

0 → Ω 2 B → Ω 2 C → ΩS → 0. If <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> map Ω 2 g is an epimorphism,<br />

–81–


<str<strong>on</strong>g>the</str<strong>on</strong>g>n we obtain a commutative diagram<br />

0<br />

0 L Ω 2 B<br />

0 L P ΩB<br />

0 ΩB<br />

0<br />

Ω 2 g Ω 2 C<br />

Ωg<br />

P ΩC<br />

ΩC<br />

0 0<br />

0<br />

S 0<br />

S 0<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore we obtain a short exact sequence 0 → Ω 2 S → Ω 2 B → Ω 2 C → 0. C<strong>on</strong>tinuing<br />

in this fashi<strong>on</strong> we see that for each integer i ≥ 0 we get ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r short exact sequences<br />

0 → Ω i S → Ω i B → Ω i C → 0, or <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form 0 → Ω i+1 B → Ω i+1 C → Ω i S → 0. By<br />

letting α = max i∈N {l(Ω i S)}, our result follows, since <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module S is periodic. □<br />

The following (most probably) well-known lemma will be used to characterize Ω-perfect<br />

maps in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> “τ-perfect” property. As usual, if M is an indecomposable n<strong>on</strong>projective<br />

module, α(M) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-projective indecomposable direct<br />

summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending in M.<br />

Lemma 13. Let Λ be a selfinjective artin algebra <strong>and</strong> let M be an indecomposable n<strong>on</strong><br />

projective <strong>and</strong> n<strong>on</strong> simple Λ-module with α(M) = 2 with n = l(M) = l(τM). Assume<br />

also that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an irreducible map E → M where E is indecomposable <strong>and</strong> that<br />

l(E) = l(M) − 1.<br />

(a) The middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has no n<strong>on</strong>zero<br />

projective summ<strong>and</strong>.<br />

(b) If E, M <strong>and</strong> τM are uniserial, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining summ<strong>and</strong> F <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten sequence ending at M is uniserial too <strong>and</strong> its length is l(F ) = l(M) + 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let 0 → τM → E ⊕ F ⊕ P → M → 0 be <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending<br />

at M, where F is indecomposable n<strong>on</strong> projective, <strong>and</strong> P is a n<strong>on</strong>zero projective module.<br />

Note first that P must be indecomposable since <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra is selfinjective. Using now<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fact that τM = rP , a length argument shows that<br />

l(F ) = 2n − l(E) − l(P ) = 2n − (n − 1) − (n + 1) = 0<br />

c<strong>on</strong>tradicting our assumpti<strong>on</strong>. This proves <str<strong>on</strong>g>the</str<strong>on</strong>g> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma.<br />

For part (b), note first that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τM → E ⊕ F → M → 0 where E <strong>and</strong> F are both indecomposable <strong>and</strong> l(F ) = n + 1.<br />

Hence τM is a maximal submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> F . To prove <str<strong>on</strong>g>the</str<strong>on</strong>g> uniseriality <str<strong>on</strong>g>of</str<strong>on</strong>g> F , it suffices to<br />

show that τM = rF . It is folklore (see also [17], Propositi<strong>on</strong> 2.5.) that, since τM is not<br />

simple, we have an induced exact sequence<br />

0 → rτM → rE ⊕ rF → rM → 0.<br />

Counting lengths, we get l(rF ) = 2(n − 1) − (n − 2) = n. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> τM in F<br />

c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> radical <str<strong>on</strong>g>of</str<strong>on</strong>g> F , it follows that τM ∼ = rF , <strong>and</strong> F is also an uniserial module. □<br />

–82–


We are now ready to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> promised characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect maps.<br />

Propositi<strong>on</strong> 14. Let R be a selfinjective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite representati<strong>on</strong> type, <strong>and</strong> let<br />

C be an indecomposable module <strong>and</strong> let g : B → C be an irreducible map. Then g is<br />

eventually Ω-perfect if <strong>and</strong> <strong>on</strong>ly if both g <strong>and</strong> Ωg are eventually τ-perfect.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Obviously, if g is eventually Ω-perfect <str<strong>on</strong>g>the</str<strong>on</strong>g>n both maps g <strong>and</strong> Ωg are eventually<br />

τ-perfect. For <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse directi<strong>on</strong>, assume that both maps g <strong>and</strong> Ωg are eventually<br />

τ-perfect, but that g is not eventually Ω-perfect. By applying enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω, we<br />

may assume that g, Ωg are both τ-perfect, <strong>and</strong> that for each i ≥ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g> maps τ i g are <strong>on</strong>to<br />

<strong>and</strong> Ω i τg are <strong>on</strong>e-to-<strong>on</strong>e. Thus, for each i ≥ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist simple modules S i <strong>and</strong> exact<br />

sequences 0 → S i → Ω 2i B Ω2i g<br />

−→ Ω 2i C → 0 <strong>and</strong> 0 → Ω 2i+1 B Ω2i+1 g<br />

−→ Ω 2i+1 C → S i → 0. But<br />

Ω 2i+2 g is again surjective so we infer from <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> lemma 13 that for each i ≥ 0,<br />

Ω 2 S i<br />

∼ = Si+1 . Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re are <strong>on</strong>ly finitely many n<strong>on</strong>isomorphic simple modules, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence {S 1 , νS 2 = τS 1 , ν 2 S 3 = τ 2 S 1 , · · · } is eventually periodic. Therefore without loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> generality we may assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a periodic simple module S, say <str<strong>on</strong>g>of</str<strong>on</strong>g> period n,<br />

whose τ-powers are all simple.<br />

We claim first that <str<strong>on</strong>g>the</str<strong>on</strong>g> simple modules S, τS, · · · , τ n−1 S lie <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> a regular<br />

tube C. To see this, observe first that we can deduce that <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term E <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten sequence 0 → τS → E → S → 0 is indecomposable. Moreover, E<br />

cannot be projective, since o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> each Ausl<strong>and</strong>er-Reiten sequence<br />

ending at a τ i S would be an indecomposable projective-injective module <str<strong>on</strong>g>of</str<strong>on</strong>g> length two.<br />

This would imply that our algebra is selfinjective Nakayama <str<strong>on</strong>g>of</str<strong>on</strong>g> Loewy length two, c<strong>on</strong>tradicting<br />

our assumpti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> R. By c<strong>on</strong>structi<strong>on</strong>, all <str<strong>on</strong>g>the</str<strong>on</strong>g> modules<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> same τ-orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> C have <str<strong>on</strong>g>the</str<strong>on</strong>g> same length, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se lengths increase by <strong>on</strong>e from<br />

a τ-orbit to <str<strong>on</strong>g>the</str<strong>on</strong>g> next <strong>on</strong>e. We may apply now <str<strong>on</strong>g>the</str<strong>on</strong>g> previous lemma <strong>and</strong> infer that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

comp<strong>on</strong>ent is a regular comp<strong>on</strong>ent. By <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma we get that all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> modules in C are uniserial, a c<strong>on</strong>tradicti<strong>on</strong> since we cannot have uniserial module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

arbitrary large length.<br />

□<br />

Let ∆ be a quiver. A vertex x <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ is called a tip, if <strong>on</strong>ly <strong>on</strong>e arrow <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ starts or ends<br />

at x. If C is a comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆, <str<strong>on</strong>g>the</str<strong>on</strong>g>n a module M corresp<strong>on</strong>ds<br />

to a tip <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form:<br />

0 → τM → Y ⊕ P → M → 0<br />

for some projective (possibly zero) module P <strong>and</strong> indecomposable n<strong>on</strong> projective module<br />

Y . Assume that C is a c<strong>on</strong>nected comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver, <strong>and</strong> that<br />

we have C s<br />

∼ = Z∆ for some quiver ∆. Since an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent c<strong>on</strong>tains at<br />

most finitely many indecomposable projective or simple modules, for each indecomposable<br />

module M ∈ C s <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer r such that τ r M has no projective or simple<br />

predecessors in C. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following immediate c<strong>on</strong>sequence:<br />

Corollary 15. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ <strong>and</strong> let M be an indecomposable<br />

module in C s . Assume that M corresp<strong>on</strong>ds to a tip <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆. Then M is eventually Ω-<br />

perfect.<br />

□<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

–83–


Propositi<strong>on</strong> 16. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ where ∆ is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Ẽ6, Ẽ7, Ẽ8,<br />

à 1 , A ∞ . Then every module in C s is eventually Ω-perfect.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The case where ∆ = A ∞ was treated in [20], (Theorem 2.11. <strong>and</strong> Lemma 2.6.).<br />

C<strong>on</strong>sider now <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly case when <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nected comp<strong>on</strong>ent Z∆ has no tip, that is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case when ∆ = Ã1, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver. Let M ∈ C s with no projective or<br />

simple predecessors. The Ausl<strong>and</strong>er-Reiten sequence ending at M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τM [f 1,f 2 ] t<br />

−→ E ⊕ E [g 1,g 2 ]<br />

−→ M → 0<br />

<strong>and</strong> it is obvious that all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible maps f 1 , f 2 , g 1 , g 2 are epimorphisms, or all are<br />

m<strong>on</strong>omorphisms. We claim that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are all epimorphisms. If <str<strong>on</strong>g>the</str<strong>on</strong>g>y are m<strong>on</strong>omorphisms,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence<br />

0 → τE [τg 1,τg 2 ] t<br />

−→ τM ⊕ τM [f 1,f 2 ]<br />

−→ E → 0<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> maps τg 1 , τg 2 are also m<strong>on</strong>omorphisms. C<strong>on</strong>tinuing in <str<strong>on</strong>g>the</str<strong>on</strong>g> positive τ directi<strong>on</strong> we<br />

obtain an arbitrary l<strong>on</strong>g chain or irreducible m<strong>on</strong>omorphisms<br />

· · · τ i E ↩→ τ i M ↩→ τ i−1 E ↩→ · · · ↩→ E ↩→ M<br />

which is absurd. We can make <str<strong>on</strong>g>the</str<strong>on</strong>g> same argument for ΩM, <strong>and</strong> it follows that M is<br />

Ω-perfect.<br />

Assume now that ∆ is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining finite quiver Ẽi, take M in C s with α(M) = 3,<br />

such that M has no projective or simple predecessor in C <strong>and</strong> let C M be <str<strong>on</strong>g>the</str<strong>on</strong>g> full subquiver<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> C, defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> vertices which are predecessors <str<strong>on</strong>g>of</str<strong>on</strong>g> M. If X ∈ C M with α(X) = 1<br />

(hence X corresp<strong>on</strong>ds to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 3 tips <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆, <str<strong>on</strong>g>the</str<strong>on</strong>g>n X is Ω-perfect by Remark 3.2, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

irreducible map Y → τX is an Ω-perfect epimorphism, <strong>and</strong> τX → Y is injective <strong>and</strong><br />

Ω-perfect. C<strong>on</strong>sequently all irreducible maps between indecomposable modules in C M are<br />

Ω-perfect, hence all indecomposable modules N ∈ C M with α(N) ≤ 2 are Ω-perfect. Take<br />

finally V ∈ C M with α(V ) = 3 <strong>and</strong> let<br />

0 → τV [f 1,f 2 ,f 3 ] t<br />

−→ ⊕ 3 i=1X i<br />

[g 1 ,g 2 ,g 3 ]<br />

−→ V → 0<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending in V . The irreducible maps f i all are surjective,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> g i are injective. Choose j ≤ 3, let ⊕ i X i = Y ⊕ X j <strong>and</strong> let [g, g j ] : Y ⊕ X j → V<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> sink map. Since f j is an Ω-perfect epimorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g> same holds for <str<strong>on</strong>g>the</str<strong>on</strong>g> ”parallel”<br />

morphism g, hence V is Ω-perfect, too.<br />

□<br />

As we will see very so<strong>on</strong>, it turns out that if C is a comp<strong>on</strong>ent in which no irreducible<br />

map is Ω-perfect, <str<strong>on</strong>g>the</str<strong>on</strong>g>n every n<strong>on</strong> projective module in C has complexity at most 2. In<br />

fact, we have a slightly more general result. We start with <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 17. Let C be an indecomposable n<strong>on</strong> projective, <strong>and</strong> n<strong>on</strong> τ-periodic module<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist irreducible morphisms B → C <strong>and</strong> τC → B that are not<br />

eventually Ω-perfect. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer α such that for each n ≥ 0,<br />

l(Ω 2n C) ≤ l(C) + nα. In particular, C <strong>and</strong> every n<strong>on</strong>projective module in <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent has complexity 2.<br />

–84–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Observe first that for each indecomposable n<strong>on</strong> projective R-module M, we have<br />

l(Ω 2 M) = l(τM). Now, applying <str<strong>on</strong>g>the</str<strong>on</strong>g> previous Lemma 3.3, we obtain for each i ≥ 0<br />

that l(Ω i B) ≤ l(Ω i C) + α/2, <strong>and</strong> l(Ω i+2 C) ≤ l(Ω i B) + α/2 for some positive number α.<br />

Hence, for each i ≥ 0 we have l(Ω i+2 C) − l(Ω i C) ≤ α. In particular, for each n ≥ 0 we<br />

have l(Ω 2n C) − l(C) ≤ nα. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> C is bounded by 2. If<br />

cx C = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, since it is not τ periodic, <str<strong>on</strong>g>the</str<strong>on</strong>g> module C must lie in a ZA ∞ -comp<strong>on</strong>ent<br />

by [17], but for <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents every irreducible map is eventually Ω-perfect. Hence<br />

cx C = 2.<br />

□<br />

We obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following immediate c<strong>on</strong>sequence: assume that we have a comp<strong>on</strong>ent C,<br />

whose stable part C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZA ∞ ∞, <strong>and</strong> assume also that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an Ausl<strong>and</strong>er-<br />

Reiten sequence 0 → τC → E ⊕ F → C → 0 where E <strong>and</strong> F are indecomposable, <strong>and</strong><br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r E → C nor F → C is eventually Ω-perfect. Observe also that in this case, no<br />

irreducible map in C s between indecomposable modules is eventually Ω-perfect. It follows<br />

immediately from <str<strong>on</strong>g>the</str<strong>on</strong>g> previous propositi<strong>on</strong> that every n<strong>on</strong> projective module in C has<br />

complexity 2. This situati<strong>on</strong> can actually occur. The following example is due to <strong>Ring</strong>el.<br />

Example 18. Let R be <str<strong>on</strong>g>the</str<strong>on</strong>g> finite dimensi<strong>on</strong>al selfinjective string algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quiver<br />

α<br />

β<br />

1 2 3<br />

γ<br />

modulo <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>s αβ = 0, δγ = 0, γαγα = βδβδ <strong>and</strong> αγαγα = δβδβδ = 0. There<br />

exists a ZA ∞ ∞ comp<strong>on</strong>ent where n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible maps between <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable<br />

modules is eventually Ω-perfect, (or even τ-perfect). For instance, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> string<br />

module M = r 3 P 2 . It is easy to see that M is not eventually Ω-perfect, that α(M) = 2,<br />

<strong>and</strong> that no irreducible map from an indecomposable module to M is eventually Ω-perfect.<br />

Moreover, by [6], M lies in a comp<strong>on</strong>ent c<strong>on</strong>sisting entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> string modules. But <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>ly string modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent can lie <strong>on</strong><br />

tubes (see [12], II.6.4), so this module bel<strong>on</strong>gs to a ZA ∞ ∞ comp<strong>on</strong>ent. Note also that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simple modules S 1 <strong>and</strong> S 3 are Ω-periodic <str<strong>on</strong>g>of</str<strong>on</strong>g> period 6, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>y both lie <strong>on</strong> tubes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rank 3.<br />

Example 19. Following Erdmann [12], for each positive integer m, we denote by Λ m <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

local symmetric string algebra over a field K,<br />

Λ m = K〈x, y〉/〈x 2 , (xy) m+1 − (yx) m+1 , x 2 − (yx) m y, x 3 〉<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> K is 2, <strong>and</strong> m+1 = 2 n ≥ 4, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra Λ m modulo its socle is<br />

isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> semidihedral group <str<strong>on</strong>g>of</str<strong>on</strong>g> order 2 n+2 modulo its socle.<br />

Motivated by this fact, Erdmann calls this algebra semidihedral. She proves that Λ m has<br />

infinitely many stable comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ ∞ <strong>and</strong> ZD ∞ ([12], Propositi<strong>on</strong>s II,10.1 <strong>and</strong><br />

II,10.2), <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r stable comp<strong>on</strong>ents are tubes <str<strong>on</strong>g>of</str<strong>on</strong>g> rank 1 <strong>and</strong> 2. Moreover, she<br />

shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> unique simple module lies in a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ so it is not periodic.<br />

Therefore, every indecomposable n<strong>on</strong> projective Λ m -module is eventually Ω-perfect by<br />

[18]. Note that in <str<strong>on</strong>g>the</str<strong>on</strong>g> same book, Erdmann generalizes <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semidihedral algebra<br />

to that <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> semidihedral type <strong>and</strong> <strong>on</strong>e also obtains interesting examples for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

n<strong>on</strong> local case ([12], Lemma VIII. 2.1.).<br />

–85–<br />

δ


3.1. ZD ∞ -comp<strong>on</strong>ents. We assume for <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> that C is a c<strong>on</strong>nected<br />

Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZD ∞ . Let C be an<br />

indecomposable module lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Then, without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality we<br />

may assume that C is Ω-perfect, by Remark 11. In this c<strong>on</strong>text we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 20. Let A <strong>and</strong> B be two indecomposable modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C with<br />

Ausl<strong>and</strong>er-Reiten sequences 0 → τA f 1<br />

−→ M g 1<br />

−→ A → 0 <strong>and</strong> 0 → τB f 2<br />

−→ M g 2<br />

−→ B → 0.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible map [g 1 , g 2 ] t : M → A ⊕ B is an epimorphism if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> map<br />

[f 1 , f 2 ]: τA ⊕ τB → M is also an epimorphism.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Counting lengths, we have l(τA)+l(A)+l(τB)+l(B) = 2l(M). This means that<br />

l(A) + l(B) < l(M) if <strong>and</strong> <strong>on</strong>ly if l(τA) + l(τB) > l(M). The result follows, since an<br />

irreducible map is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a m<strong>on</strong>omorphism, or an epimorphism.<br />

□<br />

Keeping <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma, we may clearly assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> modules A <strong>and</strong><br />

B lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent are Ω-perfect, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

sequence ending at M is 0 → τM → τA ⊕ τB ⊕ τX → M → 0 for some indecomposable<br />

module X. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible epimorphisms M → A <strong>and</strong> M → B are Ω-perfect, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible epimorphisms τA ⊕ τX → M <strong>and</strong> τB ⊕ τX → M are also Ω-perfect<br />

being “parallel” to Ω-perfect epimorphisms. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible m<strong>on</strong>omorphisms<br />

τM → τX ⊕ τA <strong>and</strong> τM → τX ⊕ τB are also Ω-perfect. Putting toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r our remarks,<br />

we have:<br />

Propositi<strong>on</strong> 21. Let C be an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

ZD ∞ . Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an irreducible map between indecomposable n<strong>on</strong> projective<br />

modules X → Y that is not eventually Ω-perfect. Then each n<strong>on</strong> projective module in C<br />

has complexity 2.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. From <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> our comp<strong>on</strong>ent, it follows by looking at “parallel” maps <strong>on</strong>e at a<br />

time, that we may assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an irreducible map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form τM → τA⊕τB<br />

or τA ⊕ τB → M that is not eventually Ω-perfect, where A <strong>and</strong> B are indecomposable<br />

modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C, <strong>and</strong> M is an indecomposable module. Observe that,<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r τM → τA ⊕ τB nor τA ⊕ τB → M can be eventually Ω-perfect by Lemma 20.<br />

Being <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ means also that C cannot c<strong>on</strong>tain modules <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity 1 by [17].<br />

We apply now 17. <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

□<br />

We would like to propose <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>s summarizing <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

three secti<strong>on</strong>s. The first <strong>on</strong>e has been around for some time <strong>and</strong> is due to Rickard [25].<br />

Questi<strong>on</strong>s 22. Let R be a selfinjective algebra.<br />

(1) Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an indecomposable R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity greater than<br />

2. Is R is <str<strong>on</strong>g>of</str<strong>on</strong>g> wild representati<strong>on</strong> type?<br />

(2) Assume that R has stable comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ or ZA ∞ ∞. Is R <str<strong>on</strong>g>of</str<strong>on</strong>g> tame representati<strong>on</strong><br />

type? Must <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents have complexity 2?<br />

(3) Assume that R has a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ . Is R necessarily <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<br />

representati<strong>on</strong> type?<br />

The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> first questi<strong>on</strong> is known to be yes if R admits a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> support<br />

varieties, for instance in <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebras case. See also [14]. The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d<br />

–86–


<strong>and</strong> third questi<strong>on</strong> is also known to be affirmative in <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra case [12] but<br />

almost nothing is known outside this case.<br />

4. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers. The local case<br />

Let us return to <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> where R = (R, m, k) is a local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra. The<br />

following questi<strong>on</strong>s were am<strong>on</strong>g questi<strong>on</strong>s posed in <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1970s <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1980s.<br />

They are still open even in <str<strong>on</strong>g>the</str<strong>on</strong>g> commutative artinian case, <strong>and</strong> even if we also add <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

selfinjective assumpti<strong>on</strong>.<br />

Questi<strong>on</strong>s 23. Let R = (R, m, k) be a local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra. Let M be an indecomposable<br />

finitely generated R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite projective dimensi<strong>on</strong>.<br />

(1) Assume that M has complexity 1. Is <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers {β i (M)} i<br />

eventually c<strong>on</strong>stant?<br />

(2) Is <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers {β i (M)} i eventually n<strong>on</strong>decreasing?<br />

The first questi<strong>on</strong> has an affirmative answer if R is a complete intersecti<strong>on</strong> ([10]). In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radical square zero case <str<strong>on</strong>g>the</str<strong>on</strong>g> answer is also affirmative. We sketch <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> below (see<br />

also [15])<br />

Propositi<strong>on</strong> 24. Let R = (R, m, k) is a local artinian ring with m 2 = 0 <strong>and</strong> let M be a<br />

finitely generated R-module with cx M = 1. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> Betti numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> M are eventually<br />

c<strong>on</strong>stant.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let F be a finitely generated free R-module. We observe first that since m 2 = 0,<br />

every submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> mF is semisimple [3], so all <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygies <str<strong>on</strong>g>of</str<strong>on</strong>g> M must be semisimple. Let<br />

k denote <str<strong>on</strong>g>the</str<strong>on</strong>g> largest possible value <str<strong>on</strong>g>of</str<strong>on</strong>g> a Betti number <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> assume that it corresp<strong>on</strong>ds<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> i-th Betti number, that is β i (M) = k. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> i-th syzygy <str<strong>on</strong>g>of</str<strong>on</strong>g> M is a<br />

direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> k simple modules, hence β i+1 (M) ≥ k. Our choice <str<strong>on</strong>g>of</str<strong>on</strong>g> k implies now that<br />

β i+j (M) = k for all j ≥ 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

□<br />

Questi<strong>on</strong> 1 also has an affirmative answer in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where R = (R, m, k) is a commutative<br />

Gorenstein artinian ring with m 3 = 0, see [15]. Questi<strong>on</strong> 2 is also pretty much<br />

unresolved. In <str<strong>on</strong>g>the</str<strong>on</strong>g> local commutative artinian case, Gasharov <strong>and</strong> Peeva have shown<br />

([15]) that for a finitely generated module M, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

β i+1 (M) ≥ (2e − l(R) + h − 1)β i (M)<br />

for large enough i. Here e = dim k m/m 2 , h is <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> l(R) is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> R. They have also shown that if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant 2e − l(R) + h − 1 ≥ 2, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers has exp<strong>on</strong>ential growth. However it is not hard to produce<br />

examples <str<strong>on</strong>g>of</str<strong>on</strong>g> local commutative artinian rings where <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant 2e − l(R) + h − 1 is<br />

a negative number. We also want to menti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following two results due to Ramras<br />

[23, 24]:<br />

Theorem 25. Let (R, m, k) be a regular local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> at least two, <strong>and</strong> let<br />

S = R/m k for some k ≥ 2. Let M be a finitely generated n<strong>on</strong> free S-module. Then, for<br />

each i ≥ 1 we have βi+2(M) S > βi S (M).<br />

□<br />

<strong>and</strong><br />

–87–


Theorem 26. Let R be a local artinian ring, <strong>and</strong> let M be a finitely generated n<strong>on</strong> free<br />

R-module. Then, for each i ≥ 1 we have<br />

l(R)β i (M) > β i+1 (M) > l(socR) β i (M)<br />

l(R)<br />

Observe that if we assume in <str<strong>on</strong>g>the</str<strong>on</strong>g> last <str<strong>on</strong>g>the</str<strong>on</strong>g>orem that R is also selfinjective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n its socle<br />

has length equal to 1, so we d<strong>on</strong>’t get any extremely useful informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers.<br />

It turns out that in certain cases we can prove a similar <str<strong>on</strong>g>the</str<strong>on</strong>g>orem to Ramras’ first<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem. For this type <str<strong>on</strong>g>of</str<strong>on</strong>g> result we might restrict ourselves <strong>on</strong>ly to <str<strong>on</strong>g>the</str<strong>on</strong>g> local selfinjective<br />

case R = (R, m, k) but this is not necessary. Recall that since R is selfinjective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

for each integer n ≥ 0 we have that β i (τM) = β i+2 (M) if M is an indecomposable n<strong>on</strong><br />

projective R-module. We will assume that cx M > 1. Next we want to make sure that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> M c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> modules that are eventually Ω-perfect. As menti<strong>on</strong>ed<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong>, this can be easily achieved if we assume that every simple R-module<br />

is n<strong>on</strong> periodic (cx k > 1 for <str<strong>on</strong>g>the</str<strong>on</strong>g> local case) by [18].<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 27. Let R be a selfinjective algebra <strong>and</strong> let M be a finitely generated n<strong>on</strong> projective<br />

indecomposable R-module. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

quiver c<strong>on</strong>taining M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZA ∞ ∞ <strong>and</strong> that it c<strong>on</strong>sists entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually Ω-<br />

perfect modules. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (M)} n <strong>and</strong> {β 2n+1 (M)} n are eventually strictly<br />

increasing.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let M be a module in this comp<strong>on</strong>ent. We may assume that M is Ω-perfect by<br />

taking enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Ausl<strong>and</strong>er-Reiten translate. The Ausl<strong>and</strong>er-Reiten sequence<br />

ending at M must have <str<strong>on</strong>g>the</str<strong>on</strong>g> following form [18, 20]<br />

X ■ ■ <br />

τM M<br />

<br />

❑❑❑❑❑ ✉<br />

Y<br />

✉✉✉<br />

so we have an epimorphism τM → M that is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two Ω-perfect epimorphisms.<br />

But we can infer from 4 that whenever we have an Ω-perfect epimorphism<br />

f : B → C, <str<strong>on</strong>g>the</str<strong>on</strong>g>n for each i we have β i (B) > β i (C) since β i (Kerf) > 0. This implies that<br />

β i+2 (M) = β i (τM) > β i (X) > β i (M) for all i ≥ 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

□<br />

We now treat <str<strong>on</strong>g>the</str<strong>on</strong>g> D ∞ case.<br />

Lemma 28. Let R be a selfinjective algebra. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZD ∞ c<strong>on</strong>sisting entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually Ω-perfect modules.<br />

(1) Let M be a module in C s not lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> border <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent. Then <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequences {β 2n (M)} n <strong>and</strong> {β 2n+1 (M)} n are eventually strictly increasing.<br />

(2) Let Y <strong>and</strong> Z be two indecomposable modules in C s lying in <str<strong>on</strong>g>the</str<strong>on</strong>g> two different τ-<br />

orbits that form <str<strong>on</strong>g>the</str<strong>on</strong>g> border <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (Y ⊕ Z)} n<br />

<strong>and</strong> {β 2n+1 (Y ⊕ Z)} n are eventually strictly increasing.<br />

–88–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let M be an indecomposable module in this comp<strong>on</strong>ent. We may assume that M<br />

is Ω-perfect by taking enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translate. If <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten sequence ending at M has three indecomposable terms in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle, <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten sequence ending at M must have <str<strong>on</strong>g>the</str<strong>on</strong>g> following form [18, 20]<br />

X ■■<br />

■ <br />

τM ❑<br />

Y <br />

M<br />

❑❑❑❑ <br />

Z <br />

✉ ✉✉✉<br />

so as in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous lemma we have an epimorphism τM → M that is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two Ω-perfect epimorphisms. <strong>and</strong> β i+2 (M) = β i (τM) > β i (M) for all i ≥ 0. So<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> odd ,<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> even Betti numbers for M are strictly increasing. Next we<br />

look at <str<strong>on</strong>g>the</str<strong>on</strong>g> module X. It is clear that we may assume that X is also Ω-perfect. The<br />

Ausl<strong>and</strong>er-Reiten sequence ending at X is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τX → τM ⊕ X 1 → X → 0<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible map X 1 → X is an epimorphism. We proceed as in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> previous lemma <strong>and</strong> obtain that for large enough n, <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (X)} n <strong>and</strong><br />

{β 2n+1 (X)} n are strictly increasing. We proceed by inducti<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong>al path <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

irreducible epimorphisms<br />

· · · X n → · · · → X 2 → X 1 → X<br />

<strong>and</strong> we c<strong>on</strong>clude that for each module X j <str<strong>on</strong>g>the</str<strong>on</strong>g> two sequences {β 2n (X j )} n <strong>and</strong> {β 2n+1 (X j )} n<br />

are eventually strictly increasing. This implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> result holds for every module in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent, whose Ausl<strong>and</strong>er-Reiten sequence has <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term decomposing into<br />

two indecomposable summ<strong>and</strong>s. This proves <str<strong>on</strong>g>the</str<strong>on</strong>g> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma. By 20 we see<br />

that we have a compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two irreducible epimorphisms fro τY ⊕ τZ → Y ⊕ Z <strong>and</strong><br />

we may also assume that both Y <strong>and</strong> Z are Ω-perfect. This shows that {β 2n (Y ⊕ Z)} n<br />

<strong>and</strong> {β 2n+1 (Y ⊕ Z)} n are eventually strictly increasing.<br />

□<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> stable comp<strong>on</strong>ent is <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZÃn or Z ˜D n we proceed as above. We<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> following similar propositi<strong>on</strong>:<br />

Propositi<strong>on</strong> 29. Let R be a selfinjective algebra <strong>and</strong> let M be a finitely generated n<strong>on</strong><br />

projective indecomposable R-module. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten quiver c<strong>on</strong>taining M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZÃn or Z ˜D n <strong>and</strong> c<strong>on</strong>sists entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually<br />

Ω-perfect modules. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has a decomposable<br />

middle term. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (M)} n <strong>and</strong> {β 2n+1 (M)} n are eventually<br />

increasing.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Note first that M has complexity 2, by [20]. We use now <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that a comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> type ZÃn is <str<strong>on</strong>g>of</str<strong>on</strong>g> tree type A ∞ ∞ <strong>and</strong> use <str<strong>on</strong>g>the</str<strong>on</strong>g> same argument as above. For <str<strong>on</strong>g>the</str<strong>on</strong>g> case when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z ˜D n with n > 4, we can use <str<strong>on</strong>g>the</str<strong>on</strong>g> same pro<str<strong>on</strong>g>of</str<strong>on</strong>g> as in <str<strong>on</strong>g>the</str<strong>on</strong>g> Z ˜D ∞ case,<br />

so it remains to look at <str<strong>on</strong>g>the</str<strong>on</strong>g> case when n = 4. In that case, if M is an Ω-perfect module,<br />

by [18] <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τM [ f 1,f 2 ,f 3 ,f 4 ] T<br />

−−−−−−−−→ E 1 ⊕ E 2 ⊕ E 3 ⊕ E 4<br />

[ g 1 ,g 2 ,g 3 ,g 4 ]<br />

−−−−−−−→ M → 0<br />

–89–


where each f i is an irreducible epimorphism <strong>and</strong> each g i is an irreducible m<strong>on</strong>omorphism.<br />

We show first that at least <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two induced irreducible maps E 1 ⊕ E 2 → M or<br />

E 3 ⊕ E 4 → M is an irreducible epimorphism. Assume <str<strong>on</strong>g>the</str<strong>on</strong>g>y are both m<strong>on</strong>omorphisms.<br />

Then both l(E 1 ⊕ E 2 ) < l(M) <strong>and</strong> l(E 3 ⊕ E 4 ) < l(M) hence<br />

l(M) + l(τM) = l(E 1 ) + l(E 2 ) + l(E 3 ) + l(E 4 ) < 2l(M)<br />

implying l(τM) < l(M). Since M is Ω-perfect we can repeat this argument <strong>and</strong> we obtain<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence {l(τ n M)} is strictly decreasing; clearly a c<strong>on</strong>tradicti<strong>on</strong>. Therefore we<br />

may assume that E 3 ⊕ E 4 → M is an irreducible epimorphism. This means that we can<br />

look at our sequence as being<br />

0 → τM [ f 1,f 2 ,f 3<br />

−−−−−−→ ′ ]T<br />

E 1 ⊕ E 2 ⊕ E 3<br />

′ [ g 1 ,g 2 ,g 3<br />

−−−−−→ ′ ]<br />

M → 0<br />

where E 3 ′ = E 3 ⊕ E 4 . Now we obtain again from [18] that <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map f 3 ′ is an<br />

irreducible epimorphism <strong>and</strong> since M is Ω-perfect, β i (τM) > β i (M) for all i ≥ 0. The<br />

result follows now immediately.<br />

□<br />

References<br />

[1] J. L. Alperin, Periodicity in groups. Illinois J. Math. 21(4) (1977), 776–783.<br />

[2] J. L. Alperin, L. Evens, Representati<strong>on</strong>s, resoluti<strong>on</strong>s <strong>and</strong> Quillen’s dimensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. J. Pure Appl.<br />

Algebra 22(1) (1981), 1–9.<br />

[3] M. Ausl<strong>and</strong>er, I. Reiten, S. Smalø, Representati<strong>on</strong> <strong>Theory</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Artin Algebras, Cambridge Studies in<br />

Advanced Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol 36, (1997).<br />

[4] L. L. Avramov, Modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite virtual projective dimensi<strong>on</strong>, Invent. Math. 96 (1989), 71–101.<br />

[5] L. L. Avramov, Homological asymptotics <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over local rings, Commutative Algebra, Berkeley,<br />

1987 (M. Hochster, C. Huneke, J. Sally, eds), MSRI Publ. 15, Springer, New York, (1989), 33-62.<br />

[6] M. C. R. Butler, C. M. <strong>Ring</strong>el, Ausl<strong>and</strong>er-Reiten sequences with few middle terms <strong>and</strong> applicati<strong>on</strong>s<br />

to string algebras. Comm. Algebra 15(1-2) (1987), 145–179.<br />

[7] J. F. Carls<strong>on</strong>, Complexity <strong>and</strong> Krull dimensi<strong>on</strong>. Representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras (Puebla, 1980), 62-67,<br />

Lecture Notes in Math., 903, Springer, Berlin-New York, (1981).<br />

[8] J. F. Carls<strong>on</strong>, The complexity <strong>and</strong> varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> modules. Integral representati<strong>on</strong>s <strong>and</strong> applicati<strong>on</strong>s<br />

(Oberwolfach, 1980), 415–422, Lecture Notes in Math., 882, Springer, Berlin-New York, (1981).<br />

[9] A. Dugas, preprint (2011).<br />

[10] D. Eisenbud, Homological algebra <strong>on</strong> a complete intersecti<strong>on</strong>, with an applicati<strong>on</strong> to group representati<strong>on</strong>s.<br />

Trans. Amer. Math. Soc. 260(1) (1980), 35–64.<br />

[11] K. Erdmann,On Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents for group algebras, J. Pure Appl.Algebra 104 (1995),<br />

149–160.<br />

[12] K. Erdmann, Blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> tame representati<strong>on</strong> type <strong>and</strong> related algebras, Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

1428. Springer-Verlag, Berlin, (1990).<br />

[13] K. Erdmann, A. Skowroński, On Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> blocks <strong>and</strong> self-injective biserial<br />

algebras, Trans. Amer. Math. Soc. 330 (1992), 165–189.<br />

[14] R. Farnsteiner, Tameness <strong>and</strong> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> finite group schemes. Bull. L<strong>on</strong>d. Math. Soc. 39(1)<br />

(2007), 63–70.<br />

[15] V. N. Gasharov, I. V. Peeva, Boundedness versus periodicity over commutative local rings. Trans.<br />

Amer. Math. Soc. 320(2) (1990), 569–580.<br />

[16] E. H. Gover, M. Ramras, Increasing sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti Numbers, Pacific J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics 87 (1980),<br />

65–68.<br />

[17] E. L. Green, D. Zacharia, Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules with bounded Betti numbers,<br />

Trans. Amer. Math. Soc., 361 (2009), 4195–4214.<br />

–90–


[18] E. L. Green, D. Zacharia, On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective artin algebras. Algebras<br />

<strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong>., 5 (2011), 857–868.<br />

[19] D. Happel, U. Preiser, C. M. <strong>Ring</strong>el, Vinberg’s characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin diagrams using subadditive<br />

functi<strong>on</strong>s with applicati<strong>on</strong> to DTr-periodic modules. Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory II, pp. 280–294, Lecture<br />

Notes in Math., vol 832, Springer, Berlin, (1980).<br />

[20] O. Kerner, D. Zacharia, Ausl<strong>and</strong>er-Reiten <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over self-injective<br />

algebras, Bull. L<strong>on</strong>d<strong>on</strong>. Math. Soc., 43(1) (2011), 44–56.<br />

[21] O. Kroll, Complexity <strong>and</strong> elementary abelian p-groups. J. Algebra 88(1) (1984), 155–172.<br />

[22] S. Liu, R. Schulz, The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded infinite DTr-orbits. Proc. Amer. Math. Soc. 122(4)<br />

(1994), 1003–1005.<br />

[23] M. Ramras, Sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers. J. Algebra 66 (1980), 193–204.<br />

[24] M. Ramras, Bounds <strong>on</strong> Betti numbers. Canad. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Math. 34 (1982), 589–592.<br />

[25] J. Rickard, The representati<strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> self-injective algebras. Bull. L<strong>on</strong>d<strong>on</strong> Math. Soc. 22(6) (1990),<br />

540–546.<br />

[26] C. Riedtmann, Algebren, Darstellungsköcher, Ueberlagerungen und zurück. Comment. Math. Helv.<br />

55(2) (1980), 199–224.<br />

[27] C. M. <strong>Ring</strong>el, Tame algebras <strong>and</strong> integral quadratic forms. Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, 1099.<br />

Springer-Verlag, Berlin, (1984).<br />

[28] P. Webb, The Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group, Math. Z. 179(1) (1982), 97–121.<br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matisches Institut<br />

Heinrich-Heine-Universität<br />

40225 Düsseldorf, Germany<br />

E-mail address: kerner@math.uni-duesseldorf.de<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Syracuse University<br />

Syracuse, NY 13244, USA<br />

E-mail address: zacharia@syr.edu<br />

–91–


QUANTUM UNIPOTENT SUBGROUP AND DUAL CANONICAL<br />

BASIS<br />

YOSHIYUKI KIMURA<br />

Abstract. In a series <str<strong>on</strong>g>of</str<strong>on</strong>g> works [13, 16, 14, 15, 18, 19], Geiß-Leclerc-Schröer defined<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cluster algebra structure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate ring C[N(w)] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> unipotent subgroup,<br />

associated with a Weyl group element w. And <str<strong>on</strong>g>the</str<strong>on</strong>g>y proved cluster m<strong>on</strong>omials are c<strong>on</strong>tained<br />

in Lusztig’s dual semican<strong>on</strong>ical basis S ∗ . We give a set up for <str<strong>on</strong>g>the</str<strong>on</strong>g> quantizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir results <strong>and</strong> propose a c<strong>on</strong>jecture which relates <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum cluster algebras in<br />

[3] to <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis B up . In particular, we prove that <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum analogue<br />

O q [N(w)] <str<strong>on</strong>g>of</str<strong>on</strong>g> C[N(w)] has <str<strong>on</strong>g>the</str<strong>on</strong>g> induced basis from B up , which c<strong>on</strong>tains quantum flag minors<br />

<strong>and</strong> satisfies a factorizati<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘q-center’ <str<strong>on</strong>g>of</str<strong>on</strong>g> O q [N(w)].<br />

This generalizes Caldero’s results [4, 5, 6] from finite type to an arbitrary symmetrizable<br />

Kac-Moody Lie algebra.<br />

1. Introducti<strong>on</strong><br />

1.1. The can<strong>on</strong>ical basis B <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis B up . Let g be a symmetrizable<br />

Kac-Moody Lie algebra, U q (g) its associated quantized enveloping algebra,<br />

<strong>and</strong> U − q (g) its negative part. In [24], Lusztig c<strong>on</strong>structed <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical basis B <str<strong>on</strong>g>of</str<strong>on</strong>g> U − q (g)<br />

by a geometric method when g is symmetric. In [21], Kashiwara c<strong>on</strong>structed <str<strong>on</strong>g>the</str<strong>on</strong>g> (lower)<br />

global basis G low (B(∞)) by a purely algebraic method. Grojnowski-Lusztig [20] showed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> two bases coincide when g is symmetric. We call <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical basis.<br />

There are two remarkable properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical basis, <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> positivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

structure c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplicati<strong>on</strong> <strong>and</strong> comultiplicati<strong>on</strong>, <strong>and</strong> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r is Kashiwara’s<br />

crystal structure B(∞), which is a combinatorial machinery useful for applicati<strong>on</strong>s to<br />

representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, such as tensor product decompositi<strong>on</strong>.<br />

Since U − q (g) has a natural pairing which makes it into a (twisted) self-dual bialgebra, we<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> dual basis B up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical basis in U − q (g). We call it <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical<br />

basis.<br />

1.2. Cluster algebras. Cluster algebras were introduced by Fomin <strong>and</strong> Zelevinsky [10]<br />

<strong>and</strong> intensively studied also with Berenstein [11, 1, 12] with an aim <str<strong>on</strong>g>of</str<strong>on</strong>g> providing a c<strong>on</strong>crete<br />

<strong>and</strong> combinatorial setting for <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Lusztig’s (dual) can<strong>on</strong>ical basis <strong>and</strong> total positivity.<br />

Quantum cluster algebras were also introduced by Berenstein <strong>and</strong> Zelevinsky [3],<br />

Fock <strong>and</strong> G<strong>on</strong>charov [8, 9, 7] independently. The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (quantum) cluster algebra<br />

was motivated by Berenstein <strong>and</strong> Zelevinsky’s earlier work [2] where combinatorial <strong>and</strong><br />

multiplicative structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis were studied for g = sl n (2 ≤ n ≤ 4).<br />

In [1], it was shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate ring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> double Bruhat cell c<strong>on</strong>tains a cluster<br />

algebra as a subalgebra, which is c<strong>on</strong>jecturally equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> whole algebra.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper [22] will be published from Kyoto Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics.<br />

–92–


A cluster algebra A is a subalgebra <str<strong>on</strong>g>of</str<strong>on</strong>g> rati<strong>on</strong>al functi<strong>on</strong> field Q(x 1 , x 2 , · · · , x r ) <str<strong>on</strong>g>of</str<strong>on</strong>g> r<br />

indeterminates which is equipped with a distinguished set <str<strong>on</strong>g>of</str<strong>on</strong>g> generators (cluster variables)<br />

which is grouped into overlapping subsets (clusters) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> precisely r elements.<br />

Each subset is defined inductively by a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> certain combinatorial operati<strong>on</strong> (seed<br />

mutati<strong>on</strong>s) from <str<strong>on</strong>g>the</str<strong>on</strong>g> initial seed. The m<strong>on</strong>omials in <str<strong>on</strong>g>the</str<strong>on</strong>g> variables <str<strong>on</strong>g>of</str<strong>on</strong>g> a given single cluster<br />

are called cluster m<strong>on</strong>omials. However, it is not known whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r a cluster algebra have a<br />

basis, related to <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis, which includes all cluster m<strong>on</strong>omials in general.<br />

1.3. Cluster algebra <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> semican<strong>on</strong>ical basis. In a series <str<strong>on</strong>g>of</str<strong>on</strong>g> works [13, 16, 14,<br />

15, 18, 19], Geiß, Leclerc <strong>and</strong> Schröer introduced a cluster algebra structure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring C[N(w)] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> unipotent subgroup associated with a Weyl group element w.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore <str<strong>on</strong>g>the</str<strong>on</strong>g>y show that <str<strong>on</strong>g>the</str<strong>on</strong>g> dual semican<strong>on</strong>ical basis S ∗ is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong><br />

C[N(w)] ⊂ U(n) ∗ gr <strong>and</strong> c<strong>on</strong>tains all cluster m<strong>on</strong>omials. Here <str<strong>on</strong>g>the</str<strong>on</strong>g> dual semican<strong>on</strong>ical<br />

basis is <str<strong>on</strong>g>the</str<strong>on</strong>g> dual basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> semican<strong>on</strong>ical basis <str<strong>on</strong>g>of</str<strong>on</strong>g> U(n), introduced by Lusztig [25, 28],<br />

<strong>and</strong> “compatible” means that S ∗ ∩ C[N(w)] forms a C-basis <str<strong>on</strong>g>of</str<strong>on</strong>g> C[N(w)]. It is known<br />

that can<strong>on</strong>ical <strong>and</strong> semican<strong>on</strong>ical bases share similar combinatorial properties (crystal<br />

structure), but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are different. Geiß, Leclerc <strong>and</strong> Schröer c<strong>on</strong>jecture that certain dual<br />

semican<strong>on</strong>ical basis elements are specializati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding dual can<strong>on</strong>ical basis<br />

elements. This is called <str<strong>on</strong>g>the</str<strong>on</strong>g> open orbit c<strong>on</strong>jecture.<br />

Acknowledgement. The author is grateful to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Osamu Iyama for giving opportunity<br />

to talk in Okayama University.<br />

2. Quantum unipotent subgroup <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis<br />

2.1. Notati<strong>on</strong>s. Let g be a symmetrizable Kac-Moody Lie algebra <strong>and</strong> g = n + ⊕h⊕n − =<br />

h⊕ ⊕ α∈∆ g α be its triangular decompositi<strong>on</strong> <strong>and</strong> its root decompositi<strong>on</strong>. Let W be a Weyl<br />

group which is associated with g. Let ∆ ± be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> positive (resp. negative) roots. For<br />

a Weyl group element w ∈ W , we set ∆(w) := ∆ + ∩ w∆ − = {α ∈ ∆ + | w −1 α < 0} ⊂ ∆ + .<br />

For a Weyl group element w, let −→ w = (i 1 , i 2 , . . . , i l ) be a reduced expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> w. We set<br />

β k := s i1 . . . s ik−1 (α ik ) for each 1 ≤ k ≤ l. Then it is known that ∆(w) = {β k | 1 ≤ k ≤ l}.<br />

Let n(w) be <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotent Lie subalgebra which is associated with ∆(w), that is<br />

n(w) = ⊕<br />

g βk .<br />

1≤k≤l<br />

For i ∈ I, we have Lusztig’s braid symmetry T i <strong>on</strong> U q (g), see [26, Chapter 32] for<br />

more details. It is known that {T i } i∈I satisfies braid relati<strong>on</strong>s. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> composite<br />

T w := T i1 · · · T il does not depend <strong>on</strong> a choice <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced word −→ w = (i 1 , i 2 , . . . , i l ) <str<strong>on</strong>g>of</str<strong>on</strong>g> w. In<br />

this article, we set T i = T i,−1.<br />

′<br />

2.2. Poincaré-Birkh<str<strong>on</strong>g>of</str<strong>on</strong>g>f-Witt basis. Let g be a symmetrizable Kac-Moody Lie algebra<br />

<strong>and</strong> U q (g) be <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding quantized enveloping algebra. We have a st<strong>and</strong>ard generators<br />

{E i } i∈I ∪ {q h } ∪ {F i } i∈I Let U − q (g) be <str<strong>on</strong>g>the</str<strong>on</strong>g> Q(q)-subalgebra which is generated<br />

by {F i } i∈I . It is known that U − q (g) is isomophic to <str<strong>on</strong>g>the</str<strong>on</strong>g> Q(q)-algebra which is defined by<br />

–93–


{F i } i∈I <strong>and</strong> q-Serre relati<strong>on</strong>s<br />

1−a ij<br />

∑<br />

k=0<br />

(−1) k F (k)<br />

i F j F (1−a ij−k)<br />

i ,<br />

where {a ij } is <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized Cartamn matrix which defines g <strong>and</strong> F (k)<br />

i is <str<strong>on</strong>g>the</str<strong>on</strong>g> divided<br />

power which is defined by F (k)<br />

i := Fi k /[k] i !. Let U − q (g) Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> Q[q ±1 ]-subalgebra which<br />

is generated by {F (n)<br />

i } i∈I,n∈Z≥0 . This Q[q ±1 ]-algebra is called Lusztig’s Q[q ±1 ]-form.<br />

We define root vectors associated with a reduced word −→ w = (i 1 , i 2 , . . . , i l ) for a Weyl<br />

group element w ∈ W . See [26, Propositi<strong>on</strong> 40.1.3, Propositi<strong>on</strong> 41.1.4] for more detail.<br />

For a Weyl group elementw ∈ W <strong>and</strong> a reduced word −→ w = (i 1 , i 2 , . . . , i l ) , we define β k<br />

as above. We define <str<strong>on</strong>g>the</str<strong>on</strong>g> root vectors F (β k ) associated with β k ∈ ∆(w)<br />

F (β k ) = T i1 . . . T ik−1 (F ik ).<br />

It is known that F (β k ) ∈ U − q (g) for all 1 ≤ k ≤ l. We also define its divided power by<br />

F (cβ k ) = T i1 . . . T ik−1 (F (c)<br />

i k<br />

). For an l tuple <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers c = (c 1 , c 2 , . . . , c l ), we<br />

set<br />

It is known that F (c, −→ w ) ∈ U − q (g) Q .<br />

F (c, −→ w ) := F (c l β l ) · · · F (c 1 β 1 ).<br />

Theorem 1 ([26, Propositi<strong>on</strong> 40.2.1, Propositi<strong>on</strong> 41.1.3]).<br />

Theorem 2. (1) Then {F (c, −→ w )} c∈Z l<br />

≥0<br />

forms a Q(q)-basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a subspace defined to be<br />

U − q (w) <str<strong>on</strong>g>of</str<strong>on</strong>g> U − q (g) which does not depend <strong>on</strong> −→ w .<br />

(2) We have F (c, −→ w ) ∈ U − q (g) Q for all c ∈ Z l ≥0.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> total order <strong>on</strong> ∆(w) as follows:<br />

β 1 < β 2 < · · · < β l .<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>vex properties <strong>on</strong> {F (β k )} 1≤k≤l .<br />

Theorem 3 ([29, Propositi<strong>on</strong> 3.6], [23, 5.5.2 Propositi<strong>on</strong>]). For j < k, let us write<br />

F (c j β j )F (c k β k ) − q −(c jβ j ,c k β k ) F (c k β k )F (c j β j ) = ∑<br />

f c ′F (c ′ , −→ w )<br />

c ′ ∈Z l ≥0<br />

f c ′ ∈ Q(q). If f c ′ ≠ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n c ′ j < c j <strong>and</strong> c ′ k < c k with ∑ j≤m≤k c′ mβ m = c j β j + c k β k .<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> above formula, it is shown that U − q (w) is a Q(q)-algebra which is generated by<br />

{F (β k )} 1≤k≤l .<br />

2.3. PBW basis <strong>and</strong> crystal basis. Let L(∞) be <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> U − q (g) <strong>and</strong><br />

B(∞) be <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal basis <strong>and</strong> B <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>cial basis.<br />

The following result is due to Saito <strong>and</strong> Lusztig.<br />

–94–


Theorem 4 ([30, Theorem 4.1.2], [27, Propositi<strong>on</strong> 8.2]). (1) We have F (c, −→ w ) ∈ L(∞)<br />

<strong>and</strong><br />

b(c, −→ w ) := F (c, −→ w ) mod qL(∞) ∈ B(∞).<br />

(2) The map Z l ≥0 → B(∞) which is defined by c ↦→ b(c, −→ w ) is injective <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

B(w) does not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> −→ w .<br />

2.4. Dual can<strong>on</strong>ical basis. Let ( , ) K be <str<strong>on</strong>g>the</str<strong>on</strong>g> inner product <strong>on</strong> U − q (g) defined by Kashiwara<br />

<strong>and</strong> U − q (g) up<br />

Q<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> dual Q[q±1 ]-lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> U − q (g) Q . Let B up be <str<strong>on</strong>g>the</str<strong>on</strong>g> dual basis <str<strong>on</strong>g>of</str<strong>on</strong>g> B<br />

with respect to ( , ) K <strong>and</strong> this is called dual can<strong>on</strong>ical basis. We set<br />

F up (c, −→ w ) :=<br />

1<br />

(F (c, −→ w ), F (c, −→ w )) K<br />

F (c, −→ w ).<br />

Propositi<strong>on</strong> 5. (1) We have F up (β k ) ∈ B up .<br />

(2) Let U − q (w) up<br />

Q<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> Q[q±1 ]-span <str<strong>on</strong>g>of</str<strong>on</strong>g> {F up (c, −→ w )} c∈Z l<br />

≥0<br />

. Then U − q (w) up<br />

Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> Q[q±1 ]-<br />

algebra generated by {F up (β k )} 1≤k≤l .<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> above propositi<strong>on</strong> we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following compabitility. This is a quantum<br />

analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Geiß-Leclerc-Schroër’s result.<br />

Theorem 6. Let B up (w) := B up ∩ U − q (w) up<br />

Q . Then Bup (w) is a Q[q ±1 ]-basis <str<strong>on</strong>g>of</str<strong>on</strong>g> B up (w).<br />

2.5. Specializati<strong>on</strong> at q = 1. For <str<strong>on</strong>g>the</str<strong>on</strong>g> Lusztig form, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> specilizati<strong>on</strong> isomorphism<br />

C⊗ Q[q ±1 ]U − q (g) Q ≃ U(n). Dually, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> C-algebra isomorphism Φ up : C⊗ Q[q ±1 ]<br />

U − q (g) up<br />

Q<br />

≃ C[N].<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism C ⊗ Q[q ±1 ] U − q (g) up<br />

Q<br />

≃ C[N], as a corollay <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following result for U − q (w) which c<strong>on</strong>cerns <str<strong>on</strong>g>the</str<strong>on</strong>g> specializati<strong>on</strong> at q = 1.<br />

Corollary 7. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> C-algebra isomorphism Φ up , we have<br />

C ⊗ Q[q ±1 ] U − q (w) up<br />

Q<br />

≃ C[N(w)],<br />

where N(w) is <str<strong>on</strong>g>the</str<strong>on</strong>g> unipotent subgroup associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotent Lie algebra n(w).<br />

3. Quantum closed unipotent subgroup <strong>and</strong> Dual can<strong>on</strong>ical basis<br />

For a Weyl group element w ∈ W <strong>and</strong> a reduced word −→ w = (i 1 , . . . , i l ), we set<br />

∑<br />

U − w :=<br />

Q(q)F (a 1)<br />

i 1<br />

. . . F (a l)<br />

i l<br />

.<br />

a=(a 1 ,...,a l )∈Z l ≥0<br />

This is called Demazure-Schubert filtrati<strong>on</strong>. It is known that U − w is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

can<strong>on</strong>ical basis B, that is B ∩ U − w is a Q[q ±1 ]-basis <str<strong>on</strong>g>of</str<strong>on</strong>g> U − w. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> correp<strong>on</strong>ding<br />

subset by B(w, ∞). Hence we set<br />

O q [N w ] := U − q (g)/(U − w) ⊥ ,<br />

where (U − w) ⊥ is <str<strong>on</strong>g>the</str<strong>on</strong>g> annhilator <str<strong>on</strong>g>of</str<strong>on</strong>g> U − w with respect to Kashiwara’s bilinear form ( , ) K .<br />

Since (U − w) ⊥ is compatible with B up , <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical projecti<strong>on</strong> induces <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical<br />

basis <strong>on</strong> O q [N w ].<br />

–95–


Theorem 8. (1)Let U − q (w) → U − q (g) → O q [N w ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical<br />

projectin<strong>on</strong>. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> composite is m<strong>on</strong>omorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> algebra.<br />

(2) We have B(w) ⊂ B(w, ∞).<br />

4. Quantum flag minor <strong>and</strong> Its multiplicative proprerties<br />

For a dominant integral weight λ ∈ P + , let V (λ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding integrable highest<br />

weight module with highest weight vector u λ . We have symmetric bilinear form ( , ) λ <strong>on</strong><br />

V (λ). Let π λ : U − q (g) ↠ V (λ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong> defined by x ↦→ xu λ . Let j λ be dual <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

π λ , that is j λ : V (λ) ↩→ U − q (g). For a Weyl group element w ∈ W , we have <str<strong>on</strong>g>the</str<strong>on</strong>g> extremal<br />

vector u wλ <str<strong>on</strong>g>of</str<strong>on</strong>g> weight λ. It is known that u wλ is c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> canoical basis <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dual can<strong>on</strong>cial basis. We set quantum unipotent minro D wλ,λ by<br />

D wλ,λ := j λ (u wλ ).<br />

It is known that D wλ,λ ∈ B up . The following is main result in our study.<br />

Theorem 9. (1) For w ∈ W <strong>and</strong> λ ∈ P + , we have D wλ,λ ∈ U − q (w).<br />

(2) For arbitrary b ∈ B(w), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists N ∈ Z such that q N G up (b)D wλ,λ ∈ B up (w),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re G up (b) is <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis element which is associated with b ∈ B(w).<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following quantum seed.<br />

For a Weyl group element w, a reduced word −→ w = (i 1 , i 2 , . . . , i l ) <strong>and</strong> c = (c 1 , . . . , c l ) ∈<br />

Z l ≥0, we set<br />

D −→w (c) := ∏<br />

D si1 ...s ik c k ϖ ik ,c k ϖ ik<br />

.<br />

1≤k≤l<br />

Then {D −→w (c)} c∈Z l<br />

≥0<br />

forms a mutually commmuting familty <strong>and</strong> {D −→w (c)} c∈Z l<br />

≥0<br />

is linear<br />

independent over Z[q ±1 ]. {D −→w (c)} c∈Z l<br />

≥0<br />

can be c<strong>on</strong>sidered as a quantum analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

initial seed in [18] <strong>and</strong> we can form <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding quantum cluster algebra by it. Our<br />

c<strong>on</strong>jecture is an Q[q ±1 ]-algebra isomorphism between <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum cluster algebra <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quantum unipotent subgroup O q [N(w)] <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum cluster m<strong>on</strong>omials is<br />

c<strong>on</strong>tained by <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis B up (w). This is just a quantum analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> [18]<br />

<strong>and</strong> this is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir open orbit c<strong>on</strong>jecture for symmetric g. Recently <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Q(q)-algebra isomorphism is obtained by [17].<br />

References<br />

[1] A. Berenstein, S. Fomin, <strong>and</strong> A. Zelevinsky. Cluster algebras. III. Upper bounds <strong>and</strong> double Bruhat<br />

cells. Duke Math. J., 126(1):1–52, 2005.<br />

[2] A. Berenstein <strong>and</strong> A. Zelevinsky. String bases for quantum groups <str<strong>on</strong>g>of</str<strong>on</strong>g> type A r . In I. M. Gelf<strong>and</strong><br />

Seminar, volume 16 <str<strong>on</strong>g>of</str<strong>on</strong>g> Adv. Soviet Math., pages 51–89. Amer. Math. Soc., Providence, RI, 1993.<br />

[3] A. Berenstein <strong>and</strong> A. Zelevinsky. Quantum cluster algebras. Adv. Math., 195(2):405–455, 2005.<br />

[4] P. Caldero. On <str<strong>on</strong>g>the</str<strong>on</strong>g> q-commutati<strong>on</strong>s in U q (n) at roots <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e. J. Algebra, 210(2):557–576, 1998.<br />

[5] P. Caldero. Adapted algebras for <str<strong>on</strong>g>the</str<strong>on</strong>g> Berenstein-Zelevinsky c<strong>on</strong>jecture. Transform. Groups, 8(1):37–<br />

50, 2003.<br />

[6] P. Caldero. A multiplicative property <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum flag minors. Represent. <strong>Theory</strong>, 7:164–176 (electr<strong>on</strong>ic),<br />

2003.<br />

[7] V. V. Fock <strong>and</strong> A. B. G<strong>on</strong>charov. The quantum dilogarithm <strong>and</strong> representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum cluster<br />

varieties. Invent. Math., 175(2):223–286, 2009.<br />

–96–


[8] V.V. Fock <strong>and</strong> A.B. G<strong>on</strong>charov. Cluster ensembles, quantizati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dilogarithm. Ann. Sci. Éc.<br />

Norm. Supér. (4), 42(6):865–930, 2009.<br />

[9] V.V. Fock <strong>and</strong> A.B. G<strong>on</strong>charov. Cluster ensembles, quantizati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dilogarithm. II. <str<strong>on</strong>g>the</str<strong>on</strong>g> intertwiner.<br />

In Algebra, arithmetic, <strong>and</strong> geometry: in h<strong>on</strong>or <str<strong>on</strong>g>of</str<strong>on</strong>g> Yu. I. Manin. Vol. I, volume 269 <str<strong>on</strong>g>of</str<strong>on</strong>g> Progr.<br />

Math., pages 655–673. Birkhäuser Bost<strong>on</strong> Inc., Bost<strong>on</strong>, MA, 2009.<br />

[10] S. Fomin <strong>and</strong> A. Zelevinsky. Cluster algebras. I. Foundati<strong>on</strong>s. J. Amer. Math. Soc., 15(2):497–529<br />

(electr<strong>on</strong>ic), 2002.<br />

[11] S. Fomin <strong>and</strong> A. Zelevinsky. Cluster algebras. II. Finite type classificati<strong>on</strong>. Invent. Math., 154(1):63–<br />

121, 2003.<br />

[12] S. Fomin <strong>and</strong> A. Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math., 143(1):112–164, 2007.<br />

[13] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Semican<strong>on</strong>ical bases <strong>and</strong> preprojective algebras. Ann. Sci. École<br />

Norm. Sup. (4), 38(2):193–253, 2005.<br />

[14] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Verma modules <strong>and</strong> preprojective algebras. Nagoya Math. J.,<br />

182:241–258, 2006.<br />

[15] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Cluster algebra structures <strong>and</strong> semican<strong>on</strong>ical bases for unipotent<br />

groups. E-print arXiv http://arxiv.org/abs/math/0703039, 2007.<br />

[16] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Semican<strong>on</strong>ical bases <strong>and</strong> preprojective algebras. II. A multiplicati<strong>on</strong><br />

formula. Compos. Math., 143(5):1313–1334, 2007.<br />

[17] C. Geiss, B. Leclerc, <strong>and</strong> J. Schröer. Cluster structures <strong>on</strong> quantum coordinate rings. E-print arXiv<br />

http://arxiv.org/abs/1104.0531v2, 04 2011.<br />

[18] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Kac–moody groups <strong>and</strong> cluster algebras. Advances in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

228(1):329–433, Sep 2011.<br />

[19] Christ<str<strong>on</strong>g>of</str<strong>on</strong>g> Geiß, Bernard Leclerc, <strong>and</strong> Jan Schröer. Generic bases for cluster algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber<br />

ansatz. J. Amer. Math. Soc. 25 (2012), 21-76, 04 2010.<br />

[20] I. Grojnowski <strong>and</strong> G. Lusztig. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantized enveloping algebras. In Linear<br />

algebraic groups <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir representati<strong>on</strong>s (Los Angeles, CA, 1992), volume 153 <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>temp. Math.,<br />

pages 11–19. Amer. Math. Soc., Providence, RI, 1993.<br />

[21] M. Kashiwara. On crystal bases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Q-analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> universal enveloping algebras. Duke Math. J.,<br />

63(2):465–516, 1991.<br />

[22] Y. Kimura. Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis. E-print arXiv<br />

http://arxiv.org/abs/1010.4242, to appear in Kyoto J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Math., 2010.<br />

[23] S. Levendorskiĭ <strong>and</strong> Y. Soĭbelman. Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s <strong>on</strong> compact quantum groups, Schubert cells<br />

<strong>and</strong> quantum tori. Comm. Math. Phys., 139(1):141–170, 1991.<br />

[24] G. Lusztig. Quivers, perverse sheaves, <strong>and</strong> quantized enveloping algebras. J. Amer. Math. Soc.,<br />

4(2):365–421, 1991.<br />

[25] G. Lusztig. Affine quivers <strong>and</strong> can<strong>on</strong>ical bases. Inst. Hautes Études Sci. Publ. Math., (76):111–163,<br />

1992.<br />

[26] G. Lusztig. Introducti<strong>on</strong> to quantum groups, volume 110 <str<strong>on</strong>g>of</str<strong>on</strong>g> Progress in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics. Birkhäuser<br />

Bost<strong>on</strong> Inc., Bost<strong>on</strong>, MA, 1993.<br />

[27] G. Lusztig. Braid group acti<strong>on</strong> <strong>and</strong> can<strong>on</strong>ical bases. Adv. Math., 122(2):237–261, 1996.<br />

[28] G. Lusztig. Semican<strong>on</strong>ical bases arising from enveloping algebras. Adv. Math., 151(2):129–139, 2000.<br />

[29] H. Nakajima. Quiver varieties <strong>and</strong> can<strong>on</strong>ical bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum affine algebras. Available at<br />

http://www4.ncsu.edu/ jing/c<strong>on</strong>f/CBMS/cbms10.html, 2010.<br />

[30] Y. Saito. PBW basis <str<strong>on</strong>g>of</str<strong>on</strong>g> quantized universal enveloping algebras. Publ. Res. Inst. Math. Sci.,<br />

30(2):209–232, 1994.<br />

Research Insitute for Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Sciences<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

Kyoto University<br />

Kitashiwakawa Oiwake-cho, Sakyo-ku, Kyoto, Yamanashi 606-8502 JAPAN<br />

–97–


E-mail address: ykimura@kurims.kyoto-u.ac.jp<br />

–98–


WEAKLY CLOSED GRAPH<br />

KAZUNORI MATSUDA<br />

Abstract. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak closedness for c<strong>on</strong>nected simple graphs.<br />

This noti<strong>on</strong> is a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closedness introduced by Herzog-Hibi-Hreindóttir-<br />

Kahle-Rauh. We give a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs <strong>and</strong> prove that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

binomial edge ideal J G is F -pure for weakly closed graph G.<br />

Key Words:<br />

binomial edge ideal, F-purity, weakly closed graph.<br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: 05C25, 05E40, 13A35, 13C05.<br />

1. Introducti<strong>on</strong><br />

This article is based <strong>on</strong> [6].<br />

Throughout this article, let k be an F -finite field <str<strong>on</strong>g>of</str<strong>on</strong>g> positive characteristic. Let G be<br />

a graph <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex set V (G) = [n] with edge set E(G). We assume that a graph G<br />

is always c<strong>on</strong>nected <strong>and</strong> simple, that is, G is c<strong>on</strong>nected <strong>and</strong> has no loops <strong>and</strong> multiple<br />

edges. And <str<strong>on</strong>g>the</str<strong>on</strong>g> term “labeling” means numbering <str<strong>on</strong>g>of</str<strong>on</strong>g> V (G) from 1 to n.<br />

For each graph G, we call J G := ([i, j] = X i Y j − X j Y i | {i, j} ∈ E(G)) <str<strong>on</strong>g>the</str<strong>on</strong>g> binomial<br />

edge ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> G (see [4], [8]). J G is an ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> S := k[X 1 , . . . , X n , Y 1 , . . . , Y n ].<br />

2. Weakly closed graph<br />

In this secti<strong>on</strong>, we give <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter, which is a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs.<br />

Until we define <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak closedness, we fix a graph G <strong>and</strong> a labeling <str<strong>on</strong>g>of</str<strong>on</strong>g> V (G).<br />

Let (a 1 , . . . , a n ) be a sequence such that 1 ≤ a i ≤ n <strong>and</strong> a i ≠ a j if i ≠ j.<br />

Definiti<strong>on</strong> 1. We say that a i is interchangeable with a i+1 if {a i , a i+1 } ∈ E(G). And we<br />

call <str<strong>on</strong>g>the</str<strong>on</strong>g> following operati<strong>on</strong> {a i , a i+1 }-interchanging :<br />

(a 1 , . . . , a i−1 , a i , a i+1 , a i+2 , . . . , a n ) → (a 1 , . . . , a i−1 , a i+1 , a i , a i+2 , . . . , a n )<br />

Definiti<strong>on</strong> 2. Let {i, j} ∈ E(G). We say that i is adjacentable with j if <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

asserti<strong>on</strong> holds: for a sequence (1, 2, . . . , n), by repeating interchanging, <strong>on</strong>e can find a<br />

sequence (a 1 , . . . , a n ) such that a k = i <strong>and</strong> a k+1 = j for some k.<br />

Example 3. About <str<strong>on</strong>g>the</str<strong>on</strong>g> following graph G, 1 is adjacentable with 4:<br />

1 2<br />

3<br />

4 <br />

<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–99–


Indeed,<br />

(1, 2, 3, 4) {1,2}<br />

−−→ (2, 1, 3, 4) {3,4}<br />

−−→ (2, 1, 4, 3).<br />

Now, we can define <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graph.<br />

Definiti<strong>on</strong> 4. Let G be a graph. G is said to be weakly closed if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a labeling<br />

which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>: for all i, j such that {i, j} ∈ E(G), i is adjacentable<br />

with j.<br />

Example 5. The following graph G is weakly closed:<br />

Indeed,<br />

4 <br />

♦♦♦♦♦♦♦ ❖❖❖❖❖❖❖<br />

5 1<br />

6 2<br />

❖❖❖❖❖❖❖<br />

♦♦♦♦♦♦♦<br />

3<br />

(1, 2, 3, 4, 5, 6) {1,2}<br />

−−→ (2, 1, 3, 4, 5, 6) {3,4}<br />

−−→ (2, 1, 4, 3, 5, 6),<br />

(1, 2, 3, 4, 5, 6) {3,4}<br />

−−→ (1, 2, 4, 3, 5, 6) {5,6}<br />

−−→ (1, 2, 4, 3, 6, 5).<br />

Hence 1 is adjacentable with 4 <strong>and</strong> 3 is adjacentable with 6.<br />

Before stating <str<strong>on</strong>g>the</str<strong>on</strong>g> first main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter, which is a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weakly closed graphs, we recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closed graphs.<br />

Definiti<strong>on</strong> 6 (See [4]). G is closed with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> given labeling if <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong> is satisfied: for all {i, j}, {k, l} ∈ E(G) with i < j <strong>and</strong> k < l <strong>on</strong>e has {j, l} ∈<br />

E(G) if i = k but j ≠ l, <strong>and</strong> {i, k} ∈ E(G) if j = l but i ≠ k.<br />

In particular, G is closed if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a labeling for which it is closed.<br />

Remark 7. (1) [4, Theorem 1.1] G is closed if <strong>and</strong> <strong>on</strong>ly if J G has a quadratic Gröbner<br />

basis. Hence if G is closed <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is Koszul algebra.<br />

(2) [2, Theorem 2.2] Let G be a graph. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(a) G is closed.<br />

(b) There exists a labeling <str<strong>on</strong>g>of</str<strong>on</strong>g> V (G) such that all facets <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆(G) are intervals<br />

[a, b] ⊂ [n], where ∆(G) is <str<strong>on</strong>g>the</str<strong>on</strong>g> clique complex <str<strong>on</strong>g>of</str<strong>on</strong>g> G.<br />

The following characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closed graphs is a reinterpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Crupi <strong>and</strong> Rinaldo’s<br />

<strong>on</strong>e. This is relevant to <str<strong>on</strong>g>the</str<strong>on</strong>g> first main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter deeply.<br />

Propositi<strong>on</strong> 8 (See [1, Propositi<strong>on</strong> 2.6]). Let G be a graph. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s<br />

are equivalent:<br />

–100–


(1) G is closed.<br />

(2) There exists a labeling which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>: for all i, j such that<br />

{i, j} ∈ E(G) <strong>and</strong> j > i + 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong> holds: for all i < k < j,<br />

{i, k} ∈ E(G) <strong>and</strong> {k, j} ∈ E(G).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) ⇒ (2): Let {i, j} ∈ E(G). Since G is closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a labeling satisfying<br />

{i, i + 1}, {i + 1, i + 2}, . . . , {j − 1, j} ∈ E(G) by [HeHiHrKR, Propositi<strong>on</strong> 1.4]. Then<br />

we have that {i, i + 2}, . . . , {i, j − 2}, {i, j − 1} ∈ E(G) by <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closedness.<br />

Similarly, we also have that {k, j} ∈ E(G) for all i < k < j.<br />

(2) ⇒ (1): Assume that i < k < j. If {i, k}, {i, j} ∈ E(G), <str<strong>on</strong>g>the</str<strong>on</strong>g>n {k, j} ∈ E(G)<br />

by assumpti<strong>on</strong>. Similarly, if {i, j}, {k, j} ∈ E(G), <str<strong>on</strong>g>the</str<strong>on</strong>g>n {i, k} ∈ E(G). Therefore G is<br />

closed.<br />

□<br />

The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem characterizes weakly closed graph.<br />

Theorem 9. Let G be a graph. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(1) G is weakly closed.<br />

(2) There exists a labeling which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>: for all i, j such that<br />

{i, j} ∈ E(G) <strong>and</strong> j > i + 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong> holds: for all i < k < j,<br />

{i, k} ∈ E(G) or {k, j} ∈ E(G).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) ⇒ (2): Assume that {i, j} ∈ E(G), {i, k} ∉ E(G) <strong>and</strong> {k, j} ∉ E(G) for<br />

some i < k < j. Then i is not adjacentable with j, which is in c<strong>on</strong>tradicti<strong>on</strong> with weak<br />

closedness <str<strong>on</strong>g>of</str<strong>on</strong>g> G.<br />

(2) ⇒ (1): Let {i, j}E(G). By repeating interchanging al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> following algorithm,<br />

we can see that i is adjacentable with j:<br />

(a): Let A := {k | {k, j} ∈ E(G), i < k < j} <strong>and</strong> C := ∅.<br />

(b): If A = ∅ <str<strong>on</strong>g>the</str<strong>on</strong>g>n go to (g), o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise let s := max{A}.<br />

(c): Let B := {t | {s, t} ∈ E(G), s < t ≤ j} \ C = {t 1 , . . . , t m = j}, where t 1 < . . . <<br />

t m = j.<br />

(d): Take {s, t 1 }-interchanging, {s, t 2 }-interchanging, . . . , {s, t m = j}-interchanging in<br />

turn.<br />

(e): Let A := A \ {s} <strong>and</strong> C := C ∪ {s}.<br />

(f): Go to (b).<br />

(g): Let U := {u | i < u < j, {i, u} ∈ E(G) <strong>and</strong> {u, j} ∉ E(G)} <strong>and</strong> W := ∅.<br />

(h): If U = ∅ <str<strong>on</strong>g>the</str<strong>on</strong>g>n go to (m), o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise let u := min{U}.<br />

(i): Let V := {v | {v, u} ∈ E(G), i ≤ v < u} \ W = {v 1 = i, . . . , v l }, where v 1 = i <<br />

. . . < v l .<br />

(j): Take {v 1 = i, u}-interchanging, {v 2 , u}-interchanging, . . . , {v l , u}-interchanging in<br />

turn.<br />

(k): Let U := U \ {u} <strong>and</strong> W := W ∪ {u}.<br />

(l): Go to (h).<br />

(m): Finished.<br />

□<br />

–101–


By comparing this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> Propositi<strong>on</strong> 8, we get <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary. A graph<br />

G is said to be complete r-partite if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a partiti<strong>on</strong> V (G) = ∐ r<br />

i=1 V i such that<br />

{i, j} ∈ E(G) if <strong>and</strong> <strong>on</strong>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> a ≠ b for all i ∈ V a <strong>and</strong> j ∈ V b .<br />

Corollary 10. Closed graphs <strong>and</strong> complete r-partite graphs are weakly closed.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Assume that G is complete r-partite <strong>and</strong> V (G) = ∐ r<br />

i=1 V i. Let {i, j} ∈ E(G) with<br />

i ∈ V a <strong>and</strong> j ∈ V b . Then a ≠ b. Hence for all i < k < j, k ∉ V a or k /∈ V b . This implies<br />

that {i, k} ∈ E(G) or {k, j} ∈ E(G).<br />

□<br />

3. F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> binomial edge ideals<br />

In this secti<strong>on</strong>, we study about F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> binomial edge ideals. Firstly, we recall that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring R.<br />

Definiti<strong>on</strong> 11 (See [5]). Let R be an F -finite reduced Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

p > 0. R is said to be F-pure if <str<strong>on</strong>g>the</str<strong>on</strong>g> Frobenius map R → R, x ↦→ x p is pure, equivalently,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> natural inclusi<strong>on</strong> τ : R ↩→ R 1/p , (x ↦→ (x p ) 1/p ) is pure, that is, M → M ⊗ R R 1/p ,<br />

m ↦→ m ⊗ 1 is injective for every R-module M.<br />

The following propositi<strong>on</strong>, which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Fedder’s criteri<strong>on</strong>, is useful to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring R.<br />

Propositi<strong>on</strong> 12 (See [3]). Let (S, m) be a regular local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic p > 0. Let<br />

I be an ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> S. Put R = S/I. Then R is F -pure if <strong>and</strong> <strong>on</strong>ly if I [p] : I ⊈ m [p] , where<br />

J [p] = (x p | x ∈ J) for an ideal J <str<strong>on</strong>g>of</str<strong>on</strong>g> S.<br />

In this secti<strong>on</strong>, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>:<br />

Questi<strong>on</strong>. When is S/J G F -pure ?<br />

In [8], Ohtani proved that if G is complete r-partite graph <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure. Moreover,<br />

it is easy to show that if G is closed <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are many<br />

examples <str<strong>on</strong>g>of</str<strong>on</strong>g> G such that G is nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r complete r-partite nor closed but S/J G is F -pure.<br />

Namely, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is room for improvement about <str<strong>on</strong>g>the</str<strong>on</strong>g> above studies.<br />

The sec<strong>on</strong>d main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is as follows:<br />

Theorem 13. If G is weakly closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For a sequence v 1 , v 2 , . . . , v s , we put<br />

Y v1 (v 1 , v 2 , . . . , v s )X vs := (Y v1 [v 1 , v 2 ][v 2 , v 3 ] · · · [v s−1 , v s ]X vs ) p−1 .<br />

Let m = (X 1 , . . . , X n , Y 1 , . . . , Y n )S. By taking completi<strong>on</strong> <strong>and</strong> using Propositi<strong>on</strong> 2.2, it<br />

is enough to show that Y 1 (1, 2, . . . , n)X n ∈ (J [p]<br />

G : J G) \ m [p] . It is easy to show that<br />

Y 1 (1, 2, . . . , n)X n ∉ m [p] by c<strong>on</strong>sidering its initial m<strong>on</strong>omial.<br />

Next, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemmas (see [8]):<br />

–102–


Lemma 14 ([8, Formula 1]). If {a, b} ∈ E(G), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

modulo J [p]<br />

G .<br />

Y v1 (v 1 , . . . , c, a, b, d, . . . , v n )X vn ≡ Y v1 (v 1 , . . . , c, b, a, d, . . . , v n )X vn<br />

Lemma 15 ([8, Formula 2]). If {a, b} ∈ E(G), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

modulo J [p]<br />

G .<br />

Y a (a, b, c, . . . , v n )X vn ≡ Y b (b, a, c, . . . , v n )X vn ,<br />

Y v1 (v 1 , . . . , c, a, b)X b ≡ Y v1 (v 1 , . . . , c, b, a)X a<br />

Let {i, j} ∈ E(G). Since G is weakly closed, i is adjacentable with j. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists a polynomial g ∈ S such that<br />

modulo J [p]<br />

G<br />

Y 1 (1, 2, . . . , n)X n ≡ g · [i, j] p−1<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> above lemmas. This implies Y 1(1, 2, . . . , n)X n ∈ (J [p]<br />

G : J G). □<br />

4. Difference between closedness <strong>and</strong> weak closedness <strong>and</strong> some<br />

examples<br />

In this secti<strong>on</strong>, we state <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between closedness <strong>and</strong> weak closedness <strong>and</strong> give<br />

some examples.<br />

Propositi<strong>on</strong> 16. Let G be a graph.<br />

(1) [4, Propositi<strong>on</strong> 1.2] If G is closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n G is chordal, that is, every cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> G with<br />

length t > 3 has a chord.<br />

(2) If G is weakly closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n every cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> G with length t > 4 has a chord.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (2) It is enough to show that <str<strong>on</strong>g>the</str<strong>on</strong>g> pentag<strong>on</strong> graph G with edges {a, b}, {b, c}, {c, d},<br />

{d, e} <strong>and</strong> {a, e} is not weakly closed. Suppose that G is weakly closed. We may assume<br />

that a = min{a, b, c, d, e} without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality. Then b ≠ max{a, b, c, d, e}. Indeed,<br />

if b = max{a, b, c, d, e}, <str<strong>on</strong>g>the</str<strong>on</strong>g>n c, d, e are c<strong>on</strong>nected with a or b by <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak<br />

closedness, but this is a c<strong>on</strong>tradicti<strong>on</strong>. Similarly, e ≠ max{a, b, c, d, e}. Hence we may<br />

assume that c = max{a, b, c, d, e} by symmetry. If b = min{b, c, d}, <str<strong>on</strong>g>the</str<strong>on</strong>g>n d, e are c<strong>on</strong>nected<br />

with b or c, a c<strong>on</strong>tradicti<strong>on</strong>. Therefore, b ≠ min{b, c, d}. Similarly, b ≠ max{b, c, d}.<br />

Hence we may assume that d = min{b, c, d} <strong>and</strong> e = max{b, c, d} by symmetry. Then<br />

{a, b} <strong>and</strong> a < d < b, but {a, d}, {d, b} ∉ E(G). This is a c<strong>on</strong>tradicti<strong>on</strong>.<br />

□<br />

Next, we give a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closed (resp. weakly closed) tree graphs in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

claw (resp. bigclaw). A graph G is said to be tree if G has no cycles. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following graphs (a) <strong>and</strong> (b). We call <str<strong>on</strong>g>the</str<strong>on</strong>g> graph (a) a claw <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> graph (b) a bigclaw.<br />

–103–


(a)<br />

(b)<br />

Propositi<strong>on</strong> 17. Let G be a tree.<br />

(1) [4, Corollary 1.3] The following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(a) G is closed.<br />

(b) G is a path.<br />

(c) G is a claw-free graph.<br />

(2) The following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(a) G is weakly closed.<br />

(b) G is a caterpillar, that is, a tree for which removing <str<strong>on</strong>g>the</str<strong>on</strong>g> leaves <strong>and</strong> incident<br />

edges produces a path graph.<br />

(c) G is a bigclaw-free graph.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (2) One can see that a bigclaw graph is not weakly closed.<br />

Remark 18. From Propositi<strong>on</strong> 17(2), we have that chordal graphs are not always weakly<br />

closed. As o<str<strong>on</strong>g>the</str<strong>on</strong>g>r examples, <str<strong>on</strong>g>the</str<strong>on</strong>g> following graphs are chordal, but not weakly closed:<br />

✹<br />

✹<br />

♦♦♦♦♦♦♦<br />

❖❖❖❖❖❖❖ ✹<br />

✹<br />

✹ <br />

✹<br />

✹<br />

✹<br />

✡ <br />

❖❖❖❖❖❖❖<br />

✡✡✡✡✡✡✡✡✡✡<br />

✹<br />

✹ ✹<br />

♦♦♦♦♦♦♦<br />

References<br />

✹<br />

✹<br />

♦♦♦♦♦♦♦<br />

✹<br />

✹<br />

✹ <br />

✹<br />

✹<br />

✹<br />

✡ <br />

❖❖❖❖❖❖❖<br />

✡✡✡✡✡✡✡✡✡✡<br />

✹<br />

✹ ✹<br />

<br />

[1] M. Crupi <strong>and</strong> G. Rinaldo, Koszulness <str<strong>on</strong>g>of</str<strong>on</strong>g> binomial edge ideals, arXiv:1007.4383.<br />

[2] V. Ene, J. Herzog <strong>and</strong> T. Hibi, Cohen-Macaulay binomial edge ideals, arXiv:1004.0143.<br />

[3] R. Fedder, F-purity <strong>and</strong> rati<strong>on</strong>al singularity, Trans. Amer. Math. Soc., 278 (1983), 461–480.<br />

[4] J. Herzog, T. Hibi, F. Hreindóttir, T. Kahle <strong>and</strong> J. Rauh, Binomial edge ideals <strong>and</strong> c<strong>on</strong>diti<strong>on</strong>al<br />

independence statements, Adv. Appl. Math., 45 (2010), 317–333.<br />

[5] M. Hochster <strong>and</strong> J. L. Roberts, The purity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Frobenius <strong>and</strong> Local Cohomology, Adv. in Math.,<br />

21 (1976), 117–172.<br />

[6] K. Matsuda, Weakly closed graph, preprint.<br />

[7] M. Ohtani, Graphs <strong>and</strong> ideals generated by some 2-minors, Comm. Alg., 39 (2011), 905–917.<br />

[8] , Binomial edge ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> complete r-partite graphs, <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> The 32th <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> The<br />

6th Japan-Vietnam Joint Seminar <strong>on</strong> Commtative Algebra (2010), 149–155.<br />

□<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

–104–


Frocho, Chikusaku, Nagoya 464-8602 JAPAN<br />

E-mail address: d09003p@math.nagoya-u.ac.jp<br />

–105–


POLYCYCLIC CODES AND SEQUENTIAL CODES<br />

MANABU MATSUOKA<br />

Abstract. In this paper we generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclicity <str<strong>on</strong>g>of</str<strong>on</strong>g> codes, that is, polycyclic<br />

codes <strong>and</strong> sequential codes. We study <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between polycyclic codes <strong>and</strong><br />

sequential codes over finite commutative QF rings. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we characterized <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> some c<strong>on</strong>stacyclic codes.<br />

Key Words:<br />

finite rings, (θ, δ)-codes, skew polynomial rings.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 94B60; Sec<strong>on</strong>dary 94B15.<br />

1. Introducti<strong>on</strong><br />

Let R be a finite commutative ring. A linear code C <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R is a submodule<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R-module R n = {(a 0 , · · · , a n−1 )|a i ∈ R}. If C is a free R-module, C is<br />

said to be a free code. A linear code C ⊆ R n is called cyclic if (a 0 , a 1 , · · · , a n−1 ) ∈ C<br />

implies (a n−1 , a 0 , a 1 , · · · , a n−2 ) ∈ C. The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclicity has been extended in various<br />

directi<strong>on</strong>s.<br />

In [6], S. R. López-Permouth, B. R. Parra-Avila <strong>and</strong> S. Szabo studied <str<strong>on</strong>g>the</str<strong>on</strong>g> duality<br />

between polycyclic codes <strong>and</strong> sequential codes. By <str<strong>on</strong>g>the</str<strong>on</strong>g> way, J. A. Wood establish <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> MacWilliams identities over finite frobenius rings in [9]. M. Greferath<br />

<strong>and</strong> M. E. O’Sullivan study bounds for block codes <strong>on</strong> finite frobenius rings in [2]. In this<br />

paper, we generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> [6] to codes with finite commutative QF rings.<br />

In secti<strong>on</strong> 2 we define polycyclic codes over finite commutative rings. And we study<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> polycyclic codes. In secti<strong>on</strong> 3 we define sequential codes <strong>and</strong> c<strong>on</strong>sider<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> sequential codes. In secti<strong>on</strong> 4 we study <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between polycyclic<br />

codes <strong>and</strong> sequential codes over finite commutative QF rings. And we characterized <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> some c<strong>on</strong>stacyclic codes.<br />

Throughout this paper, R denotes a finite commutative ring with 1 ≠ 0, n denotes a<br />

natural number with n ≥ 2, unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise stated.<br />

2. Polycyclic codes<br />

A linear [n, k]-code over a finite commutative ring R is a submodule C ⊆ R n <str<strong>on</strong>g>of</str<strong>on</strong>g> rank<br />

k. We define polycyclic codes over a finite commutative ring.<br />

Definiti<strong>on</strong> 1. Let C be a linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R. C is a polycyclic code induced by<br />

c if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a vector c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n such that for every (a 0 , a 1 , · · · , a n−1 ) ∈<br />

C, (0, a 0 , a 1 , · · · , a n−2 ) + a n−1 (c 0 , c 1 , · · · , c n−1 ) ∈ C. In this case we call c an associated<br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> C.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–106–


As cyclic codes, polycyclic codes may be understood in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> ideals in quotient<br />

rings <str<strong>on</strong>g>of</str<strong>on</strong>g> polynomial rings. Given c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n , if we let f(X) = X n −<br />

c(X), where c(X) = c n−1 X n−1 + · · · + c 1 X + c 0 <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> R-module homomorphism ρ :<br />

R n → R[X]/(f(X)) sending <str<strong>on</strong>g>the</str<strong>on</strong>g> vector a = (a 0 , a 1 , · · · , a n−1 ) to <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence class <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polynomial a n−1 X n−1 + · · · + a 1 X + a 0 , allows us to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> polycyclic codes induced<br />

by c with <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R[X]/(f(X)).<br />

Definiti<strong>on</strong> 2. Let C be a polycyclic code in R[X]/(f(X)). If <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist m<strong>on</strong>ic polynomials<br />

g <strong>and</strong> h such that ρ(C) = (g)/(f) <strong>and</strong> f = hg, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C is called a principal polycyclic<br />

code.<br />

Propositi<strong>on</strong> 3. A code C ⊆ R n is a principal polycyclic code induced by some c ∈ C if<br />

<strong>and</strong> <strong>on</strong>ly if C is a free R-module <strong>and</strong> has a k × n generator matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

⎛<br />

⎞<br />

g 0 g 1 · · · g n−k 0 · · · 0<br />

0 g 0 g 1 · · · g n−k · · · 0<br />

.<br />

G =<br />

0 .. . .. . .. . .. . .. 0<br />

⎜<br />

⎟<br />

⎝ .<br />

. ⎠<br />

0 · · · 0 g 0 g 1 · · · g n−k<br />

with an invertible g n−k . In this case<br />

)<br />

ρ(C) =<br />

(g n−k X n−k + · · · + g 1 X + g 0<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R[X]/(f(X)).<br />

Definiti<strong>on</strong> 4. Let C = (g)/(f) ⊆ R[X]/(f(X)) be a principal polycyclic code. If <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>stant term <str<strong>on</strong>g>of</str<strong>on</strong>g> g is invertible, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C is called a principal polycyclic code with an<br />

invertible c<strong>on</strong>stant term.<br />

For a c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n , let D c be <str<strong>on</strong>g>the</str<strong>on</strong>g> following square matrix;<br />

⎛<br />

⎞<br />

0 1 0<br />

.<br />

D c = ⎜ ..<br />

⎟<br />

⎝ 0 1 ⎠ .<br />

c 0 c 1 · · · c n−1<br />

It follows that a code C ⊆ R n is polycyclic with an associated vector c ∈ R n if <strong>and</strong><br />

<strong>on</strong>ly if it is invariant under right multiplicati<strong>on</strong> by D c .<br />

3. Sequential codes<br />

Definiti<strong>on</strong> 5. Let C be a linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R. C is a sequential code induced by<br />

c if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a vector c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n such that for every (a 0 , a 1 , · · · , a n−1 ) ∈<br />

C, (a 1 , a 2 , · · · , a n−1 , a 0 c 0 + a 1 c 1 + · · · + a n−1 c n−1 ) ∈ C. In this case we call c an associated<br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> C.<br />

Let C be a sequential code with an associated vector c = (c 0 , c 1 , · · · , c n−1 ). Then C is<br />

invariant under right multiplicati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix<br />

–107–


⎛<br />

⎞<br />

0 0 c 0<br />

1 c t D c = ⎜<br />

1<br />

⎝ .<br />

⎟<br />

.. .<br />

⎠<br />

0 1 c n−1<br />

On R n define <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard inner product by<br />

< x, y >= ∑ n−1<br />

i=0 x iy i<br />

for x = (x 0 , x 1 , · · · , x n−1 ), y = (y 0 , y 1 , · · · , y n−1 ) ∈ R n .<br />

The dual code C ⊥ <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code C is defined by<br />

Clearly, C ⊥ is a linear code over R.<br />

C ⊥ = {a ∈ R n | < c, a >= 0 for any c ∈ C}.<br />

Theorem 6. For a code C ⊆ R n , we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s:<br />

(1) If C is polycyclic, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is sequential.<br />

(2) If C is sequential, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is polycyclic.<br />

4. Codes over finite commutative QF rings<br />

Let R be a (not necessarily commutative) ring. A left R-module P is projective if for<br />

every R-epimorphism g : M → N <strong>and</strong> every R-homomorphism f : P → N, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a<br />

R-homomorphism h : P → M with f = g◦h.<br />

A left R-module Q is injective if for every R-m<strong>on</strong>omorphism g : N → M <strong>and</strong> every<br />

R-homomorphism f : N → Q, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a R-homomorphism h : M → Q with f = h◦g.<br />

The ring R is said to be left (resp. right) self-injective if R itself is injective as left<br />

(resp. right) R-module. If both c<strong>on</strong>diti<strong>on</strong>s hold, R is said to be a self-injective ring.<br />

A left R-module M is Artinian if M is satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> descending chain c<strong>on</strong>diti<strong>on</strong> <strong>on</strong><br />

submodules. A ring R is left (resp. right) Artinian if R itself is Artinian as left (resp.<br />

right) R-module. If both c<strong>on</strong>diti<strong>on</strong>s hold, R is said to be an Artinian ring.<br />

It is clear that a finite ring is an Artinian ring.<br />

Definiti<strong>on</strong> 7. For a (not necessarily commutative) ring R, R is called a QF (quasi-<br />

Frobenius) ring if R is left Artinian <strong>and</strong> left self-injective.<br />

It is well-known that <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a QF ring is left-right symmetric.<br />

For any R-submodule C ⊆ R n , C ◦ is defined by<br />

C ◦ = {λ ∈ Hom R (R n , R)|λ(C) = 0}.<br />

Theorem 8. For a (not necessarily commutative) ring R, <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are<br />

equivalent:<br />

(1) R is a QF ring.<br />

(2) For submodules M ⊆ R n , M ◦◦ = M.<br />

Theorem 9. For a (not necessarily commutative) ring R, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent:<br />

(1) R is a QF ring.<br />

(2) A left module is projective if <strong>and</strong> <strong>on</strong>ly if it is injective.<br />

We define an R-module homomorphism δ x : R n → R as δ x (y) =< y, x > for any x ∈ R n .<br />

–108–


Propositi<strong>on</strong> 10. The homomorphism δ : C ⊥ → C ◦ sending x to δ x is an isomorphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules.<br />

Theorem 11. Let R be a finite commutative QF ring. For a submodule C ⊆ R n , (C ⊥ ) ⊥ =<br />

C.<br />

By Theorem 1 <strong>and</strong> Theorem 4, we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary.<br />

Corollary 12. Let R be a finite commutative QF ring. Then C is a polycyclic code if<br />

<strong>and</strong> <strong>on</strong>ly if C ⊥ is a sequential code.<br />

Theorem 13. Let R be a finite commutative QF ring. If C ⊆ R n is a free R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite rank, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is a free R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> rankC ⊥ = n − rankC.<br />

We determine <str<strong>on</strong>g>the</str<strong>on</strong>g> parity check matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>stacyclic code.<br />

Propositi<strong>on</strong> 14. Let R be a finite commutative QF ring <strong>and</strong> f = X n − α ∈ R[X].<br />

Suppose f = hg ∈ R[X] where g <strong>and</strong> h are polynomials <str<strong>on</strong>g>of</str<strong>on</strong>g> degree n−k <strong>and</strong> k, respectively.<br />

Let C be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear [n, k]-code corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by g in R[X]/(X n − α)<br />

<strong>and</strong> h(X) = h k X k + h k−1 X k−1 + · · · + h 1 X + h 0 . Then C has <str<strong>on</strong>g>the</str<strong>on</strong>g> (n − k) × n parity check<br />

matrix H given by<br />

⎛<br />

⎞<br />

h k · · · h 1 h 0 0 · · · 0<br />

0 h k · · · h 1 h 0 · · · 0<br />

.<br />

H =<br />

0 . .<br />

. . .<br />

. . .<br />

. . .<br />

. . . 0<br />

.<br />

⎜<br />

⎟<br />

⎝ .<br />

. ⎠<br />

0 · · · 0 h k · · · h 1 h 0<br />

Definiti<strong>on</strong> 15. Let R be a finite commutative QF ring. For a sequential code C ⊆ R n , C<br />

is called a principal sequential code if C ⊥ is a principal polycyclic code. And C is called a<br />

principal sequential code with an invertible c<strong>on</strong>stant term if C ⊥ is a principal polycyclic<br />

code with an invertible c<strong>on</strong>stant term.<br />

Now we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 16. Let R be a finite commutative QF ring. Suppose C is a free codes <str<strong>on</strong>g>of</str<strong>on</strong>g> R n .<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(1) Both C <strong>and</strong> C ⊥ are principal polycyclic codes with invertible c<strong>on</strong>stant terms.<br />

(2) Both C <strong>and</strong> C ⊥ are principal sequential codes with invertible c<strong>on</strong>stant terms.<br />

(3) C is a principal polycyclic <strong>and</strong> sequential code with an invertible c<strong>on</strong>stant term.<br />

(4) C ⊥ is a principal polycyclic <strong>and</strong> sequential code with an invertible c<strong>on</strong>stant term.<br />

(5) C = (g)/(X n − α) is a c<strong>on</strong>stacyclic code with an invertible α.<br />

(6) C ⊥ = (q)/(X n − β) is a c<strong>on</strong>stacyclic code with an invertible β.<br />

Acknowledgement. The author wishes to thank Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Y. Hirano, Naruto University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Educati<strong>on</strong>, for his helpful suggesti<strong>on</strong>s <strong>and</strong> valuable comments.<br />

–109–


References<br />

[1] D. Boucher <strong>and</strong> P. Solé, Skew c<strong>on</strong>stacyclic codes over Galois rings, Advances in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Communicati<strong>on</strong>s, Volume 2, No. 3 (2008), 273–292.<br />

[2] M. Greferath, M. E. O’Sullivan, On bounds for codes over Frobenius rings under homogeneous weights,<br />

Discrete Math, 289 (2004), 11–24.<br />

[3] Y. Hirano, On admissible rings, Indag. Math. 8 (1997), 55–59.<br />

[4] S. Ikehata, On separable polynomials <strong>and</strong> Frobenius polynomials in skew polynomial rings, Math. J.<br />

Okayama. Univ. 22 (1980), 115–129.<br />

[5] T. Y. Lam, Lectures <strong>on</strong> Modules <strong>and</strong> <strong>Ring</strong>s, Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 189, Springer-Verlag,<br />

New York, 1999.<br />

[6] S. R. López-Permouth, B. R. Parra-Avila <strong>and</strong> S. Szabo, Dual generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> codes, Advances in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics <str<strong>on</strong>g>of</str<strong>on</strong>g> Communicati<strong>on</strong>s, Volume 3, No. 3 (2009), 227–234.<br />

[7] M. Matsuoka, θ-polycyclic codes <strong>and</strong> θ-sequential codes over finite fields, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Algebra, Vol. 5 (2011), no. 2, 65–70.<br />

[8] B. R. McD<strong>on</strong>ald, Finite <strong>Ring</strong>s With Identity, Pure <strong>and</strong> Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 28, Marcel Dekker,<br />

Inc., New York, 1974.<br />

[9] J. A. Wood, Duality for modules over finite rings <strong>and</strong> applicati<strong>on</strong>s to coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Amer. J. Math,<br />

121 (1999), 555–575.<br />

Kuwanakita-Highscool<br />

2527 Shim<str<strong>on</strong>g>of</str<strong>on</strong>g>ukayabe Kuwana Mie 511-0808 Japan<br />

E-mail address: e-white@hotmail.co.jp<br />

–110–


A NOTE ON DIMENSION OF TRIANGULATED CATEGORIES.<br />

HIROYUKI MINAMOTO<br />

Abstract. In this note we study <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect derived<br />

category Perf(A) <str<strong>on</strong>g>of</str<strong>on</strong>g> a dg-algebra A over a field k under a base field extensi<strong>on</strong> K/k. In<br />

particular we show that <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a perfect derived category is invariant under a<br />

separable algebraic extensi<strong>on</strong> K/k. As an applicati<strong>on</strong> we prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following statement:<br />

Let A be a self-injective algebra over a perfect field k. If <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable<br />

category modA is 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type. This <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is proved by<br />

M. Yoshiwaki in <str<strong>on</strong>g>the</str<strong>on</strong>g> case when k is an algebraically closed field. Our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> depends <strong>on</strong><br />

his result.<br />

1. Introducti<strong>on</strong><br />

In [3] R. Rouquier introduced <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories <strong>and</strong> showed that<br />

it gives an upper bound or a lower bound <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r dimensi<strong>on</strong>s in algebraic geometry or<br />

in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory(see also [4]). The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories is studied<br />

by many researchers.<br />

In this note we study <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect derived category<br />

Perf(A) <str<strong>on</strong>g>of</str<strong>on</strong>g> a dg-algebra A over a field k under a base field extensi<strong>on</strong> K/k. For a field<br />

extensi<strong>on</strong> K/k, we denote A ⊗ k K by A K .<br />

Theorem 1.<br />

(1) For an algebraic extensi<strong>on</strong> K/k, we have<br />

tridim Perf(A) ≤ tridim Perf(A K ).<br />

(2) If moreover K/k is separable, <str<strong>on</strong>g>the</str<strong>on</strong>g>n equality holds.<br />

As an applicati<strong>on</strong> we prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, which gives evidence that dimensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories captures some representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic properties.<br />

The stable category modA plays an important role in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> self-injective algebra<br />

A (cf. [2, 4]). If a self-injective algebra A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category modA is zero. Then a natural questi<strong>on</strong> arises as to whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>verse should also hold.<br />

Theorem 2. Let A be a self-injective finite dimensi<strong>on</strong>al algebra over a perfect field k. If<br />

tridim modA = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case when k is an algebraically closed field, this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is proved by M. Yoshiwaki<br />

in [5]. Our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> depends <strong>on</strong> his result.<br />

The final versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–111–


2. Dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories.<br />

We review <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories due to R. Rouquier<br />

We need to prepare a bit <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong>s.<br />

Let T be a triangulated category. For a full subcategory I <str<strong>on</strong>g>of</str<strong>on</strong>g> T we denote by 〈I〉<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> smallest full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T c<strong>on</strong>taining I which is closed under taking shifts, finite<br />

direct sums, direct summ<strong>and</strong>s <strong>and</strong> isomorphisms. For full subcategories I <strong>and</strong> J <str<strong>on</strong>g>of</str<strong>on</strong>g> T we<br />

denote by I ∗ J <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> those object M ∈ T such that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an exact triangle I → M → J −→ [1]<br />

with I ∈ I <strong>and</strong> J ∈ J . Set I ⋄J := 〈I ∗J 〉.<br />

For n ≥ 1 we define inductively<br />

{<br />

〈I〉 for n = 1;<br />

〈I〉 n :=<br />

〈I〉 ⋄ 〈I〉 n−1 for n ≥ 2.<br />

Now we define <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category T to be<br />

tridim T := min{n | 〈E〉 n+1 = T for some E ∈ T }.<br />

3. Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1 <strong>and</strong> 2<br />

First we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case when K/k is a finite extensi<strong>on</strong>. Let E be an object <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Perf(A K ) such that 〈E〉 n = Perf(A K ) for some n ∈ N. Then we see that 〈UE〉 n = Perf(A)<br />

where U : Perf(A K ) → Perf(A) is <str<strong>on</strong>g>the</str<strong>on</strong>g> forgetful functor.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case K/k is an infinite algebraic extensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> key <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

lemma.<br />

Lemma 3. Let K/k be an algebraic extensi<strong>on</strong> <strong>and</strong> E an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A).<br />

If an object G <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A K ) bel<strong>on</strong>gs to 〈E ⊗ k K〉 n , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an intermediate field<br />

k ⊂ K 0 ⊂ K which is finite dimensi<strong>on</strong>al over k such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object G ′ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

〈E ⊗ k K 0 〉 n , such that G ′ ⊗ K0 K ∼ = G in D(A K ).<br />

Let E be an object <str<strong>on</strong>g>of</str<strong>on</strong>g> Perf(A K ) such that 〈E〉 n = Perf(A K ) for some n ∈ N. Since<br />

Perf(A K ) = ∪ i∈N 〈A K 〉 i , by <str<strong>on</strong>g>the</str<strong>on</strong>g> above lemma <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an intermediate field k ⊂ K 0 ⊂ K<br />

which is finite dimensi<strong>on</strong>al over k such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object E ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> Perf(A K0 ) such that<br />

E ′ ⊗ K0 K ≃ E. Then we see that 〈U 0 (E ′ )〉 n = Perf(A) where U 0 : Perf(A K0 ) → Perf(A)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> forgetful functor.<br />

To prove <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d statement, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that when K/k is a finite separable<br />

field extensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical morphism K ⊗ k K → K splits as K − K bimodules. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case when K/k is an infinite separable field extensi<strong>on</strong>, we reduce to <str<strong>on</strong>g>the</str<strong>on</strong>g> finite separable<br />

extensi<strong>on</strong> case by <str<strong>on</strong>g>the</str<strong>on</strong>g> above lemma.<br />

Theorem 2 is reduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> base field k is an algebraically closed field<br />

by Theorem 1 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma.<br />

Lemma 4. Let A be a finite dimensi<strong>on</strong>al k-algebra. If A k<br />

is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type.<br />

–112–


4. Examples which show that we need to impose c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> Theorem 1<br />

To c<strong>on</strong>clude this note we give examples which show that we need to impose c<strong>on</strong>diti<strong>on</strong>s<br />

<strong>on</strong> Theorem 1.<br />

Example 5. If an algebraic extensi<strong>on</strong> K/k is not separable, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> tridim Perf(A K )<br />

is possibly larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> tridim Perf(A).<br />

Here is an example. Let F be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic p > 0. Let K := F (t) be a rati<strong>on</strong>al<br />

functi<strong>on</strong> field in <strong>on</strong>e variable <strong>and</strong> define k := F (t p ) ⊂ K = F (t). Set A := K. Then it is<br />

easy to see A K<br />

∼ = K[x]/(x p ). Since gldim A K = ∞, we see that tridim Perf(A K ) = ∞ by<br />

[3, Propositi<strong>on</strong> 7.26]. However since A = K is a field, we have tridim Perf(A) = 0.<br />

Example 6. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> K/k is not algebraic, <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> tridim Perf(A K )<br />

is possibly larger than tridim Perf(A) even if an extensi<strong>on</strong> K/k is separable.<br />

Here is an example. Assume that for simplicity k is algebraically closed. Let K = k(y)<br />

<strong>and</strong> A = k(x) be rati<strong>on</strong>al functi<strong>on</strong> fields in <strong>on</strong>e variable over k. Then we can easily see<br />

that tridim Perf(A K ) = 1 by <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [3, Theorem 7.17]. However since<br />

A = k(x) is a field, we see that tridim Perf(A) = 0.<br />

References<br />

[1] M. Bökstedt <strong>and</strong> A. Neeman, Homotopy limits in triangulated categories, Compositio Math., 86(2)<br />

(1993), 209-234.<br />

[2] D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series 119, Cambridge University Press, Cambridge, 1988.<br />

[3] R. Rouquier. Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> K-<str<strong>on</strong>g>the</str<strong>on</strong>g>ory 1 (2008), 193-256<br />

[4] R. Rouquier, Representati<strong>on</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exterior algebras, Invent. Math. 165 (2006), no. 2, 357–367.<br />

[5] M. Yoshiwaki. On selfinjective algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> stable dimensi<strong>on</strong> zero, Nagoya Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Journal (accepted<br />

for publicati<strong>on</strong>).<br />

Research Institute for Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Sciences,<br />

Kyoto University,<br />

Kyoto 606-8502, JAPAN<br />

E-mail address: minamoto@kurims.kyoto-u.ac.jp<br />

–113–


APR TILTING MODULES AND QUIVER MUTATIONS<br />

YUYA MIZUNO<br />

Abstract. We study <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver with relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an APR<br />

tilting module. We give an explicit descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver with relati<strong>on</strong>s by graded<br />

quivers with potential (QPs) <strong>and</strong> mutati<strong>on</strong>s. C<strong>on</strong>sequently, mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QPs provide a<br />

rich source <str<strong>on</strong>g>of</str<strong>on</strong>g> derived equivalence classes <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras.<br />

1. Introducti<strong>on</strong><br />

Derived categories have been <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> important tools in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> many areas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics. In <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras, tilting modules play an essential<br />

role to give an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories. More precisely, <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism<br />

algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a tilting module is derived equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> original algebra. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras has been investigated for a l<strong>on</strong>g<br />

time.<br />

The first well-known result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies appears in <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> [5]. It is <str<strong>on</strong>g>the</str<strong>on</strong>g> origin<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> formulated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> an APR tilting module now [4]. Let us recall<br />

an important property <str<strong>on</strong>g>of</str<strong>on</strong>g> APR tilting modules.<br />

Theorem 1. [4] Let KQ be a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite acyclic quiver Q <strong>and</strong> T k be <str<strong>on</strong>g>the</str<strong>on</strong>g> APR<br />

tilting KQ-module associated with a source k ∈ Q. Then we have an algebra isomorphism<br />

where µ k is a mutati<strong>on</strong> at k.<br />

End KQ (T k ) ∼ = K(µ k Q),<br />

Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra is completely determined by combinatorial<br />

methods <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong> can be c<strong>on</strong>sidered as a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BGP reflecti<strong>on</strong>.<br />

The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong> was introduced by Fomin-Zelevinsky [11], which is an important<br />

ingredient <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebras, <strong>and</strong> many links with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r subjects have been discovered<br />

<strong>and</strong> widely investigated. In particular, Derksen-Weyman-Zelevinsky applied mutati<strong>on</strong>s<br />

to quivers with potential (QPs). It has been found that mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QPs have close<br />

c<strong>on</strong>necti<strong>on</strong>s with tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, for example [9, 17].<br />

The main purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> above result for a more general<br />

class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras by using mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QPs. Since we have gl.dimKQ ≤ 1, it is natural<br />

to c<strong>on</strong>sider algebras Λ with gl.dimΛ ≤ 2. In this case, we can describe <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong><br />

relati<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps.<br />

1. Define <str<strong>on</strong>g>the</str<strong>on</strong>g> associated graded QP (Q Λ , W Λ , C Λ ).<br />

2. Apply left mutati<strong>on</strong> µ L k to (Q Λ, W Λ , C Λ ).<br />

3. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> truncated Jacobian algebras P(µ L k (Q Λ, W Λ , C Λ )).<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–114–


Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 2. (Theorem 7) Let Λ be a finite dimensi<strong>on</strong>al algebra with gl.dimΛ ≤ 2 <strong>and</strong><br />

T k be <str<strong>on</strong>g>the</str<strong>on</strong>g> APR tilting Λ-module associated with a source k. Then we have an algebra<br />

isomorphism<br />

End Λ (T k ) ∼ = P(µ L k (Q Λ , W Λ , C Λ )).<br />

We give three remarks about <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. First, we can show that P(µ L k (Q Λ, W Λ , C Λ ))<br />

coincides with K(µ k Q) if gl.dimΛ = 1, so that Theorem 2 gives a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem<br />

1. Sec<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> gl.dimΛ ≤ 2 is actually not necessary, <strong>and</strong> it is enough<br />

to assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> associated projective module has <str<strong>on</strong>g>the</str<strong>on</strong>g> injective dimensi<strong>on</strong> at most 2.<br />

Finally, this isomorphic provides a bridge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two noti<strong>on</strong>s which have entirely different<br />

origins, <strong>and</strong> it implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>temporary c<strong>on</strong>cepts have a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound c<strong>on</strong>necti<strong>on</strong> with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> classical <strong>on</strong>es.<br />

C<strong>on</strong>venti<strong>on</strong>s <strong>and</strong> notati<strong>on</strong>s. We always suppose that K is an algebraically closed field<br />

for simplicity. All modules are left modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> fg <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms means<br />

first f, <str<strong>on</strong>g>the</str<strong>on</strong>g>n g. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices by Q 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows by Q 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver<br />

Q. We denote by a : s(a) → e(a) <str<strong>on</strong>g>the</str<strong>on</strong>g> start <strong>and</strong> end vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> an arrow or path a.<br />

2. Preliminaries<br />

In this secti<strong>on</strong>, we give a brief summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <strong>and</strong> results we will use in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next secti<strong>on</strong>s. See references for more detailed arguments <strong>and</strong> precise definiti<strong>on</strong>s.<br />

2.1. Quivers with potentials. We review <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong>s initiated in [10].<br />

• Let Q be a finite c<strong>on</strong>nected quiver. We denote by KQ i <str<strong>on</strong>g>the</str<strong>on</strong>g> K-vector space with basis<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> paths <str<strong>on</strong>g>of</str<strong>on</strong>g> length i in Q, <strong>and</strong> by KQ i,cyc <str<strong>on</strong>g>the</str<strong>on</strong>g> subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> KQ i spanned by all<br />

cycles. We denote complete path algebra by<br />

̂KQ = ∏ i≥0<br />

KQ i .<br />

A quiver with potential (QP) is a pair (Q, W ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver Q <strong>and</strong> an element<br />

W ∈ ∏ i≥2 KQ i,cyc, called a potential. For each arrow a in Q, <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic derivative<br />

∂ a : ̂KQ cyc → ̂KQ is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous linear map which sends ∂ a (a 1 · · · a d ) =<br />

∑<br />

a i =a a i+1 · · · a d a 1 · · · a i−1 . For a QP (Q, W ), we define <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobian algebra by<br />

P(Q, W ) = ̂KQ/J (W ),<br />

where J (W ) = 〈∂ a W | a ∈ Q 1 〉 is <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by ∂ a W with respect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> J ̂KQ<br />

-adic topology.<br />

• A QP (Q, W ) is called reduced if W ∈ ∏ i≥3 KQ i,cyc.<br />

• For two QPs (Q ′ , W ′ ) <strong>and</strong> (Q ′′ , W ′′ ), we define a<br />

∐<br />

new QP (Q, W ) as a direct sum<br />

(Q ′ , W ′ ) ⊕ (Q ′′ , W ′′ ), where Q 0 = Q ′ 0(= Q ′′<br />

0), Q 1 = Q ′ 1 Q<br />

′′<br />

1 <strong>and</strong> W = W ′ + W ′′ .<br />

Definiti<strong>on</strong> 3. For each vertex k in Q not lying <strong>on</strong> a loop nor 2-cycle, we define a mutati<strong>on</strong><br />

µ k (Q, W ) as a reduced part <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k (Q, W ) = (Q ′ , W ′ ), where (Q ′ , W ′ ) is given as follows.<br />

–115–


(1) Q ′ is a quiver obtained from Q by <str<strong>on</strong>g>the</str<strong>on</strong>g> following changes.<br />

• Replace each arrow a : k → v in Q by a new arrow a ∗ : v → k.<br />

• Replace each arrow b : u → k in Q by a new arrow b ∗ : k → u.<br />

• For each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u b → k a → v, add a new arrow [ba] : u → v<br />

(2) W ′ = [W ] + ∆ is defined as follows.<br />

• [W ] is obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> potential W by replacing all compositi<strong>on</strong>s ba by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

new arrows [ba]<br />

∑<br />

for each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u → b k → a v.<br />

• ∆ = [ba]a ∗ b ∗ .<br />

a,b∈Q 1<br />

e(b)=k=s(a)<br />

2.2. Truncated Jacobian algebras. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cuts <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> truncated<br />

Jacobian algebras.<br />

Definiti<strong>on</strong> 4. [14] Let (Q, W ) be a QP. A subset C ⊂ Q 1 is called a cut if each cycle<br />

appearing W c<strong>on</strong>tains exactly <strong>on</strong>e arrow <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Then we define <str<strong>on</strong>g>the</str<strong>on</strong>g> truncated Jacobian<br />

algebra by<br />

P(Q, W, C) := P(Q, W )/〈C〉 = ̂KQ C /〈∂ c W | c ∈ C〉,<br />

where Q C is <str<strong>on</strong>g>the</str<strong>on</strong>g> subquiver <str<strong>on</strong>g>of</str<strong>on</strong>g> Q with vertex set Q 0 <strong>and</strong> arrow set Q 1 \ C.<br />

Then, we can naturally define a QP with a cut from a given algebra as follows.<br />

Definiti<strong>on</strong> 5. [16] Let Q be a finite c<strong>on</strong>nected quiver <strong>and</strong> Λ = ̂KQ/〈R〉 be a finite<br />

dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s.<br />

Then we define a QP (Q Λ , W Λ ) as follows:<br />

(1) (Q Λ ) 0 = Q 0<br />

(2) (Q Λ ) 1 = Q 1<br />

∐<br />

CΛ , where C Λ := {ρ r : e(r) → s(r) | r ∈ R}.<br />

(3) W Λ = ∑ r∈Rρ r r.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> set C Λ gives a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> (Q Λ , W Λ ).<br />

2.3. APR tilting modules. We call a Λ-module T tilting module if proj.dim Λ T ≤ 1,<br />

Ext 1 Λ(T, T ) = 0, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence 0 → Λ → T 0 → T 1 → 0 with<br />

T 0 , T 1 in addT .<br />

Definiti<strong>on</strong> 6. Let Λ be a basic finite dimensi<strong>on</strong>al algebra <strong>and</strong> P k be a simple projective<br />

n<strong>on</strong>-injective Λ-module associated with a source k <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver Λ. Then Λ-module<br />

T := τ − P k ⊕ Λ/P k is called an APR tilting module, where τ − denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten translati<strong>on</strong>.<br />

3. Main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

3.1. Main result. Let Q be a finite c<strong>on</strong>nected quiver <strong>and</strong> Λ = ̂KQ/〈R〉 be a finite<br />

dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s. Assume that P k is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple projective<br />

n<strong>on</strong>-injective Λ-module associated with a source k ∈ Q. Our aim is to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s giving End Λ (T k ).<br />

–116–


C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> associated QP (Q Λ , W Λ , C Λ ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ <strong>and</strong> we put ˜µ k (Q Λ , W Λ ) = (Q ′ , W ′ ).<br />

Then W ′ is given by<br />

W ′ = [ ∑ ∑<br />

r r] + [ρ r a]a<br />

r∈Rρ ∗ ρ ∗ r,<br />

<strong>and</strong> it is easy to check that subset<br />

a∈Q 1 ,r∈R<br />

s(a)=k=s(r)<br />

C ′ = { ρ r | r ∈ R, s(r) ≠ k} ∐ { [ρ r a] | a ∈ Q 1 , r ∈ R, s(a) = k = s(r)}<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q ′ is a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> (Q ′ , W ′ ).<br />

Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Theorem 7. Let Λ = ̂KQ/〈R〉 be a finite dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relati<strong>on</strong>s. Let T k := τ − P k ⊕ Λ/P k be <str<strong>on</strong>g>the</str<strong>on</strong>g> APR tilting module. Then if inj.dimP k ≤ 2, we<br />

have an algebra isomorphism<br />

End Λ (T k ) ∼ = P(˜µ k (Q Λ , W Λ ), C ′ ).<br />

Notice that <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> inj.dimP k ≤ 2 is automatic if gl.dimΛ = 2. Thus our<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem give a generalizati<strong>on</strong> from gl.dimΛ = 1 to gl.dimΛ = 2.<br />

Here we will explain <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> C ′ . In fact C ′ is naturally obtained by using graded<br />

mutati<strong>on</strong>s. For this purpose, we recall graded QPs, as introduced by [1].<br />

Graded quivers with potentials. Let (Q, W ) be a QP <strong>and</strong> we define a map d : Q 1 → Z.<br />

We call a QP (Q, W, d) Z-graded QP if each arrow a ∈ Q 1 has a degree d(a) ∈ Z, <strong>and</strong><br />

homogeneous <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l if each term in W is a degree l.<br />

Definiti<strong>on</strong> 8. Let QP (Q, W, d) be a Z-graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l. For each vertex k in Q<br />

not lying <strong>on</strong> a loop nor 2-cycle, we define a left mutati<strong>on</strong> µ L k (Q, W, d) as a reduced part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ L k (Q, W, d) = (Q′ , W ′ , d ′ ), where (Q ′ , W ′ , d ′ ) is given as follows.<br />

(1) (Q ′ , W ′ ) = ˜µ k (Q, W )<br />

(2) The new degree d ′ is defined as follows:<br />

• d ′ (a) = d(a) for each arrow a ∈ Q ∩ Q ′ .<br />

• d ′ (a ∗ ) = −d(a) for each arrow a : k → v in Q.<br />

• d ′ (b ∗ ) = −d(b) + l for each arrow b : u → k in Q.<br />

• d ′ ([ba]) = d(a) + d(b) for each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u → b k → a v in Q.<br />

In particular, ˜µ L k (Q, W, d) also has a potential <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l. Similarly, we can define<br />

˜µ R k at k. In this case, we define d′ (b ∗ ) = −d(b) for each arrow b : u → k in Q <strong>and</strong><br />

d ′ (a ∗ ) = −d(a) + l for each arrow a : k → v in Q.<br />

If (Q, W ) has a cut C, we can identify <str<strong>on</strong>g>the</str<strong>on</strong>g> QP with a Z-graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1 associating<br />

a grading <strong>on</strong> Q by<br />

{<br />

1 a ∈ C<br />

d C (a) =<br />

0 a ∉ C.<br />

We denote by (Q, W, C) <str<strong>on</strong>g>the</str<strong>on</strong>g> graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1 with this grading. If any arrow <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

˜µ L k (Q, W, C) has degree 0 or 1, degree 1 arrows give a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k(Q, W ) since ˜µ L k (Q, W, C)<br />

is homogeneous <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1. Therefore a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k (Q Λ , W Λ ) is naturally induced as degree<br />

–117–


1 arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ L k (Q Λ, W Λ , C Λ ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> above C ′ is obtained in this way. Thus we identify<br />

degree 1 arrows as a cut.<br />

Because we have P(˜µ L k (Q Λ, W Λ , C Λ )) ∼ = P(µ L k (Q Λ, W Λ , C Λ )), we can rewrite Theorem 7<br />

that we have an algebra isomorphism<br />

End Λ (T k ) ∼ = P(µ L k (Q Λ , W Λ , C Λ )).<br />

3.2. Examples. We explain <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem with some examples.<br />

Example 9. We keep <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 7.<br />

Λ = KQ <strong>and</strong><br />

P(µ L k (Q Λ , W Λ , C Λ )) = P(µ L k (Q, 0, 0)) = K(µ k Q),<br />

If gl.dimΛ = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have<br />

so that <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong> procedure is just reversing arrows having k. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> classical result (Theorem 1).<br />

Example 10. Let Λ = ̂KQ/〈R〉 be a finite dimensi<strong>on</strong>al algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

quiver with a relati<strong>on</strong>.<br />

2 ●<br />

a ●●●● b<br />

✇<br />

1<br />

✇✇✇✇<br />

❊ 4<br />

❊❊❊❊<br />

c 2 d<br />

3<br />

22222<br />

〈R〉 = 〈ab〉.<br />

Then we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> APR tilting module T 1 := τ − P 1 ⊕ Λ/P 1 <strong>and</strong> calculate Q ′ <strong>and</strong> R ′<br />

satisfying ̂KQ ′ /〈R ′ 〉 ∼ = End Λ (T 1 ) by <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps.<br />

2 ❈<br />

a ❈❈❈❈❈ b<br />

4<br />

1<br />

44444<br />

❈ 4<br />

❈❈❈❈<br />

c 4 d<br />

3<br />

44444<br />

(Q Λ ,W Λ ,C Λ )<br />

=⇒<br />

2 ❈<br />

a ❈❈❈❈❈ b<br />

4<br />

1<br />

44444 ρ<br />

❈ 4<br />

❈❈❈❈<br />

c 4 d<br />

3<br />

44444<br />

˜µ L 1<br />

=⇒<br />

[ρa]<br />

2<br />

a ∗ ● ●●●●<br />

✇ ✇✇✇✇ b<br />

ρ<br />

1<br />

∗ ●<br />

●●●●<br />

4<br />

d<br />

c ∗ ✇<br />

3<br />

✇✇✇✇<br />

[ρc]<br />

〈R〉 = 〈ab〉. W Λ = ρab. W ′ = [ρa]b+[ρa]a ∗ ρ ∗ +[ρc]c ∗ ρ ∗ .<br />

µ L 1<br />

=⇒ 1<br />

2<br />

2<br />

a ∗<br />

a ∗<br />

5 55555 ρ ∗ P(µ<br />

4<br />

L 1 (Q ✇ ✇✇✇✇ ρ<br />

Λ,W Λ ,C Λ ))<br />

❇ =⇒ Q ′ ❇❇❇❇❇<br />

=<br />

1<br />

∗ ●<br />

●●●●<br />

4<br />

d<br />

✇ ✇✇✇✇<br />

c ∗<br />

3<br />

d<br />

5 55555<br />

[ρc]<br />

W ′ = [ρc]c ∗ ρ ∗ 〈R ′ 〉 = 〈c ∗ ρ ∗ 〉.<br />

Similarly from <str<strong>on</strong>g>the</str<strong>on</strong>g> left-h<strong>and</strong> side algebra Λ, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s<br />

giving End Λ (T 1 ), which is given by right-h<strong>and</strong> side picture.<br />

–118–<br />

c ∗<br />

3


(1)<br />

1<br />

41<br />

ρ ∗ 2<br />

4<br />

ρ ∗ 1<br />

a 2 a 1<br />

c =⇒<br />

a ∗ 2 a ∗ 1<br />

c<br />

2<br />

b b<br />

3<br />

2<br />

3<br />

〈R〉 = 〈a 1 bc, a 2 bc〉 〈R ′ 〉 = 〈a ∗ 1ρ ∗ 1+bc, a ∗ 2ρ ∗ 2+bc, a ∗ 1ρ ∗ 2, a ∗ 2ρ ∗ 1〉.<br />

(2) (i)<br />

1<br />

a 1 2<br />

a<br />

1 ❙ 2<br />

2 3<br />

a 1<br />

∗<br />

a 1 3<br />

a 3 =⇒<br />

b 1<br />

<br />

4<br />

b 2<br />

5<br />

b 3<br />

6<br />

b 1<br />

∗<br />

4<br />

ρ<br />

❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙<br />

∗<br />

5<br />

b 2<br />

b 3<br />

6<br />

〈R〉 = 〈a 1 a 2 a 3 〉 〈R ′ 〉 = 〈a 2 a 3 + a 1 ∗ ρ ∗ , b 1 ∗ ρ ∗ 〉.<br />

(ii)<br />

a 3<br />

1<br />

a 1 2<br />

a<br />

1 ❙ 2<br />

2 3<br />

a 1<br />

∗<br />

a 1 3<br />

a 3 =⇒<br />

b 1<br />

<br />

4<br />

b 2<br />

5<br />

b 3<br />

6<br />

b 1<br />

∗<br />

4<br />

ρ<br />

❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙<br />

∗<br />

5<br />

b 2<br />

b 3<br />

6<br />

〈R〉 = 〈a 1 a 2 a 3 = b 1 b 2 b 3 〉 〈R ′ 〉 = 〈a 2 a 3 + a 1 ∗ ρ ∗ , b 2 b 3 + b 1 ∗ ρ ∗ 〉.<br />

As examples show, we interpret <str<strong>on</strong>g>the</str<strong>on</strong>g> degree 1 arrows as relati<strong>on</strong>s.<br />

References<br />

[1] C. Amiot, S. Oppermann, Cluster equivalence <strong>and</strong> graded derived equivalence, preprint (2010),<br />

arXiv:1003.4916.<br />

[2] C. Amiot, S. Oppermann, Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> tame acyclic cluster type, preprint (2010), arXiv:1009.4065.<br />

[3] I. Assem, D. Sims<strong>on</strong>, A. Skowroński, Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Representati<strong>on</strong> <strong>Theory</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Associative Algebras.<br />

Vol. 1, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Student Texts 65, Cambridge university press (2006).<br />

[4] M. Ausl<strong>and</strong>er, M. I. Platzeck, I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc.<br />

250 (1979), 1–46.<br />

[5] I. N. Bernstein, I. M. Gelf<strong>and</strong>, V. A. P<strong>on</strong>omarev, Coxeter functors <strong>and</strong> Gabriel’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, Uspehi<br />

Mat. Nauk 28 (1973), no. 2(170), 19–33.<br />

[6] M. A. Bertani-Økl<strong>and</strong>, S. Oppermann, Mutating loops <strong>and</strong> 2-cycles in 2-CY triangulated categories,<br />

J. Algebra 334 (2011), 195–218,<br />

[7] M. A. Bertani-Økl<strong>and</strong>, S. Oppermann, A. Wrålsen, Graded mutati<strong>on</strong> in cluster categories coming<br />

from hereditary categories with a tilting object, preprint (2010), arXiv:1009.4812.<br />

[8] S. Brenner, M. C. R. Butler, Generalisati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bernstein–Gelf<strong>and</strong>–P<strong>on</strong>omarev reflecti<strong>on</strong> functors,<br />

in Proc. ICRA II (Ottawa,1979), Lecture Notes in Math. No. 832, Springer-Verlag, Berlin, Heidelberg,<br />

New York, 1980, pp. 103–69.<br />

[9] A. B. Buan, O. Iyama, I. Reiten, D. Smith, Mutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilting objects <strong>and</strong> potentials, Amer.<br />

J. Math. 133 (2011), no. 4, 835–887.<br />

[10] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir representati<strong>on</strong>s. I. Mutati<strong>on</strong>s,<br />

Selecta Math. (N.S.) 14 (2008), no. 1, 59–119.<br />

–119–<br />

a 3


[11] S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundati<strong>on</strong>s, J. Amer. Math. Soc. 15 (2002), no. 2,<br />

497–529 (electr<strong>on</strong>ic).<br />

[12] C. Geiss, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006),<br />

no. 3, 589–632.<br />

[13] D. Happel, L. Unger Almost complete tilting modules, Proc. Amer. Math. Soc. 107 (1989), no. 3,<br />

603–610.<br />

[14] M. Herschend, O. Iyama, Selfinjective quivers with potential <strong>and</strong> 2-representati<strong>on</strong>-finite algebras,<br />

preprint (2010), arXiv:1006.1917.<br />

[15] O. Iyama, I. Reiten, Fomin-Zelevinsky mutati<strong>on</strong> <strong>and</strong> tilting modules over Calabi-Yau algebras, Amer.<br />

J. Math. 130 (2008), no. 4, 1087–1149.<br />

[16] B. Keller, Deformed Calabi-Yau completi<strong>on</strong>s, preprint (2009), arXiv:0908.3499.<br />

[17] B. Keller, D. Yang, Derived equivalences from mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with potential, Adv. Math. 226<br />

(2011), no. 3, 2118–2168.<br />

[18] S. Ladkani, Perverse equivalences, BB-tilting, mutati<strong>on</strong>s <strong>and</strong> applicati<strong>on</strong>s, preprint (2010),<br />

arXiv:1001.4765.<br />

[19] C. Riedtmann, A. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, On a simplicial complex associated with tilting modules, Comment.<br />

Math. Helv.66 (1991), no. 1, 70–78.<br />

[20] H. Tachikawa, Self-injective algebras <strong>and</strong> tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, I (Ottawa, Ont.,<br />

1984), 272–307, Lecture Notes in Math., 1177, Springer, Berlin, 1986.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

Frocho, Chikusaku, Nagoya 464-8602 Japan<br />

E-mail address: yuya.mizuno@math.nagoya-u.ac.jp<br />

–120–


THE EXAMPLE BY STEPHENS<br />

KAORU MOTOSE<br />

Abstract. C<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> Feit-Thomps<strong>on</strong> C<strong>on</strong>jecture, Stephens found <str<strong>on</strong>g>the</str<strong>on</strong>g> serious<br />

example. Using Artin map (see [9]), we shall show that numbers 17 <strong>and</strong> 3313 in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

example by Stephen are comm<strong>on</strong> index divisors <str<strong>on</strong>g>of</str<strong>on</strong>g> some subfields <str<strong>on</strong>g>of</str<strong>on</strong>g> a cyclotomic field<br />

Q(ζ r ) where r = 112643 <strong>and</strong> ζ r = e 2πi<br />

r , <strong>and</strong> some results in [7, 8] shall be again proved.<br />

Key Words: Artin map, comm<strong>on</strong> index divisors, Gauss sums.<br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 11A15, 11R04; Sec<strong>on</strong>dary 20D05.<br />

Let p < q be primes <strong>and</strong> we set<br />

f := qp − 1<br />

q − 1 <strong>and</strong> t := pq − 1<br />

p − 1 .<br />

Feit <strong>and</strong> Thomps<strong>on</strong> [3] c<strong>on</strong>jectured that f never divides t. If it would be proved,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir odd order <str<strong>on</strong>g>the</str<strong>on</strong>g>orem [4] would be greatly simplified (see [1] <strong>and</strong> [5]).<br />

Throughout this note, we assume that r is a comm<strong>on</strong> prime divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t.<br />

Using computer, Stephens [10] found <str<strong>on</strong>g>the</str<strong>on</strong>g> example about r as follows: for p = 17 <strong>and</strong><br />

q = 3313, r = 112643 = 2pq + 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest comm<strong>on</strong> divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t. This example<br />

is so far <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e.<br />

In this note, using <str<strong>on</strong>g>the</str<strong>on</strong>g> Artin map, we shall show that both 17 <strong>and</strong> 3313 are comm<strong>on</strong><br />

index divisors (gemeinsamer ausserwesentlicher Discriminantenteiler) <str<strong>on</strong>g>of</str<strong>on</strong>g> some subfields <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a cyclotomic field Q(ζ r ) where r = 112643 <strong>and</strong> ζ r = e 2πi<br />

r , <strong>and</strong> some results in [7, 8] shall<br />

be again proved from our Theorem.<br />

The assumpti<strong>on</strong> <strong>on</strong> r yields from [7, Lemma, (1) <strong>and</strong> (3)] that p <strong>and</strong> q are orders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

q mod r <strong>and</strong> p mod r, respectively. Thus r ≡ 1 mod 2pq since r is odd.<br />

We set q ∗ q := r − 1 <strong>and</strong> ζ = e 2πi<br />

r . Let n be a divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> q ∗ , let L n be a subfield <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

K = Q(ζ) with [L n : Q] = n <strong>and</strong> let O n be <str<strong>on</strong>g>the</str<strong>on</strong>g> algebraic integer ring <str<strong>on</strong>g>of</str<strong>on</strong>g> L n . Using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exact sequence by <str<strong>on</strong>g>the</str<strong>on</strong>g> Artin map (see [9, p.99 <strong>and</strong> secti<strong>on</strong> 2.16] ) <strong>and</strong> Kummer’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

We have d(µ) = I(µ) 2 d(L n ) for µ ∈ O n where I(µ) ∈ Z, d(µ) <strong>and</strong> d(L n ) are discriminants<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> µ <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field L n , respectively.<br />

The example by Stephens shows from <str<strong>on</strong>g>the</str<strong>on</strong>g> next Theorem that p = 17 <strong>and</strong> q = 3313 are<br />

comm<strong>on</strong> index divisors <str<strong>on</strong>g>of</str<strong>on</strong>g> L 34 <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L 6626 , respectively, since we can exchange p for q.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–121–


Theorem. Assume r is a comm<strong>on</strong> prime divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t, <strong>and</strong> n is a divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> q ∗ ,<br />

where q ∗ q = r − 1. Then p splits completely in O n <strong>and</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists µ ∈ O n such that p<br />

does not divide I(µ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n n ≦ p. In particular, for n > p, p is a comm<strong>on</strong> index divisor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

O n namely, p divides I(γ) for all γ ∈ O n .<br />

Let c be a primitive root for r, let χ be a character <str<strong>on</strong>g>of</str<strong>on</strong>g> order n defined by χ(c) = ω<br />

where ω = e 2πi<br />

n <strong>and</strong> let g(χ) = ∑ a∈F r<br />

χ(a)ζ a be <str<strong>on</strong>g>the</str<strong>on</strong>g> Gauss sum <str<strong>on</strong>g>of</str<strong>on</strong>g> χ where F r is a finite<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> order r. Let σ(ζ) = ζ c be a generator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Galois group G <str<strong>on</strong>g>of</str<strong>on</strong>g> K over Q <strong>and</strong> set<br />

T n := 〈σ n 〉.<br />

For simplicity, we set g 0 = −1, g k = g(χ k ) for n > k > 0 <strong>and</strong> θ k = θ σk for n > k ≧ 0<br />

where θ = ∑ τ∈T n<br />

ζ τ is a trace <str<strong>on</strong>g>of</str<strong>on</strong>g> ζ.<br />

It is known that L n = Q(θ) <strong>and</strong> θ is a normal basis element <str<strong>on</strong>g>of</str<strong>on</strong>g> O n over Z (see [9, p.61,<br />

p.74])<br />

The next Lemma is useful to our object. It <strong>on</strong>ly needs to assume r is prime <strong>and</strong> n is a<br />

divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> r − 1 in this Lemma. This pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is essentially in <str<strong>on</strong>g>the</str<strong>on</strong>g> first equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) due<br />

to [9, p.62]. This idea <str<strong>on</strong>g>of</str<strong>on</strong>g> classifying primitive roots goes back to Gauss; <str<strong>on</strong>g>the</str<strong>on</strong>g> regular 17<br />

polyg<strong>on</strong> c<strong>on</strong>structi<strong>on</strong> by ruler <strong>and</strong> compass.<br />

Lemma.<br />

(1) g k = ∑ n−1<br />

s=0 ωks θ s for 0 ≦ k < n <strong>and</strong> nθ k = ∑ n−1<br />

s=0 ¯ωks g s for 0 ≦ k < n where ¯ω is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> complex c<strong>on</strong>jugate <str<strong>on</strong>g>of</str<strong>on</strong>g> ω.<br />

(2) Using (1), determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic matrices A n , B n are given by<br />

∣ ∣ θ 0 θ 1 . . . θ n−1 ∣∣∣∣∣∣∣ g<br />

n−1<br />

0 g 1 . . . g n−1 ∣∣∣∣∣∣∣ θ<br />

|A n | :=<br />

n−1 θ 0 . . . θ n−2<br />

∏<br />

n−1<br />

g . . . ..<br />

= g k <strong>and</strong> |B n | :=<br />

n−1 g 0 . . . g n−2<br />

∏<br />

.<br />

.<br />

k=0<br />

. . ..<br />

= n n θ k .<br />

.<br />

k=0<br />

∣<br />

θ 1 θ 2 . . . θ<br />

∣<br />

0 g 1 g 2 . . . g 0<br />

(3) We have<br />

{<br />

r n−1 if n is odd,<br />

d(L n ) =<br />

(−1) r−1<br />

2 r n−1 if n is even.<br />

Some results in [7, 8] are proved again in <str<strong>on</strong>g>the</str<strong>on</strong>g> next<br />

Corollary. Let r be a comm<strong>on</strong> prime divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t. Then we have<br />

(1) p ≡ 1 or r ≡ 1 mod 4 (see [7, Lemma, (4) ]).<br />

(2) q ≡ −1 mod 9 in case p = 3 <strong>and</strong> f divides t (see [8, Corollary, (a)]).<br />

–122–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2). We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case n = p = 3. If f is composite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n f does not<br />

divide t. Thus we may assume f is prime <strong>and</strong> so r = f (see [7]). f has a primary prime<br />

decompositi<strong>on</strong> f = η¯η in Z[ω] where ω = e 2πi<br />

3 <strong>and</strong> η = ω(ω − q), (see [6, 8]). In this case,<br />

we set χ is <str<strong>on</strong>g>the</str<strong>on</strong>g> cubic residue character modulo η. Let h(x) be <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

θ over Q.<br />

h(x) := x 3 + a 1 x 2 + a 2 x + a 3 = (x − θ 0 )(x − θ 1 )(x − θ 2 ).<br />

where a 1 = −θ 0 − θ 1 − θ 2 = 1. If 3 does not divide I(θ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n h(x) ≡ x 3 − x mod 3 by<br />

Kummer’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> our Theorem. This c<strong>on</strong>tradicts to a 1 = 1. Thus d(θ) ≡ 0 mod 3.<br />

Using g 1 g 2 = g 1 ḡ 1 = |g 1 | 2 = r, we have<br />

∣ 1 θ 1 θ 2 ∣∣∣∣∣<br />

f = r = −|A 3 | = −(θ 0 + θ 1 + θ 2 )<br />

1 θ 0 θ 1 = θ0 2 + θ1 2 + θ2 2 − a 2 = 1 − 3a 2 .<br />

∣ 1 θ 2 θ 0<br />

Thus we obtain 3a 2 = 1 − f = −q(q + 1). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, using g 2 = ḡ 1 , f = η¯η <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Stickelberger relati<strong>on</strong> g1 3 = rη = fη (see [6]), we have<br />

∣ g 0 g 1 g 2 ∣∣∣∣∣<br />

−27a 3 = 27θ 0 θ 1 θ 2 = |B 3 | =<br />

g 2 g 0 g 1 = g0 3 + g1 3 + g2 3 − 3g 0 g 1 g 2<br />

∣ g 1 g 2 g 0<br />

= −1 + f(η + ¯η) + 3f = −1 + f(q − 1) + 3f = (q + 1) 3 .<br />

Thus we have 3 3 q 3 a 3 = (−q(q + 1)) 3 = 3 3 a 3 2 <strong>and</strong> so a 2 + a 3 ≡ a 3 2 − q 3 a 3 = 0 mod 3.<br />

Noting h ′ (θ) ≡ a 2 − θ mod 3 where h ′ (x) is <str<strong>on</strong>g>the</str<strong>on</strong>g> derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h(x), we obtain<br />

0 ≡ −d(θ) = N L3 /Q(h ′ (θ)) ≡ h(a 2 ) ≡ a 2 − a 2 2 + a 3 ≡ −a 2 2 mod 3.<br />

Thus we have 0 ≡ 3a 2 = −q(q + 1) mod 9.<br />

Remark. Using <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> quadratic reciprocity law, we can prove<br />

q ≡ −1 mod 8 in case p = 3 <strong>and</strong> f divides t.<br />

It simplifies <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Propositi<strong>on</strong> 3.2 by Lemma 3.3 <strong>on</strong> p.172 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper<br />

K. Dilcher <strong>and</strong> J. Knauer, On a c<strong>on</strong>jecture <str<strong>on</strong>g>of</str<strong>on</strong>g> Feit <strong>and</strong> Thomps<strong>on</strong>, pp.169-178 in <str<strong>on</strong>g>the</str<strong>on</strong>g> book,<br />

High primes <strong>and</strong> misdemeanours, edited by A. van der Poorten, A. Stein, Fields Institute<br />

Communicati<strong>on</strong>s 41, Amer. Math. Soc., 2004.<br />

We can underst<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir pro<str<strong>on</strong>g>of</str<strong>on</strong>g> through <str<strong>on</strong>g>the</str<strong>on</strong>g> next some results in this order :<br />

• Ex. 11 <strong>on</strong> p.231, <strong>and</strong> p.103 in <str<strong>on</strong>g>the</str<strong>on</strong>g> book, B. C. Berndt, R.J. Evans, K. S. Williams,<br />

Gauss <strong>and</strong> Jacobi Sums, Wiley, New York, 1998.<br />

• Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2 <strong>on</strong> p.139 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, R. Huds<strong>on</strong> <strong>and</strong> K. S. Williams, Some<br />

new residuacity criteria, Pacific J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Math. 91(1980), 135-143.<br />

• The tables for <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclotomic numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> order 6 <strong>and</strong> p.68 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, A. L.<br />

Whiteman, The cyclotomic numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> order twelve, Acta. Arithmetica 6 (1960),<br />

53-76.<br />

✷<br />

–123–


References<br />

[1] Apostol, T. M., The resultant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclotomic polynomials F m (ax) <strong>and</strong> F n (bx), Math. Comput. 29<br />

(1975), 1-6.<br />

[2] Artin, E., <strong>Theory</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic numbers, notes by Gerhard Würges, Göttingen, Germany (1956).<br />

[3] Feit, W. <strong>and</strong> Thomps<strong>on</strong>, J. G., A solvability criteri<strong>on</strong> for finite groups <strong>and</strong> some c<strong>on</strong>sequences, Proc.<br />

Nat. Acad. Sci. USA 48 (1962), 968-970.<br />

[4] Feit, W. <strong>and</strong> Thomps<strong>on</strong>, J. G.,Solvability <str<strong>on</strong>g>of</str<strong>on</strong>g> groups <str<strong>on</strong>g>of</str<strong>on</strong>g> odd order, Pacific J. Math. 13 (1963), 775-1029.<br />

[5] Guy, R. K., Unsolved problems in number <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Springer, 3rd ed., 2004.<br />

[6] Irel<strong>and</strong>, K. <strong>and</strong> Rosen, M., A classical introducti<strong>on</strong> to modern number <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. Springer, 2nd ed.,<br />

1990.<br />

[7] Motose, K., Notes to <str<strong>on</strong>g>the</str<strong>on</strong>g> Feit-Thomps<strong>on</strong> c<strong>on</strong>jecture, Proc. Japan, Acad., ser A, 85(2009), 16-17.<br />

[8] Motose, K., Notes to <str<strong>on</strong>g>the</str<strong>on</strong>g> Feit-Thomps<strong>on</strong> c<strong>on</strong>jecture. II, Proc. Japan, Acad., ser A, 86(2010), 131-132.<br />

[9] Ono, T., An introducti<strong>on</strong> to algebraic number <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Plenum Press 1990 (a translati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sur<strong>on</strong><br />

Josetsu, Shokabo, 2nd ed., 1988).<br />

[10] Stephens, N. M., On <str<strong>on</strong>g>the</str<strong>on</strong>g> Feit-Thomps<strong>on</strong> c<strong>on</strong>jecture, Math. Comput. 25 (1971), 625.<br />

Emeritus Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Hirosaki University<br />

Toriage 5-13-5, Hirosaki, 036-8171, JAPAN<br />

E-mail address: moka.mocha_no_kaori@snow.ocn.ne.jp<br />

–124–


HOM-ORTHOGONAL PARTIAL TILTING MODULES<br />

FOR DYNKIN QUIVERS<br />

HIROSHI NAGASE AND MAKOTO NAGURA<br />

Abstract. We count <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al<br />

partial tilting modules for an arbitrary Dynkin quiver. This number is independent <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number for A n or D n -type can be expressed<br />

as a special value <str<strong>on</strong>g>of</str<strong>on</strong>g> a hypergeometric functi<strong>on</strong>. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we<br />

obtain a minimum value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> basic relative invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

regular prehomogeneous vector spaces.<br />

Introducti<strong>on</strong><br />

Let Q = (Q 0 , Q 1 ) be a Dynkin quiver having n vertices (i.e., its base graph is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dynkin diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1, D n with n ≥ 4, or E n with n = 6, 7, 8), where Q 0 ,<br />

Q 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices, arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, respectively. We denote by Λ = KQ its path algebra<br />

over an algebraically closed field K <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic zero, <strong>and</strong> by mod Λ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finitely generated right Λ-modules.<br />

Let X ∼ = ⊕ s<br />

k=1 m kX k be <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod Λ into indecomposable direct<br />

summ<strong>and</strong>s, where m k X k means <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> m k copies <str<strong>on</strong>g>of</str<strong>on</strong>g> X k , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> X k ’s are<br />

pairwise n<strong>on</strong>-isomorphic. Then X is called basic if m k = 1 for all indices k. We call X<br />

to be hom-orthog<strong>on</strong>al if Hom Λ (X i , X j ) = 0 for all i ≠ j. This noti<strong>on</strong> is equivalent to that<br />

X is locally semi-simple in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Shmelkin [8] when Q is a Dynkin quiver. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case where X is indecomposable, we will say that X itself is hom-orthog<strong>on</strong>al. Since Λ is<br />

hereditary, we say that X ∈ mod Λ is a partial tilting module if it satisfies Ext 1 Λ(X, X) = 0.<br />

Each X ∈ mod Λ with dimensi<strong>on</strong> vector d = dim X can be regarded as a representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q; that is, a point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> variety Rep(Q, d) that c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong>s with<br />

dimensi<strong>on</strong> vector d = (d (i) ) i∈Q0 ∈ Z n ≥0. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> direct product GL(d) = ∏ i∈Q 0<br />

GL(d (i) )<br />

acts naturally <strong>on</strong> Rep(Q, d); see, for example, [3, §2]. Since Λ is representati<strong>on</strong>-finite,<br />

Rep(Q, d) has a unique dense GL(d)-orbit; thus (GL(d), Rep(Q, d)) is a prehomogeneous<br />

vector space (abbreviated PV). It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> Artin–Voigt <str<strong>on</strong>g>the</str<strong>on</strong>g>orem [3, Theorem<br />

4.3] that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> that X is a partial tilting module can be interpreted to that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> GL(d)-orbit c<strong>on</strong>taining X is dense in Rep(Q, d); On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong><br />

that X is hom-orthog<strong>on</strong>al corresp<strong>on</strong>ds to that <str<strong>on</strong>g>the</str<strong>on</strong>g> isotropy subgroup (or, stabilizer) at<br />

X ∈ Rep(Q, d) is reductive. Therefore we are interested in hom-orthog<strong>on</strong>al partial tilting<br />

Λ-modules, because <str<strong>on</strong>g>the</str<strong>on</strong>g>y corresp<strong>on</strong>d to generic points <str<strong>on</strong>g>of</str<strong>on</strong>g> regular PVs associated with Q;<br />

see [5, Theorem 2.28].<br />

In this paper, we count up <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al<br />

partial tilting Λ-modules for an arbitrary Dynkin quiver Q. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, this is nothing<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–125–


e(n, s) n = 6 7 8<br />

s = 1 36 63 120<br />

2 108 315 945<br />

3 72 336 1575<br />

4 0 63 675<br />

e 0 (n, s) n = 6 7 8<br />

s = 1 7 16 44<br />

2 35 120 462<br />

3 35 170 924<br />

4 0 40 462<br />

Table 0.1. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e(n, s) <strong>and</strong> e 0 (n, s)<br />

but essentially counting <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> regular PVs associated with. Our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Theorem 0.1. Let Q be a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1 (resp. D n with n ≥ 4, E n with<br />

n = 6, 7, 8). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> number a(n, s) (resp. d(n, s), e(n, s)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

basic hom-orthog<strong>on</strong>al tilting KQ-modules having s pairwise n<strong>on</strong>-isomorphic indecomposable<br />

direct summ<strong>and</strong>s is given explicitely by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

(0.1)<br />

(0.2)<br />

(n + 1)!<br />

a(n, s) =<br />

s! (s + 1)! (n + 1 − 2s)!<br />

= C s · ( n+1<br />

2s )<br />

if 1 ≤ s ≤ (n + 1)/2, <strong>and</strong> a(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. Here C s = ( 2s<br />

s ) /(s + 1) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

s-th Catalan number.<br />

d(n, s) =<br />

(n − 1)!<br />

(s!) 2 (n + 2 − 2s)! · {s 2 (s − 1) + n(n + 1 − 2s)(n + 2 − 2s) }<br />

if 1 ≤ s ≤ (n + 2)/2, <strong>and</strong> d(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e(n, s) for 1 ≤ s ≤<br />

(n + 1)/2 are given in Table 0.1, <strong>and</strong> we have e(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Our approach to this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, which was inspired by Seidel’s paper [7], is based <strong>on</strong><br />

an observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> perpendicular categories introduced by Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield [6]. Here we point<br />

out that <str<strong>on</strong>g>the</str<strong>on</strong>g> totality <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) or d(n, s) for fixed n can be expressed as a special value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a hypergeometric functi<strong>on</strong>. As menti<strong>on</strong>ed in Remark 2.4, <str<strong>on</strong>g>the</str<strong>on</strong>g> formula (0.2) has a<br />

combinatorial interpretati<strong>on</strong>.<br />

According to Happel [4], if a Λ-module corresp<strong>on</strong>ding to a point c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> dense<br />

orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> a PV (GL(d), Rep(Q, d)) has s pairwise n<strong>on</strong>-isomorphic indecomposable direct<br />

summ<strong>and</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> PV has exactly n − s basic relative invariants. Thus we obtain a<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.1.<br />

Corollary 0.2. Each regular PV associated with a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n (resp. D n , E 6 , E 7 ,<br />

<strong>and</strong> E 8 ) has at least (n − 1)/2 (resp. (n − 2)/2, 3, 3, <strong>and</strong> 4) basic relative invariants.<br />

We say that X ∈ mod Λ is sincere if its dimensi<strong>on</strong> vector dim X does not have zero entry.<br />

Sincere modules are fairly interesting to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> PVs, because (GL(d), Rep(Q, d))<br />

with n<strong>on</strong>-sincere dimensi<strong>on</strong> can be regarded as a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> at least two PVs associated<br />

with proper subgraphs <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. So we have counted <str<strong>on</strong>g>the</str<strong>on</strong>g>m:<br />

Theorem 0.3. Let Q be a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1 (resp. D n with n ≥ 4, E n with<br />

n = 6, 7, 8). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> number a 0 (n, s) (resp. d 0 (n, s), e 0 (n, s)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes<br />

–126–


<str<strong>on</strong>g>of</str<strong>on</strong>g> basic sincere hom-orthog<strong>on</strong>al tilting KQ-modules having s pairwise n<strong>on</strong>-isomorphic indecomposables<br />

is given explicitely by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

a 0 (n − 1)!<br />

(n, s) =<br />

s! (s − 1)! (n + 1 − 2s)! = C s−1 · ( )<br />

n−1<br />

(0.3)<br />

2s−2<br />

if 1 ≤ s ≤ (n + 1)/2, <strong>and</strong> a 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

d 0 (n, s) =<br />

(n − 2)!<br />

s! (s − 1)! (n + 2 − 2s)!<br />

× { n(n − 1 − 2s)(n − 2s) + 2n(n − 2) + (s − 1)(s 2 − 9s + 4) }<br />

if 1 ≤ s ≤ (n + 2)/2, <strong>and</strong> d 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e 0 (n, s) for 1 ≤ s ≤<br />

(n + 1)/2 are given in Table 0.1, <strong>and</strong> we have e 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Now we will excepti<strong>on</strong>ally define some values <str<strong>on</strong>g>of</str<strong>on</strong>g> a(m, t) for simplicity:<br />

a(m, −1) = 0, a(m, 0) = 1, <strong>and</strong> a(l, t) = 0 for l ≤ 0 <strong>and</strong> t ≠ 0.<br />

Then we can express d(n, s), a 0 (n, s), <strong>and</strong> d 0 (n, s) as <str<strong>on</strong>g>the</str<strong>on</strong>g> following simpler forms:<br />

(0.4)<br />

(0.5)<br />

d(n, s) = (n − 1) · a(n − 3, s − 2) + (s + 1) · a(n − 1, s),<br />

a 0 (n, s) = a(n − 2, s − 1),<br />

d 0 (n, s) = (s − 1) · a(n − 3, s − 2) + (n − 2) · a(n − 3, s − 1).<br />

As will be menti<strong>on</strong>ed in §1, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers presented in Theorems 0.1 <strong>and</strong> 0.3 are independent<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Thus we may assume that its<br />

arrows are c<strong>on</strong>veniently oriented.<br />

1. Preliminaries<br />

Let Q be a Dynkin quiver having n vertices, Λ = KQ its path algebra. For an indecomposable<br />

Λ-module M, its right perpendicular category M ⊥ is defined by<br />

M ⊥ = {X ∈ mod Λ; Hom Λ (M, X) = 0 <strong>and</strong> Ext 1 Λ(M, X) = 0}.<br />

The left perpendicular category ⊥ M is also defined similarly. To investigate hom-orthog<strong>on</strong>al<br />

partial tilting modules (or, regular PVs), we are interested in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir intersecti<strong>on</strong> Per M =<br />

⊥ M ∩ M ⊥ ; we will simply call it <str<strong>on</strong>g>the</str<strong>on</strong>g> perpendicular category <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Now we recall <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Ring</strong>el form, which is defied <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck group K 0 (Λ) ∼ = Z n :<br />

〈dim X, dim Y 〉 = dim Hom Λ (X, Y ) − dim Ext 1 Λ(X, Y )<br />

= t (dim X) · R Q · (dim Y )<br />

for X, Y ∈ mod Λ, where R Q = (r ij ) i,j∈Q0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> matrix with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

basis e 1 , e 2 , . . . , e n <str<strong>on</strong>g>of</str<strong>on</strong>g> K 0 (Λ) ∼ = Z n (here we put e k = dim S(k), which is <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong><br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple module corresp<strong>on</strong>ding to a vertex k ∈ Q 0 ). This is defined as r ii = 1<br />

for all i ∈ Q 0 ; r ij = −1 if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an arrow i → j in Q; <strong>and</strong> r ij = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Lemma 1.1. For indecomposable Λ-modules X <strong>and</strong> Y , we have 〈dim X, dim Y 〉 = 0 if<br />

<strong>and</strong> <strong>on</strong>ly if Hom Λ (X, Y ) = 0 <strong>and</strong> Ext 1 Λ(X, Y ) = 0.<br />

–127–


Now we will show that <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers that are presented in our <str<strong>on</strong>g>the</str<strong>on</strong>g>orems do not depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. To do this, we need <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma:<br />

Lemma 1.2. For any sink a ∈ Q 0 <strong>and</strong> any Λ-module M, if Hom Λ (S(a), M) = 0 <strong>and</strong><br />

Ext 1 Λ(M, S(a)) = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have Hom Λ (P (tα), M) = 0 for any arrow α : tα → a in Q.<br />

Let σ = σ a be <str<strong>on</strong>g>the</str<strong>on</strong>g> reflecti<strong>on</strong> functor (with <str<strong>on</strong>g>the</str<strong>on</strong>g> APR-tilting module T , see [2, VII Theorem<br />

5.3]) at a sink a ∈ Q 0 , <strong>and</strong> Q ′ <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver obtained by reversing all arrows c<strong>on</strong>necting<br />

with a in Q. For a basic hom-orthog<strong>on</strong>al partial tilting Λ-module X ∼ = ⊕ s<br />

k=1 X k, we<br />

define a Λ ′ -module as follows (here we put Λ ′ = KQ ′ ):<br />

σX := S(a) Λ ′ ⊕ σX 2 ⊕ · · · ⊕ σX s<br />

if X has a direct summ<strong>and</strong> (say, X 1 ) isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module S(a) Λ ; <strong>and</strong><br />

σX := σX 1 ⊕ σX 2 ⊕ · · · ⊕ σX s<br />

if X does not, where we put σX k = Hom Λ (T, X k ) for each indecomposable X k . Let R,<br />

R ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al partial tilting Λ-modules,<br />

Λ ′ -modules, having exactly s indecomposable direct summ<strong>and</strong>s, respectively. Then we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 1.3. For a basic hom-orthog<strong>on</strong>al partial tilting Λ-module X having s indecomposable<br />

direct summ<strong>and</strong>s, so is Λ ′ -module σX. The corresp<strong>on</strong>dence [X] ↦→ [σX] gives<br />

a bijecti<strong>on</strong> from R to R ′ . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers that are presented in Theorem 0.1<br />

do not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let R Q , R Q ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Ring</strong>el form <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ, Λ ′ , respectively.<br />

Let r = r a be <str<strong>on</strong>g>the</str<strong>on</strong>g> simple reflecti<strong>on</strong> <strong>on</strong> Z n corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex a (we also denote by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same r its representati<strong>on</strong> matrix). Then we have R Q ′ = t r · R Q · r. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>,<br />

we have dim σX k = r·(dim X k ) for X k that is not isomorphic to S(a) Λ , <strong>and</strong> r(e a ) = −e a .<br />

Hence, by calculating with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Ring</strong>el form (recall Lemma 1.1), we see that σX is also<br />

a basic hom-orthog<strong>on</strong>al partial tilting Λ ′ -module. This corresp<strong>on</strong>dence [X] ↦→ [σX] is<br />

obviously a bijecti<strong>on</strong>.<br />

□<br />

Next we define two subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> R as follows:<br />

R 1 = { [X] ∈ R; X is sincere, but σX is not sincere } ,<br />

R 2 = { [X] ∈ R; X is not sincere, but σX is sincere } .<br />

It follows from Lemma 1.2 that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> “sincere” implies that any representative <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each class <str<strong>on</strong>g>of</str<strong>on</strong>g> R 1 or R 2 does not have a direct summ<strong>and</strong> isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module<br />

S(a) Λ .<br />

Propositi<strong>on</strong> 1.4. We have ♯R 1 = ♯R 2 . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers for sincere modules<br />

that are presented in Theorem 0.3 do not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic class [X] ∈ R 1 <strong>and</strong> let X ∼ = ⊕ s<br />

k=1 X k be its indecomposable<br />

decompositi<strong>on</strong>. Then, since σX is not sincere, <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th entry <str<strong>on</strong>g>of</str<strong>on</strong>g> dim σX = r·(dim X)<br />

is zero. Hence so is <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th entry <str<strong>on</strong>g>of</str<strong>on</strong>g> each r(α k ), where we put α k = dim X k . On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, since σX is a basic hom-orthog<strong>on</strong>al partial tilting Λ ′ -module, we have<br />

t r(α i )·R Q ′ ·r(α j ) = 0 for any pair <str<strong>on</strong>g>of</str<strong>on</strong>g> distinct indices. Then we see that t r(α i )·R Q·r(α j ) =<br />

–128–


0, because R Q <strong>and</strong> R Q ′ are identical o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th row <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th column. Let ˜X<br />

be a Λ-module corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots ∑ s<br />

k=1 r(α k); this is not sincere,<br />

but σ ˜X is sincere. Thus we see that <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dence [X] ↦→ [ ˜X] gives a bijecti<strong>on</strong> from<br />

R 1 to R 2 .<br />

□<br />

2. A n -type<br />

Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> equi-oriented quiver 1 ◦ −→ 2 ◦ −→ · · · −→ n ◦ <str<strong>on</strong>g>of</str<strong>on</strong>g> A n -type. In <str<strong>on</strong>g>the</str<strong>on</strong>g> following,<br />

we will sometimes c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding things <str<strong>on</strong>g>of</str<strong>on</strong>g> “A 0 -type” or “A −1 -type” to be<br />

trivial for simplicity; for example, “A n−2 × A −1 -type” means just “A n−2 -type”, <strong>and</strong> so <strong>on</strong>.<br />

Propositi<strong>on</strong> 2.1. For each k = 1, 2, . . . , n, <str<strong>on</strong>g>the</str<strong>on</strong>g> perpendicular category Per I(k) is equivalent<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> module category <str<strong>on</strong>g>of</str<strong>on</strong>g> a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type A k−2 × A n−1−k .<br />

Propositi<strong>on</strong> 2.2. Let n <strong>and</strong> s be positive integers.<br />

following recurrence formula:<br />

(2.1) a(n, s) = a(n − 1, s) +<br />

∑s−1<br />

∑n−2<br />

t=0 m=−1<br />

The number a(n, s) satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

a(m, t) · a(n − 3 − m, s − 1 − t).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let X = ⊕ s<br />

j=1 X j be a basic hom-orthog<strong>on</strong>al partial tilting Λ-module having<br />

s distinct indecomposable summ<strong>and</strong>s. Note that X has at most <strong>on</strong>e injective direct<br />

summ<strong>and</strong>. If X does not have any injective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> first entry <str<strong>on</strong>g>of</str<strong>on</strong>g> dim X is zero;<br />

that is, it is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots that come from A n−1 -type. So <str<strong>on</strong>g>the</str<strong>on</strong>g> number for<br />

such modules is equal to a(n − 1, s). Assume that X has just <strong>on</strong>e injective summ<strong>and</strong>,<br />

say I(k). Then, according to Propositi<strong>on</strong> 2.1, X has t <strong>and</strong> s − 1 − t direct summ<strong>and</strong>s<br />

∑<br />

that come from A k−2 -type <strong>and</strong> A n−1−k -type, respectively. Thus we see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist<br />

s−1<br />

t=0<br />

a(k − 2, t) · a(n − 1 − k, s − 1 − t) such modules. Since k runs from 1 to n, we obtain<br />

our asserti<strong>on</strong>.<br />

□<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence formula above, we prove Theorem 0.1 for A n -type. Here we<br />

notice that <str<strong>on</strong>g>the</str<strong>on</strong>g> generating functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) = C s · ( n+1<br />

2s<br />

) can be immediately obtained<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized binomial expansi<strong>on</strong>.<br />

Lemma 2.3. The generating functi<strong>on</strong> F s (x) = ∑ ∞<br />

n=0 a(n, s)xn <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) for fixed s is<br />

given by<br />

F s (x) = C s · x 2s−1<br />

(1 − x) 2s+1 .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.1 for A n -type. First we note that a(n, 1) is nothing but <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots <str<strong>on</strong>g>of</str<strong>on</strong>g> A n -type, which is equal to n(n + 1)/2 = C 1 · ( n+1<br />

2<br />

). In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n = 1, our asserti<strong>on</strong> is trivial. So we assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> (0.2) holds for all positive<br />

integers less than n (≥ 2). In <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence formula (2.1), we note that a(m, t) (resp.<br />

a(n − 3 − m, s − 1 − t)) is <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> degree m (resp. n − 3 − m) <str<strong>on</strong>g>of</str<strong>on</strong>g> F t (x) (resp.<br />

F s−1−t (x)). The coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> degree n − 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Taylor expansi<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> origin (x = 0)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x 2s−4<br />

F t (x) × F s−1−t (x) = C t · C s−1−t ·<br />

(1 − x) 2s<br />

–129–


is equal to ( n<br />

2s−1 ); hence we have<br />

(2.2)<br />

∑n−2<br />

m=−1<br />

a(m, t) · a(n − 3 − m, s − 1 − t) = C t · C s−1−t · ( n<br />

2s−1 ) .<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence formula (2.1) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong>, we have<br />

a(n, s) = a(n − 1, s) + ( n<br />

s−1<br />

2s−1 )<br />

∑<br />

C t · C s−1−t<br />

t=0<br />

= C s · ( n 2s ) + ( n<br />

2s−1 ) · C s = C s · ( n+1<br />

2s ) .<br />

Next we prove that a(n, s) = 0 if s > (n + 1)/2. Let s be such an integer. Then<br />

we have a(n − 1, s) = 0 by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> because s > n/2. Suppose that<br />

t ≤ (m+1)/2 <strong>and</strong> s−1−t ≤ (n−3−m+1)/2 for fixed t. Then we have s−1 ≤ (n−1)/2;<br />

a c<strong>on</strong>tradicti<strong>on</strong>. Hence t > (m + 1)/2 or s − 1 − t > (n − 3 − m + 1)/2, <strong>and</strong> so that<br />

a(m, t) = 0 or a(n − 3 − m, s − 1 − t) = 0. Thus we c<strong>on</strong>clude a(n, s) = 0 by <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence<br />

formula (2.1). Therefore we obtain our asserti<strong>on</strong> for A n -type.<br />

□<br />

Remark 2.4. The formula (0.2) has a combinatorial interpretati<strong>on</strong>. According to Araya<br />

[1, Lemma 3.2], for distinct indecomposables X, Y ∈ mod Λ, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir direct sum X ⊕ Y is a<br />

hom-orthog<strong>on</strong>al partial tilting module (or, both (X, Y ) <strong>and</strong> (Y, X) are excepti<strong>on</strong>al pairs)<br />

if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding codes <str<strong>on</strong>g>of</str<strong>on</strong>g> a circle with n +1 points do not meet each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

It follows from a well-known combinatorics <strong>on</strong> codes that <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> such codes is<br />

equal to C 2 · ( n+1<br />

4<br />

) = a(n, 2). The formula for general s ≥ 2 can be similarly obtained.<br />

Propositi<strong>on</strong> 2.5. Let X be a basic sincere hom-orthog<strong>on</strong>al partial tilting Λ-module. Then<br />

X has exactly <strong>on</strong>e direct summ<strong>and</strong> isomorphic to I(n).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.3 for A n -type. Let X be a basic sincere hom-orthog<strong>on</strong>al partial tilting<br />

Λ-module. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> s = 1 (that is, X itself is indecomposable), it must be isomorphic<br />

to I(n). Hence we have a 0 (n, 1) = 1 for any n. If n = 1 or n = 2, our asserti<strong>on</strong> can<br />

be proved directly. So let n ≥ 3 <strong>and</strong> s ≥ 2. By Propositi<strong>on</strong>s 2.2 <strong>and</strong> 2.5, <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> X should be taken from a module category <str<strong>on</strong>g>of</str<strong>on</strong>g> A n−2 -type. The number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such c<strong>and</strong>idates is equal to a(n − 2, s − 1). We can prove a 0 (n, s) = 0 for s > (n + 1)/2<br />

by a similar manner to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.1.<br />

□<br />

Theorems for D n -type <strong>and</strong> E n -type are shown in a similar way. The detailed pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is<br />

given in our paper which has been submitted for publicati<strong>on</strong> elsewhere<br />

References<br />

[1] T. Araya, Excepti<strong>on</strong>al sequences over path algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n <strong>and</strong> n<strong>on</strong>-crossing spanning trees,<br />

arXiv:0904.2831v1 [math.RT].<br />

[2] I. Assem, D. Sims<strong>on</strong>, <strong>and</strong> A. Skowroński, Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> associative algebras.<br />

Vol. 1, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Student Texts 65, Cambridge University Press, 2006.<br />

MR 2197389 (2006j:16020)<br />

[3] G. Bobiński, C. Riedtmann, <strong>and</strong> A. Skowroński, Semi-invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir zero sets, Trends<br />

in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> related topics, EMS Ser. C<strong>on</strong>gr. Rep., Eur. Math. Soc., 2008,<br />

pp. 49–99. MR 2484724 (2009m:16030)<br />

–130–


[4] D. Happel, Relative invariants <strong>and</strong> subgeneric orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> finite <strong>and</strong> tame type, J. Algebra 78<br />

(1982), 445–459. MR 680371 (84a:16052)<br />

[5] T. Kimura, Introducti<strong>on</strong> to prehomogeneous vector spaces, Translati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical M<strong>on</strong>ographs<br />

215, American Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society, 2003, Translated from <str<strong>on</strong>g>the</str<strong>on</strong>g> 1998 Japanese original by Makoto<br />

Nagura <strong>and</strong> Tsuyoshi Niitani <strong>and</strong> revised by <str<strong>on</strong>g>the</str<strong>on</strong>g> author. MR 1944442 (2003k:11180)<br />

[6] A. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, Semi-invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. (2) 43 (1991), 385–395. MR 1113382<br />

(92g:16019)<br />

[7] U. Seidel, Excepti<strong>on</strong>al sequences for quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin type, Comm. Algebra 29 (2001), 1373–1386.<br />

MR 1842420 (2002j:16016)<br />

[8] D. A. Shmelkin, Locally semi-simple representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers, Transform. Groups 12 (2007), 153–<br />

173. MR 2308034 (2008b:16017)<br />

Tokyo Gakugei University<br />

4-1-1, Nukuikitamachi, Koganei<br />

Tokyo 184-8501 JAPAN<br />

E-mail address: nagase@u-gakugei.ac.jp<br />

Nara Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Yamato-Koriyama<br />

Nara 639-1080 JAPAN<br />

E-mail address: nagura@libe.nara-k.ac.jp<br />

–131–


THE NOETHERIAN PROPERTIES OF THE RINGS OF<br />

DIFFERENTIAL OPERATORS ON CENTRAL 2-ARRANGEMENTS<br />

NORIHIRO NAKASHIMA<br />

Abstract. P. Holm began to study <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a hyperplane arrangement. In this paper, we introduce Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a central 2-arrangement <strong>and</strong> its<br />

graded ring associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> order filtrati<strong>on</strong>.<br />

<strong>Ring</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators, Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian property, Hyperplane ar-<br />

Key Words:<br />

rangement.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 13N10; Sec<strong>on</strong>dary 32S22.<br />

1. Introducti<strong>on</strong><br />

For a commutative algebra R over a field K <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic zero, define vector spaces<br />

inductively by<br />

D 0 (R) := {θ ∈ End K (R) | a ∈ R, θa − aθ = 0},<br />

D m (R) := { θ ∈ End K (R) | a ∈ R, θa − aθ ∈ D m−1 (R) } (m ≥ 1).<br />

We define <str<strong>on</strong>g>the</str<strong>on</strong>g> ring D(R) := ∪ m≥0 D m (R) <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Let S := K[x 1 , . . . , x n ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring. The ring D(S) is <str<strong>on</strong>g>the</str<strong>on</strong>g> n-th Weyl algebra<br />

K[x 1 , . . . , x n ]〈∂ 1 , . . . , ∂ n 〉 where ∂ i :=<br />

∂<br />

∂x i<br />

(see for example [3]). We use <str<strong>on</strong>g>the</str<strong>on</strong>g> multi-index<br />

noteti<strong>on</strong>s, for example, ∂ α := ∂ α 1<br />

1 · · · ∂ α n<br />

n <strong>and</strong> |α| := α 1 + · · · + α n for α = (α 1 , . . . , α n ) ∈<br />

N n . Define D (m) (S) := ⊕ |α|=m . Then D(S) = ⊕ m≥0 D (m) (S). It is well known D(R)<br />

that D(R) is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian, if R is a regular domain (see [3]).<br />

Holm [2] showed that D(R) is finitely generated as a K-algebra when R is a coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic hyperplane arrangement. Holm [1] also proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> differential<br />

operators <str<strong>on</strong>g>of</str<strong>on</strong>g> a central 2-arrangement is a free S-module, <strong>and</strong> gave a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> it. We can<br />

write any ellement in D(R) as a linearly combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this basis ellements.<br />

In this paper, we introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian property <str<strong>on</strong>g>of</str<strong>on</strong>g> D(R) when R is <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a central arrangement. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> case n = 2, D(R) is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring .<br />

We give an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated ideal in <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper.<br />

The details <str<strong>on</strong>g>of</str<strong>on</strong>g> this note are in [4].<br />

2. Hyperplane arrangement<br />

In this secti<strong>on</strong>, we fix some notati<strong>on</strong>, <strong>and</strong> we introduce some properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> a central arrangement. Let A = {H i | i = 1, . . . , r} be a central<br />

(hyperplane) arrangement (i.e., every hyperplane in A c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> origin) in K n . Fix a<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–132–


polynomial p i with ker(p i ) = H i , <strong>and</strong> put Q := p 1 · · · p r . Thus Q is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> certain<br />

homogeneous polynomials <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1. Let I denote <str<strong>on</strong>g>the</str<strong>on</strong>g> principal ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> S generated by<br />

Q. Then S/I is <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate ring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hyperplane arrangement defined by Q.<br />

For any ideal J <str<strong>on</strong>g>of</str<strong>on</strong>g> S, we define an S-submodule D (m) (J) <str<strong>on</strong>g>of</str<strong>on</strong>g> D (m) (S) <strong>and</strong> a subring<br />

D(J) <str<strong>on</strong>g>of</str<strong>on</strong>g> D(S) by<br />

Holm [2] proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>.<br />

Propositi<strong>on</strong> 1 (Propositi<strong>on</strong> 4.3 in [2]).<br />

D (m) (J) := {θ ∈ D (m) (S) | θ(J) ⊆ J},<br />

D(J) := {θ ∈ D(S) | θ(J) ⊆ J}.<br />

D(I) = ⊕ m≥0<br />

D (m) (I).<br />

There is a ring isomorphism D(S/J) ≃ D(J)/JD(S) (see [3, Theorem 15.5.13]). Thus<br />

we can express D(S/J) as a subquotient <str<strong>on</strong>g>of</str<strong>on</strong>g> Weyl algebra.<br />

We can prove that D(J)/JD(S) is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian if <strong>and</strong> <strong>on</strong>ly if D(J)/JD(S) is left<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian when J ≠ 0 is a principal ideal. Therefore we c<strong>on</strong>clude that D(S/I) is right<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian if <strong>and</strong> <strong>on</strong>ly if D(S/I) is left Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian.<br />

Theorem 2. Let h ≠ 0 be a polynomial, <strong>and</strong> let J = hS. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> ring D(J)/JD(S) is<br />

right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian if <strong>and</strong> <strong>on</strong>ly if D(J)/JD(S) is left Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian.<br />

Corollary 3. Let I be <str<strong>on</strong>g>the</str<strong>on</strong>g> defining ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> a central arrangement. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> ring D(S/I)<br />

is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian if <strong>and</strong> <strong>on</strong>ly if D(S/I) is left Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian.<br />

To prove that D(S/I) is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring, we <strong>on</strong>ly need to prove that D(S/I) is a<br />

right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring.<br />

The operator<br />

ε m := ∑ m!<br />

α! xα ∂ α<br />

|α|=m<br />

is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Euler operator <str<strong>on</strong>g>of</str<strong>on</strong>g> order m where α! = (α 1 !) · · · (α n !) for α = (α 1 , . . . , α n ).<br />

Then ε m = ε 1 (ε 1 − 1) · · · (ε 1 − m + 1) [2, Lemma 4.9].<br />

3. n = 2<br />

In this secti<strong>on</strong>, we assume n = 2 <strong>and</strong> S = K[x, y]. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring D(S/I) ≃ D(I)/ID(S). In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring Gr D(S/I)<br />

associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> order filtrati<strong>on</strong> is not Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian when r ≥ 2.<br />

Put P i := Q p i<br />

for i = 1, . . . , r, <strong>and</strong> define<br />

{<br />

∂ y if p i = ax (a ∈ K × )<br />

δ i :=<br />

∂ x + a i ∂ y if p i = a(y − a i x) (a ∈ K × ).<br />

Then δ i (p j ) = 0 if <strong>and</strong> <strong>on</strong>ly if i = j.<br />

–133–


Propositi<strong>on</strong> 4 (Paper III, Propositi<strong>on</strong> 6.7 in [1], Propositi<strong>on</strong> 4.14 in [6]). For any m ≥ 1,<br />

D (m) (I) is a free left S-module with a basis<br />

{ε m , P 1 δ m 1 , . . . , P m δ m m} if m < r − 1,<br />

{P 1 δ m 1 , . . . , P r δ m r } if m = r − 1,<br />

{P 1 δ m 1 , . . . , P r δ m r , Qη (m)<br />

r+1, . . . , Qη (m)<br />

m+1} if m > r − 1,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> set {δ m 1 , . . . , δ m r , η (m)<br />

r+1, . . . , η (m)<br />

m+1} forms a K-basis for ∑ |α|=m K∂α if m > r − 1.<br />

By Propositi<strong>on</strong> 1, we have<br />

( ⊕r−2<br />

( ) )<br />

D(I) = S ⊕ Sεm ⊕ SP 1 δ1 m ⊕ · · · ⊕ SP m δm<br />

m<br />

m=1<br />

( ⊕ (<br />

⊕ SP1 δ1 m ⊕ · · · ⊕ SP r δr m ⊕ SQη (m)<br />

r+1 ⊕ · · · ⊕ SQη m+1) ) (m) .<br />

m≥r−1<br />

For i = 1, . . . , r, we define an additive group<br />

L i := D(I) ∩ (p 1 · · · p i )D(S).<br />

Propositi<strong>on</strong> 5. For i = 1, . . . , r, <str<strong>on</strong>g>the</str<strong>on</strong>g> additive group L i is a two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> D(I).<br />

We c<strong>on</strong>sider a sequence<br />

(3.1)<br />

ID(S) = L r ⊆ L r−1 ⊆ · · · ⊆ L 1 ⊆ L 0 = D(I)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two-sided ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> D(I). If L i−1 /L i is a right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian D(I)-module for any i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

D(I)/ID(S) is a right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. By proving that L i−1 /L i is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian for<br />

all i, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 6. The ring D(S/I) ≃ D(I)/ID(S) <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a central 2-arrangement is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian (i.e., D(S/I) is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>and</strong> left<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian).<br />

In c<strong>on</strong>trast, Gr D(S/I) is not Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian when r ≥ 2.<br />

Remark 7. The graded ring Gr D(S/I) associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> order filtrati<strong>on</strong> is a commutative<br />

ring. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal M := 〈P 1 δ1<br />

m | m ≥ 1〉 <str<strong>on</strong>g>of</str<strong>on</strong>g> Gr D(S/I).<br />

Assume that M is finitely generated with generators η 1 , . . . , η l . Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a<br />

positive integer m such that<br />

Since P 1 δ m 1<br />

(3.2)<br />

∈ M, we can write<br />

M = 〈η 1 , . . . , η l 〉 ⊆ 〈P 1 δ 1 , . . . , P 1 δ m−1<br />

1 〉.<br />

P 1 δ m 1<br />

= P 1 δ 1 · θ 1 + · · · + P 1 δ m−1<br />

1 · θ m−1<br />

for some θ 1 , . . . , θ m−1 ∈ D(I).<br />

If θ ∈ D(I) with ord(θ) ≤ 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree <str<strong>on</strong>g>of</str<strong>on</strong>g> θ is greater than or equal<br />

to 1 by Propositi<strong>on</strong> 4. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> LHS <str<strong>on</strong>g>of</str<strong>on</strong>g> (3.2) is m, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists at least <strong>on</strong>e<br />

θ j such that <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> θ j is greater than or equal to 1. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

–134–


<str<strong>on</strong>g>the</str<strong>on</strong>g> RHS <str<strong>on</strong>g>of</str<strong>on</strong>g> (3.2) is greater than r − 1. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> LHS <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(3.2) is exactly r − 1. This is a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Hence M is not finitely generated, <strong>and</strong> thus we have proved that Gr D(S/I) is not<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian.<br />

4. Exaple<br />

Let n = 2 <strong>and</strong> S = K[x, y]. Let Q = xy(x − y) <strong>and</strong> I = QS. Put p 1 = x, p 2 = y, p 3 =<br />

x − y. Then P 1 = y(x − y) <strong>and</strong> δ 1 = ∂ y . We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> right ideal 〈y(x − y)∂ m y | m ≥ 1〉<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> D(I).<br />

For l ≥ 4, we have<br />

y(x − y)∂ y · y(x − y)∂ l+1<br />

y = y 2 (x − y) 2 ∂ l+2<br />

y + y(x − 2y)∂ l+1<br />

y ,<br />

y(x − y)∂ 2 y · y(x − y)∂ l y = y 2 (x − y) 2 ∂ l+2<br />

y + 2y(x − 2y)∂ l+1<br />

y − 2y(x − y)∂ l y,<br />

y(x − y)∂ 3 y · y(x − y)∂ l−1<br />

y = y 2 (x − y) 2 ∂ l+2<br />

y + 3y(x − 2y)∂ l+1<br />

y − 6y(x − y)∂ l y.<br />

Thus we obtain<br />

y(x−y)∂ y ·y(x−y)∂y<br />

l+1 −2y(x−y)∂y 2 ·y(x−y)∂y l +y(x−y)∂y 3 ·y(x−y)∂y l−1 = −2y(x−y)∂y.<br />

l<br />

This leads to<br />

y(x − y)∂y l ∈ 〈y(x − y)∂y m | m = 1, 2, 3〉<br />

since y(x − y)∂y<br />

m ∈ D(I) for any m ≥ 1. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> identity<br />

〈y(x − y)∂ m y | m ≥ 1〉 = 〈y(x − y)∂ m y | m = 1, 2, 3〉<br />

as right ideals. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> right ideal 〈y(x − y)∂y<br />

m | m ≥ 1〉 is finitely generated.<br />

In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> right ideal 〈y(x − y)∂y<br />

m | m ≥ 1〉 <str<strong>on</strong>g>of</str<strong>on</strong>g> Gr D(S/I) is not finitely generated<br />

by Remark 7.<br />

References<br />

[1] P. Holm, Differential Operators <strong>on</strong> Arrangements <str<strong>on</strong>g>of</str<strong>on</strong>g> Hyperplanes. PhD. Thesis, Stockholm University,<br />

(2002).<br />

[2] P. Holm, Differential Operators <strong>on</strong> Hyperplane Arrangements. Comm. Algebra 32 (2004), no.6, 2177-<br />

2201.<br />

[3] J. C. McC<strong>on</strong>nell <strong>and</strong> J. C. Robs<strong>on</strong>, N<strong>on</strong>commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>Ring</strong>s. Pure <strong>and</strong> Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

John Wiley & S<strong>on</strong>s, Chichester, 1987.<br />

[4] N. Nakashima, The Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Ring</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Differential Operators <strong>on</strong> Central 2-<br />

Arrangements. Preprint, arXiv:1106.1756.<br />

[5] P. Orlik <strong>and</strong> H. Terao, Arrangements <str<strong>on</strong>g>of</str<strong>on</strong>g> Hyperplanes. Grundlehren dermatematischen Wissenschaften<br />

300, Springer-Verlag, 1992.<br />

[6] J. Snellman, A C<strong>on</strong>jecture <strong>on</strong> Pi<strong>on</strong>caré-Betti Series <str<strong>on</strong>g>of</str<strong>on</strong>g> Modules <str<strong>on</strong>g>of</str<strong>on</strong>g> Differential Operators <strong>on</strong> a Generic<br />

Hyperplane Arrangement. Experiment. Math. 14 (2005), no.4, 445-456.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

Hokkaido University<br />

Sapporo, 060-0810, Japan<br />

E-mail address: naka n@math.sci.hokudai.ac.jp<br />

–135–


HOCHSCHILD COHOMOLOGY OF QUIVER ALGEBRAS DEFINED<br />

BY TWO CYCLES AND A QUANTUM-LIKE RELATION<br />

DAIKI OBARA<br />

Abstract. This paper is based <strong>on</strong> my talk given at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong><br />

<strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> held at Okayama University, Japan, 25–27 September 2011.<br />

In this paper, we c<strong>on</strong>sider quiver algebras A q over a field k defined by two cycles <strong>and</strong><br />

a quantum-like relati<strong>on</strong> depending <strong>on</strong> a n<strong>on</strong>-zero element q in k. We determine <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ring structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> A q modulo nilpotence <strong>and</strong> give a<br />

necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong> for A q to satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong> given in [19].<br />

1. Introducti<strong>on</strong><br />

Let A be an indecomposable finite dimensi<strong>on</strong>al algebra over a field k. We denote by A e<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra A⊗ k A op <str<strong>on</strong>g>of</str<strong>on</strong>g> A, so that left A e -modules corresp<strong>on</strong>d to A-bimodules.<br />

The Hochschild cohomology ring is given by HH ∗ (A) = Ext ∗ A e(A, A) = ⊕ n≥0Ext n Ae(A, A)<br />

with Y<strong>on</strong>eda product. It is well-known that HH ∗ (A) is a graded commutative ring, that<br />

is, for homogeneous elements η ∈ HH m (A) <strong>and</strong> θ ∈ HH n (A), we have ηθ = (−1) mn θη. Let<br />

N denote <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A) which is generated by all homogeneous nilpotent elements.<br />

Then N is c<strong>on</strong>tained in every maximal ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A), so that <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

HH ∗ (A) are in 1-1 corresp<strong>on</strong>dence with those in <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo<br />

nilpotence HH ∗ (A)/N .<br />

Let q be a n<strong>on</strong>-zero element in k <strong>and</strong> s, t integers with s, t ≥ 1. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

algebra A q = kQ/I q defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> two cycles Q with s + t − 1 vertices <strong>and</strong> s + t arrows<br />

as follows:<br />

α<br />

a<br />

2<br />

3 ←− a2 b 2 · · · · · ·<br />

α 3<br />

↙ ↖ α 1 β 1<br />

.<br />

↗<br />

. .<br />

a 4 1 b t−2<br />

. .. ↗αs β t<br />

↖ ↙ βt−2<br />

β t−1<br />

· · · · · · a s b t ←− bt−1<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal I q <str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by<br />

X sa , X s Y t − qY t X s , Y tb<br />

for a, b ≥ 2 where we set X:= α 1 + α 2 + · · · + α s <strong>and</strong> Y := β 1 + β 2 + · · · + β t . We denote<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> trivial path at <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex a(i) <strong>and</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex b(j) by e a(i) <strong>and</strong> by e b(j) respectively.<br />

We regard <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers i in <str<strong>on</strong>g>the</str<strong>on</strong>g> subscripts <str<strong>on</strong>g>of</str<strong>on</strong>g> e a(i) modulo s <strong>and</strong> j in <str<strong>on</strong>g>the</str<strong>on</strong>g> subscripts <str<strong>on</strong>g>of</str<strong>on</strong>g> e b(j)<br />

modulo t. In this paper, we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> ring structure <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A q )/N .<br />

In [17], Snashall <strong>and</strong> Solberg used <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence<br />

HH ∗ (A)/N to define a support variety for any finitely generated module over A. This<br />

led us to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A)/N . In [17], Snashall <strong>and</strong> Solberg c<strong>on</strong>jectured<br />

that HH ∗ (A)/N is always finitely generated as a k-algebra. But a counterexample to<br />

–136–


this c<strong>on</strong>jecture was given by Snashall [16] <strong>and</strong> Xu [21]. This example makes us c<strong>on</strong>sider<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r we can give necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a finite dimensi<strong>on</strong>al algebra A<br />

for HH ∗ (A)/N to be finitely generated as a k-algebra.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> support varieties, it is interesting to know when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> a module is trivial. In [4], Erdmann, Holloway, Snashall, Solberg <strong>and</strong> Taillefer<br />

gave <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a module for it to have trivial variety under<br />

some finiteness c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> A. In [19], Solberg gave a c<strong>on</strong>diti<strong>on</strong> which is equivalent to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong>s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, we show that A q satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong><br />

given in [19] if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper is organized as follows. In Secti<strong>on</strong> 1 we deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> support variety given in [17] <strong>and</strong> precedent results about <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

ring modulo nilpotence. In Secti<strong>on</strong> 2, we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong> given in<br />

[19] <strong>and</strong> introduce precedent results about this c<strong>on</strong>diti<strong>on</strong>. In Secti<strong>on</strong> 3, we determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> A q modulo nilpotence <strong>and</strong> show that A q satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

finiteness c<strong>on</strong>diti<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

2. Support variety<br />

In [17], Snasall <strong>and</strong> Solberg defined <str<strong>on</strong>g>the</str<strong>on</strong>g> support variety <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated A-module<br />

M over a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative graded subalgebra H <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A) with H 0 = HH 0 (A).<br />

In this paper, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case H = HH ∗ (A).<br />

Definiti<strong>on</strong> 1 ([17]). The support variety <str<strong>on</strong>g>of</str<strong>on</strong>g> M is given by<br />

V (M) = {m ∈ MaxSpec HH ∗ (A)/N | AnnExt ∗ A(M, M) ⊆ m ′ }<br />

where AnnExt ∗ A(M, M) is <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator <str<strong>on</strong>g>of</str<strong>on</strong>g> Ext ∗ A(M, M), m ′ is <str<strong>on</strong>g>the</str<strong>on</strong>g> pre-image <str<strong>on</strong>g>of</str<strong>on</strong>g> m for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> natural epimorphism <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> HH ∗ (A)-acti<strong>on</strong> <strong>on</strong> Ext ∗ A(A, A) is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> graded<br />

algebra homomorphism HH ∗ (A) −⊗M<br />

−→ Ext ∗ A(M, M).<br />

Since A is indecomposable, we have that HH 0 (A) is a local ring. Thus HH ∗ (A)/N has a<br />

unique maximal graded ideal m gr = 〈rad HH ∗ (A), HH ≥1 (A)〉/N . We say that <str<strong>on</strong>g>the</str<strong>on</strong>g> variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M is trivial if V (M) = {m gr }.<br />

In [16], Snashall gave <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>.<br />

Questi<strong>on</strong> ([16]). Whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r we can give necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a finite dimensi<strong>on</strong>al<br />

algebra for <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence to be finitely<br />

generated as a k-algebra.<br />

With respect to sufficient c<strong>on</strong>diti<strong>on</strong>, it is shown that HH ∗ (A)/N is finitely generated<br />

as a k-algebra for various classes <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras by many authors as follows:<br />

(1) In [6], [20], Evens <strong>and</strong> Venkov showed that HH ∗ (A)/N is finitely generated for<br />

any block <str<strong>on</strong>g>of</str<strong>on</strong>g> a group ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group.<br />

(2) In [7], Friedl<strong>and</strong>er <strong>and</strong> Suslin showed that HH ∗ (A)/N is finitely generated for any<br />

block <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite dimensi<strong>on</strong>al cocommutative Hopf algebra.<br />

(3) In [9], Green, Snashall <strong>and</strong> Solberg showed that HH ∗ (A)/N is finitely generated<br />

for finite dimensi<strong>on</strong>al self-injective algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type over an<br />

algebraically closed field.<br />

–137–


(4) In [10], Green, Snashall <strong>and</strong> Solberg showed that HH ∗ (A)/N is finitely generated<br />

for finite dimensi<strong>on</strong>al m<strong>on</strong>omial algebras.<br />

(5) In [11], Happel showed that HH ∗ (A)/N is finitely generated for finite dimensi<strong>on</strong>al<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global dimensi<strong>on</strong>.<br />

(6) In [15], Schroll <strong>and</strong> Snashall showed that HH ∗ (A)/N is finitely generated for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

principal block <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Heche algebra H q (S 5 ) with q = −1 defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal I <str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by<br />

ε<br />

a<br />

1<br />

−→<br />

←− 2<br />

α¯ε, ᾱε, ¯εᾱ, ε 2 − αᾱ, ¯ε 2 − ᾱα.<br />

(7) In [18], Snashall <strong>and</strong> Taillefer showed that HH ∗ (A)/N is finitely generated for a<br />

class <str<strong>on</strong>g>of</str<strong>on</strong>g> special biserial algebras.<br />

(8) In [12], Koenig <strong>and</strong> Nagase produced many examples <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al algebras<br />

with a stratifying ideal for which HH ∗ (A)/N is finitely generated as a k-algebra.<br />

(9) In [16] <strong>and</strong> [21], Snashall <strong>and</strong> Xu gave <str<strong>on</strong>g>the</str<strong>on</strong>g> example <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite dimensi<strong>on</strong>al algebra<br />

for which HH ∗ (A)/N is not a finitely generated k-algebra.<br />

Example 2. ([16, Example 4.1]) Let A = kQ/I where Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

a<br />

a<br />

<br />

ε<br />

1<br />

c<br />

−→ 2<br />

b<br />

<strong>and</strong> I = 〈a 2 , b 2 , ab − ba, ac〉. Then HH ∗ (A)/N is not finitely generated as a k-<br />

algebra.<br />

Xu showed this in <str<strong>on</strong>g>the</str<strong>on</strong>g> case char k = 2 in [21].<br />

3. Finiteness c<strong>on</strong>diti<strong>on</strong><br />

In [4], Erdmann, Holloway, Snashall, Solberg <strong>and</strong> Taillefer gave <str<strong>on</strong>g>the</str<strong>on</strong>g> following two c<strong>on</strong>diti<strong>on</strong>s<br />

(Fg1) <strong>and</strong> (Fg2) for an algebra A <strong>and</strong> a graded subalgebra H <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A).<br />

(Fg1) H is a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra with H 0 = HH 0 (A).<br />

(Fg2) Ext ∗ A(A/rad A, A/rad A) is a finitely generated H-module.<br />

In [19], Solberg showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong>s are equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>.<br />

(Fg) HH ∗ (A) is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>and</strong> Ext ∗ A(A/radA, A/radA) is a finitely generated<br />

HH ∗ (A)-module.<br />

In [4], under <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong> (Fg), some geometric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> support variety<br />

<strong>and</strong> some representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic properties are related. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem hold.<br />

Theorem 3 ([4, Theorem 2.5]). Suppose that A satisfies (Fg).<br />

(a) A is Gorenstein, that is, A has finite injective dimensi<strong>on</strong> both as a left A-module<br />

<strong>and</strong> as a right A-module.<br />

–138–


(b) The following are equivalent for an A-module M.<br />

(i) The variety <str<strong>on</strong>g>of</str<strong>on</strong>g> M is trivial.<br />

(ii) The projective dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is finite.<br />

(iii) The injective dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is finite.<br />

There are some papers which deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong> (Fg) as follows.<br />

(1) In [2], Bergh <strong>and</strong> Oppermann show that a codimensi<strong>on</strong> n quantum complete intersecti<strong>on</strong><br />

satisfies (Fg) if <strong>and</strong> <strong>on</strong>ly if all <str<strong>on</strong>g>the</str<strong>on</strong>g> commutators q ij are roots <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

Definiti<strong>on</strong> 4. Let n be integer with n ≥ 1, a i integer with a i ≥ 2 for 1 ≤ i ≤ n,<br />

<strong>and</strong> q ij a n<strong>on</strong>-zero element in k for every 1 ≤ i < j ≤ n. A codimensi<strong>on</strong> n quantum<br />

complete intersecti<strong>on</strong> is defined by<br />

where I generated by<br />

k〈x 1 , . . . , x n 〉/I<br />

x a i<br />

i , x jx i − q ij x i x j for 1 ≤ i < j ≤ n.<br />

(2) In [5], Erdmann <strong>and</strong> Solberg gave <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a<br />

Koszul algebra for it to satisfy (Fg).<br />

Theorem 5 ([5, Theorem 1.3]). Let A be a finite dimensi<strong>on</strong>al Koszul algebra over<br />

an algebraically closed field, <strong>and</strong> let E(A) = Ext ∗ A(A/rad A, A/rad A). A satisfies<br />

(Fg) if <strong>and</strong> <strong>on</strong>ly if Z gr (E(A)) is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>and</strong> E(A) is a finitely generated<br />

Z gr (E(A))-module.<br />

(3) In [8], Furuya <strong>and</strong> Snashall provided examples <str<strong>on</strong>g>of</str<strong>on</strong>g> (D, A)-stacked m<strong>on</strong>omial algebras<br />

which are not self-injective but satisfy (Fg).<br />

Example 6. ([8, Example 3.2]) Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

<strong>and</strong> I <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by<br />

α<br />

1 −−−→ 2<br />

↑ ⏐<br />

⏐<br />

δ<br />

⏐<br />

↓β<br />

4 ←−−−<br />

γ<br />

3<br />

αβγδαβ, γδαβγδ.<br />

Then, A = kQ/I is not self-injective but satisfies (Fg).<br />

(4) In [15], Schroll <strong>and</strong> Snashall show that (Fg) hold for <str<strong>on</strong>g>the</str<strong>on</strong>g> principal block <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Heche algebra H q (S 5 ) with q = −1.<br />

–139–


4. Quiver algebras defined by two cycles <strong>and</strong> a quantum-like relati<strong>on</strong><br />

In this secti<strong>on</strong>, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver algebras A q = kQ/I q defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver Q as<br />

follows:<br />

α<br />

a<br />

2<br />

3 ←− a2 b 2 · · · · · ·<br />

α 3<br />

↙ ↖ α 1 β 1<br />

.<br />

↗<br />

..<br />

a 4 1 b t−2<br />

. .. ↗ αs β t<br />

↖ ↙ βt−2<br />

β t−1<br />

· · · · · · a s b t ←− bt−1<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal I q <str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by<br />

X sa , X s Y t − qY t X s , Y tb<br />

for a, b ≥ 2 where we set X:= α 1 + α 2 + · · · + α s <strong>and</strong> Y := β 1 + β 2 + · · · + β t , <strong>and</strong> q is<br />

n<strong>on</strong>-zero element in k. Paths are written from right to left.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case s = t = 1, A q is called a quantum complete intersecti<strong>on</strong> (cf. [1]). In this<br />

case, when a = b = 2, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring HH ∗ (A q ) <str<strong>on</strong>g>of</str<strong>on</strong>g> A q was described by<br />

Buchweitz, Green, Madsen <strong>and</strong> Solberg [3] for any q ∈ k. Moreover, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where<br />

s = t = 1, a, b ≥ 2, Bergh <strong>and</strong> Erdmann [1] determined HH ∗ (A q ) if q is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unity. And in <str<strong>on</strong>g>the</str<strong>on</strong>g> same case, Bergh <strong>and</strong> Oppermann [2] show that A q satisfies (Fg) if<br />

<strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity. In [4], Erdmann, Holloway, Snashall, Solberg <strong>and</strong> Taillefer<br />

describe that if an algebra A satisfies (Fg) <str<strong>on</strong>g>the</str<strong>on</strong>g>n HH ∗ (A) is a finitely generated k-algebra.<br />

Therefore, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s ≥ 2 or t ≥ 2.<br />

In this paper, we determine <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> A q modulo nilpotence<br />

HH ∗ (A q )/N <strong>and</strong> show that A q satisfies (Fg) if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

In [13] <strong>and</strong> [14], we determined <str<strong>on</strong>g>the</str<strong>on</strong>g> ring structure <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A q ) by means <str<strong>on</strong>g>of</str<strong>on</strong>g> generators<br />

<strong>and</strong> Y<strong>on</strong>eda product. By this ring structure <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A q ), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following results.<br />

Theorem 7. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q ) is finitely generated as a<br />

k-algebra.<br />

Theorem 8. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q )/N is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polynomial ring <str<strong>on</strong>g>of</str<strong>on</strong>g> two variables. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case s, t ≥ 2, r ≥ 1, we have<br />

⎧<br />

k[W0,0,0, ⎪⎨<br />

2r W2r,0,0] if s, t ≥ 2, ā ≠ 0, ¯b ≠ 0,<br />

HH ∗ (A q )/N ∼ k[W<br />

=<br />

0,0,0, 2r W2,0,0] 2 if s, t ≥ 2, ā = 0, ¯b ≠ 0,<br />

k[W0,0,0, ⎪⎩<br />

2 W2r,0,0] if s, t ≥ 2, ā ≠ 0, ¯b = 0,<br />

k[W0,0,0, 2 W2,0,0] 2 if s, t ≥ 2, ā = ¯b = 0,<br />

where for any integer z, ¯z is <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder when we divide z by r, <strong>and</strong> for n ≥ 1,<br />

t∑<br />

W0,l,l 2n := ′ Xsl Y tl′ e 2n<br />

b(1) + Y j−1 X sl Y t(l′ −1)+t−j+1 e 2n<br />

b(j) for 0 ≤ l ≤ a − 1 <strong>and</strong> 0 ≤ l ′ ≤ b,<br />

W 2n<br />

2n,l,l ′ := Xsl Y tl′ e 2n<br />

a(1) +<br />

j=2<br />

s∑<br />

i=2<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s = 1 or t = 1, we have similar results.<br />

X s(l−1)+i−1 Y tl′ X s−i+1 e 2n<br />

a(i) for 0 ≤ l ≤ a <strong>and</strong> 0 ≤ l ′ ≤ b − 1.<br />

–140–


Theorem 9. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q ) is not a finitely generated<br />

k-algebra.<br />

Theorem 10. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q )/N ∼ = k.<br />

There exists an example <str<strong>on</strong>g>of</str<strong>on</strong>g> our algebra A q which is not self-injective, m<strong>on</strong>omial or Koszul.<br />

Moreover this example <str<strong>on</strong>g>of</str<strong>on</strong>g> A q have no stratifying ideal.<br />

Example 11. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s = 2, t = 1 <strong>and</strong> a = b = 2, A q is not self-injective,<br />

m<strong>on</strong>omial or Koszul. Moreover A q have no stratifying ideal.<br />

Therefore A q is new example <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras for which <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

ring modulo nilpotence is finitely generated as a k-algebra.<br />

Next, we give <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong> for A to satisfy (Fg). Now, we<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is an r-th root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity for r ≥ 1, s, t ≥ 2 <strong>and</strong> ā, ¯b ≠ 0.<br />

Let ϕ: HH ∗ (A q ) → E(A q ) := ⊕ n≥0 Ext n A q<br />

(A q /rad A q , A q /rad A q ) be a homomorphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded rings given by ϕ(η) = η ⊗ Aq A q /rad A q . Then it is easy to see that E(A q ) n :=<br />

Ext n A q<br />

(A q /rad A q , A q /rad A q ) ≃ ∐ n<br />

l=0 ken 1 ⊕ ∐ t<br />

j=2 ken b(j) ⊕ ∐ s<br />

i=2 ken a(i)<br />

, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ is precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring k[x, y] where x := ∑ t<br />

j=1 e2r b(j) <strong>and</strong> y := ∑ s<br />

i=1 e2r a(i)<br />

2r. Then, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>.<br />

Propositi<strong>on</strong> 12. E(A q ) is a finitely generated left k[x, y]-module.<br />

in degree<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cases, we have same results as Propositi<strong>on</strong> 12. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

immediate c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Propositi<strong>on</strong> 12.<br />

Theorem 13. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s ≥ 2 or t ≥ 2, if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity <str<strong>on</strong>g>the</str<strong>on</strong>g>n A q satisfies<br />

(Fg).<br />

By [2], Theorem 9 <strong>and</strong> 13, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong> for A q to<br />

satisfy (Fg).<br />

Theorem 14. A q satisfies (Fg) if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

Remark 15. By Theorem 2.5 in [4] <strong>and</strong> Theorem 14, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity,<br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties<br />

(1) A q is Gorenstein.<br />

(2) The support variety <str<strong>on</strong>g>of</str<strong>on</strong>g> an A q -module M is trivial if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> projective<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is finite.<br />

References<br />

[1] P. A. Bergh, K. Erdmann, Homology <strong>and</strong> cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum complete intersecti<strong>on</strong>s, Algebra<br />

Number <strong>Theory</strong> 2 (2008), 501–522.<br />

[2] P. A. Bergh, S. Oppermann, Cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted tensor products, J. Algebra 320 (2008), 3327–3338.<br />

[3] R.-O. Buchweitz, E. L. Green, D. Madsen, Ø. Solberg, Finite Hochschild cohomology without finite<br />

global dimensi<strong>on</strong>, Math. Res. Lett. 12 (2005), 805–816.<br />

[4] Erdmann, K., Holloway, M., Snashall, N., Solberg, Ø., R. Taillefer, Support varieties for selfinjective<br />

algebras, K-<strong>Theory</strong> 33 (2004), 67–87.<br />

[5] K. Erdmann, Ø. Solberg, Radical cube zero weakly symmetric algebras <strong>and</strong> support varieties, J. Pure<br />

Appl. Algebra 215 (2011), 185–200.<br />

–141–


[6] L. Evens, The cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239.<br />

[7] Friedl<strong>and</strong>er, E. M. <strong>and</strong> Suslin, A., Cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> finite group schemes over a field, Invent. Math. 127<br />

(1997), 209–270.<br />

[8] T. Furuya, N. Snashall, Support varieties for modules over stacked m<strong>on</strong>omial algebras, Preprint<br />

arXiv:math/0903.5170 to appear in Comm. Algebra.<br />

[9] E. L. Green, N. Snashall, Ø. Solberg, The Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a selfinjective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite representati<strong>on</strong> type, Proc. Amer. Math. Soc. 131 (2003), 3387–3393.<br />

[10] E. L. Green, N. Snashall, Ø. Solberg, The Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>omial<br />

algebra, J. Algebra Appl. 5 (2006), 153–192.<br />

[11] D. Happel, Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, Springer Lecture Notes 1404<br />

(1989), 108–126.<br />

[12] S. Koenig, H. Nagase, Hochschild cohomology <strong>and</strong> stratifying ideals, J. Pure Appl. Algebra 213<br />

(2009), 886–891.<br />

[13] D. Obara, Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong> a quantum-like relati<strong>on</strong>,<br />

to appear in Comm. Algebra.<br />

[14] D. Obara, Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong> a quantum-like relati<strong>on</strong><br />

II, to appear in Comm. Algebra.<br />

[15] S. Schroll, N. Snashall, Hochschild cohomology <strong>and</strong> support varieties for tame Hecke algebras,<br />

Preprint arXiv:math./0907.3435 to appear in Quart. J Math..<br />

[16] N. Snashall, Support varieties <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence, In <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 41st <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong>, Shizuoka, Japan, Sept. 5–7, 2008;<br />

Fujita, H., Ed.; Symp. <strong>Ring</strong> <strong>Theory</strong> Represent. <strong>Theory</strong> Organ. Comm., Tsukuba, 2009, pp. 68–82.<br />

[17] N. Snashall, Ø. Solberg, Support varieties <strong>and</strong> Hochschild cohomology rings, Proc. L<strong>on</strong>d<strong>on</strong> Math.<br />

Soc. 88 (2004), 705–732.<br />

[18] N. Snashall, R. Taillefer, The Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> special biserial algebras, J.<br />

Algebra Appl. 9 (2010), 73–122.<br />

[19] Ø. Solberg, Support varieties for modules <strong>and</strong> complexes, Trends in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras<br />

<strong>and</strong> related topics, Amer. Math. Soc., pp. 239–270.<br />

[20] B. B. Venkov, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk SSSR 127 (1959),<br />

943–944.<br />

[21] F. Xu, Hochschild <strong>and</strong> ordinary cohomology rings <str<strong>on</strong>g>of</str<strong>on</strong>g> small categories, Adv. Math. 219 (2008), 1872–<br />

1893.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

1-3 Kagurazaka, Sinjuku-ku, Tokyo 162-8601 JAPAN<br />

E-mail address: j1109701@ed.tus.ac.jp<br />

–142–


ALTERNATIVE POLARIZATIONS OF BOREL FIXED IDEALS AND<br />

ELIAHOU-KERVAIRE TYPE RESOLUTION<br />

RYOTA OKAZAKI AND KOHJI YANAGAWA<br />

1. Introducti<strong>on</strong><br />

Let S := k[x 1 , . . . , x n ] be a polynomial ring over a field k. For a m<strong>on</strong>omial ideal<br />

I ⊂ S, G(I) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal (m<strong>on</strong>omial) generators <str<strong>on</strong>g>of</str<strong>on</strong>g> I. We say a m<strong>on</strong>omial<br />

ideal I ⊂ S is Borel fixed (or str<strong>on</strong>gly stable), if m ∈ G(I), x i |m <strong>and</strong> j < i imply<br />

(x j /x i ) · m ∈ I. Borel fixed ideals are important, since <str<strong>on</strong>g>the</str<strong>on</strong>g>y appear as <str<strong>on</strong>g>the</str<strong>on</strong>g> generic initial<br />

ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneous ideals (if char(k) = 0).<br />

A squarefree m<strong>on</strong>omial ideal I is said to be squarefree str<strong>on</strong>gly stable, if m ∈ G(I),<br />

x i |m, x j ̸ |m <strong>and</strong> j < i imply (x j /x i ) · m ∈ I. Any m<strong>on</strong>omial m ∈ S with deg(m) = e has<br />

a unique expressi<strong>on</strong><br />

e∏<br />

(1.1) m = x αi with 1 ≤ α 1 ≤ α 2 ≤ · · · ≤ α e ≤ n.<br />

i=1<br />

Now we can c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> squarefree m<strong>on</strong>omial<br />

e∏<br />

m sq =<br />

i=1<br />

x αi +i−1<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> “larger” polynomial ring T = k[x 1 , . . . , x N ] with N ≫ 0. If I ⊂ S is Borel fixed,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n I sq := ( m sq | m ∈ G(I) ) ⊂ T is squarefree str<strong>on</strong>gly stable. Moreover, for a Borel<br />

fixed ideal I <strong>and</strong> all i, j, we have βi,j(I) S = βi,j(I T sq ). This operati<strong>on</strong> plays a role in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shifting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for simplicial complexes (see [1]).<br />

A minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Borel fixed ideal I has been c<strong>on</strong>structed by Eliahou<br />

<strong>and</strong> Kervaire [7]. While <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal free resoluti<strong>on</strong> is unique up to isomorphism, its<br />

“descripti<strong>on</strong>” depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a free basis, <strong>and</strong> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal<br />

free resoluti<strong>on</strong> is still an interesting problem. See, for example, [2, 9, 10, 11, 13]. In this<br />

paper, we will give a new approach which is applicable to both I <strong>and</strong> I sq . Our main tool<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> “alternative” polarizati<strong>on</strong> b-pol(I) <str<strong>on</strong>g>of</str<strong>on</strong>g> I.<br />

Let<br />

˜S := k[ x i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ d ]<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring, <strong>and</strong> set<br />

Θ := {x i,1 − x i,j | 1 ≤ i ≤ n, 2 ≤ j ≤ d } ⊂ ˜S.<br />

The first author is partially supported by JST, CREST.<br />

The sec<strong>on</strong>d author is partially supported by Grant-in-Aid for Scientific Research (c) (no.22540057).<br />

The detailed versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–143–


Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an isomorphism ˜S/(Θ) ∼ = S induced by ˜S ∋ x i,j ↦−→ x i ∈ S. Throughout<br />

this paper, ˜S <strong>and</strong> Θ are used in this meaning.<br />

Assume that m ∈ G(I) has <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> (1.1). If deg(m) (= e) ≤ d, we set<br />

e∏<br />

(1.2) b-pol(m) = x αi ,i ∈ ˜S.<br />

i=1<br />

Note that b-pol(m) is a squarefree m<strong>on</strong>omial. If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no danger <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fusi<strong>on</strong>, b-pol(m)<br />

is denoted by ˜m. If m = ∏ n<br />

i=1 xa i<br />

i , <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have<br />

∏<br />

˜m (= b-pol(m)) = x i,j ∈ ˜S,<br />

i∑<br />

where b i := a l .<br />

1≤i≤n<br />

l=1<br />

b i−1 +1≤j≤b i<br />

If deg(m) ≤ d for all m ∈ G(I), we set<br />

b-pol(I) := (b-pol(m) | m ∈ G(I)) ⊂ ˜S.<br />

The sec<strong>on</strong>d author ([16]) showed that if I is Borel fixed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĩ := b-pol(I) is a “polarizati<strong>on</strong>”<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> I, that is, Θ forms an ˜S/Ĩ-regular sequence with <str<strong>on</strong>g>the</str<strong>on</strong>g> natural isomorphism<br />

˜S/(Ĩ + (Θ)) ∼ = S/I.<br />

Note that b-pol(−) does not give a polarizati<strong>on</strong> for a general m<strong>on</strong>omial ideal, <strong>and</strong> is<br />

essentially different from <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard polarizati<strong>on</strong>. Moreover,<br />

Θ ′ = { x i,j − x i+1,j−1 | 1 ≤ i < n, 1 < j ≤ d } ⊂ ˜S<br />

forms an ˜S/Ĩ-regular sequence too, <strong>and</strong> we have ˜S/(Ĩ + (Θ′ )) ∼ = T/I sq through ˜S ∋<br />

x i,j ↦−→ x i+j−1 ∈ T (if we adjust <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> N = dim T ). The equati<strong>on</strong> βi,j(I) S = βi,j(I T sq )<br />

menti<strong>on</strong>ed above easily follows from this observati<strong>on</strong>.<br />

In this paper, we will c<strong>on</strong>struct a minimal ˜S-free resoluti<strong>on</strong> ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/Ĩ, which is analogous<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir descripti<strong>on</strong> can not be lifted to<br />

Ĩ, <strong>and</strong> we need modificati<strong>on</strong>. Clearly, ˜P• ⊗ ˜S<br />

˜S/(Θ) <strong>and</strong> ˜P• ⊗ ˜S<br />

˜S/(Θ ′ ) give <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal<br />

free resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I <strong>and</strong> T/I sq respectively.<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that a Borel fixed ideal I is generated in <strong>on</strong>e degree (i.e., all<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> G(I) have <str<strong>on</strong>g>the</str<strong>on</strong>g> same degree), Nagel <strong>and</strong> Reiner [13] c<strong>on</strong>structed Ĩ = b-pol(I),<br />

<strong>and</strong> described a minimal ˜S-free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ explicitly. Their resoluti<strong>on</strong> is equivalent<br />

to our descripti<strong>on</strong>. In this sense, our results are generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> those in [13].<br />

In [2], Batzies <strong>and</strong> Welker tried to c<strong>on</strong>struct a minimal free resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omial<br />

ideals J using Forman’s discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory ([8]). If J is shellable (i.e., has linear<br />

quotients, in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [9]), <str<strong>on</strong>g>the</str<strong>on</strong>g>ir method works, <strong>and</strong> we have a Batzies-Welker type<br />

minimal free resoluti<strong>on</strong>. However, it is very hard to compute <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resoluti<strong>on</strong> explicitly.<br />

A Borel fixed ideal I <strong>and</strong> its polarizati<strong>on</strong> Ĩ = b-pol(I) is shellable. We will show that<br />

our resoluti<strong>on</strong> ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/Ĩ <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> induced resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I <strong>and</strong> T/Isq are Batzies-Welker<br />

type. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>se resoluti<strong>on</strong>s are cellular. As far as <str<strong>on</strong>g>the</str<strong>on</strong>g> authors know, an explicit<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Batzies-Welker type resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a general Borel fixed ideal has never<br />

been obtained before. Finally, we show that <str<strong>on</strong>g>the</str<strong>on</strong>g> CW complex supporting ˜P • is regular.<br />

–144–


2. The Eliahou-Kervaire type resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/ b-pol(I)<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, I is a Borel fixed m<strong>on</strong>omial ideal with deg m ≤ d<br />

for all m ∈ G(I). For <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alternative polarizati<strong>on</strong> b-pol(I) <str<strong>on</strong>g>of</str<strong>on</strong>g> I <strong>and</strong><br />

related c<strong>on</strong>cepts, c<strong>on</strong>sult <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>. For a m<strong>on</strong>omial m = ∏ n<br />

i=1 xa i<br />

i ∈ S, set<br />

µ(m) := min{ i | a i > 0 } <strong>and</strong> ν(m) := max{ i | a i > 0 }. In [7], it is shown that any<br />

m<strong>on</strong>omial m ∈ I has a unique expressi<strong>on</strong> m = m 1 ·m 2 with ν(m 1 ) ≤ µ(m 2 ) <strong>and</strong> m 1 ∈ G(I).<br />

Following [7], we set g(m) := m 1 . For i with i < ν(m), let<br />

b i (m) = (x i /x k ) · m, where k := min{ j | a j > 0, j > i}.<br />

Since I is Borel fixed, m ∈ I implies b i (m) ∈ I.<br />

Definiti<strong>on</strong> 1 ([14, Definiti<strong>on</strong> 2.1]). For a finite subset ˜F = { (i 1 , j 1 ), (i 2 , j 2 ), . . . , (i q , j q ) }<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N × N <strong>and</strong> a m<strong>on</strong>omial m = ∏ e<br />

i=1 x α i<br />

= ∏ n<br />

i=1 xa i<br />

i ∈ G(I) with 1 ≤ α 1 ≤ α 2 ≤ · · · ≤<br />

α e ≤ n, we say <str<strong>on</strong>g>the</str<strong>on</strong>g> pair ( ˜F , ˜m) is admissible (for b-pol(I)), if <str<strong>on</strong>g>the</str<strong>on</strong>g> following are satisfied:<br />

(a) 1 ≤ i 1 < i 2 < · · · < i q < ν(m),<br />

(b) j r = max{ l | α l ≤ i r } + 1 (equivalently, j r = 1 + ∑ i r<br />

l=1 a l) for all r.<br />

For m ∈ G(I), <str<strong>on</strong>g>the</str<strong>on</strong>g> pair (∅, ˜m) is also admissible.<br />

The following are fundamental properties <str<strong>on</strong>g>of</str<strong>on</strong>g> admissible pairs.<br />

Lemma<br />

∏<br />

2. Let ( ˜F , ˜m) be an admissible pair with ˜F = { (i 1 , j 1 ), . . . , (i q , j q ) } <strong>and</strong> m =<br />

x<br />

a i<br />

i ∈ G(I). Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

(i) j 1 ≤ j 2 ≤ · · · ≤ j q .<br />

(ii) x k,jr · b-pol(b ir (m)) = x ir,jr · b-pol(m), where k = min{ l | l > i r , a l > 0 }.<br />

For m ∈ G(I) <strong>and</strong> an integer i with 1 ≤ i < ν(m), set m ⟨i⟩ := g(b i (m)) <strong>and</strong> ˜m ⟨i⟩ :=<br />

b-pol(m ⟨i⟩ ). If i ≥ ν(m), we set m ⟨i⟩ := m for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venience. In <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2,<br />

˜m ⟨ir ⟩ divides x ir,j r<br />

· ˜m for all 1 ≤ r ≤ q.<br />

For ˜F = { (i 1 , j 1 ), . . . , (i q , j q ) } <strong>and</strong> r with 1 ≤ r ≤ q, set ˜F r := ˜F \ { (i r , j r ) }, <strong>and</strong> for<br />

an admissible pair ( ˜F , ˜m) for b-pol(I),<br />

Lemma 3. Let ( ˜F , ˜m) be as in Lemma 2.<br />

B( ˜F , ˜m) := { r | ( ˜F r , ˜m ⟨ir⟩) is admissible }.<br />

(i) For all r with 1 ≤ r ≤ q, ( ˜F r , ˜m) is admissible.<br />

(ii) We always have q ∈ B( ˜F , ˜m).<br />

(iii) Assume that ( ˜F r , ˜m ⟨ir ⟩) satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (a) <str<strong>on</strong>g>of</str<strong>on</strong>g> Definiti<strong>on</strong> 1. Then r ∈<br />

B( ˜F , ˜m) if <strong>and</strong> <strong>on</strong>ly if ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r j r < j r+1 or r = q.<br />

(iv) For r, s with 1 ≤ r < s ≤ q <strong>and</strong> j r < j s , we have b ir (b is (m)) = b is (b ir (m)) <strong>and</strong><br />

hence (˜m ⟨ir ⟩) ⟨is ⟩ = (˜m ⟨is ⟩) ⟨ir ⟩.<br />

(v) For r, s with 1 ≤ r < s ≤ q <strong>and</strong> j r = j s , we have b ir (m) = b ir (b is (m)) <strong>and</strong> hence<br />

˜m ⟨ir⟩ = (˜m ⟨is⟩) ⟨ir⟩.<br />

Example 4. Let I ⊂ S = k[x 1 , x 2 , x 3 , x 4 ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest Borel fixed ideal c<strong>on</strong>taining<br />

m = (x 1 ) 2 x 3 x 4 . In this case, m ′ ⟨i⟩ = g(b i(m ′ )) for all m ′ ∈ G(I). Hence, we have m ⟨1⟩ =<br />

(x 1 ) 3 x 4 , m ⟨2⟩ = (x 1 ) 2 x 2 x 4 <strong>and</strong> m ⟨3⟩ = (x 1 ) 2 (x 3 ) 2 . The following 3 pairs are all admissible.<br />

–145–


• ( ˜F , ˜m) = ({ (1, 3), (2, 3), (3, 4) }, x 1,1 x 1,2 x 3,3 x 4,4 )<br />

• ( ˜F 2 , ˜m ⟨2⟩ ) = ({ (1, 3), (3, 4) }, x 1,1 x 1,2 x 2,3 x 4,4 )<br />

• ( ˜F 3 , ˜m ⟨3⟩ ) = ({ (1, 3), (2, 3) }, x 1,1 x 1,2 x 3,3 x 3,4 )<br />

(For this ˜F , i r = r holds <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> reader should be careful). However, ( ˜F 1 , ˜m ⟨1⟩ ) =<br />

({ (2, 3), (3, 4) }, x 1,1 x 1,2 x 1,3 x 4,4 ) does not satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (b) <str<strong>on</strong>g>of</str<strong>on</strong>g> Definiti<strong>on</strong> 1. Hence<br />

B( ˜F , ˜m) = {2, 3}.<br />

The diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> (admissible) pairs are very useful for better underst<strong>and</strong>ing. To draw<br />

a diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> ( ˜F , ˜m), we put a white square in <str<strong>on</strong>g>the</str<strong>on</strong>g> (i, j)-th positi<strong>on</strong> if (i, j) ∈ ˜F <strong>and</strong><br />

a black square <str<strong>on</strong>g>the</str<strong>on</strong>g>re if x i,j divides ˜m. If ˜F is maximal am<strong>on</strong>g ˜F<br />

′<br />

such that ( ˜F ′ , ˜m) is<br />

admissible, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> ( ˜F , ˜m) forms a “right side down stairs” (see <str<strong>on</strong>g>the</str<strong>on</strong>g> leftmost<br />

<strong>and</strong> rightmost diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table below). If ( ˜F , ˜m) is admissible but ˜F is not maximal,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n some white squares are removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal case. If <str<strong>on</strong>g>the</str<strong>on</strong>g> pair<br />

is admissible, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a unique black square in each column <strong>and</strong> this is <str<strong>on</strong>g>the</str<strong>on</strong>g> “lowest” <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> squares in <str<strong>on</strong>g>the</str<strong>on</strong>g> column.<br />

If ( ˜F , ˜m) is admissible <strong>and</strong> r ∈ B( ˜F , ˜m), <str<strong>on</strong>g>the</str<strong>on</strong>g>n we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> ( ˜F r , ˜m ⟨ir ⟩) from<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> ( ˜F , ˜m) by <str<strong>on</strong>g>the</str<strong>on</strong>g> following procedure.<br />

(i) Remove <str<strong>on</strong>g>the</str<strong>on</strong>g> (sole) black square in <str<strong>on</strong>g>the</str<strong>on</strong>g> j r -th column.<br />

(ii) Replace <str<strong>on</strong>g>the</str<strong>on</strong>g> white square in <str<strong>on</strong>g>the</str<strong>on</strong>g> (i r , j r )-th positi<strong>on</strong> by a black <strong>on</strong>e.<br />

(iii) If m ⟨ir⟩ ≠ b ir (m), erase some squares from <str<strong>on</strong>g>the</str<strong>on</strong>g> lower-right <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram. (This<br />

step does not occur in <str<strong>on</strong>g>the</str<strong>on</strong>g> next table.)<br />

i<br />

1<br />

2<br />

3<br />

4<br />

j<br />

1 2 3 4<br />

i<br />

1<br />

2<br />

3<br />

4<br />

j<br />

1 2 3 4<br />

i<br />

1<br />

2<br />

3<br />

4<br />

j<br />

1 2 3 4<br />

i<br />

1<br />

2<br />

3<br />

4<br />

j<br />

1 2 3 4<br />

( ˜F , ˜m) ( ˜F 1 , ˜m ⟨1⟩ ) ( ˜F 2 , ˜m ⟨2⟩ ) ( ˜F 3 , ˜m ⟨3⟩ )<br />

admissible not admissible admissible admissible<br />

Next let I ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest Borel fixed ideal c<strong>on</strong>taining m = (x 1 ) 2 x 3 x 4 <strong>and</strong> (x 1 ) 2 x 2 . For<br />

˜F = { (1, 3), (2, 3), (3, 4) }, ( ˜F , ˜m) is admissible again. However ˜m ⟨2⟩ = (x 1 ) 2 x 2 in this<br />

time, <strong>and</strong> ( ˜F 2 , ˜m ⟨2⟩ ) = ({ (1, 3), (3, 4) }, x 1,1 x 1,2 x 2,3 ) is no l<strong>on</strong>ger admissible. In fact, it<br />

does not satisfy (a) <str<strong>on</strong>g>of</str<strong>on</strong>g> Definiti<strong>on</strong> 1. Hence B( ˜F , ˜m) = {3} for b-pol(I ′ ).<br />

For F = {i 1 , . . . , i q } ⊂ N with i 1 < · · · < i q <strong>and</strong> m ∈ G(I), Eliahou-Kervaire call <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pair (F, m) admissible for I, if i q < ν(m). In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a unique sequence j 1 , . . . , j q<br />

such that ( ˜F , ˜m) is admissible for Ĩ, where ˜F = { (i 1 , j 1 ), . . . , (i q , j q ) }. In this way, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for I <strong>and</strong> those <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ. As <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

free summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I are indexed by <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs<br />

for I, our resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ are indexed by <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for Ĩ.<br />

–146–


We will define a Z n×d -graded chain complex ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> free ˜S-modules as follows. First, set<br />

˜P 0 := ˜S. For each q ≥ 1, we set<br />

<strong>and</strong><br />

A q := <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> admissible pairs ( ˜F , ˜m) for b-pol(I) with # ˜F = q,<br />

˜P q :=<br />

where e( ˜F , ˜m) is a basis element with<br />

(<br />

deg e( ˜F<br />

)<br />

, ˜m)<br />

⊕<br />

( ˜F , ˜m)∈A q−1<br />

˜S e( ˜F , ˜m),<br />

⎛<br />

= deg ⎝˜m ×<br />

∏<br />

(i r ,j r )∈ ˜F<br />

x ir,j r<br />

⎞<br />

⎠ ∈ Z n×d .<br />

We define <str<strong>on</strong>g>the</str<strong>on</strong>g> ˜S-homomorphism ∂ : ˜Pq → ˜P q−1 for q ≥ 2 so that e( ˜F , ˜m) with ˜F =<br />

{(i 1 , j 1 ), . . . , (i q , j q )} is sent to<br />

∑<br />

(−1) r · x ir ,j r<br />

· e( ˜F r , ˜m) −<br />

∑<br />

(−1) r · xi r,j r<br />

· ˜m<br />

· e( ˜F r , ˜m ⟨ir ⟩),<br />

1≤r≤q<br />

r∈B( ˜F , ˜m)<br />

<strong>and</strong> ∂ : ˜P 1 → ˜P 0 by e(∅, ˜m) ↦−→ ˜m ∈ ˜S = ˜P 0 . Clearly, ∂ is a Z n×d -graded homomorphism.<br />

Set<br />

∂<br />

˜P • : · · · −→ ˜P<br />

∂ ∂<br />

i −→ · · · −→ ˜P<br />

∂<br />

1 −→ ˜P 0 −→ 0.<br />

Theorem 5 ([14, Theorem 2.6]). The complex ˜P • is a Z n×d -graded minimal ˜S-free resoluti<strong>on</strong><br />

for ˜S/ b-pol(I).<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Calculati<strong>on</strong> using Lemma 3 shows that ∂ ◦ ∂(e( ˜F , ˜m)) = 0 for each admissible<br />

pair ( ˜F , ˜m). That is, ˜P • is a chain complex.<br />

Let I = (m 1 , . . . , m t ) with m 1 ≻ · · · ≻ m t , <strong>and</strong> set I r := (m 1 , . . . , m r ). Here ≻ is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lexicographic order with x 1 ≻ x 2 ≻ · · · ≻ x n . Then I r are also Borel fixed. The acyclicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> complex ˜P can be shown inductively by means <str<strong>on</strong>g>of</str<strong>on</strong>g> mapping c<strong>on</strong>es.<br />

□<br />

Remark 6. Herzog <strong>and</strong> Takayama [9] explicitly gave a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>omial<br />

ideal with linear quotients admitting a regular decompositi<strong>on</strong> functi<strong>on</strong>. A Borel fixed<br />

ideal I satisfies this property. However, while Ĩ has linear quotients, <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong><br />

functi<strong>on</strong> can not be regular. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> [9] is not applicable to our case.<br />

˜m ⟨ir ⟩<br />

3. Applicati<strong>on</strong>s <strong>and</strong> Remarks<br />

Let I ⊂ S be a Borel fixed ideal, <strong>and</strong> Θ ⊂ ˜S <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence defined in Introducti<strong>on</strong>. As<br />

remarked before, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for Ĩ<br />

<strong>and</strong> those for I, <strong>and</strong> if ( ˜F , ˜m) corresp<strong>on</strong>ds to (F, m) <str<strong>on</strong>g>the</str<strong>on</strong>g>n # ˜F = #F . Hence we have<br />

(3.1) β ˜S<br />

i,j (Ĩ) = βS i,j(I)<br />

for all i, j, where S <strong>and</strong> ˜S are c<strong>on</strong>sidered to be Z-graded. Of course, this equati<strong>on</strong> is clear,<br />

if <strong>on</strong>e knows <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Ĩ is a polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I ([16, Theorem 3.4]). C<strong>on</strong>versely, we can<br />

show this fact by <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> (3.1) <strong>and</strong> [13, Lemma 6.9].<br />

–147–


Corollary 7 ([16, Theorem 3.4]). The ideal Ĩ is a polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I.<br />

The next result also follows from [13, Lemma 6.9].<br />

Corollary 8. ˜P • ⊗ ˜S<br />

˜S/(Θ) is a minimal S-free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I.<br />

Remark 9. (1) The corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for I <strong>and</strong> those for Ĩ,<br />

does not give a chain map between <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <strong>and</strong> our ˜P • ⊗ ˜S<br />

˜S/(Θ).<br />

In this sense, two resoluti<strong>on</strong>s are not <str<strong>on</strong>g>the</str<strong>on</strong>g> same. See Example 21 below.<br />

(2) The lcm lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> I <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ are not isomorphic in general. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lcm-lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>omial ideal J is <str<strong>on</strong>g>the</str<strong>on</strong>g> set LCM(J) := { lcm{ m | m ∈ σ } | σ ⊂ G(J) }<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> order given by divisibility. Clearly, LCM(J) is a lattice. For <str<strong>on</strong>g>the</str<strong>on</strong>g> Borel fixed ideal<br />

I = (x 2 , xy, xz, y 2 , yz), we have xy ∨ xz = xy ∨ yz = xz ∨ yz = xyz in LCM(I). However,<br />

˜xy ∨ ˜xz = x 1 y 2 z 2 , ˜xy ∨ ỹz = x 1 y 1 y 2 z 2 <strong>and</strong> ˜xz ∨ ỹz = x 1 y 1 z 2 are all distinct in LCM(Ĩ) .<br />

(3) Eliahou <strong>and</strong> Kervaire ([7]) c<strong>on</strong>structed minimal free resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stable m<strong>on</strong>omial<br />

ideals, which form a wider class than Borel fixed ideals. However, b-pol(J) is not a<br />

polarizati<strong>on</strong> for a stable m<strong>on</strong>omial ideal J in general, <strong>and</strong> our c<strong>on</strong>structi<strong>on</strong> does not<br />

work.<br />

Let a = {a 0 , a 1 , a 2 , . . . } be a n<strong>on</strong>-decreasing sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers with<br />

a 0 = 0, <strong>and</strong> T = k[x 1 , . . . , x N ] a polynomial ring with N ≫ 0. In his paper [12],<br />

Murai defined an operator (−) γ(a) acting <strong>on</strong> m<strong>on</strong>omials <strong>and</strong> m<strong>on</strong>omial ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> S. For a<br />

m<strong>on</strong>omial m ∈ S with <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> m = ∏ e<br />

i=1 x α i<br />

as (1.1), set<br />

e∏<br />

m γ(a) := x αi +a i−1<br />

∈ T,<br />

<strong>and</strong> for a m<strong>on</strong>omial ideal I ⊂ S,<br />

i=1<br />

I γ(a) := (m γ(a) | m ∈ G(I)) ⊂ T.<br />

If a i+1 > a i for all i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n I γ(a) is a squarefree m<strong>on</strong>omial ideal. Particularly in <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

a i = i for all i, (−) γ(a) is just (−) sq menti<strong>on</strong>ed in Introducti<strong>on</strong>.<br />

The operator (−) γ(a) also can be described by b-pol(−) as is shown in [16]. Let L a be<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> k-subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S spanned by {x i,j − x i ′ ,j ′ | i + a j−1 = i ′ + a j ′ −1}, <strong>and</strong> Θ a a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> L a .<br />

For example, we can take {x i,j − x i+1,j−1 | 1 ≤ i < n, 1 < j ≤ d} as Θ a in <str<strong>on</strong>g>the</str<strong>on</strong>g> case a i = i<br />

for all i. With a suitable choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number N, <str<strong>on</strong>g>the</str<strong>on</strong>g> ring homomorphism ˜S → T with<br />

x i,j ↦→ x i+aj−1 induces <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism ˜S/(Θ a ) ∼ = T .<br />

Propositi<strong>on</strong> 10 ([16, Propositi<strong>on</strong> 4,1]). With <str<strong>on</strong>g>the</str<strong>on</strong>g> above notati<strong>on</strong>, Θ a forms an ˜S/Ĩregular<br />

sequence, <strong>and</strong> we have ( ˜S/(Θ a )) ⊗ ˜S<br />

( ˜S/Ĩ) ∼ = T/I γ(a) .<br />

Applying Propositi<strong>on</strong> 10 <strong>and</strong> [5, Propositi<strong>on</strong> 1.1.5], we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Corollary 11. The complex ˜P • ⊗ ˜S<br />

˜S/(Θa ) is a minimal T -free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T/I γ(a) . In<br />

particular, a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T/I sq is given in this way.<br />

For a Borel fixed ideal I generated in <strong>on</strong>e degree, Nagel <strong>and</strong> Reiner [13] c<strong>on</strong>structed a<br />

CW complex, which supports a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ (or I, Isq ).<br />

–148–


Propositi<strong>on</strong> 12 ([14, Propositi<strong>on</strong> 4.9]). Let I be a Borel fixed ideal generated in <strong>on</strong>e<br />

degree. Then Nagel-Reiner descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ coincides with our ˜P • .<br />

We do not give a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above propositi<strong>on</strong> here, but just remark that if I is<br />

generated in <strong>on</strong>e degree <str<strong>on</strong>g>the</str<strong>on</strong>g>n m ⟨i⟩ = b i (m) for all m ∈ G(I) <strong>and</strong> ˜P • becomes simpler.<br />

4. Relati<strong>on</strong> to Batzies-Welker <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

In [2], Batzies <strong>and</strong> Welker c<strong>on</strong>nected <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omial<br />

ideals with Forman’s discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory ([8]).<br />

Definiti<strong>on</strong> 13. A m<strong>on</strong>omial ideal J is called shellable if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a total order ❁ <strong>on</strong> G(J)<br />

satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>.<br />

(∗) For ( any m, m ′ ) ∈ G(J) with m ❂ m ′ , <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an m ′′ ∈ G(J) such that m ⊒ m ′′ ,<br />

deg lcm(m,m ′′ )<br />

= 1 <strong>and</strong> lcm(m, m ′′ ) divides lcm(m, m ′ ).<br />

m<br />

For a Borel fixed ideal I, let ❁ be <str<strong>on</strong>g>the</str<strong>on</strong>g> total order <strong>on</strong> G(Ĩ) = { ˜m | m ∈ G(I) } such that<br />

˜m ′ ❁ ˜m if <strong>and</strong> <strong>on</strong>ly if m ′ ≻ m in <str<strong>on</strong>g>the</str<strong>on</strong>g> lexicographic order <strong>on</strong> S with x 1 ≻ x 2 ≻ · · · ≻ x n .<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>, ❁ means this order.<br />

Lemma 14. The order ❁ makes Ĩ shellable.<br />

The following c<strong>on</strong>structi<strong>on</strong> is taken from [2, Theorems 3.2 <strong>and</strong> 4.3]. For <str<strong>on</strong>g>the</str<strong>on</strong>g> background<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> reader is recommended to c<strong>on</strong>sult <str<strong>on</strong>g>the</str<strong>on</strong>g> original paper.<br />

For ∅ ̸= σ ⊂ G(Ĩ), let ˜m σ denote <str<strong>on</strong>g>the</str<strong>on</strong>g> largest element <str<strong>on</strong>g>of</str<strong>on</strong>g> σ with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> order ❁,<br />

<strong>and</strong> set lcm(σ) := lcm{ ˜m | ˜m ∈ σ }.<br />

Definiti<strong>on</strong> 15. We define a total order ≺ σ <strong>on</strong> G(Ĩ) as follows. Set<br />

N σ := { (˜m σ ) ⟨i⟩ | 1 ≤ i < ν(m σ ), (˜m σ ) ⟨i⟩ divides lcm(σ) }.<br />

For all ˜m ∈ N σ <strong>and</strong> ˜m ′ ∈ G(Ĩ) \ N σ, define ˜m ≺ σ ˜m ′ . The restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ≺ σ to N σ is set to<br />

be ❁, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same is true for <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> to G(Ĩ) \ N σ.<br />

Let X be <str<strong>on</strong>g>the</str<strong>on</strong>g> (#G(Ĩ) − 1)-simplex associated with 2G(Ĩ) (more precisely, 2 G(Ĩ) \ {∅}).<br />

Hence we freely identify σ ⊂ G(Ĩ) with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding cell <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simplex X. Let<br />

G X be <str<strong>on</strong>g>the</str<strong>on</strong>g> directed graph defined as follows. The vertex set <str<strong>on</strong>g>of</str<strong>on</strong>g> G X is 2 G(Ĩ) \ {∅}. For<br />

∅ ̸= σ, σ ′ ⊂ G(Ĩ), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an arrow σ → σ′ if <strong>and</strong> <strong>on</strong>ly if σ ⊃ σ ′ <strong>and</strong> #σ = #σ ′ + 1. For<br />

σ = { ˜m 1 , ˜m 2 , . . . , ˜m k } with ˜m 1 ≺ σ ˜m 2 ≺ σ · · · ≺ σ ˜m k (= ˜m σ ) <strong>and</strong> l ∈ N with 1 ≤ l < k, set<br />

σ l := { ˜m k−l , ˜m k−l+1 , . . . , ˜m k } <strong>and</strong><br />

u(σ) := sup{ l | ∃˜m ∈ G(Ĩ) s.t. ˜m ≺ σ ˜m k−l <strong>and</strong> ˜m| lcm(σ l ) }.<br />

If u := u(σ) ≠ −∞, we can define ñ σ := min ≺σ { ˜m | ˜m divides lcm(σ u ) }. Let E X be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> edges <str<strong>on</strong>g>of</str<strong>on</strong>g> G X . We define a subset A <str<strong>on</strong>g>of</str<strong>on</strong>g> E X by<br />

A := { σ ∪ {ñ σ } → σ | u(σ) ≠ −∞, ñ σ ∉ σ }.<br />

It is easy to see that A is a matching, that is, every σ occurs in at most <strong>on</strong>e edges <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

We say ∅ ̸= σ ⊂ G(Ĩ) is critical, if it does not occurs in any edge <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

–149–


We have <str<strong>on</strong>g>the</str<strong>on</strong>g> directed graph G A X with <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex set 2G(Ĩ) \ {∅} (i.e., same as G X ) <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> edges (E X \ A) ∪ { σ → τ | (τ → σ) ∈ A }. By <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [2, Theorem 3.2], we<br />

see that <str<strong>on</strong>g>the</str<strong>on</strong>g> matching A is acyclic, that is, G A X has no directed cycle. A directed path in<br />

G A X is called a gradient path.<br />

Forman’s discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [8] guarantees <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a CW complex X A with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s.<br />

• There is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> i-cells <str<strong>on</strong>g>of</str<strong>on</strong>g> X A <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> critical<br />

i-cells <str<strong>on</strong>g>of</str<strong>on</strong>g> X (equivalently, <str<strong>on</strong>g>the</str<strong>on</strong>g> critical subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> G(Ĩ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> i + 1 elements).<br />

• X A is c<strong>on</strong>tractible, that is, homotopy equivalent to X.<br />

The cell <str<strong>on</strong>g>of</str<strong>on</strong>g> X A corresp<strong>on</strong>ding to a critical cell σ <str<strong>on</strong>g>of</str<strong>on</strong>g> X is denoted by σ A . By [2, Propositi<strong>on</strong><br />

7.3], <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> σ A c<strong>on</strong>tains τ A if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a gradient path from σ to τ.<br />

See also Propositi<strong>on</strong> 18 below <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> argument before it.<br />

Assume that ∅ ̸= σ ⊂ G(Ĩ) is critical. Recall that ˜m σ denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> largest element <str<strong>on</strong>g>of</str<strong>on</strong>g> σ<br />

with respect to ❁. Take m σ = ∏ n<br />

l=1 xa l<br />

l<br />

∈ G(I) with ˜m σ = b-pol(m σ ), <strong>and</strong> set q := #σ −1.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re are integers i 1 , . . . , i q with 1 ≤ i 1 < . . . < i q < ν(m σ ) <strong>and</strong><br />

(4.1) σ = { (˜m σ ) ⟨ir ⟩ | 1 ≤ r ≤ q } ∪ {˜m σ }<br />

(see <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [2, Propositi<strong>on</strong> 4.3]). Equivalently, we have σ = N σ ∪ {˜m σ }. Set<br />

j r := 1 + ∑ i r<br />

l=1 a l for each 1 ≤ r ≤ q, <strong>and</strong> ˜F σ := { (i 1 , j 1 ), . . . , (i q , j q ) }. Then ( ˜F σ , ˜m σ )<br />

is an admissible pair for Ĩ. C<strong>on</strong>versely, any admissible pair comes from a critical cell<br />

σ ⊂ G(Ĩ) in this way. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between critical cells<br />

<strong>and</strong> admissible pairs.<br />

Let XA i denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> critical subset σ ⊂ G(Ĩ) with #σ = i + 1, <strong>and</strong> for (not<br />

necessarily critical) subsets σ, τ <str<strong>on</strong>g>of</str<strong>on</strong>g> G(Ĩ), let P σ,τ denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient paths<br />

from σ to τ. For σ ∈ X q A<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form (4.1), e(σ) denotes a basis element with degree<br />

deg(lcm(σ)) ∈ Z n×d . Set<br />

˜Q q = ⊕ ˜S e(σ) (q ≥ 0).<br />

σ∈X q A<br />

The differential map ˜Q q → ˜Q q−1 sends e(σ) to<br />

q∑<br />

(−1) r x ir ,j r<br />

· e(σ \ {(˜m σ ) ⟨ir ⟩}) − (−1) q<br />

(4.2)<br />

r=1<br />

∑<br />

τ∈X q−1<br />

A<br />

P∈P σ\{˜m σ},τ<br />

m(P) · lcm(σ)<br />

lcm(τ) · e(τ),<br />

where m(P) = ±1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e defined in [2, p.166].<br />

The following is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> [2, Theorem 4.3] (<strong>and</strong> [2, Remark 4.4]).<br />

Propositi<strong>on</strong> 16 (Batzies-Welker, [2]). ˜Q• is a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ, <strong>and</strong> has a<br />

cellular structure supported by X A .<br />

Theorem 17 ([14, Theorem 5.11]). Our descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜P • (more precisely, <str<strong>on</strong>g>the</str<strong>on</strong>g> truncati<strong>on</strong><br />

˜P ≥1 ) coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> Batzies-Welker resoluti<strong>on</strong> ˜Q • . That is, ˜P • is a cellular resoluti<strong>on</strong><br />

supported by a CW complex X A , which is obtained by discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory.<br />

First, note that <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

–150–


(1) If σ is critical, so is σ \ { (˜m σ ) ⟨ir ⟩ } for 1 ≤ r ≤ q.<br />

(2) Let σ <strong>and</strong> τ be (not necessarily critical) cells with P σ,τ ≠ ∅. Then lcm(τ) divides<br />

lcm(σ).<br />

(3) Let σ ∈ X q A , τ ∈ Xq−1 A<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a gradient path σ → σ \ {˜m} =<br />

σ 0 → σ 1 → · · · → σ l = τ. Then #σ l−1 = #τ + 1 = q + 1, #σ i = q or q + 1 for<br />

each i, <strong>and</strong> σ i is not critical for all 0 ≤ i < l. Hence, if l > 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ˜m must be ˜m σ .<br />

Next, we will show <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Propositi<strong>on</strong> 18. Let σ, τ be critical cells with #σ = #τ + 1, <strong>and</strong> ( ˜F σ , ˜m σ ) <strong>and</strong> ( ˜F τ , ˜m τ )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs corresp<strong>on</strong>ding to σ <strong>and</strong> τ respectively. Set ˜F σ = { (i 1 , j 1 ), . . . , (i q , j q ) }<br />

with i 1 < · · · < i q . Then P σ\{ ˜mσ},τ ≠ ∅ if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is some r ∈ B( ˜F σ , ˜m σ ) with<br />

( ˜F τ , ˜m τ ) = (( ˜F σ ) r , (˜m σ ) ⟨ir ⟩). If this is <str<strong>on</strong>g>the</str<strong>on</strong>g> case, we have #P σ\{ ˜mσ },τ = 1.<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Only if part follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> above remark. Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d index<br />

j <str<strong>on</strong>g>of</str<strong>on</strong>g> each x i,j ∈ ˜S restricts <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> paths <strong>and</strong> it makes <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> easier.<br />

Next, assuming ˜F τ = ( ˜F σ ) r <strong>and</strong> ˜m τ = (˜m σ ) ⟨ir ⟩ for some r ∈ B( ˜F σ , ˜m σ ), we will c<strong>on</strong>struct<br />

a gradient path from σ \ {˜m σ } to τ. For short notati<strong>on</strong>, set ˜m [s] := (˜m σ ) ⟨is ⟩ <strong>and</strong> ˜m [s,t] :=<br />

((˜m σ ) ⟨is⟩) ⟨it⟩. By (4.1), we have σ 0 := (σ \ {˜m σ }) = { ˜m [s] | 1 ≤ s ≤ q } <strong>and</strong> τ =<br />

{ ˜m [r,s] | 1 ≤ s ≤ q, s ≠ r } ∪ {˜m [r] }. We can inductively c<strong>on</strong>struct a gradient path<br />

σ 0 → σ 1 → · · · → σ t → · · · σ 2(q−r+1)r−2 as follows. Write t = 2pr + λ with t ≠ 0,<br />

0 ≤ p ≤ q − r, <strong>and</strong> 0 ≤ λ < 2r. For 0 < t ≤ 2(q − r), we set<br />

⎧<br />

⎪⎨ σ t−1 ∪ { ˜m [q−p,s] } if λ = 2s − 1 for some 1 ≤ s ≤ r;<br />

σ t = σ t−1 \ { ˜m [q−p+1,s] } if λ = 2s for some 0 < s < r;<br />

⎪⎩<br />

σ t \ { ˜m [q−p+1] } if λ = 0,<br />

where we set ˜m [q+1,s] = ˜m [s] for all s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case ˜m [s,t] = ˜m [s+1,t] , it seems to cause a<br />

problem, but skipping <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding part <str<strong>on</strong>g>of</str<strong>on</strong>g> path, we can avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. Since<br />

r ∈ B( ˜F σ , ˜m σ ), we have ˜m [s,r] = ˜m [r,s] for all s > r by Lemma 3 (iv). Hence<br />

σ 2(q−r) = { ˜m [r+1,s] | 1 ≤ s < r } ∪ { ˜m [r] } ∪ { ˜m [r,s] | r < s ≤ q }.<br />

Now for s with 0 < s ≤ r − 1, set σ t with 2(q − r)r < t ≤ 2(q − r + 1)r − 2 to be<br />

σ t−1 ∪ { ˜m [r,s] } if s is odd <strong>and</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise σ t−1 \ { ˜m [r+1,s] }. Then we have σ 2(q−r+1)r−2 = τ,<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient path σ ❀ τ.<br />

The uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> path follows from elementally (but lengthy) argument. □<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 17. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> critical cells σ ⊂ G(Ĩ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs ( ˜F σ , ˜m σ ). Hence, for each q, we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism ˜Q q → ˜P q induced by e(σ) ↦−→ e( ˜F σ , ˜m σ ).<br />

By Propositi<strong>on</strong> 18, if we forget “coefficients”, <str<strong>on</strong>g>the</str<strong>on</strong>g> differential map <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜Q • <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜P •<br />

are compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> maps e(σ) ↦−→ e( ˜F σ , ˜m σ ). So it is enough to check <str<strong>on</strong>g>the</str<strong>on</strong>g> equality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients. But it follows from direct computati<strong>on</strong>.<br />

□<br />

Corollary 19 ([14, Corollary 5.12]). The free resoluti<strong>on</strong> ˜P • ⊗ ˜S<br />

˜S/(Θ) (resp. ˜P• ⊗ ˜S<br />

˜S/(Θa ))<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> S/I (resp. T/I γ(a) ) is also a cellular resoluti<strong>on</strong> supported by X A . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

resoluti<strong>on</strong>s are Batzies-Welker type.<br />

–151–


We say a CW complex is regular, if for all i <str<strong>on</strong>g>the</str<strong>on</strong>g> closure σ <str<strong>on</strong>g>of</str<strong>on</strong>g> any i-cell σ is homeomorphic<br />

to an i-dimensi<strong>on</strong>al closed ball, <strong>and</strong> σ \ σ is <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some (i − 1)-cells.<br />

This is a natural c<strong>on</strong>diti<strong>on</strong> especially in combinatorics.<br />

Mermin [11] (see also Clark [6]) showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> is cellular<br />

<strong>and</strong> supported by a regular CW complex. Hence it is a natural questi<strong>on</strong> whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> CW<br />

complex X A supporting our ˜P • is regular. (Since <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is an “existence<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem” <strong>and</strong> X A might not be unique, <str<strong>on</strong>g>the</str<strong>on</strong>g> correct statement is “can be regular”. This is<br />

a n<strong>on</strong>-trivial point, but here we do not show how to avoid it).<br />

Theorem 20 ([15]). The CW complex X A <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 17 is regular. In particular, our<br />

resoluti<strong>on</strong> ˜P • is supported by a regular CW complex.<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We basically follow Clark [6], which proves <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding statement<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong>.<br />

We define a finite poset P A as follows:<br />

(i) As <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying set, P A = (<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells <str<strong>on</strong>g>of</str<strong>on</strong>g> X A ) ∪ {ˆ0}. Here ˆ0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> least<br />

element.<br />

(ii) For cells σ <strong>and</strong> τ <str<strong>on</strong>g>of</str<strong>on</strong>g> X A , σ ⪰ τ in P A if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> σ c<strong>on</strong>tains τ.<br />

It suffices to show that P A is a CW poset in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [4], <strong>and</strong> we can use [4,<br />

Propositi<strong>on</strong> 5.5]. By <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> differential map <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜P • , we can check that P A<br />

satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>.<br />

• For σ, τ ∈ P A with σ ≻ τ <strong>and</strong> rank(σ) = rank(τ) + 2, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are exactly two<br />

elements between σ <strong>and</strong> τ.<br />

Now it remains to show that <str<strong>on</strong>g>the</str<strong>on</strong>g> interval [ ˆ0, σ ] is shellable for all σ, but we can imitate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> argument <str<strong>on</strong>g>of</str<strong>on</strong>g> Clark [6]. In fact, [ ˆ0, σ ] is EL shellable in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [3]. □<br />

Example 21.<br />

xz 2 x 2<br />

xyw<br />

xzw<br />

xzw<br />

x 2<br />

xyz<br />

xy 2<br />

xy 2<br />

xz 2<br />

xyw<br />

Figure 1<br />

xyz<br />

Figure 2<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> Borel fixed ideal I = (x 2 , xy 2 , xyz, xyw, xz 2 , xzw). Then b-pol(I) =<br />

(x 1 x 2 , x 1 y 2 y 3 , x 1 y 2 z 3 , x 1 y 2 w 3 , x 1 z 2 z 3 , x 1 z 3 w 3 ), <strong>and</strong> easy computati<strong>on</strong> shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> CW<br />

complex X A , which supports our resoluti<strong>on</strong>s ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/Ĩ <strong>and</strong> ˜P • ⊗ ˜S<br />

˜S/(Θ) <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I, is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e illustrated in Figure 1.<br />

–152–


The complex c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a square pyramid <strong>and</strong> a tetrahedr<strong>on</strong> glued al<strong>on</strong>g trig<strong>on</strong>al faces<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each. For a Borel fixed ideal generated in <strong>on</strong>e degree, any face <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nagel-Reiner CW<br />

complex is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> several simplices. Hence a square pyramid can not appear in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> Nagel <strong>and</strong> Reiner.<br />

We remark that <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I is supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> CW complex<br />

illustrated in Figure 2. This complex c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two tetrahedr<strong>on</strong>s glued al<strong>on</strong>g edges <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each. These figures show visually that <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong><br />

<strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> ours are really different.<br />

References<br />

[1] A. Aramova, J. Herzog <strong>and</strong> T. Hibi, Shifting operati<strong>on</strong>s <strong>and</strong> graded Betti numbers, J. Alg. Combin.<br />

12 (2000) 207–222.<br />

[2] E. Batzies <strong>and</strong> V. Welker, Discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for cellular resoluti<strong>on</strong>s, J. Reine Angew. Math. 543<br />

(2002), 147–168.<br />

[3] A. Björner, Shellable <strong>and</strong> Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260<br />

(1980) 159–183.<br />

[4] A. Björner, Posets, regular CW complexes <strong>and</strong> Bruhat order, European J. Combin. 5 (1984), 7–16.<br />

[5] W. Bruns <strong>and</strong> J. Herzog, Cohen-Macaulay rings, revised editi<strong>on</strong>, Cambridge, 1996.<br />

[6] T.B.P. Clark, A minimal poset resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stable ideals, preprint (arXiv:0812.0594).<br />

[7] S. Eliahou <strong>and</strong> M. Kervaire, Minimal resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some m<strong>on</strong>omial ideals, J. Algebra 129 (1990),<br />

1–25.<br />

[8] R. Forman, Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for cell complexes, Adv. in Math., 134 (1998), 90–145.<br />

[9] J. Herzog <strong>and</strong> Y. Takayama, Resoluti<strong>on</strong>s by mapping c<strong>on</strong>es, Homology Homotopy Appl. 4 (2002),<br />

277–294.<br />

[10] M. Jöllenbeck <strong>and</strong> V. Welker, Minimal resoluti<strong>on</strong>s via algebraic discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Mem. Amer.<br />

Math. Soc. 197 (2009).<br />

[11] J. Mermin, The Eliahou-Kervaire resoluti<strong>on</strong> is cellular. J. Commut. Algebra 2 (2010), 55–78.<br />

[12] S. Murai, Generic initial ideals <strong>and</strong> squeezed spheres, Adv. Math. 214 (2007) 701–729.<br />

[13] U. Nagel <strong>and</strong> V. Reiner, Betti numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omial ideals <strong>and</strong> shifted skew shapes, Electr<strong>on</strong>. J.<br />

Combin. 16 (2) (2009).<br />

[14] R. Okazaki <strong>and</strong> K. Yanagawa, Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals, Eliahou-kervaire type<br />

<strong>and</strong> discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, preprint (arXiv:1111.6258).<br />

[15] R. Okazaki <strong>and</strong> K. Yanagawa, in preparati<strong>on</strong>.<br />

[16] K. Yanagawa, Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals, to appear in Nagoya. Math. J.<br />

(arXiv:1011.4662).<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pure <strong>and</strong> Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Science <strong>and</strong> Technology,<br />

Osaka University,<br />

Toy<strong>on</strong>aka, Osaka 560-0043, Japan<br />

E-mail address: r-okazaki@cr.math.osaka-u.ac.jp<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

Kansai University,<br />

Suita 564-8680, Japan<br />

E-mail address: yanagawa@ipcku.kansai-u.ac.jp<br />

–153–


SHARP BOUNDS FOR HILBERT COEFFICIENTS OF PARAMETERS<br />

KAZUHO OZEKI<br />

Abstract. Let A be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with d = dim A > 0. This paper shows<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert coefficients {e i Q (A)} 1≤i≤d <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q have uniform bounds if<br />

<strong>and</strong> <strong>on</strong>ly if A is a generalized Cohen-Macaulay ring. The uniform bounds are huge; <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sharp bound for e 2 Q (A) in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where A is a generalized Cohen-Macaulay ring with<br />

dim A ≥ 3 is given.<br />

Key Words: commutative algebra, generalized Cohen-Macaulay local ring, Hilbert<br />

coefficient, Castelnuovo-Mumford regularity.<br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 13D40; Sec<strong>on</strong>dary 13H10<br />

1. Introducti<strong>on</strong><br />

This is based <strong>on</strong> [5] a joint work with Shiro Goto.<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> when <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter ideals in a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring have uniform bounds, <strong>and</strong> when this is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case, to ask for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir sharp bounds.<br />

To state <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> results also, let us fix some notati<strong>on</strong>. In what follows,<br />

let A be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with maximal ideal m <strong>and</strong> d = dim A > 0<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. For simplicity, we assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> residue class field<br />

A/m <str<strong>on</strong>g>of</str<strong>on</strong>g> A is infinite. Let l A (M) denote, for an A-module M, <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Then for<br />

each m-primary ideal I in A, we have integers {e i I (A)} 0≤i≤d such that <str<strong>on</strong>g>the</str<strong>on</strong>g> equality<br />

( ) ( )<br />

n + d<br />

n + d − 1<br />

l A (A/I n+1 ) = e 0 I(A) − e 1<br />

d<br />

I(A)<br />

+ · · · + (−1) d e d<br />

d − 1<br />

I(A)<br />

holds true for all n ≫ 0, which we call <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> A with respect to I.<br />

With this notati<strong>on</strong> our first purpose is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> when <str<strong>on</strong>g>the</str<strong>on</strong>g> sets<br />

Λ i (A) = {e i Q(A) | Q is a parameter ideal in A}<br />

are finite for all 1 ≤ i ≤ d.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> first main result is stated as follows. We say that our local ring is a generalized<br />

Cohen-Macaulay ring, if <str<strong>on</strong>g>the</str<strong>on</strong>g> local cohomology modules H i m(A) are finitely generated for<br />

all i ≠ d.<br />

Theorem 1. Let A be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with d = dim A ≥ 2. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) A is a generalized Cohen-Macaulay ring.<br />

(2) The set Λ i (A) is finite for all 1 ≤ i ≤ d.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–154–


Although <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness problem <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ i (A) is settled affirmatively, we need to ask for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sharp bounds for <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> e i Q (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q, which is our sec<strong>on</strong>d purpose<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present research. Let h i (A) = l A (H i m(A)) for each i ∈ Z.<br />

When A is a generalized Cohen-Macaulay ring with d = dim A ≥ 2, <strong>on</strong>e has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inequalities<br />

∑d−1<br />

( ) d − 2<br />

0 ≥ e 1 Q(A) ≥ −<br />

h i (A)<br />

i − 1<br />

i=1<br />

for every parameter ideal Q in A ([9, Theorem 8], [3, Lemma 2.4]), where <str<strong>on</strong>g>the</str<strong>on</strong>g> equality<br />

e 1 Q (A) = − ∑ d−1<br />

( d−2<br />

i=1 i−1)<br />

h i (A) holds true if <strong>and</strong> <strong>on</strong>ly if Q is a st<strong>and</strong>ard parameter ideal in A<br />

([10, Korollar 3.2], [4, Theorem 2.1]), provided depth A > 0. The reader may c<strong>on</strong>sult [2]<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local rings which c<strong>on</strong>tain parameter ideals Q with e 1 Q (A) = 0.<br />

Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first Hilbert coefficients e 1 Q (A) for parameter ideals Q are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

satisfactorily understood.<br />

The sec<strong>on</strong>d purpose is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> natural questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how about e 2 Q (A). First, we will<br />

show that in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where dim A = 2 <strong>and</strong> depth A > 0, even though A is not necessarily<br />

a generalized Cohen-Macaulay ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> inequality<br />

−h 1 (A) ≤ e 2 Q(A) ≤ 0<br />

holds true for every parameter ideal Q in A. We will also show that e 2 Q (A) = 0 if <strong>and</strong><br />

<strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal Q is generated by a system a, b <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters which forms a d-sequence<br />

in A in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Huneke [7]. When A is a generalized Cohen-Macaulay ring with<br />

dim A ≥ 3, we shall show that <str<strong>on</strong>g>the</str<strong>on</strong>g> inequality<br />

∑d−1<br />

−<br />

j=2<br />

( d − 3<br />

j − 2<br />

)<br />

∑d−2<br />

h j (A) ≤ e 2 Q(A) ≤<br />

j=1<br />

( ) d − 3<br />

h j (A)<br />

j − 1<br />

holds true for every parameter ideal Q (Theorem 13). The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d main result <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> upper bound e 2 Q (A) ≤ ∑ d−2<br />

( d−3<br />

j=1 j−1)<br />

h j (A)<br />

is sharp, clarifying when <str<strong>on</strong>g>the</str<strong>on</strong>g> equality e 2 Q (A) = ∑ d−2<br />

j=1<br />

( d−3<br />

j−1)<br />

h j (A) holds true.<br />

Theorem 2. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥ 3<br />

<strong>and</strong> depth A > 0. Let Q be a parameter ideal in A. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following two c<strong>on</strong>diti<strong>on</strong>s are<br />

equivalent.<br />

(1) e 2 Q (A) = ∑ d−2<br />

j=1<br />

( d−3<br />

j−1)<br />

h j (A).<br />

(2) There exist elements a 1 , a 2 , · · · , a d ∈ A such that<br />

(a) Q = (a 1 , a 2 , · · · , a d ),<br />

(b) <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 1 , a 2 , · · · , a d is a d-sequence in A, <strong>and</strong><br />

(c) Q·H j m(A/(a 1 , a 2 , · · · , a k )) = (0) for all j ≥ 1 <strong>and</strong> k ≥ 0 with j + k ≤ d − 2.<br />

When this is <str<strong>on</strong>g>the</str<strong>on</strong>g> case, we fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore have <str<strong>on</strong>g>the</str<strong>on</strong>g> following :<br />

)<br />

h j (A) for 3 ≤ i ≤ d − 1 <strong>and</strong><br />

(i) (−1) i·ei Q (A) = ∑ d−i<br />

j=1<br />

(ii) e d Q (A) = 0.<br />

( d−i−1<br />

j−1<br />

At this moment we do not know <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp uniform bound for e 3 Q (A) for parameter<br />

ideals Q in a generalized Cohen-Macaulay ring A with dim A ≥ 3.<br />

–155–


Let us briefly note how this paper is organized. We shall prove Theorem 1 in Secti<strong>on</strong> 2.<br />

Theorem 2 will be proven in Secti<strong>on</strong> 4. Secti<strong>on</strong> 3 is devoted to some preliminary steps for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2. We will closely study in Secti<strong>on</strong> 3 <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> when e 2 Q (A) = 0<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where dim A = 2.<br />

In what follows, unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise specified, for each m-primary ideal I in A, we put<br />

R(I) = A[It], R ′ (I) = A[It, t −1 ], <strong>and</strong> G(I) = R ′ (I)/t −1 R ′ (I),<br />

where t is an indeterminate over A. Let M = mR + R + be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique graded maximal<br />

ideal in R = R(I). We denote by H i M (∗) (i ∈ Z) <str<strong>on</strong>g>the</str<strong>on</strong>g> ith local cohomology functor <str<strong>on</strong>g>of</str<strong>on</strong>g> R(I)<br />

with respect to M. Let L be a graded R-module. For each n ∈ Z let [H i M (L)] n st<strong>and</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> H i M (L) with degree n. We denote by L(α), for each<br />

α ∈ Z, <str<strong>on</strong>g>the</str<strong>on</strong>g> graded R-module whose grading is given by [L(α)] n = L α+n for all n ∈ Z.<br />

2. Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1<br />

In this secti<strong>on</strong>, we shall prove Theorem 1.<br />

The heart <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1) ⇒ (2) is, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where A is a<br />

generalized Cohen-Macaulay ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-<br />

Mumford regularity reg G(Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> associated graded rings G(Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q.<br />

So, let us briefly recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-Mumford regularity.<br />

Let Q be a parameter ideal in A <strong>and</strong> let<br />

R(Q) = A[Qt], R ′ (Q) = A[Qt, t −1 ], <strong>and</strong> G(Q) = R ′ (Q)/t −1 R ′ (Q)<br />

respectively, denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Rees algebra, <str<strong>on</strong>g>the</str<strong>on</strong>g> extended Rees algebra, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> associated<br />

graded ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Let M = mR + R + be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique graded maximal ideal in R = R(Q).<br />

For each i ∈ Z let<br />

a i (G(Q)) = max{n ∈ Z | [H i M(G(Q))] n ≠ (0)}<br />

<strong>and</strong> put<br />

regG(Q) = max{a i (G(Q)) + i | i ∈ Z},<br />

which we call <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-Mumford regularity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring G(Q).<br />

Let us now note <str<strong>on</strong>g>the</str<strong>on</strong>g> following result <str<strong>on</strong>g>of</str<strong>on</strong>g> Linh <strong>and</strong> Trung [8], which gives a uniform bound<br />

for reg G(Q) for parameter ideals Q in a generalized Cohen-Macaulay ring.<br />

Theorem 3 ([8], Theorem 2.3). Suppose that A is a generalized Cohen-Macaulay ring<br />

<strong>and</strong> let Q be a parameter ideal in A. Then<br />

(1) reg G(Q) ≤ max{I(A) − 1, 0}, if d = 1.<br />

(2) reg G(Q) ≤ max{(4I(A)) (d−1)! − I(A) − 1, 0}, if d ≥ 2.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> following result is <str<strong>on</strong>g>the</str<strong>on</strong>g> key for our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1) ⇒ (2) in<br />

Theorem 1, where h i (A) = l A (H i m(A)) <strong>and</strong> I(A) = ∑ d−1<br />

)<br />

j=0 h j (A).<br />

Theorem 4. Suppose that A is a generalized Cohen-Macaulay ring. Let Q be a parameter<br />

ideal in A <strong>and</strong> put r = reg G(Q). Then<br />

(1) |e 1 Q (A)| ≤ I(A).<br />

(2) |e i Q (A)| ≤ 3 · 2i−2 (r + 1) i−1 I(A) for 2 ≤ i ≤ d.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Secti<strong>on</strong> 2].<br />

–156–<br />

( d−1<br />

j<br />


Therefore, thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> uniform bounds [8, Theorem 2.3] <str<strong>on</strong>g>of</str<strong>on</strong>g> reg G(Q) for parameter<br />

ideals Q in a generalized Cohen-Macaulay ring A, we readily get <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness in <str<strong>on</strong>g>the</str<strong>on</strong>g> set<br />

Λ i (A) for all 1 ≤ i ≤ d.<br />

We are now in a positi<strong>on</strong> to finish <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1. We may assume that A is complete. Also we may assume A is not<br />

unmixed, because Λ 1 (A) is a finite set (cf. [2, Propositi<strong>on</strong> 4.2]). Let U denote <str<strong>on</strong>g>the</str<strong>on</strong>g> unmixed<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal (0) in A. We put B = A/U <strong>and</strong> t = dim A U (≤ d − 1). We must<br />

show that B is a generalized Cohen-Macaulay ring <strong>and</strong> t = 0.<br />

Let Q be a parameter ideal in A. We <str<strong>on</strong>g>the</str<strong>on</strong>g>n have<br />

l A (A/Q n+1 ) = l A (B/Q n+1 B) + l A (U/Q n+1 ∩ U)<br />

for all integers n ≥ 0. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> l A (U/Q n+1 ∩ U) is a polynomial in n ≫ 0<br />

with degree t <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist integers {s i Q (U)} 0≤i≤t with s 0 Q (U) = e0 Q (U) such that<br />

t∑<br />

( ) n + t − i<br />

l A (U/Q n+1 ∩ U) = (−1) i s i Q(U)<br />

t − i<br />

for all n ≫ 0, whence<br />

C<strong>on</strong>sequently<br />

l A (A/Q n+1 ) =<br />

(−1) d−i e d−i<br />

Q<br />

i=0<br />

d∑<br />

( ) n + d − i<br />

(−1) i e i Q(B)<br />

+<br />

d − i<br />

i=0<br />

t∑<br />

( ) n + t − i<br />

(−1) i s i Q(U)<br />

.<br />

t − i<br />

{ (−1) d−i<br />

(A) = e d−i<br />

Q<br />

(B) + (−1)t−i s t−i<br />

Q<br />

(U) if 0 ≤ i ≤ t,<br />

(−1) d−i e d−i (B) if t + 1 ≤ i ≤ d.<br />

Q<br />

Therefore, if t < d − 1, we have e 1 Q (A) = e1 Q (B), so that Λ 1(B) = Λ 1 (A) is a finite<br />

set. If t = d − 1, we get −e 1 Q (A) = −e1 Q (B) + s0 Q (U). Since e1 Q (A), e1 Q (B) ≤ 0 <strong>and</strong><br />

s 0 Q (U) = e0 Q (U) ≥ 1, Λ 1(B) is a finite set also in this case. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> set Λ 1 (B) is finite in<br />

any case, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring B a generalized Cohen-Macaulay ring.<br />

We now assume that t ≥ 1 <strong>and</strong> choose a system a 1 , a 2 , · · · , a d <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in A so<br />

that (a t+1 , a t+2 , · · · , a d )U = (0). Let l ≥ 1 be an integer such that m l is st<strong>and</strong>ard for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ring B <strong>and</strong> choose integers n ≥ l. We look at parameter ideals Q = (a n 1, a n 2, · · · , a n d ) <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

Then<br />

t∑<br />

( ) t − 1<br />

(−1) d−t e d−t<br />

Q (B) = h j (B)<br />

j − 1<br />

by [10, Korollar 3.2], which is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers n ≥ l. Therefore, since<br />

we see<br />

j=1<br />

i=0<br />

s 0 Q(U) = e 0 (a n 1 ,an 2 ,··· ,an t ) (U) = n t·e 0 (a 1 ,a 2 ,··· ,a t )(U) ≥ n t ,<br />

(−1) d−t e d−t<br />

Q (A) = (−1)d−t e d−t<br />

Q<br />

(B) + s0 Q(U)<br />

t∑<br />

( ) t − 1<br />

=<br />

h j (B) + n t·e 0 (a<br />

j − 1<br />

1 ,a 2 ,··· ,a t )(U) ≥ n t ,<br />

j=1<br />

–157–


whence <str<strong>on</strong>g>the</str<strong>on</strong>g> set Λ d−t (A) cannot be finite. Thus t = 0 <strong>and</strong> A a generalized Cohen-Macaulay<br />

ring.<br />

□<br />

3. The sec<strong>on</strong>d Hilbert coefficients e 2 Q (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

In this secti<strong>on</strong> we study <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d Hilbert coefficients e 2 Q (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q.<br />

The purpose is to find <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp bound for e 2 Q (A). The bound |e2 Q (A)| ≤ 3(r + 1)I(A)<br />

given by Theorem 1 is too huge in general <strong>and</strong> far from <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp bound.<br />

Let us begin with <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Lemma 5. Suppose that d = 2 <strong>and</strong> depth A > 0. Let Q = (x, y) be a parameter ideal in<br />

A <strong>and</strong> assume that x is superficial with respect to Q. Then<br />

( )<br />

[(x<br />

e 2 l ) : y l ] ∩ Q l<br />

Q(A) = −l A ≤ 0<br />

(x l )<br />

for all l ≫ 0.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let l ≫ 0 be an integer which is sufficiently large <strong>and</strong> put I = Q l . Let G = G(I)<br />

<strong>and</strong> R = R(I) be <str<strong>on</strong>g>the</str<strong>on</strong>g> associated graded ring <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rees algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> I, respectively. We<br />

put M = mR + R + . Then [H i M (G)] n = (0) for all integers i ∈ Z <strong>and</strong> n > 0, thanks to<br />

[6, Lemma 2.4]. We put a = x l <strong>and</strong> b = y l . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> element a remains superficial with<br />

respect to I <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equality I 2 = (a, b)I holds true, whence a 2 (G) < 0.<br />

We fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Claim 6. [H i M (R)] ∼ 0 = [H i M (G)] 0 as A-modules for all i ∈ Z. Hence H 0 M (G) = (0), so<br />

that f = at ∈ R is G-regular.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Claim 6. Let L = R + <strong>and</strong> apply <str<strong>on</strong>g>the</str<strong>on</strong>g> functors H i M (∗) to <str<strong>on</strong>g>the</str<strong>on</strong>g> following can<strong>on</strong>ical<br />

exact sequences<br />

0 → L → R p → A → 0 <strong>and</strong> 0 → L(1) → R → G → 0,<br />

where p denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong>, <strong>and</strong> get <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequences<br />

(1) · · · → H i−1<br />

m (A) → H i M(L) → H i M(R) → H i m(A) → · · · <strong>and</strong><br />

(2) · · · → H i−1<br />

M (G) → Hi M(L)(1) → H i M(R) → H i M(G) → H i+1<br />

M (L)(1) → · · ·<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local cohomology modules. Then by exact sequence (2) we get <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism<br />

[H i M(L)] n+1<br />

∼ = [H<br />

i<br />

M (R)] n<br />

for n ≥ 1, because [H i−1<br />

M (G)] n = [H i M (G)] n = (0) for n ≥ 1, while we have <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism<br />

[H i M(L)] n+1<br />

∼ = [H<br />

i<br />

M (R)] n+1<br />

for n ≥ 1, thanks to exact sequence (1). Hence [H i M (R)] n ∼ = [H i M (R)] n+1 for n ≥ 1, which<br />

implies [H i M (R)] n = (0) for all i ∈ Z <strong>and</strong> n ≥ 1, because [H i M (R)] n = (0) for n ≫ 0. Thus<br />

by exact sequence (1) we get [H i M (L)(1)] n = (0) for all i ∈ Z <strong>and</strong> n ≥ 0, so that by exact<br />

sequence (2) we see [H i M (R)] 0 ∼ = [H i M (G)] 0 as A-modules for all i ∈ Z. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case where i = 1 in exact sequence (2), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding<br />

0 → H 0 M(G) → H 1 M(L)(1),<br />

–158–


so that [H 0 M (G)] 0 = (0), because [H 1 M (L)(1)] 0 = [H 0 M (L)] 1 = (0). Hence H 0 M (G) = (0),<br />

so that f is G-regular, because (0) : G f is finitely graded.<br />

□<br />

Thanks to Serre’s formula (cf. [1, Theorem 4.4.3]), Claim 6 shows that<br />

2∑<br />

e 2 Q(A) = (−1) i l A ([H i M(G)] 0 ) = −l A ([H 1 M(G)] 0 ),<br />

i=0<br />

since a 2 (G) < 0. Therefore to prove<br />

( )<br />

[(x<br />

e 2 l ) : y l ] ∩ Q l<br />

Q(A) = −l A ,<br />

(x l )<br />

it is suffices to check that<br />

[H 1 M(G)] 0<br />

∼ [(a) : b] ∩ I<br />

=<br />

(a)<br />

as A-modules.<br />

Let A = A/(a) <strong>and</strong> I = IA. Then G/fG ∼ = G(I), because f = at is G-regular (cf.<br />

Claim 6). We now look at <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence<br />

0 → H 0 M(G(I)) → H 1 M(G)(−1) f → H 1 M(G)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local cohomology modules which is induced from <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence<br />

0 → G(−1) f → G → G(I) → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded G-modules. Then, since [H 1 M (G)] n = (0) for all n ≥ 1, we have an isomorphism<br />

[H 0 M(G(I))] 1<br />

∼ = [H<br />

1<br />

M (G)] 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A-modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> vanishing [H 0 M (G(I)] n = (0) for n ≥ 2.<br />

Look now at <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism<br />

ρ :<br />

[(a) : b] ∩ I<br />

(a)<br />

→ [H 0 M(G(I))] 1<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A-modules defined by ρ(x) = xt for each x ∈ [(a) : b] ∩ I, where x <strong>and</strong> xt denote<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> images <str<strong>on</strong>g>of</str<strong>on</strong>g> x in A <strong>and</strong> xt ∈ [R(I)] 1 in G(I), respectively. We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

map ρ is an isomorphism. Take ϕ ∈ [H 0 M (G(I))] 1 <strong>and</strong> write ϕ = xt with x ∈ I. Since<br />

[H 0 M (G(I))] 2 = (0), we have bt · xt = bxt 2 = 0 in G(I), whence bx ∈ [(a) + I 3 ] ∩ I 2 =<br />

[(a) ∩ I 2 ] + I 3 = aI + bI 2 (recall that I 2 = (a, b)I <strong>and</strong> that a is super-regular with respect<br />

to I). So, we write bx = ai + bj with i ∈ I <strong>and</strong> j ∈ I 2 . Then, since b(x − j) = ai ∈ (a),<br />

we have x − j ∈ [(a) : b] ∩ I, whence ϕ = xt = (x − j)t. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> map ρ is surjective.<br />

To show that <str<strong>on</strong>g>the</str<strong>on</strong>g> map ρ is injective, take x ∈ [(a) : b]∩I <strong>and</strong> suppose that ρ(x) = xt = 0<br />

in G(I). Then<br />

x ∈ [(a) : b] ∩ [(a) + I 2 ] = (a) + [((a) : b) ∩ I 2 ].<br />

To c<strong>on</strong>clude that x ∈ (a), we need <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Claim 7. Let n ≥ 2 be an integer. Then [(a) : b] ∩ I n ⊆ (a) + [((a) : b) ∩ I n+1 ].<br />

–159–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Claim 7. Take y ∈ [(a) : b]∩I n . Then, since by ∈ (a), we see bt·yt n = byt n+1 = 0<br />

in G(I). Hence yt n ∈ [H 0 M (G(I))] n, because bt is a homogeneous parameter for <str<strong>on</strong>g>the</str<strong>on</strong>g> graded<br />

ring G(I). Recall now that n ≥ 2, whence [H 0 M (G(I))] n = (0), so that yt n = 0. Thus<br />

y ∈ (a) + I n+1 , whence y ∈ (a) + [((a) : b) ∩ I n+1 ], as claimed.<br />

□<br />

Since x ∈ (a) + [((a) : b) ∩ I 2 ], thanks to Claim 7, we get x ∈ (a) + I n+1 for all n ≥ 1,<br />

whence x ∈ (a), so that <str<strong>on</strong>g>the</str<strong>on</strong>g> map ρ is injective. Thus<br />

as A-modules.<br />

[H 1 M(G)] 0<br />

∼ =<br />

[(a) : b] ∩ I<br />

(a)<br />

Theorem 8. Suppose that d = 2 <strong>and</strong> depth A > 0. Let Q = (x, y) be a parameter ideal<br />

in A <strong>and</strong> assume that x is superficial with respect to Q. Then<br />

−h 1 (A) ≤ e 2 Q(A) ≤ 0<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following three c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) e 2 Q (A) = 0.<br />

(2) x, y forms a d-sequence in A.<br />

(3) x l , y l forms a d-sequence in A for all integers l ≥ 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By Lemma 5 we have<br />

e 2 Q(A) = −l A<br />

( [(x l ) : y l ] ∩ (x, y) l<br />

(x l )<br />

)<br />

≤ 0<br />

for all integers l ≫ 0. To show that −h 1 (A) ≤ e 2 Q (A), we may assume that H1 m(A) is<br />

finitely generated. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> integer l ≫ 0 so that <str<strong>on</strong>g>the</str<strong>on</strong>g> system a = x l , b = y l <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A is st<strong>and</strong>ard. Then since<br />

[(a) : b] ∩ Q l<br />

(a)<br />

⊆ (a) : b<br />

(a)<br />

we get −h 1 (A) ≤ e 2 Q (A).<br />

Let us c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d asserti<strong>on</strong>.<br />

(1) ⇒ (3). Take an integer N ≥ 1 so that<br />

for all l ≥ N (cf. Lemma 5); hence<br />

∼ = H<br />

0<br />

m (A/(a)) ∼ = H 1 m(A),<br />

e 2 Q(A) = −l A<br />

( [(x l ) : y l ] ∩ (x, y) l<br />

(x l )<br />

[(x l ) : y l ] ∩ (x, y) l = (x l ).<br />

Claim 9. [(x l ) : y l ] ∩ (x, y) l = (x l ) for all l ≥ 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Claim 9. We may assume that 1 ≤ l < N. Take τ ∈ [(x l ) : y l ] ∩ (x, y) l . Then,<br />

since y N (x N−l τ) = y N−l x N−l (y l τ) ∈ (x N ), we have x N−l τ ∈ [(x N ) : y N ] ∩ (x, y) N = (x N ).<br />

Thus τ ∈ (x l ), because x is A-regular (recall that depth A > 0 <strong>and</strong> x is superficial with<br />

respect to Q).<br />

□<br />

–160–<br />

)<br />


Since x l is A-regular <strong>and</strong> [(x l ) : y l ] ∩ (x l , y l ) = (x l ) by Claim 9, we readily see that<br />

x l , y l is a d-sequence in A.<br />

(3) ⇒ (2) This is clear.<br />

(2) ⇒ (1) It is well-known that e 2 (x,y)(A) = 0, if depth A > 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> system x, y <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameters forms a d-sequence in A; see Propositi<strong>on</strong> 11 below.<br />

□<br />

Passing to <str<strong>on</strong>g>the</str<strong>on</strong>g> ring A/H 0 m(A), thanks to Theorem 8, we readily get <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Corollary 10. Suppose that d = 2 <strong>and</strong> let Q be a parameter ideal in A. Then<br />

h 0 (A) − h 1 (A) ≤ e 2 Q(A) ≤ h 0 (A).<br />

The results in <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> are, more or less, known.<br />

Propositi<strong>on</strong> 11. ([5, Propositi<strong>on</strong> 3.4]) Suppose that d > 0 <strong>and</strong> let Q = (a 1 , a 2 , · · · , a d )<br />

be a parameter ideal in A. Let G = G(Q) <strong>and</strong> R = R(Q). Let f i = a i t ∈ R for 1 ≤ i ≤ d.<br />

Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 1 , a 2 , · · · , a d forms a d-sequence in A. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following, where Q i = (a 1 , a 2 , · · · , a i ) for 0 ≤ i ≤ d.<br />

(1) e 0 Q (A) = l A(A/Q) − l A ([Q d−1 : a d ]/Q d−1 ).<br />

(2) (−1) i e i Q (A) = h0 (A/Q d−i ) − h 0 (A/Q d−i−1 ) for 1 ≤ i ≤ d − 1 <strong>and</strong> (−1) d e d Q (A) =<br />

h 0 (A).<br />

(3) l A (A/Q n+1 ) = ∑ d<br />

i=0 (−1)i e i Q (A)( n+d−i<br />

d−i<br />

(4) f 1 , f 2 , · · · , f d forms a d-sequence in G.<br />

(5) H 0 M (G) = [H0 M (G)] 0 ∼ = H 0 m(A), where M = mR + R +<br />

(6) [H i M (G)] n = (0) for all n > −i <strong>and</strong> i ∈ Z, whence reg G = 0.<br />

)<br />

for all n ≥ 0, whence lA (A/Q) = ∑ d<br />

i=0 (−1)i e i Q (A).<br />

Let us note <strong>on</strong>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> local rings A which are not generalized Cohen-Macaulay<br />

rings but every parameter ideal in A is generated by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters that forms<br />

a d-sequence in A.<br />

Example 12. Let R be a regular local ring with <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal n <strong>and</strong> d = dim R ≥ 2.<br />

Let X 1 , X 2 , · · · , X d be a regular system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> R. We put p = (X 1 , X 2 , · · · , X d−1 )<br />

<strong>and</strong> D = R/p. Then D is a DVR. Let A = R ⋉ D denote <str<strong>on</strong>g>the</str<strong>on</strong>g> idealizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D over R.<br />

Then A is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal m = n × D, dim A = d, <strong>and</strong><br />

depth A = 1. We fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

(1) Λ i (A) = {0} for all 1 ≤ i ≤ d such that i ≠ d − 1.<br />

(2) Λ 0 (A) = {n | 0 < n ∈ Z} <strong>and</strong> Λ d−1 (A) = {(−1) d−1 n | 0 < n ∈ Z}.<br />

(3) After renumbering, every system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in A forms a d-sequence.<br />

The ring A is not a generalized Cohen-Macaulay ring, because H 1 m(A) ( ∼ = H 1 n(D)) is not a<br />

finitely generated A-module.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> Secti<strong>on</strong> 3 let us c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> bound for e 2 Q (Q) in higher dimensi<strong>on</strong>al cases.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where dim A ≥ 3 we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Theorem 13. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥ 3.<br />

Let Q = (a 1 , a 2 , · · · , a d ) be a parameter ideal in A. Then<br />

∑d−1<br />

( ) d − 3<br />

∑d−2<br />

( ) d − 3<br />

−<br />

h j (A) ≤ e 2<br />

j − 2<br />

Q(A) ≤<br />

h j (A).<br />

j − 1<br />

j=2<br />

–161–<br />

j=1


We have Q·H j m(A/(a 1 , a 2 , · · · , a k )) = (0) for all k ≥ 0 <strong>and</strong> j ≥ 1 with j + k ≤ d − 2, if<br />

e 2 Q (A) = ∑ d−2<br />

( d−3<br />

j=1 j−1)<br />

h j (A) <strong>and</strong> if a 1 , a 2 , · · · , a d forms a superficial sequence with respect<br />

to Q.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Theorem 3.6].<br />

The following result guarantees <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (2) ⇒ (1) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> last asserti<strong>on</strong> in<br />

Theorem 2.<br />

Propositi<strong>on</strong> 14. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥<br />

3 <strong>and</strong> let Q = (a 1 , a 2 , · · · , a d ) be a parameter ideal in A. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence<br />

a 1 , a 2 , · · · , a d forms a d-sequence in A <strong>and</strong> Q·H j m(A/(a 1 , a 2 , · · · , a k )) = (0) for all k ≥ 0<br />

<strong>and</strong> j ≥ 1 with j + k ≤ d − 2. Then<br />

∑d−i<br />

( ) d − i − 1<br />

(−1) i e i Q(A) =<br />

h j (A)<br />

j − 1<br />

j=1<br />

for 2 ≤ i ≤ d − 1 <strong>and</strong> (−1) d e d Q (A) = h0 (A).<br />

□<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Propositi<strong>on</strong> 3.7].<br />

□<br />

4. Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to prove Theorem 2. Thanks to Propositi<strong>on</strong> 11 <strong>and</strong> 14,<br />

we have <strong>on</strong>ly to show <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Theorem 15. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥ 3<br />

<strong>and</strong> depth A > 0. Let Q be a parameter ideal in A <strong>and</strong> assume that e 2 Q (A) = ∑ d−2<br />

( d−3<br />

j=1 j−1)<br />

h j (A).<br />

Then Q is generated by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters which forms a d-sequence in A.<br />

For each ideal a in A (a ≠ A) let U(a) denote <str<strong>on</strong>g>the</str<strong>on</strong>g> unmixed comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> a. When<br />

a = (a) with a ∈ A, we write U(a) simply by U(a). We have<br />

U(a) = ∪ n≥0<br />

[(a) : A m n ] ,<br />

if A is a generalized Cohen-Macaulay ring with dim A ≥ 2 <strong>and</strong> a is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> a system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in A (cf. [11, Secti<strong>on</strong> 2]). The following result is <str<strong>on</strong>g>the</str<strong>on</strong>g> key in our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theorem 15.<br />

Propositi<strong>on</strong> 16. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥<br />

2 <strong>and</strong> depth A > 0. Let Q = (a 1 , a 2 , · · · , a d ) be a parameter ideal in A. Assume that<br />

a d H 1 m(A) = (0) <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 1 , a 2 , · · · , a d−1 forms a d-sequence in <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized<br />

Cohen-Macaulay ring A/U(a d ). Then<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Propositi<strong>on</strong> 4.2].<br />

We are now ready to prove Theorem 15.<br />

U(a 1 ) ∩ [Q + U(a d )] = (a 1 ).<br />

–162–<br />


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Theorem 15. We proceed by inducti<strong>on</strong> <strong>on</strong> d. Choose a 1 , a 2 , · · · , a d ∈ A so<br />

that Q = (a 1 , a 2 , · · · , a d ) <strong>and</strong> for each 1 ≤ i ≤ d−2, <str<strong>on</strong>g>the</str<strong>on</strong>g> i+2 elements a 1 , a 2 , · · · , a i , a d−1 , a d<br />

form a superficial sequence with respect to Q. We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist b 2 , b 3 , · · · , b d ∈<br />

A such that b 1 = a d−1 , b 2 , b 3 , · · · , b d forms a d-sequence in A <strong>and</strong> Q = (b 1 , b 2 , · · · , b d ). We<br />

put A = A/(a 1 ), Q = QA, <strong>and</strong> C = A/H 0 m(A) (= A/U(a 1 )).<br />

Suppose that d = 3. Then<br />

e 2 QC(C) = e 2 Q (A) − h0 (A) = e 2 Q(A) − h 0 (A) = h 1 (A) − h 0 (A) = 0,<br />

because h 1 (A) = h 0 (A) (recall that QH 1 m(A) = (0) by Propositi<strong>on</strong> 13). Hence, thanks<br />

to Propositi<strong>on</strong> 8, a 2 , a 3 forms a d-sequence in C, because a 2 is superficial for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal<br />

QC = (a 2 , a 3 )C. Therefore, since a 1 H 1 m(A) = (0), we have<br />

U(a 2 ) ∩ [Q + U(a 1 )] = (a 2 ),<br />

by Propositi<strong>on</strong> 16. Let Q = (a 2 , a 3 , b 3 ) <strong>and</strong> B = A/U(a 2 ). Then since e 2 QB (B) = 0, by<br />

Propositi<strong>on</strong> 8 <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 = a 3 , b 3 forms a d-sequence in B, because b 2 is superficial<br />

for QB. Therefore, since U(a 2 ) ∩ Q ⊆ U(a 2 ) ∩ [Q + U(a 1 )] = (a 2 ), <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 , b 3<br />

forms a d-sequence in A/(a 2 ), so that b 1 = a 2 , b 2 , b 3 forms a d-sequence in A, because b 1<br />

is A-regular.<br />

Assume that d ≥ 4 <strong>and</strong> that our asserti<strong>on</strong> holds true for d−1. Then, thanks to Theorem<br />

13 <strong>and</strong> its pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, we have<br />

e 2 Q(A) = e 2 (A) = ∑d−3<br />

( ) d − 4<br />

Q e2 QC(C) ≤<br />

h j (C)<br />

j − 1<br />

=<br />

=<br />

j=1<br />

∑d−3<br />

( ) d − 4<br />

h j (A)<br />

j − 1<br />

because Q·H j m(A) = (0) for 1 ≤ j ≤ d − 3. Hence<br />

∑d−3<br />

( ) d − 4<br />

e 2 QC(C) =<br />

h j (C).<br />

j − 1<br />

j=1<br />

j=1<br />

∑d−2<br />

( ) d − 3<br />

h j (A) = e 2<br />

j − 1<br />

Q(A),<br />

Therefore, because QC = (a 2 , a 3 , · · · , a d )C <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 2 , a 3 , · · · , a i , a d−1 , a d is superficial<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal QC for all 1 ≤ i ≤ d − 2 where a j denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> a j in C, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> <strong>on</strong> d yields that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist γ 2 , γ 3 , · · · , γ d−1 ∈ C such that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence<br />

γ 1 = a d−1 , γ 2 , γ 3 , · · · , γ d−1 forms a d-sequence in C <strong>and</strong> QC = (γ 1 , γ 2 , · · · , γ d−1 )C.<br />

Let us write γ j = c j for each 2 ≤ j ≤ d − 1 with c j ∈ Q, where c j denote <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c j in C. We put q = (a 1 , a d−1 , c 2 , c 3 , · · · , c d−1 ). Then q is a parameter ideal in A,<br />

a 1 H 1 m(A) = (0), <strong>and</strong> a d−1 , c 2 , c 3 , · · · , c d−1 forms a d-sequence in C. Therefore<br />

j=1<br />

U(a d−1 ) ∩ [Q + U(a 1 )] = U(a d−1 ) ∩ [q + U(a 1 )] = (a d−1 )<br />

by Propositi<strong>on</strong> 16, whence U(a d−1 ) ∩ Q = (a d−1 ).<br />

–163–


Let B = A/U(a d−1 ). We <str<strong>on</strong>g>the</str<strong>on</strong>g>n have<br />

∑d−3<br />

( ) d − 4<br />

e 2 QB(B) =<br />

h j (B)<br />

j − 1<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> same reas<strong>on</strong> as for <str<strong>on</strong>g>the</str<strong>on</strong>g> equality e 2 QC (C) = ∑ d−3<br />

e 2 QC (C) = ∑ d−3<br />

j=1<br />

j=1<br />

j=1<br />

( d−4<br />

j−1)<br />

h j (C) (in fact, to show<br />

( d−4<br />

j−1)<br />

h j (C), we <strong>on</strong>ly need that a 1 is superficial with respect to Q). Therefore,<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> <strong>on</strong> d, we may choose elements β 2 , β 3 , · · · , β d ∈ B so<br />

that QB = (β 2 , β 3 , · · · , β d )B <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence β 2 , β 3 , · · · , β d forms a d-sequence in B.<br />

We put b 1 = a d−1 <strong>and</strong> write β j = b j with b j ∈ Q for 2 ≤ j ≤ d, where b j denotes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

image <str<strong>on</strong>g>of</str<strong>on</strong>g> b j in B. We now put q ′ = (b 1 , b 2 , · · · , b d ). Then q ′ is a parameter ideal in A <strong>and</strong><br />

because U(b 1 ) ∩ Q = (b 1 ), we get<br />

Q ⊆ [q ′ + U(b 1 )] ∩ Q = q ′ + [U(b 1 ) ∩ Q] ⊆ q ′ + (b 1 ) = q ′ ;<br />

hence Q = q ′ . Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 , b 3 , · · · , b d forms a d-sequence in A/(b 1 ), so that<br />

b 1 , b 2 , · · · , b d forms a d-sequence in A, because b 1 is A-regular. This complete <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 15 <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2 as well.<br />

□<br />

References<br />

[1] W. Bruns <strong>and</strong> J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, 39,<br />

Cambridge University Press, Cambridge, New York, Port Chester, Melbourne Sydney, 1993.<br />

[2] L. Ghezzi, S. Goto, J. H<strong>on</strong>g, K. Ozeki, T. T. Phu<strong>on</strong>g, <strong>and</strong> W. V. Vasc<strong>on</strong>celos, Cohen–Macaulayness<br />

versus <str<strong>on</strong>g>the</str<strong>on</strong>g> vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first Hilbert coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals, L<strong>on</strong>d<strong>on</strong> Math. Soc., (2) 81<br />

(2010), 679–695.<br />

[3] S. Goto <strong>and</strong> K. Nishida, Hilbert coefficients <strong>and</strong> Buchsbaumness <str<strong>on</strong>g>of</str<strong>on</strong>g> associated graded rings, J. Pure<br />

<strong>and</strong> Appl. Algebra, Vol 181, 2003, 61–74.<br />

[4] S. Goto <strong>and</strong> K. Ozeki, Buchsbaumness in local rings possessing first Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters,<br />

Nagoya Math. J., 199 (2010), 95–105.<br />

[5] S. Goto <strong>and</strong> K. Ozeki, Uniform bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, C<strong>on</strong>temporary Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

555 (2011), 97–118.<br />

[6] L. T. Hoa, Reducti<strong>on</strong> numbers <strong>and</strong> Rees Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> powers <str<strong>on</strong>g>of</str<strong>on</strong>g> ideal, Proc. Amer. Math. Soc, 119,<br />

1993, 415–422.<br />

[7] C. Huneke, On <str<strong>on</strong>g>the</str<strong>on</strong>g> Symmetric <strong>and</strong> Rees Algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an Ideal Generated by a d-sequence, J. Algebra 62<br />

(1980) 268–275.<br />

[8] C. H. Linh <strong>and</strong> N. V. Trung, Uniform bounds in generalized Cohen-Macaulay rings, J. Algebra, 304<br />

(2006), 1147–1159.<br />

[9] M. M<strong>and</strong>al <strong>and</strong> J. K. Verma, On <str<strong>on</strong>g>the</str<strong>on</strong>g> Chern number <str<strong>on</strong>g>of</str<strong>on</strong>g> an ideal, Proc. Amer. Math Soc., 138. (2010),<br />

1995–1999.<br />

[10] P. Schenzel, Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr., 88 (1979),<br />

295–306.<br />

[11] P. Schenzel, N. V. Trung, <strong>and</strong> N. T. Cu<strong>on</strong>g, Verallgemeinerte Cohen-Macaulay-Moduln, Math.<br />

Nachr., 85 (1978), 57–73.<br />

Meiji University<br />

1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan<br />

Email: kozeki@math.meiji.ac.jp<br />

–164–


PREPOJECTIVE ALGEBRAS<br />

AND CRYSTAL BASES OF QUANTUM GROUPS<br />

YOSHIHISA SAITO<br />

Abstract. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> last century, Kashiwara <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> author ([10]) made a bride<br />

between representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups <strong>and</strong> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers. More precisely,<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> variety X(d) <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a double quiver, with a fixed dimensi<strong>on</strong><br />

vector d. It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a nice Lagrangian subvariety Λ(d) <str<strong>on</strong>g>of</str<strong>on</strong>g> X(d). In a<br />

geometric point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, Λ(d) is defines as <str<strong>on</strong>g>the</str<strong>on</strong>g> variety <str<strong>on</strong>g>of</str<strong>on</strong>g> zero points <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moment<br />

map for <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain reductive group <strong>on</strong> X(d). Let IrrΛ(d) be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

irreducible comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ(d). We proved that ⊔ d IrrΛ(d) is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> “crystal<br />

basis” B(∞) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> negative half <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantum group. This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main results in<br />

[10].<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, in a representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, <str<strong>on</strong>g>the</str<strong>on</strong>g> variety Λ(d) is<br />

nothing but <str<strong>on</strong>g>the</str<strong>on</strong>g> variety <str<strong>on</strong>g>of</str<strong>on</strong>g> nilpotent representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding preprojective<br />

algebra. Namely, <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> [10] tell us that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a “nice” corresp<strong>on</strong>dence between<br />

preprojective algebras <strong>and</strong> crystal basis <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups. In this note, we try to<br />

explain what is <str<strong>on</strong>g>the</str<strong>on</strong>g> meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> this corresp<strong>on</strong>dence. Adding to that, we also discuss<br />

resent progress around this area.<br />

1. Introducti<strong>on</strong><br />

Kashiwara-S [10] 1997 <br />

<br />

Lie Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic <br />

<br />

preprojective algebra <br />

<br />

[10] preprojective algebra <br />

<br />

Geiss-Leclerc-Schöer [4][7]<br />

<br />

Dem<strong>on</strong>et <br />

<br />

preprojective algebra <br />

<br />

preprojective algebra “” <br />

1 <br />

• <br />

<br />

1 <br />

[16]<br />

–165–


• quiver Γ = (I, Ω) I <br />

Ω i ∈ I j ∈ I τ ∈ Ω <br />

i = out(τ)j = in(τ) τ ∈ Ω <br />

τ <br />

τ<br />

i ❡ ✲ ❡ j<br />

i ❡✛ τ ❡ j<br />

‖<br />

‖ ⇒ ‖<br />

‖<br />

out(τ) in(τ) in(τ) out(τ)<br />

i, j, k ∈ I i j τj k σ <br />

τ σ path path τσ στ<br />

<br />

❡<br />

i<br />

τ<br />

✲ ❡<br />

j<br />

σ<br />

✲ ❡<br />

k<br />

algebra A A-module left module <br />

τ σ στ <br />

<br />

<br />

<br />

⇒<br />

❡<br />

i<br />

στ<br />

✲ ❡<br />

k<br />

2. Varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> Representati<strong>on</strong>s<br />

2.1. Quiver .<br />

K Γ = (I, Ω) quiver Γ V = (V, B)<br />

<br />

• V = ⊕ i∈I V i I-graded vector space,<br />

• B = (B τ ) τ∈Ω K-linear maps B τ ∈ Hom K (V out(τ) , V in(τ) ) <br />

Γ V = (V, B) <br />

dimV := (dim K V i ) i∈I ∈ Z I ≥0<br />

V dimensi<strong>on</strong> vector B I-graded vector space<br />

V = ⊕ i∈I V i dimensi<strong>on</strong> vector dimV <br />

Γ V = (V, B) V ′ = (V ′ , B ′ ) V V ′ (morphism)φ =<br />

(φ i ) i∈I K-linear maps φ i : V i → V i<br />

′ (i ∈ I) τ ∈ Ω <br />

φ in(τ) B τ = B ′ τφ out(τ) (2.1.1)<br />

ϕ = (ϕ i ) i∈I I-graded vector space <br />

V V ′ <br />

–166–


d = (d i ) i∈I ∈ Z I ≥0 dimV = d I-graded vector space <br />

2 V (d) vector space <br />

E Ω (d) := ⊕ Hom K (V (d) out(τ) , V (d) in(τ) ).<br />

τ∈Ω<br />

B ∈ E Ω (d) V = (V (d), B) dimV = d Γ <br />

dimV = d Γ E Ω (d) dim = d<br />

Γ E Ω (d) dim = d<br />

Γ <br />

E Ω (d) G(d) := ∏ i∈I GL(V (d) i) <br />

(<br />

) (<br />

B = (B τ ) ↦→ gB = g in(τ) B τ g −1<br />

out(τ) g = (gi ) i∈I ∈ G(d) )<br />

quiverφ = (φ i )φ i GL(V (d) i )<br />

(2.1.1) <br />

Γ <br />

⇔<br />

E Ω (d) <br />

G(d)-orbit <br />

<br />

{ }<br />

dim = d <br />

1 : 1<br />

←→ {E<br />

Γ<br />

Ω (d) G(d)-orbit}<br />

Γ path algebra K[Γ]<br />

module <br />

{<br />

} { }<br />

dim = d <br />

1 : 1 dim = d 1 : 1<br />

←→<br />

←→ {E<br />

K[Γ]-module <br />

Γ<br />

Ω (d) G(d)-orbit}<br />

B = (B τ ) τ∈Ω ∈ E Ω (d) <br />

I-graded vector space V (d) K[Γ]-module structure τ ∈ K[Γ]<br />

B τ <br />

2.2. Relati<strong>on</strong> quiver .<br />

Γ = (I, Ω) = K[Γ]-modules <br />

relati<strong>on</strong> quiver<br />

<br />

A = K[Γ]/J J relati<strong>on</strong>s ρ 1 , · · · , ρ l <br />

ideal V A-module dimV = d A <br />

1 A 1 A = ∑ i∈I e i V I-graded vector space <br />

V i := e i V V = ⊕ i∈I V i τ ∈ Ω V <br />

linear map B τ ∈ Hom K (V out(τ) , V in(τ) ) Γ V = (V, B)<br />

2 <br />

<br />

–167–


B = (B τ ) relati<strong>on</strong>s ρ 1 , · · · , ρ l <br />

ρ j <br />

ρ j = ∑ a k1 ,k 2 ,··· ,k j<br />

τ k1 τ k2 · · · τ kj (1 ≤ j ≤ l, a k1 ,k 2 ,··· ,k j<br />

∈ K)<br />

B = (B τ ) <br />

ρ j (B) := ∑ a k1 ,k 2 ,··· ,k j<br />

B τk1 B τk2 · · · B τkj = 0 (1 ≤ j ≤ l) (2.2.1)<br />

B <br />

Λ A (d) := {B ∈ E Ω (d) | B (2.2.1) }<br />

E Ω (d) Λ A (d) <br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> A-modules (<str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> vector d) <br />

<br />

{<br />

<br />

dim = d <br />

A-module <br />

<br />

}<br />

A “=”<br />

1 : 1<br />

←→ {Λ A (d) G(d)-orbit}<br />

Λ A (d) <br />

G(d)-orbit <br />

K <br />

<br />

K = C <br />

A finite representati<strong>on</strong> type Λ A (d) <br />

G(d)-orbit G(d)\Λ A (d) <br />

A wild <br />

G(d)\Λ A (d) <br />

3 <br />

module<br />

A A-module<br />

category subcategory <br />

<br />

orbit <br />

<br />

<br />

orbit <br />

3 <br />

<br />

G(d)\Λ A (d) stack <br />

<br />

wild stack <br />

<br />

–168–


variety <str<strong>on</strong>g>of</str<strong>on</strong>g> A-<br />

module Λ A (d) <br />

Λ A (d) <br />

Λ A (d) = <br />

or or <br />

Λ A (d) <br />

IrrΛ A (d) := Λ A (d) <br />

G(d) orbit<br />

<br />

<br />

= <br />

A-module <br />

A <br />

<br />

dimensi<strong>on</strong> vector module module<br />

IrrΛ A (d) dimensi<strong>on</strong><br />

vector ⊔<br />

IrrΛ A (d)<br />

<br />

d∈Z I ≥0<br />

A <br />

A preprojective algebra <br />

preprojective algebra wild<br />

A-module =orbit <br />

⊔ d∈Z I<br />

≥0<br />

IrrΛ A (d) “crystal” <br />

⊔ d∈Z I<br />

≥0<br />

IrrΛ A (d) <br />

Introducti<strong>on</strong> [10] preprojective<br />

algebra <br />

<br />

preprojective algebra<br />

A <br />

<br />

Geiss-Leclerc-Schröer <br />

[4],[5],[6],[7] Kimura 4 [11]<br />

<br />

3.1. .<br />

3. Preprojective algebras<br />

Γ = (I, Ω) loop H := Ω ⊔ Ω double quiver<br />

˜Γ := (I, H) <br />

4 <br />

–169–


Definiti<strong>on</strong> 1. double quiver ˜Γ path algebra C[˜Γ] |I| = n relati<strong>on</strong>s<br />

µ i := ∑ ε(τ)ττ (i ∈ I)<br />

τ∈H<br />

out(τ)=i<br />

{<br />

1 (τ ∈ Ω)<br />

J ε(τ) =<br />

−1 (τ ∈ Ω) <br />

P (Γ) := C[˜Γ]/J<br />

Γ Preprojective algebra J µ i preprojective<br />

relati<strong>on</strong>s <br />

P (Γ) <br />

Propositi<strong>on</strong> 2.<br />

(1) P (Γ) C ⇔ Γ Dynkin quiver<br />

(2) P (Γ) finite representati<strong>on</strong> type ⇔ Γ A n (n = 1, 2, 3, 4) <br />

(3) P (Γ) tame representati<strong>on</strong> type ⇔ Γ A 5 or D 4 <br />

Γ P (Γ) wild <br />

3.2. Varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> nilpotent representati<strong>on</strong>s.<br />

Propositi<strong>on</strong> 2 (1) Γ n<strong>on</strong>-Dynkin P (Γ) <br />

<br />

<br />

Definiti<strong>on</strong> 3. B ∈ E d,Ω (nilpotent) N <br />

N path σ B σ = 0 <br />

module B P (Γ)-module V B <br />

N path σ σV = {0} <br />

d ∈ Z I ≥0 <br />

<br />

X(d) := ⊕ Hom C (V (d) out(τ) , V (d) in(τ) )<br />

τ∈H<br />

Λ(d) := {B ∈ X(d) | µ i (B) = 0 (∀ i ∈ I) B nilpotent}<br />

X(d) dimensi<strong>on</strong> vector d nilpotent P (Γ)-<br />

modules <br />

Remark 4. (1) Γ Dynkin quiver B ∈ E Ω (d) µ i (B) = 0 (∀ i ∈ I) <br />

B nilpotent ([9])<br />

Λ(d) dimensi<strong>on</strong> vector = d P (Γ)-module <br />

(2) “preprojective algebra ” Λ(d) <br />

Λ(d) preprojective algebra quiver <br />

–170–


preprojective<br />

relati<strong>on</strong>s 5<br />

P (Γ)-nilp nilpotent P (Γ)-module category <br />

= orbit<br />

{<br />

}<br />

dim = d <br />

1 : 1<br />

←→ {Λ(d) G(d)-orbit}<br />

P (Γ)-nilp object <br />

<br />

Propositi<strong>on</strong> 2 P (Γ) wild<br />

“G(d)-orbit ” <br />

Γ(d) <br />

IrrΛ(d) := Λ(d) <br />

dimensi<strong>on</strong> vector <br />

B :=<br />

⊔<br />

IrrΛ(d)<br />

d∈Z I ≥0<br />

B “crystal” B <br />

[10] <br />

4. A crystal structure <strong>on</strong> B<br />

4.1. Root datum.<br />

crystal root datum fix <br />

dimensi<strong>on</strong> vectors lattice Z I quiver<br />

Cartan matrix bilinear form <br />

“Cartan matrix”Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

6 Z I bilinear form <br />

Cartan matrix <br />

<br />

<br />

5 Λ(d) symplectic (X, ω) Lie G symplectic form<br />

ω (moment map) µ : X → Lie(G) ∗ <br />

Lie(G) G Lie algebraLie(G) ∗ dual space symplectic <br />

symplectic moment map 0 Λ := µ −1 (0) <br />

“” <br />

Λ = µ −1 (0) <br />

Λ(d) X(d) = E Ω (d) ⊕ E Ω<br />

(d) X(d) bilinear form ω <br />

ω(B, B ′ ) := ∑ τ∈H ε(τ)tr(B τ B ′ τ ) ω X(d) skew-symmetric<br />

bilinear form (symplectic form) G(d) X(d) symplectic form <br />

symplectic moment map µ : X(d) → Lie(G(d)) ∗ <br />

setting µ 0 Λ = µ −1 (0) variety <str<strong>on</strong>g>of</str<strong>on</strong>g> nilpotent<br />

representati<strong>on</strong>s Λ(d) <br />

6 (<strong>Ring</strong>el [13]<br />

Assem et. al. [1] ) <br />

–171–


◦ side<br />

Γ = (I, Ω) cycle (acyclic) <br />

C[Γ] S(i) i ∈ I simple C[Γ]-module, P (i) <br />

projective cover I = {1, 2, · · · , n} <br />

Definiti<strong>on</strong> 5. n C Γ = (c i,j ) i,j∈I <br />

c i,j := dim C[Γ] (P (i), P (j))<br />

C Γ path algebra C[Γ] Cartan matrix <br />

<br />

(i, j ∈ I).<br />

(i) Cartan matrix C Γ <br />

(ii) Cartan matrix C Γ c i,j <br />

(iii) Cartan matrix C Γ <br />

Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <br />

Cartan matrix <br />

(i) (ii) (iii) <br />

<strong>Ring</strong>el [13] Z I s(i) := dimS(i),<br />

p(i) := dimP (i) <br />

p(i) = s(i) t C Γ (4.1.1)<br />

s(i) i 1 0 <br />

(4.1.1) p(i) t C Γ i <br />

C[Γ]-mod C[Γ]-modules abelian categoryK(C[Γ]) := K(C[Γ]-mod) <br />

Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck <br />

Z-module <br />

K(C[Γ]) ∋ [V ] ↦→ dimV ∈ Z I<br />

Φ Γ : K(C[Γ]) ∼ → Z I<br />

[V ] C[Γ]-module V K(C[Γ]) <br />

C[Γ] hereditary S(i) projective resoluti<strong>on</strong> <br />

K(C[Γ]) [S(i)] [P (j)] (j ∈ I) Φ Γ <br />

Z I n P ′ <br />

E n =<br />

⎛<br />

⎜<br />

⎝<br />

s(1)<br />

s(2)<br />

.<br />

s(n)<br />

⎞ ⎛<br />

⎟<br />

⎠ = ⎜<br />

⎝<br />

p(1)<br />

p(2)<br />

.<br />

p(n)<br />

⎞<br />

⎟<br />

⎠ P ′<br />

(4.1.1) P ′ = t C −1<br />

Γ<br />

C Γ Z I bilinear form <br />

〈〈x, y〉〉 := x (t C −1<br />

Γ<br />

(E n n )<br />

) t<br />

y (x, y ∈ Z I )<br />

–172–<br />

(iii)


Euler form 7 (i),(ii),(iii) <br />

• Euler form 〈〈·, ·〉〉 <br />

• Euler form 〈〈·, ·〉〉 Z <br />

Euler form A <br />

A 8 V projective dimensi<strong>on</strong> <br />

A-module, W injective dimensi<strong>on</strong> A-module <br />

〈〈dimV, dimW 〉〉 = ∑ l≥0<br />

A = C[Γ] <br />

dim C Ext l A(V, W )<br />

〈〈dimV, dimW 〉〉 = dim C Hom C[Γ] (V, W ) − dim C Ext C[Γ] (V, W )<br />

V, W simple module <br />

〈〈s(i), s(j)〉〉 = δ i,j − dim C Ext C[Γ] (S(i), S(j))<br />

{<br />

1 (i = j),<br />

=<br />

−(Ω i j arrow ) (i ≠ j)<br />

“” <br />

Euler form <br />

(x, y) alg := 1 2 x ( C −1<br />

Γ<br />

+ ) t C −1 t<br />

Γ<br />

y (x, y ∈ Z I )<br />

Z I symmetric bilinear form Γ = (I, Ω) arrow <br />

quiver Γ := (I, Ω) <br />

C Γ = t C Γ<br />

symmetric bilinear form (·, ·) alg <br />

1 (<br />

)<br />

t C −1<br />

2<br />

+ t C −1<br />

Γ Γ<br />

symmetric bilinear form<br />

<br />

{ 1 (i = j),<br />

(s(i), s(j)) alg =<br />

−(H = Ω ∪ Ω i j arrow )/2 (i ≠ j)<br />

<br />

◦ Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory side<br />

quiver Γ = (I, Ω) cycle loop Γ<br />

arrow Γ Dyn Γ Dyn quiver Γ <br />

(underlying) Dynkin diagram 9 <br />

7 〈·, ·〉 〈·, ·〉 <br />

8 A global dimensi<strong>on</strong> <br />

9 “Dynkin” Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory C[Γ] <br />

“Dynkin case” “n<strong>on</strong>-Dynkin case” Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory C[Γ] <br />

Γ Dyn “Dynkin diagram” <br />

–173–


Definiti<strong>on</strong> 6. n × n A(Γ Dyn ) = (a i,j ) 1≤i,j≤n <br />

{<br />

2 (i = j),<br />

a i,j :=<br />

−(Γ Dyn i j ) (i ≠ j).<br />

A(Γ Dyn ) = (a i,j ) Dynkin diagram Γ Dyn Cartan matrix 10 <br />

Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic Cartan matrix A(Γ Dyn ) <br />

(i)’ Cartan matrix A(Γ Dyn ) <br />

(ii)’ Cartan matrix A(Γ Dyn ) a i,j <br />

2 <br />

(iii)’ Cartan matrix A(Γ Dyn ) 11 <br />

side Cartan matrix C Γ (i)∼(iii) <br />

12 <br />

<br />

A = A(Γ Dyn ) Z I bilinear form <br />

(x, y) Lie := xA t y (x, y ∈ Z I )<br />

A(Γ Dyn ) symmetric bilinear form <br />

A(Γ Dyn ) <br />

{<br />

2 (i = j),<br />

(s(i), s(j)) Lie =<br />

−(Γ Dyn i j ) (i ≠ j)<br />

H = Ω ∪ Ω i j arrow Γ Dyn i j <br />

<br />

(s(i), s(j)) Lie = 2(s(i), s(j)) alg<br />

Cartan matrix <br />

A(Γ Dyn ) = 2 · 1 (<br />

)<br />

t C −1<br />

2<br />

+ t C −1<br />

Γ Γ<br />

Cartan matrix <br />

Z I symmetric bilinear form (·, ·) Lie <br />

(·, ·) 13 <br />

Remark 7. Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory Cartan matrix A(Γ Dyn ) Lie algebra <br />

Lie algebra Kac-Moody Lie algebra <br />

Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory “Dynkin diagram” <br />

Γ Dyn Dynkin diagram symmetric <br />

10 loop Γ cycle <br />

11 Γ extended DynkinLie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory affine A(Γ Dyn ) corank 1 <br />

<br />

12 Lie<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic <br />

13 Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic “2” <br />

<br />

–174–


symmetric Kac-Moody Lie algebra 14 Lie algebra <br />

Γ Dyn A, D, E <br />

Dynkin case<br />

Definiti<strong>on</strong> 8. Γ = (I, Ω) loop quiver (Z I ) ⊗ Q = Q I <br />

{s(i)|i ∈ I}, bilinear form (·, ·) ( Q I , {s(i)}, (·, ·) ) Dynkin diagram<br />

Γ Dyn root datum (·, ·) Z I bilinear form<br />

Q I <br />

Remark 9. Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory root datum <br />

15 Lie<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory root datum Cartan matrix <br />

symmetric quiver<br />

Cartan matrix symmetric Cartan<br />

matrix symmetric <br />

4.2. Crystal .<br />

crystal <br />

crystal <br />

“” <br />

root datum ( Q I , {s(i)}, (·, ·) ) fix {s(i)} Q I <br />

Z-submodule <br />

Q := ⊕ Zs(i)<br />

i∈I<br />

root lattice Q ∼ = Z I P <br />

:<br />

(a) P Q I rank n = |I| Z-submodule <br />

(b) (z, Q) ⊂ Z for every z ∈ P.<br />

(c) s(i) ∈ P for every i ∈ I.<br />

(c) Q ⊂ P <br />

Remark 10. (1) bilinear form (·, ·) Γ A, D, E <br />

(a), (b), (c) can<strong>on</strong>ical <br />

P <br />

P := {z ∈ Q I | (z, Q) ⊂ Z}<br />

lattice Q dual lattice <br />

<br />

(·, ·) Γ extended Dynkin <br />

P Z (a) <br />

can<strong>on</strong>ical P choice <br />

14 symmetric A(Γ Dyn ) Kac-Moody<br />

Lie algebra Cartan matrix <br />

15 Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <br />

–175–


(2) P Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory weight lattice <br />

crystal 16 <br />

Definiti<strong>on</strong> 11. B <br />

wt : B → P, ε i : B → Z ⊔ {−∞}, ϕ i : B → Z ⊔ {−∞},<br />

ẽ i : B → B ⊔ {0}, ˜fi : B → B ⊔ {0} (i ∈ I)<br />

( B; wt, ε i , ϕ i , ẽ i , ˜f i<br />

)<br />

root datum<br />

(<br />

Q I , {s(i)}, (·, ·) ) <br />

crystal <br />

(C1) i ∈ I, b ∈ B <br />

(C2) b ∈ B ẽ i b ∈ B <br />

ϕ i (b) = ε i (b) + (s(i), wt(b)).<br />

wt(ẽ i b) = wt(b) + s(i), ε i (ẽ i b) = ε i (b) − 1, ϕ i (ẽ i b) = ϕ i (b) + 1.<br />

(C2)’ b ∈ B ˜f i b ∈ B <br />

wt( ˜f i b) = wt(b) − s(i), ε i ( ˜f i b) = ε i (b) + 1, ϕ i ( ˜f i b) = ϕ i (b) − 1.<br />

(C3) b, b ′ ∈ B <br />

b ′ = ẽ i b ⇔ b = ˜f i b ′ .<br />

(C4) b ∈ B ϕ i (b) = −∞ <br />

ẽ i b = ˜f i b = 0.<br />

“−∞” “0” Z <br />

extra B extra <br />

−∞ Z “” <br />

(−∞) + a = a + (−∞) = −∞ (a ∈ Z)<br />

17 <br />

ϕ i (b) = −∞ ⇔ ε i (b) = −∞.<br />

b ∈ B wt(b) ∈ P (s(i), wt(b)) ∈ Z <br />

(C1) “” ϕ i (b) = −∞ ε i (b) = −∞ <br />

<br />

crystal ( B; wt, ε i , ϕ i , ẽ i , ˜f i<br />

)<br />

<br />

crystal B<br />

crystal crystal graph<br />

16 “” root datum quiver <br />

root datum <br />

17 −∞ <br />

<br />

–176–


Definiti<strong>on</strong> 12. B crystal B <br />

B crystal graph <br />

b ′ = ˜f i b b b ′ i ∈ I <br />

i<br />

b ✲ b ′<br />

Example 13. Γ A n quiver orientati<strong>on</strong> ω 1 ∈ P <br />

n + 1 <br />

(ω 1 , s(i)) = δ 1,i<br />

B(ω 1 ) := {b 0 , b 1 , · · · , b n }<br />

wt, ε i , ϕ i , ẽ i , ˜f i <br />

k∑<br />

wt(b k ) := ω 1 − s(i) (0 ≤ k ≤ n),<br />

{<br />

1 (i = k),<br />

ε i (b k ) :=<br />

0 (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise),<br />

{<br />

b k−1 (i = k),<br />

ẽ i b k :=<br />

0 (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise),<br />

i=1<br />

{<br />

1 (i = k + 1),<br />

ϕ i (b k ) :=<br />

0 (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise),<br />

{<br />

b k+1 (i = k + 1),<br />

˜f i b k :=<br />

0 (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise).<br />

B(ω 1 ) crystal crystal graph <br />

b 0<br />

1 ✲ b 2 1<br />

✲ b 3 2<br />

✲ · · · n ✲ b n<br />

B(ω 1 ) A n vector crystal basiscrystal <br />

<br />

<br />

Example 14. Γ loop quiver j ∈ I Z <br />

<br />

B j := {b j (k) | k ∈ Z}<br />

wt, ε i , ϕ i , ẽ i , ˜f i <br />

wt(b j (k)) := ks(j) (k ∈ Z),<br />

{<br />

{<br />

−k (i = j),<br />

k (i = j),<br />

ε i (b j (k)) :=<br />

ϕ i (b j (k)) :=<br />

−∞ (i ≠ j),<br />

−∞ (i ≠ j),<br />

{<br />

{<br />

b j (k + 1) (i = j),<br />

b j (k − 1) (i = j),<br />

ẽ i b j (k) :=<br />

˜f i b j (k) :=<br />

0 (i ≠ j),<br />

0 (i ≠ j).<br />

B j crystal crystal graph <br />

j j<br />

· · · ✲ ❡<br />

b j (k − 1)<br />

✲ ❡<br />

b j (k)<br />

j j j<br />

✲ ❡ ✲ ❡<br />

b j (k + 1) b j (k + 2)<br />

–177–<br />

✲<br />

· · ·


Example 15. Γ loop quiver λ ∈ P <br />

wt, ε i , ϕ i , ẽ i , ˜f i <br />

T λ := {t λ }<br />

wt(t λ ) := λ, ε i (t λ ) = ϕ i (t λ ) := −∞, ẽ i t λ = ˜f i t λ := 0 (∀ i ∈ I).<br />

T λ crystal crystal graph <br />

<br />

4.3. B .<br />

B = ⊔ IrrΛ(d) ( Q I , {s(i)}, (·, ·) ) root datum crystal <br />

◦ wt Λ ∈ IrrΛ(d) <br />

wt(Λ) := −d.<br />

◦ ε i B ∈ Λ(d) ε i (B) ∈ Z ≥0 <br />

(<br />

)<br />

⊕B<br />

ε i (B) := dim C Coker ⊕ V (d)<br />

τ<br />

out(τ) −→ V (d)i .<br />

τ∈H;in(τ)=i<br />

B = (B τ ) τ∈H ∈ Λ(d) I-graded vector space V (d) P (Γ)-module <br />

ε i (B) i ∈ I <br />

P (Γ)-module V (d) top (i-th top) <br />

Λ ∈ IrrΛ(d) Λ generic B ∈ Λ <br />

<br />

ε i (Λ) := ε i (B)<br />

◦ ϕ i wt ε i (C1) ϕ i <br />

ϕ i (Λ) := ε i (Λ) + (s(i), wt(Λ)).<br />

◦ ẽ i <br />

(<br />

IrrΛ(d)<br />

)i,p := { Λ ∈ IrrΛ(d) | ε i (Λ) = p }<br />

IrrΛ(d) ( IrrΛ(d) ) disjoint uni<strong>on</strong> <br />

i,p<br />

IrrΛ(d) = ( IrrΛ(d) ) ⊔ ( IrrΛ(d) ) ⊔ ( IrrΛ(d) ) ⊔ · · · ⊔ ( IrrΛ(d) ) i,0 i,1 i,2 i,dim C V (d) i<br />

.<br />

( IrrΛ(d) ) (0 ≤ p ≤ dim i,p C V (d) i ) <br />

Λ ∈ ( IrrΛ(d) ) Λ generic B <br />

i,l<br />

l = ε i (B) = P (Γ)-module V (d) i-th top <br />

<br />

V (d) P (Γ)-submodule V ′′ V (d)/V ′′ ∼ = S(i) ⊕l (i-th top <str<strong>on</strong>g>of</str<strong>on</strong>g> V (d))<br />

–178–


V ′′ i-th radical <br />

I-graded vector space V ′′ ∼ = V (d ′′ ) d ′′ := d − ls(i) <br />

I-graded vector space V (d ′′ ) P (Γ)-module structure <br />

0 → V (d ′′ ) −→ φ′′<br />

V (d) −→ φ′<br />

S(i) ⊕l → 0 (4.3.1)<br />

P (Γ)-module <br />

P (Γ)-module V (d ′′ ) Λ(d ′′ ) B ′′ <br />

Λ(d) ∋ B → B ′′ ∈ Λ(d ′′ )<br />

<br />

V (d) i-th radical <br />

<br />

B → B ′′ V ′′ ∼ = V (d ′′ ) i-th radical <br />

V (d ′′ ) P (Γ)-module structure<br />

B ′′ ∈ Λ(d ′′ ) <br />

(4.3.1) I-graded vector space<br />

V (d) P (Γ)-module structure <br />

B ∈ Λ(d) <br />

V (d ′′ ) P (Γ)-module structure B ′′ ∈ Λ(d ′′ ) <br />

φ ′′ : V (d ′′ ) → V (d) P (Γ)-module <br />

P (Γ)-module Imφ ′′ B-stable <br />

18 V (d)/V (d ′′ ) ∼ = S(i) ⊕l P (Γ)-module <br />

φ ′ : V (d) → S(i) ⊕l <br />

P (Γ)-module <br />

(B, φ ′ , φ ′′ ) B ∈ Λ(d) Imφ ′′ B-<br />

stable (B, φ ′ , φ ′′ ) Λ(d; d ′′ ) <br />

Λ(d; d ′′ ) Λ(d)Λ(d ′′ ) <br />

q 1 : Λ(d; d ′′ ) ∋ (B, φ ′ , φ ′′ ) ↦→ B ∈ Λ(d), q 2 : Λ(d; d ′′ ) ∋ (B, φ ′ , φ ′′ ) ↦→ B ′′ ∈ Λ(d ′′ )<br />

<br />

Λ(d ′′ ) q 2<br />

←− Λ(d; d ′′ ) q 1<br />

−→ Λ(d) (4.3.2)<br />

q 1 , q 2 B → B ′′ <br />

<br />

Propositi<strong>on</strong> 16 (Kashiwara-S [10]). (4.3.2) <br />

( ) ∼<br />

IrrΛ(d) → ( IrrΛ(d ′′ ) ) i,0<br />

i,l<br />

18 φ ′′ I-graded vector ( space Imφ ′′ V (d) I-graded vector subspace <br />

Imφ ′′ = ⊕ ) i∈I Imφ<br />

′′<br />

τ ∈ H <br />

i<br />

Imφ ′′ B-stable <br />

B τ<br />

(<br />

Imφ<br />

′′ ) out(τ) ⊂ ( Imφ ′′) in(τ)<br />

–179–


P (Γ)-module i-th radical <br />

B → B ′′ well-defined <br />

well-defined <br />

q 1 , q 2 ([10]) <br />

<br />

<br />

ẽ max<br />

i : ( IrrΛ(d) ) ∼<br />

→ ( IrrΛ(d ′′ ) ) i,l<br />

i,0<br />

ẽ i <br />

ẽ i <br />

{ (Λ(d) ) ẽ max<br />

i<br />

−→ ( Λ(d − ls(i)) ) (ẽ max<br />

i )<br />

−→ −1 ( Λ(d − s(i)) ) if l > 0,<br />

ẽ i : ( ) i,l<br />

i,0<br />

i,l−1<br />

Λ(d) −→ {0} if l = 0.<br />

i,0<br />

ẽ i “” ẽ i <br />

P (Γ)-module i-th top generic <br />

19 i-th top 0 l = 0 <br />

0 <br />

B = ⊔ d∈Z<br />

IrrΛ(d) comp<strong>on</strong>ent ẽ I i <br />

≥0<br />

<br />

ẽ i : B → B ⊔ {0}<br />

well-defined <br />

◦ ˜f i ẽ max<br />

i<br />

˜f i : ( Λ(d) ) i,l<br />

<br />

ẽ max<br />

i<br />

−→ ( Λ(d − ls(i)) ) i,0<br />

(ẽ max<br />

i ) −1<br />

−→ ( Λ(d + s(i)) ) i,l+1 .<br />

l 0 ˜f i “” <br />

P (Γ)-module i-th top generic <br />

l <br />

˜f i <br />

<br />

˜f i : B → B<br />

<br />

19 P (Γ)-module i-th top generic <br />

ẽ i <br />

<br />

( ) ∼<br />

IrrΛ(d) → ( IrrΛ(d − s(i)) ) i,l−1<br />

i,l<br />

( IrrΛ(d ′′ ) ) i,0<br />

<br />

–180–


Propositi<strong>on</strong> 17 ([10]). ( B; wt, ε i , ϕ i , ẽ i , ˜f i<br />

)<br />

root datum<br />

(<br />

Q I , {s(i)}, (·, ·) ) <br />

crystal <br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (C1)(C4) (C1)(C3) <br />

(C4) ϕ i (Λ) = −∞ Λ ∈ B OK<br />

□<br />

4.4. .<br />

B = ⊔ d∈Z<br />

IrrΛ(d) crystal structure preprojective<br />

I<br />

≥0<br />

algebra <br />

<br />

Qcrystal structure <br />

<br />

preprojective algebra <br />

crystal <br />

Theorem 18 (Kashiwara-S [10]). crystal B B(∞) 20 .<br />

B(∞) “ crystal basis” crystal <br />

<br />

“ crystal basis” <br />

Theorem 18 <br />

<br />

Acrystal preprojective<br />

algebra nilpotent variety <br />

<br />

<br />

Γ Dynkin case A 5 <br />

<br />

4.5. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r crystal structure <strong>on</strong> B.<br />

4.3 crystal structure “ top ” <br />

top <br />

socle <br />

OK top socle B crystal structure <br />

B crystal structure 4.3 <br />

<br />

wt 4.3 ε i 4.3 <br />

∗ ε ∗ i <br />

20 crystal <br />

<br />

–181–


B ∈ Λ(d) <br />

ε ∗ i (B) := dim C Ker<br />

(<br />

)<br />

⊕B<br />

V (d)<br />

τ<br />

i −→ ⊕ V (d) in(τ)<br />

τ∈H;out(τ)=i<br />

P (Γ)-module i-th socle <br />

Λ ∈ IrrΛ(d) Λ generic B ∈ Λ <br />

<br />

<br />

ε ∗ i (Λ) := ε ∗ i (B)<br />

ϕ ∗ i (Λ) := ε ∗ i (Λ) + (s(i), wt(Λ))<br />

4.3 ε i = i-th top IrrΛ(d) ε ∗ i = i-th socle <br />

<br />

IrrΛ(d) = ⊔ ( ) p<br />

IrrΛ(d) , where ( IrrΛ(d) ) p<br />

:= { Λ ∈ IrrΛ(d) | ε ∗ i i i (Λ) = p } .<br />

p≥0<br />

4.3 <br />

(ẽ ∗ i ) max : ( IrrΛ(d) ) l ∼<br />

→ ( IrrΛ(d ′ ) ) 0<br />

i<br />

i<br />

d ′ := d − ls(i) 21 <br />

top socle (4.3.1)<br />

map <br />

0 → S(i) ⊕l φ ′′<br />

−→ V (d) φ′<br />

−→ V (d ′ ) → 0. (4.5.1)<br />

(4.3.2) (ẽ ∗ i ) max <br />

(ẽ ∗ i ) max i-th cosocle <br />

<br />

(ẽ ∗ i ) max <br />

ẽ ∗ i : B → B ⊔ {0}, ˜f<br />

∗<br />

i : B → B<br />

<br />

Theorem 19 ([10]). (1) ( B; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

) (<br />

i<br />

∗ root datum Q I , {s(i)}, (·, ·) ) <br />

crystal <br />

(2) crystal ( B; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗ B(∞) <br />

(2) Theorem 18 Theorem 19 <br />

(<br />

B; wt, εi , ϕ i , ẽ i , ˜f<br />

) (<br />

i<br />

∼= B(∞) ∼ = B; wt, ε<br />

∗<br />

i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗<br />

<br />

crystal <br />

“ε i = ε ∗ i ” <br />

<br />

top socle <br />

21 d ′ = d ′′ <br />

–182–


top socle <br />

“” <br />

5.1. .<br />

5. Dynkin case<br />

Γ = (I, Ω) Dynkin quiverA, D, E side <br />

P (Γ) <br />

<br />

Propositi<strong>on</strong> 20 (Lusztig [9]). Γ = (I, Ω) Dynkin quiver <br />

Λ ∈ IrrΛ(d) E Ω (d) G(d)-orbit O Ω <br />

Λ = T ∗ O Ω<br />

E Ω (d)<br />

E Ω (d) G(d)-orbit O Ω T ∗ O Ω<br />

E Ω (d) ∈ IrrΛ(d) <br />

<br />

{<br />

EΩ (d) G(d)-orbit } ∋ O Ω<br />

∼<br />

←→ T ∗ O Ω<br />

E Ω (d) ∈ IrrΛ(d). (5.1.1)<br />

T ∗ O Ω<br />

E Ω (d) “O Ω c<strong>on</strong>ormal bundle”T ∗ O Ω<br />

E Ω (d)<br />

“ closure” c<strong>on</strong>ormal bundle setting<br />

<br />

<br />

<br />

X(d) = ⊕ Hom C (V (d) out(τ) , V (d) in(τ) ) = E Ω (d) ⊕ E Ω (d)<br />

τ∈H<br />

π d,Ω : X(d) → E Ω (d) π d,Ω Λ(d) <br />

π Λ(d),Ω := π d,Ω | Λ(d)<br />

π Λ(d),Ω Λ(d) <br />

⊔<br />

Λ(d) =<br />

π −1<br />

Λ(d),Ω (O Ω)<br />

O Ω ;G(d)-orbit<br />

Γ Dynkin type disjoint uni<strong>on</strong> π −1<br />

Λ(d),Ω (O Ω)<br />

Λ(d) G(d) G(d)-<br />

orbit <br />

Propositi<strong>on</strong> 21 ([9]). Γ Dynkin type <br />

<br />

π −1<br />

Λ(d),Ω (O Ω) = T ∗ O Ω<br />

E Ω (d)<br />

π −1<br />

Λ(d),Ω (O Ω) = T ∗ O Ω<br />

E Ω (d).<br />

c<strong>on</strong>ormal bundle π −1<br />

Λ(d),Ω (O Ω) <br />

<br />

Propositi<strong>on</strong> 21 “” Λ ∈ IrrΛ(d) Λ generic<br />

(B τ ) τ∈H <br />

–183–


I-graded vector space V (d) (B τ ) τ∈H <br />

nilpotent P (Γ)-module <br />

π Λ(d),Ω ((B τ ) τ∈H ) = (B τ ) τ∈Ω <br />

P (Γ)-module V (d) τ ∈ Ω <br />

C[Γ]-module <br />

Propositi<strong>on</strong> 21 <br />

{ }<br />

V (d) P (Γ)-module structure <br />

TO ∗ Ω<br />

E Ω (d) =<br />

C[Γ]-module <br />

<br />

Γ Dynkin type Gabriel <br />

C[Γ]-module dimensi<strong>on</strong> vector <br />

Dynkin Γ Dyn positive root <br />

C[Γ]-module V (d) <br />

V (d) =<br />

⊕<br />

β∈∆ + V Ω (β) ⊕a β,Ω<br />

∆ + = ∆ + (Γ Dyn ) positive root V Ω (β) <br />

β ∈ ∆ + C[Γ]-module <br />

<br />

a Ω := (a β,Ω ) β∈∆ + ∈ Z N ≥0 (N := |∆ + |)<br />

<br />

(i) Λ ∈ IrrΛ(d) Λ generic (B τ ) τ∈H <br />

(ii) π Λ(d),Ω ((B τ ) τ∈H ) = (B τ ) τ∈Ω V (d) C[Γ]-module <br />

(iii) C[Γ]-module V (d) multiplicity <br />

a Ω = (a β,Ω ) β∈∆ + ∈ Z N ≥0 <br />

Ψ d,Ω : IrrΛ(d) → Z N ≥0 (5.1.1) <br />

Ψ d,Ω dimensi<strong>on</strong> vector d <br />

<br />

Ψ Ω : B → ∼ Z N ≥0<br />

∼<br />

Ψ −1<br />

Ω<br />

: ZN ≥0 → B a ↦→ TO ∗ a,Ω<br />

E Ω (d) O a,Ω<br />

a ∈ Z N ≥0 G(d)-orbit <br />

crystal structure crystal graph <br />

B crystal structure <br />

graph Γ Dynkin<br />

type Z N ≥0 <br />

Ψ Ω : B → ∼ Z N ≥0 B crystal structure <br />

Z N ≥0 22 <br />

22 Z N ≥0 graph<br />

–184–


Ψ Ω : B → ∼ Z N ≥0 orientati<strong>on</strong> Ω depend Ω <br />

Z N ≥0 crystal structure ZN ≥0 crystal structure<br />

B Ω <br />

B Ω := { a Ω = (a β,Ω ) β∈∆ +<br />

∣ aβ,Ω ∈ Z ≥0 for every β ∈ ∆ } + .<br />

5.2. A .<br />

Γ = (I, Ω) A n Dynkin quiver positive<br />

root ∆ + = ∆(A n ) + <br />

{<br />

}<br />

j∑<br />

∆ + = β i,j := s(i)<br />

∣ 1 ≤ i ≤ j ≤ n .<br />

k=i<br />

<br />

N = |∆ + n(n + 1)<br />

| = .<br />

2<br />

Ψ Ω : B → ∼ Z N ≥0 orientati<strong>on</strong> Ω <br />

<br />

<br />

Ω 0 : ❡ ✛ ❡ ✛ ❡ ✛ · · · ✛ ❡ ✛ ❡ ✛ ❡.<br />

1 2 3 n − 2 n − 1 n<br />

a i,j := a βi,j+1 ,Ω 0<br />

(1 ≤ i < j ≤ n + 1),<br />

B Ω0 = {a := (a i,j ) 1≤i


A ∗(i)<br />

l<br />

(a) =<br />

∑n+1<br />

t=l+1<br />

(a i,t − a i+1,t+1 ) (i ≤ l ≤ n)<br />

a 0,i = a i+1,n+2 = 0 <br />

{<br />

}<br />

ε i (a) := max A (i)<br />

1 (a), · · · , A (i)<br />

i (a) , ϕ i (a) := ε i (a) + ( s(i), wt(a) ) ,<br />

{<br />

}<br />

ε ∗ i (a) := max (a), · · · , A ∗(i) (a) , ϕ ∗ i (a) := ε ∗ i (a) + ( s(i), wt(a) ) .<br />

A ∗(i)<br />

i<br />

n<br />

◦ ẽ i , ˜f i , ẽ ∗ i , ˜f i ∗ <br />

{<br />

}<br />

{<br />

}<br />

k + := min 1 ≤ k ≤ i ∣ ε i (a) = A (i)<br />

k (a) , k − := max 1 ≤ k ≤ i ∣ ε i (a) = A (i)<br />

k (a) ,<br />

{<br />

}<br />

{<br />

}<br />

l + := max i ≤ l ≤ n ∣ ε ∗ i (a) = A ∗(i)<br />

l<br />

(a) , l − := min i ≤ l ≤ n ∣ ε ∗ i (a) = A ∗(i)<br />

l<br />

(a)<br />

( )<br />

a ∈ Z N ≥0 a(p,♮) = ∈ Z N ≥0 (♮ = ±, p =<br />

1, 2) <br />

a (1,±)<br />

k,l<br />

=<br />

a (2,±)<br />

k,l<br />

=<br />

⎧<br />

⎨<br />

⎩<br />

⎧<br />

⎨<br />

⎩<br />

a k± ,i ± 1 (k = k ± , l = i),<br />

a k± ,i+1 ∓ 1 (k = k ± , l = i + 1),<br />

a k,l (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise).<br />

a (p,♮)<br />

k,l<br />

a i,l± +1 ∓ 1 (k = i, l = l ± + 1),<br />

a i+1,l± +1 ± 1 (k = i + 1, l = l ± + 1),<br />

a k,l (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise).<br />

<br />

{ 0 (if εi (a) = 0),<br />

ẽ i a :=<br />

a (1,+) (if ε i (a) > 0),<br />

{ 0 (if ε<br />

ẽ ∗ ∗<br />

i a :=<br />

i (a) = 0),<br />

a (2,+) (if ε ∗ i (a) > 0),<br />

<br />

˜f i a := a (1,+) ,<br />

˜f ∗ i a := a (2,−)<br />

<br />

a <br />

<br />

a =<br />

a 1,2 a 1,3 a 1,4 · · · a 1,n a 1,n+1<br />

a 2,3 a 2,4 · · · a 2,n a 2,n+1<br />

a 3,4 · · · a 3,n a 3,n+1<br />

. .. . .<br />

a n−1,n a n−1,n+1<br />

a n,n+1<br />

ẽ i <br />

–186–


• i + 1 25 1 i <br />

1 <br />

• i i + 1 1 <br />

<br />

i + 1 i 1 <br />

k + <br />

<br />

ε i (a) = A (i)<br />

k<br />

1 ≤ k ≤ i <br />

˜f i <br />

• i + 1 1 i <br />

1 <br />

• i i + 1 1 <br />

<br />

i + 1 i 1 <br />

k − <br />

<br />

ε i (a) = A (i)<br />

k<br />

1 ≤ k ≤ i <br />

ẽ ∗ i , ˜f ∗ i <br />

<br />

B Ω0<br />

∼ = Z<br />

N<br />

≥0 <br />

Propositi<strong>on</strong> 22 ([12],[18],[17]). (1) ( B Ω0 ; wt, ε i , ϕ i , ẽ i , ˜f<br />

) (<br />

i BΩ0 ; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f i<br />

∗<br />

crystal <br />

(2) Ψ Ω0 : B → ∼ B Ω0 crystal <br />

<br />

5.3. A .<br />

Ψ Ω0 : ( B; wt, ε i , ϕ i , ẽ i , ˜f<br />

) ∼<br />

i → ( B Ω0 ; wt, ε i , ϕ i , ẽ i , ˜f<br />

)<br />

i ,<br />

Ψ Ω0 : ( B; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗ ∼<br />

→ ( B Ω0 ; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗<br />

<br />

n = 3 26 <br />

N = 3(3 + 1)/2 = 6 a <br />

<br />

)<br />

a =<br />

a 1,2 a 1,3 a 1,4<br />

a 2,3 a 2,4<br />

a 3,4<br />

25 a 1,2 <br />

26 n = 1, 2 <br />

–187–


wt(a) = (−d 1 , −d 2 , −d 3 ),<br />

d 1 = a 1,2 + a 1,3 + a 1,4 , d 2 = a 1,3 + a 1,4 + a 2,3 + a 2,4 , d 3 = a 1,4 + a 2,4 + a 3,4 .<br />

a 5.1 a C[Γ 0 ]-module Γ 0 <br />

multiplicity Γ 0 := (I, Ω 0 )<br />

Γ 0 <br />

V(d) =<br />

( C ← {0} ← {0}) ⊕a 1,2<br />

⊕<br />

( C ← C ← {0}) ⊕a 1,3<br />

⊕<br />

( C ← C ← C ) ⊕a 1,4<br />

⊕<br />

({0} ← C ← {0}) ⊕a 2,3<br />

⊕<br />

({0} ← C ← C ) ⊕a 2,4<br />

⊕<br />

({0} ← {0} ← C ) ⊕a 3,4<br />

( d := (d 1 , d 2 , d 3 ) = −wt(a))<br />

V(d) E Ω0 (d) G(d)-orbit O a,Ω0 <br />

Λ a := Ψ −1<br />

Ω 0<br />

(a) = T ∗ O a,Ω0<br />

E Ω0 (d) <br />

<br />

A (1)<br />

1 = a 1,2 ,<br />

A (2)<br />

1 = a 1,3 , A (2)<br />

2 = a 1,3 + (a 2,3 − a 1,2 ),<br />

A (3)<br />

1 = a 1,4 , A (3)<br />

2 = a 1,4 + (a 2,4 − a 1,3 ), A (3)<br />

A ∗(1)<br />

3 = a 1,4 , A ∗(1)<br />

2 = a 1,4 + (a 1,3 − a 2,4 ), A ∗(1)<br />

A ∗(2)<br />

3 = a 2,4 , A ∗(2)<br />

A ∗(3)<br />

3 = a 3,4 .<br />

<br />

ε 1 (a) = a 1,2 ,<br />

2 = a 2,4 + (a 2,3 − a 3,4 ),<br />

ε 2 (a) = max{a 1,3 , a 1,3 + (a 2,3 − a 1,2 )},<br />

3 = a 1,4 + (a 2,4 − a 1,3 ) + (a 3,4 − a 2,3 ),<br />

1 = a 1,4 + (a 1,3 − a 2,4 ) + (a 1,2 − a 2,3 ),<br />

ε 3 (a) = max{a 1,4 , a 1,4 + (a 2,4 − a 1,3 ), a 1,4 + (a 2,4 − a 1,3 ) + (a 3,4 − a 2,3 )},<br />

ε ∗ 1(a) = max{a 1,4 , a 1,4 + (a 1,3 − a 2,4 ), a 1,4 + (a 1,3 − a 2,4 ) + (a 1,2 − a 2,3 )},<br />

ε ∗ 2(a) = max{a 2,4 , a 2,4 + (a 2,3 − a 3,4 )},<br />

ε ∗ 3(a) = a 3,4 .<br />

<br />

Λ a generic P (Γ 0 )-module <br />

i-th topi-th socle <br />

–188–


Kashiwara operatorsẽ i , ˜f i ,ẽ ∗ i , ˜f ∗ i <br />

ẽ 3 ˜f 3 <br />

Example 23. a <br />

◦ ẽ 3 <br />

a =<br />

i = 3 <br />

<br />

4 1 1<br />

2 3<br />

2<br />

A (3)<br />

1 = 1, A (3)<br />

2 = 1 + (3 − 1) = 2, A (3)<br />

3 = 1 + (3 − 1) + (2 − 2) = 2.<br />

ε 3 (a) = max{1, 2, 2} = 2.<br />

ε 3 (a) = A (3)<br />

k<br />

k 2 3 k + k <br />

k + = 2 1 <br />

<br />

◦ ˜f 3 <br />

4 1 1<br />

2 3<br />

2<br />

4 1 1<br />

ẽ<br />

↦−→<br />

3<br />

3 2<br />

2<br />

ε 3 (a) = A (3)<br />

k<br />

k 2 3 k − k <br />

k − = 3 1 <br />

a 3,3 a 3,4 1 <br />

4 1 1<br />

2 3<br />

2<br />

4 1 1<br />

˜f 3<br />

↦−→ 2 3<br />

3<br />

ẽ ∗ i , ˜f ∗ i ẽ∗ 1 ˜f ∗ 1 <br />

<br />

4 1 1<br />

2 3<br />

2<br />

ẽ ∗ 1<br />

↦−→<br />

4 1 0<br />

2 4<br />

3<br />

4 1 1<br />

2 3<br />

2<br />

˜f ∗ 1<br />

↦−→<br />

n = 3 <br />

5.4. A .<br />

orientati<strong>on</strong> <br />

5 1 1<br />

2 3<br />

3<br />

Ω 0 : ❡ ✛ ❡ ✛ ❡ ✛ · · · ✛ ❡ ✛ ❡ ✛ ❡<br />

1 2 3 n − 2 n − 1 n<br />

–189–


Ω <br />

<br />

Q Ω ( B Ω ; wt, ε i , ϕ i , ẽ i , ˜f<br />

) (<br />

i BΩ ; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗ <br />

<br />

B Ω<br />

∼ = Z<br />

N<br />

≥0 <br />

Q ’N a Ω = (a β,Ω ) β∈∆ + ∈ B Ω <br />

<br />

“” <br />

<br />

orientati<strong>on</strong> Ω, Ω ′ crystal <br />

R Ω′<br />

Ω<br />

:= Ψ Ω ′ ◦ Ψ −1<br />

Ω<br />

: B Ω<br />

∼<br />

→ B ∼ → B Ω ′<br />

B Ω B Ω ′ transiti<strong>on</strong> map “crystal ” <br />

<br />

<br />

(i) a Ω multiplicity C[Γ]-module<br />

<br />

(ii) π Λ(d),Ω P (Γ)-module <br />

(iii) closure <br />

(iv) closure generic τ ∈ Ω ′ <br />

C[Γ ′ ]-module Γ ′ := (I, Ω ′ )<br />

(v) C[Γ ′ ]-module multiplicity <br />

<br />

Remark 24. (iii) closure (iv) generic <br />

<br />

a Ω b Ω ′ := RΩ Ω′ (a Ω) <br />

<br />

π −1<br />

Λ(d),Ω (O a,Ω) = π −1<br />

Λ(d),Ω ′ (O b,Ω ′)<br />

<br />

(<br />

⇔ T ∗ O a,Ω<br />

E Ω (d) = T ∗ O b,Ω ′ E Ω ′(d) )<br />

π −1<br />

Λ(d),Ω (O a,Ω) ≠ π −1<br />

Λ(d),Ω ′ (O b,Ω ′)<br />

closure generic <br />

<br />

RΩ Ω 0<br />

R Ω 0<br />

Ω<br />

= ( )<br />

RΩ Ω −1<br />

0<br />

orientati<strong>on</strong> Ω0 <br />

crystal structure ( B Ω0 ; wt, ε i , ϕ i , ẽ i , ˜f<br />

)<br />

i R<br />

Ω<br />

Ω0<br />

R Ω 0<br />

Ω<br />

<br />

–190–


( B Ω ; wt, ε i , ϕ i , ẽ i , ˜f i<br />

)<br />

27 ∗ crystal<br />

structure <br />

Q Ω R Ω Ω 0<br />

R Ω 0<br />

Ω<br />

<br />

<br />

A ([3],[17]) <br />

<br />

5.5. Open problems.<br />

<br />

Problem 1D E Z N ≥0 crystal structure <br />

B = ⊔ d IrrΛ(d) Z N ≥0 N = |∆+ |<br />

Ψ : B ∼ → Z N ≥0<br />

Γ = (I, Ω) Dynkin quiverA <br />

D E B crystal structure Ψ Ω Z N ≥0 <br />

<br />

A <br />

Z N ≥0 crystal structure <br />

Problem 2Tame case<br />

B ∼ = B(∞) loop quiver Γ Dynkin case <br />

tame Γ extended Dynkin Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

side “affine case” <br />

B(∞) <br />

Λ(d) <br />

<br />

Problem 3Rigid crystals<br />

<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> nilpotent representati<strong>on</strong>s Λ(d) G(d)-<br />

dimensi<strong>on</strong> vector d nilpotent P (Γ)-module <br />

<br />

Λ(d) IrrΛ(d) <br />

27 ẽ i <br />

(<br />

ẽ i a Ω =<br />

R Ω Ω 0<br />

◦ ẽ i ◦ R Ω0<br />

Ω<br />

)<br />

(a Ω ) (a Ω ∈ B Ω )<br />

ẽ i B Ω0 ẽ i <br />

5.2 explicit formula RΩ Ω 0<br />

R Ω 0<br />

Ω<br />

<br />

<br />

–191–


“Λ(d) <br />

G(d)-” <br />

<br />

Definiti<strong>on</strong> 25. Λ ∈ IrrΛ(d) G(d)- O Λ rigid <br />

Λ ∈ IrrΛ(d) rigid Λ P (Γ)-module <br />

<br />

Propositi<strong>on</strong> 26 ([5]). B ∈ Λ(d) P (Γ)-module V B <br />

(a) Ext 1 P (Γ)(V B , V B ) = 0.<br />

(b) B Λ(d) G(d)- O O ∈ IrrΛ(d)Λ := O <br />

rigid<br />

(a) “rigid” <br />

<br />

• A n (1 ≤ n ≤ 4) Λ ∈ B = ⊔ d IrrΛ(d) rigid <br />

• rigid <br />

<br />

Q3rigid <br />

A n <br />

d rigid n ≤ 4 <br />

rigid n ≥ 5 rigid <br />

d rigid <br />

rigid <br />

A 5 sideLie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory side <br />

<br />

<br />

28 <br />

Example 27. A 5 <br />

τ 1 τ 2 τ 3 τ 4<br />

Ω 0 : ❡ ✛ ❡ ✛ ❡ ✛ ❡ ✛ ❡<br />

1 2 3 4 5<br />

orientati<strong>on</strong> a ∈ B Ω0 <br />

a =<br />

0 1 0 0 0<br />

0 0 1 0<br />

1 0 0<br />

0 1<br />

0<br />

Λ a rigid <br />

.<br />

28 <br />

–192–


a Γ 0 = (I, Ω 0 ) <br />

V a (d 0 ) =<br />

( C ← C ← {0} ← {0} ← {0})<br />

⊕<br />

({0} ← C ← C ← C ← {0})<br />

⊕<br />

({0} ← {0} ← C ← {0} ← {0})<br />

⊕<br />

({0} ← {0} ← {0} ← C ← C )<br />

( d 0 := (1, 2, 2, 2, 1) = −wt(a)).<br />

B a = (B τ1 , B τ2 , B τ3 , B τ4 ) <br />

B τ1 = ( 1 0 ) ( ) ( ) (<br />

0 0<br />

1 0<br />

0<br />

, B τ2 = , B<br />

1 0<br />

τ3 = , B<br />

0 0<br />

τ4 =<br />

(5.5.1)<br />

1)<br />

B a E Ω0 (d 0 ) G(d 0 )-orbit O a.Ω0 <br />

<br />

Λ a = π −1<br />

Λ(d 0 ),Ω 0<br />

(O a,Ω0 ) = G(d 0 ) · π −1<br />

Λ(d 0 ),Ω 0<br />

(B a )<br />

Λ a rigid ⇔<br />

⇔<br />

G(d 0 ) · π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) dense G(d 0 )-orbit <br />

π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) dense G(d 0 ) Ba -orbit <br />

<br />

G(d 0 ) Ba := {g ∈ G(d 0 ) | g · B a = B a }<br />

(B a stabilizer)<br />

π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) G(d 0 ) Ba <br />

⎧<br />

⎨<br />

π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) =<br />

⎩ (B τ 1<br />

, B τ 2<br />

, B τ 3<br />

, B τ 4<br />

)<br />

∣<br />

B τ1 B τ 1<br />

= 0, B τ 1<br />

B τ1 = B τ2 B τ 2<br />

,<br />

B τ 2<br />

B τ2 = B τ3 B τ 3<br />

, B τ 3<br />

B τ3 = B τ4 B τ 4<br />

,<br />

B τ 4<br />

B τ4 = 0<br />

⎫<br />

⎬<br />

⎭ .<br />

B τ i<br />

(i = 1, 2, 3, 4) <br />

C B τ<br />

←−−<br />

1<br />

C<br />

2 B τ<br />

←−−<br />

2<br />

C<br />

2 B τ<br />

←−−<br />

3<br />

C<br />

2 B τ<br />

←−−<br />

4<br />

C<br />

preprojective relati<strong>on</strong>s (5.5.1)<br />

<br />

{(( ) ( ) ( )<br />

0 s 0 0 0<br />

π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) = , , , ( u 0 )) ∣ }<br />

∣∣ s, t, u, v ∈ C ∼ = C<br />

4<br />

s t 0 u v<br />

stabilizer <br />

G(d 0 ) Ba = { g = (g 1 , g 2 , g 3 , g 4 , g 5 ) ∈ GL 1 (C) × (GL 2 (C)) 3 × GL 1 (C) ∣ }<br />

g · Ba = B a<br />

{ ( ( ) ( ) ( ) ∣ }<br />

a 0 c 0 c 0 ∣∣∣<br />

= g = a, , , , f)<br />

a, c, d, f ∈ C<br />

b c 0 d e f<br />

× , b, e ∈ C<br />

–193–


(( ( ) ( )<br />

0 s 0 0 0<br />

, , ,<br />

s)<br />

( u 0 ))<br />

t 0 u v<br />

(( ) ( ) ( )<br />

g 0 a<br />

↦−→<br />

a −1 ,<br />

−1 cs 0 0 0<br />

cs a −1 ,<br />

dt 0 c −1 fu d −1 , ( c<br />

fv<br />

−1 fu 0 ))<br />

b e “” <br />

a, c, d, f ( C ×) 4<br />

<br />

(<br />

C<br />

× ) 4<br />

C 4 .<br />

s, t, u, v generic 0 su<br />

tv <br />

<br />

su<br />

tv<br />

g<br />

↦−→ a−1 cs · c −1 fu<br />

a −1 dt · d −1fv<br />

= su<br />

tv .<br />

G(d 0 ) Ba π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) ∼ = C 4 C 4 <br />

su<br />

tv = c<strong>on</strong>st<br />

orbit dense orbit<br />

29 <br />

<br />

0 2 0 0 0<br />

0 0 2 0<br />

2 0 0<br />

0 2<br />

0<br />

,<br />

0 1 0 1 0<br />

0 1 0 1<br />

0 1 0<br />

0 1<br />

0<br />

rigid Example 27 a <br />

2a <br />

k ka <br />

Λ a n<strong>on</strong>-rigid ⇒ Λ ka (k ∈ Z >0 ) n<strong>on</strong>-rigid<br />

k <br />

primitive rigid comp<strong>on</strong>ent <br />

<br />

References<br />

[1] I. Assem, D. Sims<strong>on</strong> <strong>and</strong> A. Skowroński, Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> associative algebras.<br />

Vol. 1. Techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, L<strong>on</strong>d<strong>on</strong>. Math. Soc. Student Texts 65 (2006), Cambridge.<br />

[2] P. Baumann <strong>and</strong> J. Kamnitzer Preprojective algebras <strong>and</strong> MV polytopes, arXiv:1009.2469.<br />

[3] Berenstein, Fomin <strong>and</strong> A. Zelevinsky, Parametrizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> can<strong>on</strong>ical bases <strong>and</strong> totally positive matrices,<br />

Adv. Math. 122 (1996), 49-149.<br />

[4] C. Geiss, B. Leclerc <strong>and</strong> J. Schöler, Semican<strong>on</strong>ical bases <strong>and</strong> preprojective algebras, Ann. Sci. École<br />

Norm. Sup. (4) 38 (2005), no. 2, 193–253.<br />

29 π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) ∼ = C 4 orbit <br />

–194–


[5] , Rigid modules over preprojective algebras, Invent. Math. 165 (2006), no. 3, 589–632.<br />

[6] , Semican<strong>on</strong>ical bases <strong>and</strong> preprojective algebras. II. A multiplicati<strong>on</strong> formula, Compos. Math.<br />

143 (2007), no. 5, 1313–1334.<br />

[7] , Partial flag varieties <strong>and</strong> preprojective algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), no.<br />

3, 825–876.<br />

[8] G. Lusztig, Can<strong>on</strong>ical basis arising form quantum universal enveloping algebras, J. AMS 3 (1991),<br />

9–36.<br />

[9] , Quivers, perverse sheaves, <strong>and</strong> quantized enveloping algebras, J. AMS 4(2) (1991), 365–421.<br />

[10] M. Kashiwara <strong>and</strong> Y. Saito, Geometric c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal bases, Duke Math J. 89 (1997), 9–36.<br />

[11] Y. Kimura, Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis, arXiv:1010.4242.<br />

[12] M. Reineke, On <str<strong>on</strong>g>the</str<strong>on</strong>g> coloured graph structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Lusztig s can<strong>on</strong>ical basis, Math. Ann. 307 (1997),<br />

705–723.<br />

[13] C. M. <strong>Ring</strong>el, Tame algebras <strong>and</strong> integral quadratic forms, Lecture Note in Math. 1099 (1980),<br />

Springer.<br />

[14] , Hall algebras <strong>and</strong> quantum groups, Invent. Math. 101 (1990), 583–591.<br />

[15] Y. Saito, PBW bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantized universal enveloping algebras, Publ. RIMS. 30(2) (1994), 209–232.<br />

[16] , , (2006), 63–117.<br />

[17] , Mirković-Vil<strong>on</strong>en polytopes <strong>and</strong> a quiver c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal basis in type A, IMRN<br />

(2011), doi:10.1093/imrn/rnr173.<br />

[18] A. Savage, Geometric <strong>and</strong> combinatorial realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal graphs, Alg. Rep. <strong>Theory</strong> 9 (2006),<br />

161–199.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Sciences<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

Meguro-ku, Tokyo 153-8914 JAPAN<br />

E-mail address: yosihisa@ms.u-tokyo.ac.jp<br />

–195–


MATRIX FACTORIZATIONS, ORBIFOLD CURVES<br />

AND<br />

MIRROR SYMMETRY<br />

ATSUSHI TAKAHASHI ( )<br />

Abstract. Mirror symmetry is now understood as a categorical duality between algebraic<br />

geometry <strong>and</strong> symplectic geometry. One <str<strong>on</strong>g>of</str<strong>on</strong>g> our motivati<strong>on</strong>s is to apply some ideas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mirror symmetry to singularity <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in order to underst<strong>and</strong> various mysterious<br />

corresp<strong>on</strong>dences am<strong>on</strong>g isolated singularities, root systems, Weyl groups, Lie algebras,<br />

discrete groups, finite dimensi<strong>on</strong>al algebras <strong>and</strong> so <strong>on</strong>.<br />

In my talk, I explained <str<strong>on</strong>g>the</str<strong>on</strong>g> homological mirror symmetry c<strong>on</strong>jecture between orbifold<br />

curves <strong>and</strong> cusp singularities via Orlov type semi-orthog<strong>on</strong>al decompositi<strong>on</strong>s. I also gave<br />

a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> our results <strong>on</strong> categories <str<strong>on</strong>g>of</str<strong>on</strong>g> maximally-graded matrixfactorizati<strong>on</strong>s, in particular,<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> full str<strong>on</strong>gly excepti<strong>on</strong>al collecti<strong>on</strong>s which gives triangulated<br />

equivalences to derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al modules over finite dimensi<strong>on</strong>al<br />

algebras.<br />

1. <br />

<br />

. <br />

. . . <br />

14 Arnold <br />

3 <br />

Arnold <br />

Gablielov Gablielov 14 <br />

<br />

<br />

<br />

Arnold <br />

f(x, y, z) 0 ∈ C 3 <br />

f Milnor Lagrangian distinguish basis<br />

A ∞ - Fuk → (f) D b Fuk → (f)<br />

<br />

f <br />

D b Fuk → (f) full excepti<strong>on</strong>al collecti<strong>on</strong> .<br />

f(x, y, z) <br />

HMF L f<br />

S (f) S := C[x, y, z]L f <br />

f HMF L f<br />

S (f)<br />

<br />

Calabi–Yau L<strong>and</strong>au–Ginzburg <br />

<br />

–196–


Berglund–Hübsch Calabi–Yau <br />

<br />

<br />

C<strong>on</strong>jecture 1 ([12][13]). f(x, y, z) .<br />

(1) (Q, I) <br />

(1.1) HMF L f<br />

S (f) ≃ Db (mod-CQ/I) ≃ D b Fuk → (f t )<br />

<br />

(2) (Q ′ , I ′ ) <br />

(1.2) D b coh(C Gf ) ≃ D b (mod-CQ ′ /I ′ ) ≃ D b Fuk → (T γ1 ,γ 2 ,γ 3<br />

)<br />

(1.1) <br />

C Gf f G f T γ1 ,γ 2 ,γ 3<br />

<br />

.<br />

<br />

(Q ′ , I ′ ) T (γ 1 , γ 2 , γ 3 ) <br />

2 <br />

Theorem 36<br />

2. <br />

f(x 1 , . . . , x n ) . w 1 , . . . , w n d <br />

λ ∈ C ∗ f(λ w 1<br />

x 1 , . . . , λ w n<br />

x n ) = λ d f(x 1 , . . . , x n ) <br />

(w 1 , . . . , w n ; d) . gcd(w 1 , . . . , w n , d) = 1 , <br />

<br />

Definiti<strong>on</strong> 2. f(x 1 , . . . , x n ) <br />

(1) (= n) f(x 1 , . . . x n ) a i ∈ C ∗<br />

E ij i, j = 1, . . . , n<br />

f(x 1 , . . . , x n ) =<br />

n∑<br />

i=1<br />

<br />

(2) (w 1 , . . . , w n ; d) f(x 1 , . . . , x n ) gcd(w 1 , . . . , w n ; d) <br />

, E := (E ij ) Q <br />

<br />

(3) f(x 1 , . . . , x n ) <br />

f t (x 1 , . . . , x n ) :=<br />

n∑<br />

i=1<br />

a i<br />

a i<br />

n<br />

∏<br />

j=1<br />

n<br />

∏<br />

j=1<br />

x E ij<br />

j<br />

x E ji<br />

j ,<br />

f(x 1 , . . . , x n ) Berglund–Hübsch f t (x 1 , . . . , x n ) <br />

0 ∈ C n f, f t Jacobi Jac(f), Jac(f t )<br />

/( ∂f<br />

Jac(f) := C[x 1 , . . . , x n ] , . . . , ∂f )<br />

∂x 1 ∂x n<br />

–197–


( ∂f<br />

Jac(f t t<br />

) := C[x 1 , . . . , x n ] , . . . , ∂f )<br />

t<br />

∂x 1 ∂x n<br />

C dim C Jac(f), dim C Jac(f t ) ≥ 1<br />

.<br />

<br />

<br />

Calabi–Yau <br />

Kreuzer [9] .<br />

∏ n<br />

j=1 xE ij<br />

j<br />

Definiti<strong>on</strong> 3. f(x 1 , . . . , x n ) = ∑ n<br />

i=1 a i . <br />

⎛ ⎞ ⎛ ⎞<br />

w 1<br />

E ⎝<br />

.<br />

⎠ = det(E) ⎝<br />

1.<br />

⎠ , d := det(E).<br />

w n 1<br />

(w 1 , . . . , w n ; d) f W f <br />

<br />

Remark 4. w 1 , . . . , w n <br />

<br />

Definiti<strong>on</strong> 5. f(x 1 , . . . , x n ) W f = (w 1 , . . . , w n ; d) <br />

. <br />

c f := gcd(w 1 , . . . , w n , d)<br />

<br />

Definiti<strong>on</strong> 6. f(x 1 , . . . , x n ) = ∑ n<br />

i=1 a ∏ n<br />

i j=1 xE ij<br />

j . x i , i =<br />

1, . . . , n ⃗x i f f ⃗ <br />

⊕ n i=1Z⃗x i ⊕ Zf ⃗ f L f <br />

n⊕<br />

L f := Z⃗x i ⊕ Zf ⃗ /I f<br />

i=1<br />

I f <br />

n∑<br />

⃗f − E ij ⃗x j ,<br />

<br />

j=1<br />

i = 1, . . . , n<br />

Remark 7. L f 1 <br />

Definiti<strong>on</strong> 8. f(x 1 , . . . , x n ) L f f <br />

G f <br />

G f := Spec(CL f )<br />

CL f L f <br />

{<br />

∣ ∣∣∣∣ n<br />

}<br />

∏<br />

n∏<br />

G f = (λ 1 , . . . , λ n ) ∈ (C ∗ ) n λ E 1j<br />

j = · · · = λ E nj<br />

j<br />

j=1<br />

–198–<br />

j=1


f G f (λ 1 , . . . , λ n ) ∈ G f <br />

λ := ∏ n<br />

j=1 λE 1j<br />

j = · · · = ∏ n<br />

j=1 λE nj<br />

j <br />

<br />

f(λ 1 x 1 , . . . , λ n x n ) = λf(x 1 , . . . , x n )<br />

3. <br />

f C[x 1 , . . . , x n ] S R f R f := S/(f)<br />

L f - R f - gr L f -Rf gr L f -Rf<br />

proj L f<br />

-R f <br />

Definiti<strong>on</strong> 9. <br />

(3.1) D L f<br />

Sg (R f) := D b (gr L f<br />

-R f )/K b (proj L f<br />

-R f )<br />

.<br />

Remark 10. R f D b (gr L f -Rf ) ≃ K b (proj L f<br />

-R f ) <br />

D L f<br />

Sg (R f) {f = 0} f.<br />

Remark 11. <br />

C( ⃗ l) := (R f /m)( ⃗ l) ∈ D L f<br />

Sg (R f), ⃗ l ∈ Lf ,<br />

<br />

D L f<br />

Sg (R f) <br />

<br />

<br />

Definiti<strong>on</strong> 12. M ∈ gr L f -Rf <br />

Ext i R f<br />

(R f /m, M) = 0, i < dim R f ,<br />

Cohen-MacauleyR f -<br />

R f Gorenstein ( ⃗ l) ⃗ l ∈ L f shift <br />

<br />

n∑<br />

(3.2) K Rf ≃ R f (−⃗ɛ f ), ⃗ɛ f := ⃗x i − f, ⃗<br />

<br />

Lemma 13 (Ausl<strong>and</strong>er). Cohen-Macauley R f -CM L f<br />

(R f ) ⊂ gr L f -Rf<br />

Frobenius <br />

<br />

□<br />

–199–<br />

i=1


Definiti<strong>on</strong> 14. CM L f<br />

(R f ) <br />

Ob(CM L f<br />

(R f )) = Ob(CM L f<br />

(R f )),<br />

CM L f<br />

(R f )(M, N) := Hom gr<br />

L f -R f<br />

(M, N)/P(M, N).<br />

g ∈ P(M, N) P g ′ : M → P , g ′′ : P → N <br />

g = g ′′ ◦ g ′ <br />

CM L f<br />

(R f ) CM L f<br />

(R f ) <br />

<br />

Propositi<strong>on</strong> 15 (Happel[7]). CM L f<br />

(R f ) <br />

□<br />

f <br />

Propositi<strong>on</strong> 16. CM L f<br />

(R f ) <br />

∑<br />

dim k CM L f<br />

(R fW )(M, T i N) < ∞,<br />

i<br />

<br />

□<br />

CM L f<br />

(R f ) <br />

Propositi<strong>on</strong> 17 (Ausl<strong>and</strong>er-Reiten[2]). CM L f<br />

(R f ) S = T n−2 ◦ (−⃗ɛ f ) Serre<br />

<br />

<br />

CM L f<br />

(R fW )(M, N) ≃ Hom k (CM L f<br />

(R fW )(N, SM), k)<br />

R f M ∈ CM L f<br />

(R f )<br />

gr L f -S <br />

0 → F 1<br />

f 1→ F0 → M → 0<br />

f M 0 <br />

f 0 : F 0 → F 1 <br />

f 1 f 0 = f · id F0 ,<br />

f 0 f 1 = f · id F1<br />

Eisenbud matrix factorizati<strong>on</strong><br />

Definiti<strong>on</strong> 18 (Eisenbud[4]). F 0 , F 1 f 0 : F 0 → F 1 , f 1 : F 1 →<br />

F 0 f 1 f 0 = f · id F0 , f 0 f 1 = f · id F1 S-<br />

(F 0 , F 1 , f 0 , f 1 ) f <br />

<br />

(<br />

f 0<br />

F := F 0<br />

f 1<br />

–200–<br />

F 1<br />

)<br />


Example 19. <br />

f = x 1 f 1 + x 2 f 2 + · · · + x n f n .<br />

f i ∈ m, i = 1, . . . , n <br />

D L f<br />

Sg (R f) C( ⃗ l) <br />

Lemma 20. f MF L f<br />

S<br />

(f) Frobenius <br />

<br />

HMF L f<br />

S (f) := MFL f<br />

S (f)<br />

<br />

□<br />

Lemma 21. HMF L f<br />

S (f) T 2 = ( f) ⃗ T <br />

HMF L f<br />

S (f) (n − 2) − 2 ɛ f<br />

h f<br />

Calabi–Yau <br />

ɛ f := deg(⃗ɛ f ) <strong>and</strong> h f := deg( f) ⃗ <br />

□<br />

(<br />

f 0<br />

F = F 0<br />

f 1<br />

F 1<br />

)<br />

Coker(f 1 ) CM L f<br />

(R f ) <br />

<br />

<br />

Theorem 22 (c.f., Buchweitz, Orlov[10]). <br />

<br />

HMF L f<br />

S (f) ≃ CML f<br />

(R f ) ≃ D L f<br />

Sg (R f)<br />

Orlov <br />

X Lf := [Spec(R f )\{0} /Spec(C · L f )]<br />

D b coh(X Lf ) ≃ D b (gr L f -Rf )/D b (tor L f -Rf ) <br />

Propositi<strong>on</strong> 23 (c.f., Orlov[10]). :<br />

(1) ɛ f > 0 <br />

〈<br />

〉<br />

D b coh(X Lf ) ≃ D L f<br />

Sg (R f), A(0), . . . , A(ɛ f − 1)<br />

〈 〉<br />

A(i) := O XLf ( ⃗ l) <br />

deg( ⃗ l)=i<br />

(2) ɛ f = 0 D b coh(X Lf ) ≃ D L f<br />

Sg (R f) .<br />

(3) ɛ f < 0 <br />

D L f<br />

Sg (R f) ≃ 〈 D b coh(X Lf ), K(0), . . . , K(−ɛ f + 1) 〉<br />

〈<br />

K(i) := C( ⃗ 〉<br />

l) <br />

deg( ⃗ l)=i<br />

<br />

X Lf <br />

–201–<br />

□<br />


4. Dolgachev <br />

<br />

<br />

Propositi<strong>on</strong> 24 ([1]). f(x, y, z) <br />

f Table 1 5 □<br />

Type Class f f t<br />

I I x p 1<br />

+ y p 2<br />

+ z p 3<br />

x p 1<br />

+ y p 2<br />

+ z p 3<br />

(p 1 , p 2 , p 3 ∈ Z ≥2 ) (p 1 , p 2 , p 3 ∈ Z ≥2 )<br />

II II x p 1<br />

+ y p 2<br />

+ yz p 3<br />

p 2 x p 1<br />

+ y p 2<br />

z + z p 3<br />

p 2<br />

(p 1 , p 2 , p 3<br />

p 2<br />

∈ Z ≥2 ) (p 1 , p 2 , p 3<br />

p 2<br />

∈ Z ≥2 )<br />

III IV x p 1<br />

+ zy q2+1 + yz q 3+1<br />

x p 1<br />

+ zy q2+1 + yz q 3+1<br />

(p 1 ∈ Z ≥2 , q 2 , q 3 ∈ Z ≥1 ) (p 1 ∈ Z ≥2 , q 2 , q 3 ∈ Z ≥1 )<br />

IV V x p 1<br />

+ xy p 2<br />

p 1 + yz p 3<br />

p 2 x p 1<br />

y + y p 2<br />

p 1 z + z p 3<br />

p 2<br />

(p 1 , p 3<br />

p 2<br />

∈ Z ≥2 , p 2<br />

p 1<br />

∈ Z ≥1 ) (p 1 , p 3<br />

p 2<br />

∈ Z ≥2 , p 2<br />

p 1<br />

∈ Z ≥1 )<br />

V VII x q 1<br />

y + y q 2<br />

z + z q 3<br />

x zx q 1<br />

+ xy q 2<br />

+ yz q 3<br />

(q 1 , q 2 , q 3 ∈ Z ≥1 ) (q 1 , q 2 , q 3 ∈ Z ≥1 )<br />

Table 1. 3 <br />

Table 1 Type [11] <br />

[1] Class<br />

f(x, y, z) <br />

(4.1) C Gf := [ f −1 (0)\{0} /G f<br />

]<br />

X Lf f 0 ∈ C 3 <br />

G f 1 C ∗ c f <br />

C Gf Deligne–Mumford <br />

<br />

Theorem 25 ([5]). f(x, y, z) C Gf 3<br />

P 1 2 <br />

α 1 , α 2 , α 3 α i ≥ 2 i □<br />

Definiti<strong>on</strong> 26. Theorem 25 (α 1 , α 2 , α 3 ) (f, G f ) Dolgachev <br />

A Gf .<br />

Theorem 25Orlov Theorem 23 Geigle–Lenzing[6] <br />

<br />

Corollary 27 ([12][13]). HMF L f<br />

S<br />

(f) full excepti<strong>on</strong>al collecti<strong>on</strong><br />

<br />

□<br />

<br />

–202–


Type f(x, y, z) (α 1 , α 2 , α 3 )<br />

I x p 1<br />

+ y p 2<br />

+ z p 3<br />

(p 1 , p 2 , p 3 )<br />

)<br />

II x p 1<br />

+ y p 2<br />

+ yz p 3<br />

p 2<br />

(p 1 , p 3<br />

p 2<br />

, (p 2 − 1)p 1<br />

III x p 1<br />

+ zy q2+1 + yz q 3+1<br />

(<br />

(p 1 , p 1 q 2 , p 1 q 3 )<br />

)<br />

IV x p 1<br />

+ xy p 2<br />

p 1 + yz p 3<br />

p 2<br />

p 3<br />

p 2<br />

, (p 1 − 1) p 3<br />

p 2<br />

, p 2 − p 1 + 1<br />

V x q 1<br />

y + y q 2<br />

z + z q 3<br />

x (q 2 q 3 − q 3 + 1, q 3 q 1 − q 1 + 1, q 1 q 2 − q 2 + 1)<br />

Table 2. (f, G f ) Dolgachev <br />

Theorem 28 ([8][13]). HMF L f<br />

S<br />

(f) full str<strong>on</strong>gly excepti<strong>on</strong>al<br />

collecti<strong>on</strong> Q CQ I <br />

D L f<br />

Sg (R f) ≃ D b (mod-CQ/I) <br />

CQ/I 3 full str<strong>on</strong>gly excepti<strong>on</strong>al collecti<strong>on</strong> <br />

<br />

□<br />

<br />

(1) <br />

(2) str<strong>on</strong>gly excepti<strong>on</strong>al collecti<strong>on</strong> <br />

(3) Category Generating Lemma str<strong>on</strong>gly excepti<strong>on</strong>al collecti<strong>on</strong><br />

full <br />

Theorem 29 (Category Generating Lemma). HMF L f<br />

S (f) T ′ excepti<strong>on</strong>al<br />

collecti<strong>on</strong> (E 1 , . . . , E n ) <br />

:<br />

(1) T ′ ( ⃗ l), ⃗ l ∈ L f <br />

(2) E ∈ T ′ D L f<br />

Sg (R f) C(⃗0) <br />

T ′ ≃ HMF L f<br />

S<br />

(f) <br />

T ′ right admissible <br />

Lemma 30. X ∈ HMF L f<br />

S<br />

(f) <br />

N → X → M → T N<br />

N ∈ T ′ Hom(N, M) = 0 <br />

<br />

HMF L f<br />

S (f)(E(⃗ l), T i M) = 0 ∀ ⃗ l ∈ Lf ,<br />

⇐⇒ Ext i R f<br />

(R f /m, M) = 0 (i ≠ d)<br />

⇐⇒<br />

⇐⇒<br />

M ∈ CM L f<br />

(R f ) is Gorenstein<br />

M ∈ CM L f<br />

(R f ) is free<br />

⇐⇒ M ≃ 0 in CM L f<br />

(R f )<br />

∀ i ∈ Z<br />

□<br />

T ′ ≃ HMF L f<br />

S<br />

(f) <br />

–203–


✤ ✤<br />

✤ ✤<br />

✤ ✤<br />

γ 1 +γ 2 +γ 3 −1<br />

• ❅ ❅❅❅❅❅❅<br />

7 777777<br />

• · · · • • •<br />

γ 1 +γ 2 +γ 3 −2<br />

γ 1 γ 1 +γ 2 −2<br />

✎ ✎✎✎✎✎✎✎✎✎✎✎✎✎ 7 777777 •<br />

4<br />

•<br />

4444444<br />

1<br />

4<br />

· · ·<br />

4444444<br />

γ 1−1<br />

γ 1 +γ 2 +γ 3 −3<br />

· · · •<br />

γ 1 +γ 2 −1<br />

Figure 1. Coxeter–Dynkin T (γ 1 , γ 2 , γ 3 )<br />

5. Gabrielov <br />

<br />

<br />

Definiti<strong>on</strong> 31. γ 1 , γ 2 , γ 3 <br />

T γ1 ,γ 2 ,γ 3<br />

-.<br />

(a, b, c) <br />

x γ 1<br />

+ y γ 2<br />

+ z γ 3<br />

− txyz,<br />

t ∈ C\{0},<br />

∆(a, b, c) := abc − bc − ac − ab<br />

∆(γ 1 , γ 2 , γ 3 ) > 0 T γ1 ,γ 2 ,γ 3<br />

-<br />

∆(γ 1 , γ 2 , γ 3 ) > 0 <br />

T γ1 ,γ 2 ,γ 3<br />

- Coxeter–Dynkin T (γ 1 , γ 2 , γ 3 ) 1<br />

T (γ 1 , γ 2 , γ 3 ) ∆(γ 1 , γ 2 , γ 3 ) ≥ 0 T γ1 ,γ 2 ,γ 3<br />

= 0 (C 3 , 0) <br />

∆(γ 1 , γ 2 , γ 3 ) < 0 T γ1 ,γ 2 ,γ 3<br />

= 0 C 3 <br />

Milnor <br />

I = (I ij ) • i I ii = −22 • i <br />

• j I ij = 0<br />

<br />

I ij = 1 ⇔ • i • j , I ij = −2 ⇔ • i ❴ ❴ ❴ • j<br />

Theorem 32 ([5]). f(x, y, z) Table 3 f <br />

γ 1 , γ 2 , γ 3 <br />

(i) ∆(γ 1 , γ 2 , γ 3 ) < 0 0 ∈ C 3 <br />

f(x, y, z) − xyz T γ1 ,γ 2 ,γ 3<br />

-<br />

x γ 1<br />

+ y γ 2<br />

+ z γ 3<br />

− xyz +<br />

γ 1 −1<br />

∑<br />

i=1<br />

a i x i +<br />

γ 2 −1<br />

∑<br />

j=1<br />

–204–<br />

b j y j +<br />

γ 3 −1<br />

∑<br />

k=1<br />

c k z k + c, a i , b j , c k , c ∈ C


(ii) ∆(γ 1 , γ 2 , γ 3 ) = 0 0 ∈ C 3 <br />

f(x, y, z) − txyz a ∈ C ∗ T γ1 ,γ 2 ,γ 3<br />

-<br />

(iii) ∆(γ 1 , γ 2 , γ 3 ) > 0 0 ∈ C 3 <br />

f(x, y, z) − xyz T γ1 ,γ 2 ,γ 3<br />

-<br />

Type f(x, y, z) (γ 1 , γ 2 , γ 3 )<br />

I x p 1<br />

+ y p 2<br />

+ z p 3<br />

(p 1 , p 2 , p 3 )<br />

)<br />

II x p 1<br />

+ y p 2<br />

+ yz p 3<br />

p 2<br />

(p 1 , p 2 , ( p 3<br />

p 2<br />

− 1)p 1<br />

III x p 1<br />

+ zy q2+1 + yz q 3+1<br />

(p 1 , p 1 q 2 , p 1 q 3 )<br />

)<br />

IV x p 1<br />

+ xy p 2<br />

p 1 + yz p 3<br />

p 2<br />

(p 1 , ( p 3<br />

p 2<br />

− 1)p 1 , p 3<br />

p 1<br />

− p 3<br />

p 2<br />

+ 1<br />

V x q 1<br />

y + y q 2<br />

z + z q 3<br />

x (q 2 q 3 − q 2 + 1, q 3 q 1 − q 3 + 1, q 1 q 2 − q 1 + 1)<br />

Table 3. f Gabrielov <br />

Definiti<strong>on</strong> 33. Theorem 32 (γ 1 , γ 2 , γ 3 ) f Gabrielov <br />

Γ f .<br />

Corollary 34. f(x, y, z) Γ f = (γ 1 , γ 2 , γ 3 ) Gabrielov .<br />

(i) ∆(Γ f ) < 0 f Milnor f(x, y, z) = 1 T γ1 ,γ 2 ,γ 3<br />

-<br />

Milnor .<br />

(ii) ∆(Γ f ) > 0 f(x, y, z) T γ1 ,γ 2 ,γ 3<br />

-.<br />

f g g Coxeter–Dynkin <br />

f Coxeter–Dynkin <br />

Corollary 35. f(x, y, z) Γ f = (γ 1 , γ 2 , γ 3 ) Gabrielov .<br />

(i) ∆(Γ f ) < 0 f Coxeter–Dynkin T (γ 1 , γ 2 , γ 3 ) ,<br />

f Coxeter–Dynkin ADE <br />

(ii) ∆(Γ f ) = 0 f Coxeter–Dynkin T (γ 1 , γ 2 , γ 3 ) <br />

(iii) ∆(Γ f ) > 0 T (γ 1 , γ 2 , γ 3 ) f Coxeter–Dynkin <br />

, Corollary 34 D b Fuk → (f) D b Fuk → (T γ1 ,γ 2 ,γ 3<br />

) <br />

D L f<br />

Sg (R f) <br />

(c.f., [10]) <br />

6. <br />

Arnold <br />

strange duality<br />

<br />

Theorem 36 ([5]). f(x, y, z) <br />

(6.1) A Gf = Γ f t, A Gf t<br />

= Γ f<br />

–205–<br />


(f, G f ) Dolgachev A Gf f Berglund–Hübsch <br />

f t Gabrielov Γ f t (f t , G f t) Dolgachev A Gf t<br />

f Gabrielov<br />

Γ f <br />

□<br />

Type A Gf = (α 1 , α 2 , α 3 ) = Γ f t Γ f = (γ 1 , γ 2 , γ 3 ) = A Gf t<br />

I<br />

(<br />

(p 1 , p 2 , p 3 )<br />

) (<br />

(p 1 , p 2 , p 3 )<br />

)<br />

II<br />

p 1 , p 3<br />

p 2<br />

, (p 2 − 1)p 1 p 1 , p 2 , ( p 3<br />

p 2<br />

− 1)p 1<br />

III<br />

(<br />

(p 1 , p 1 q 2 , p 1 q 3 )<br />

) (<br />

(p 1 , p 1 q 2 , p 1 q 3 )<br />

)<br />

IV<br />

p 3<br />

p 2<br />

, (p 1 − 1) p 3<br />

p 2<br />

, p 2 − p 1 + 1<br />

p 1 , ( p 3<br />

p 2<br />

− 1)p 1 , p 3<br />

p 1<br />

− p 3<br />

p 2<br />

+ 1<br />

V (q 2 q 3 − q 3 + 1, q 3 q 1 − q 1 + 1, q 1 q 2 − q 2 + 1) (q 2 q 3 − q 2 + 1, q 3 q 1 − q 3 + 1, q 1 q 2 − q 1 + 1)<br />

Table 4. <br />

C<strong>on</strong>jecture 1 <br />

Theorem 37. f(x, y, z)Γ f = (γ 1 , γ 2 , γ 3 )Gabrielov. ∑ 3<br />

i=1 (1/γ i) ><br />

1 <br />

(6.2) D b (cohP 1 γ 1 ,γ 2 ,γ 3<br />

) ≃ D b (mod-C∆ γ1 ,γ 2 ,γ 3<br />

) ≃ D b Fuk → (T γ1 ,γ 2 ,γ 3<br />

)<br />

P 1 γ 1 ,γ 2 ,γ 3<br />

:= C Gf t<br />

Dolgachev (γ 1 , γ 2 , γ 3 ) <br />

∆ γ1 ,γ 2 ,γ 3<br />

(γ 1 , γ 2 , γ 3 )- Dynkin <br />

References<br />

[1] V. I. Arnold, S. M. Gusein-Zade, <strong>and</strong> A. N. Varchenko, Singularities <str<strong>on</strong>g>of</str<strong>on</strong>g> Differentiable Maps, Volume<br />

I, Birkhäuser, Bost<strong>on</strong> Basel Berlin 1985.<br />

[2] M. Ausl<strong>and</strong>er <strong>and</strong> I. Reiten, Cohen-Macaulay modules for graded Cohen-Macaulay rings <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

completi<strong>on</strong>s, Commutative algebra (Berkeley, CA, 1987), 21–31, Math. Sci. Res. Inst. Publ., 15,<br />

Springer, New York, 1989.<br />

[3] P. Berglund <strong>and</strong> T. Hübsch, A generalized c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mirror manifolds, Nuclear Physics B 393<br />

(1993), 377–391.<br />

[4] D. Eisenbud, Homological algebra <strong>on</strong> a complete intersecti<strong>on</strong>, with an applicati<strong>on</strong> to group representati<strong>on</strong>s,<br />

Trans. AMS., 260 (1980) 35-64.<br />

[5] W. Ebeling <strong>and</strong> A. Takahashi, Strange duality <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted homogeneous polynomials, Composito Math,<br />

accepted.<br />

[6] W. Geigle <strong>and</strong> H. Lenzing, A class <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted projective curves arising in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite-dimensi<strong>on</strong>al algebras, Singularities, representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras, <strong>and</strong> vector bundles (Lambrecht,<br />

1985), pp. 265–297, Lecture Notes in Math., 1273, Springer, Berlin, 1987.<br />

[7] D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208<br />

pp.<br />

[8] Y. Hirano <strong>and</strong> A. Takahashi, Finite dimensi<strong>on</strong>al algebras associated to invertible polynomials in three<br />

variables, in preparati<strong>on</strong>.<br />

[9] M. Kreuzer, The mirror map for invertible LG models, Phys. Lett. B 328 (1994), no. 3-4, 312–318.<br />

[10] D. Orlov, Derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves <strong>and</strong> triangulated categories <str<strong>on</strong>g>of</str<strong>on</strong>g> singularities, Algebra,<br />

arithmetic, <strong>and</strong> geometry: in h<strong>on</strong>or <str<strong>on</strong>g>of</str<strong>on</strong>g> Yu. I. Manin. Vol. II, pp. 503–531, Progr. Math., 270,<br />

Birkhäuser Bost<strong>on</strong>, Inc., Bost<strong>on</strong>, MA, 2009<br />

–206–


[11] K. Saito, Duality for regular systems <str<strong>on</strong>g>of</str<strong>on</strong>g> weights, Asian. J. Math. 2 no.4 (1998), 983–1047.<br />

[12] A. Takahashi, Weighted projective lines associated to regular systems <str<strong>on</strong>g>of</str<strong>on</strong>g> weights <str<strong>on</strong>g>of</str<strong>on</strong>g> dual type, Adv.<br />

Stud. Pure Math. 59 (2010), 371–388.<br />

[13] A. Takahashi, HMS for isolated hypersurface singularities, talk at <str<strong>on</strong>g>the</str<strong>on</strong>g> “Workshop <strong>on</strong> Homological<br />

Mirror Symmetry <strong>and</strong> Related Topics” January 19-24, 2009, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Miami, <str<strong>on</strong>g>the</str<strong>on</strong>g> PDF file<br />

available from http://www-math.mit.edu/˜auroux/frg/miami09-notes/ .<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

Osaka University<br />

Toy<strong>on</strong>aka, Osaka 530-0043 JAPAN<br />

E-mail address: takahashi@math.sci.osaka-u.ac.jp<br />

–207–


ON A GENERALIZATION OF COSTABLE TORSION THEORY<br />

YASUHIKO TAKEHANA<br />

Abstract. E. P. Armendariz characterized a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in [1]. R. L. Bernhardt<br />

dualised a part <str<strong>on</strong>g>of</str<strong>on</strong>g> characterizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in Theorem1.1 <str<strong>on</strong>g>of</str<strong>on</strong>g> [3], as<br />

follows. Let (T ,F) be a hereditary torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for Mod-R such that every torsi<strong>on</strong>free<br />

module has a projective cover. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent. (1) F is closed under<br />

taking projective covers. (2) every projective module splits. In this paper we generalize<br />

<strong>and</strong> characterize this by using torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. In <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper we study<br />

a dualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eckman <strong>and</strong> Shopf’s Theorem <strong>and</strong> a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wu <strong>and</strong> Jans’s<br />

Theorem.<br />

1. INTRODUCTION<br />

Throughout this paper R is a right perfect ring with identity. Let Mod-R be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

categories <str<strong>on</strong>g>of</str<strong>on</strong>g> right R-modules. For M ∈ Mod-R we denote by [0 → K(M) → P (M) π →<br />

M<br />

M → 0 ] <str<strong>on</strong>g>the</str<strong>on</strong>g> projective cover <str<strong>on</strong>g>of</str<strong>on</strong>g> M, where P (M) is projective <strong>and</strong> kerπ M is small in<br />

P (M). A subfunctor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> identity functor <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is called a preradical. For a<br />

preradical σ, T σ := {M ∈ Mod-R ; σ(M) = M} is <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> σ-torsi<strong>on</strong> right R-modules,<br />

<strong>and</strong> F σ := {M ∈ Mod-R ; σ(M) = 0} is <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> σ-torsi<strong>on</strong>free right R-modules.<br />

A right R-module M is called σ-projective if <str<strong>on</strong>g>the</str<strong>on</strong>g> functor Hom R (M, ) preserves <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exactness for any exact sequence 0 → A → B → C → 0 with A ∈ F σ . A preradical σ is<br />

idempotent[radical] if σ(σ(M)) = σ(M)[σ (M/σ(M)) = 0] for a module M, respectively.<br />

A preradical σ is called epi-preserving if σ (M/N) = (σ(M) + N)/N holds for any module<br />

M <strong>and</strong> any submodule N <str<strong>on</strong>g>of</str<strong>on</strong>g> M. For a preradical σ, a short exact sequence [0 → K σ (M) →<br />

P σ (M) πσ M<br />

→ M → 0] is called σ-projective cover <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M if P σ (M) is σ-projective,<br />

K σ (M) is σ-torsi<strong>on</strong> free <strong>and</strong> K σ (M) is small in P σ (M). If σ is an idempotent radical<br />

<strong>and</strong> a module M has a projective cover, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M has a σ-projective cover <strong>and</strong> it is given<br />

K σ (M) = K(M)/σ(K(M)), P σ (M) = P (M)/σ(K(M)). For X, Y ∈ Mod-R we call an<br />

epimorphism g ∈ Hom R (X, Y ) a minimal epimorphism if g(H) Y holds for any proper<br />

submodule H <str<strong>on</strong>g>of</str<strong>on</strong>g> X. It is well known that a minimal epimorphism is an epimorphism<br />

having a small kernel. For a preradical σ we say that M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a minimal epimorphism h : M ↠ X with kerh ∈ F σ .<br />

For a module M, P σ (M) is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mod-R is closed under taking σ-coessential extensi<strong>on</strong>s if : for any minimal epimorphism<br />

f : M ↠ X with kerf ∈ F σ if X ∈ C <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ C. For <str<strong>on</strong>g>the</str<strong>on</strong>g> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity we say<br />

that M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N if N is a σ-torsi<strong>on</strong>free small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M. We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is closed under taking σ-coessential extensi<strong>on</strong>s if<br />

: if M/N ∈ C <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ C for any σ-torsi<strong>on</strong> free small submodule N <str<strong>on</strong>g>of</str<strong>on</strong>g> any module M.<br />

The final versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–208–


We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is closed under taking F σ -factor modules if : if M ∈ C<br />

<strong>and</strong> N is a σ-torsi<strong>on</strong>free submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> M <str<strong>on</strong>g>the</str<strong>on</strong>g>n M/N ∈ C.<br />

2. COSTABLE TORSION THEORY<br />

Lemma 1. Let σ be an idempotent radical. For a module M <strong>and</strong> its submodule N,<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagram with exact rows.<br />

0 → K σ (M) → P σ (M)<br />

f<br />

→ M → 0<br />

↓ j<br />

0 → K σ (M/N) → P σ (M/N) →<br />

g<br />

M/N → 0,<br />

where f <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projective covers <strong>and</strong> j is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

can<strong>on</strong>ical epimorphism. Since g is a minimal epimorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an epimorphism<br />

h : P σ (M) → P σ (M/N) induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M) such that jf = gh. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s hold.<br />

(1) If M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n h : P σ (M) → P σ (M/N) is an<br />

isomorphism.<br />

(2) Moreover if σ is epi-preserving <strong>and</strong> h : P σ (M) → P σ (M/N) is an isomorphism,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1): Let N ∈ F σ be a small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M. Since jf is an epimorphism<br />

<strong>and</strong> g is a minimal epimorphism, h is also an epimorphism. Since j(f(ker h)) =<br />

g(h(ker h)) = g(0) = 0, it follows that f(ker h) ⊆ ker j = N ∈ F σ , <strong>and</strong> so f(ker h) ∈ F σ .<br />

Let f| ker h be <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f to ker h. Then it follows that ker(f| ker h ) = ker h∩ker f =<br />

ker h ∩ K σ (M) ⊆ K σ (M) ∈ F σ . C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence 0 → ker f| ker h → ker h →<br />

f(ker h) → 0. Since F σ is closed under taking extensi<strong>on</strong>s, it follows that ker h ∈ F σ . As<br />

P σ (M/N) is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence 0 → ker h → P σ (M) → P σ (M/N) → 0<br />

splits, <strong>and</strong> so <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule L <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M) such that P σ (M) = L ⊕ ker h. So<br />

it follows that f(P σ (M)) = f(L) + f(ker h). As f(ker h) ⊆ N <strong>and</strong> f(P σ (M)) = M,<br />

M = f(L) + N. Since N is small in M, it follows that M = f(L). As f is a minimal<br />

epimorphism, it follows that P σ (M) = L <strong>and</strong> ker h = 0, <strong>and</strong> so h : P σ (M) ≃ P σ (M/N),<br />

as desired.<br />

(2): Suppose that h : P σ (M) ≃ P σ (M/N). By <str<strong>on</strong>g>the</str<strong>on</strong>g> commutativity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above diagram<br />

with h, it follows that h(f −1 (N)) ⊆ K σ (M/N) ∈ F σ . Since h is an isomorphism, f −1 (N) ∈<br />

F σ . As f| f −1 (N) : f −1 (N) → N → 0 <strong>and</strong> σ is an epi-preserving preradical, it follows that<br />

N ∈ F σ . Next we will show that N is small in M. Let K be a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> M<br />

such that M = N + K. If f −1 (K) P σ (M), <str<strong>on</strong>g>the</str<strong>on</strong>g>n h(f −1 (K)) P σ (M/N) as h is an<br />

isomorphism. Since g(h(f −1 (K))) = j(f(f −1 (K))) = j(K) = (K + N)/N = M/N <strong>and</strong> g<br />

is a minimal epimorphism, this is a c<strong>on</strong>tradicti<strong>on</strong>. Thus it holds that f −1 (K) = P σ (M),<br />

<strong>and</strong> so K = f(f −1 (K)) = f(P σ (M)) = M. Thus it follows that N is small in M. □<br />

We call a preradical t σ-costable if F t is closed under taking σ-projective covers. Now<br />

we characterize σ-costable preradicals.<br />

Theorem 2. Let t be a radical <strong>and</strong> σ be an idempotent radical. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

(1) t is σ-costable.<br />

–209–


(2) P/t(P ) is σ-projective for any σ-projective module P .<br />

(3) For any module M c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram, <str<strong>on</strong>g>the</str<strong>on</strong>g>n t(P σ (M)) is<br />

c<strong>on</strong>tained in kerf.<br />

P σ (M)<br />

↓ f<br />

h<br />

→ M → 0<br />

↓ j<br />

P σ (M/t(M)) →<br />

g<br />

M/t(M) → 0,<br />

where j is a can<strong>on</strong>ical epimorphism, h <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

projective covers <strong>and</strong> f is a morphism induced by σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M).<br />

(4) F t is closed under taking σ-coessential extensi<strong>on</strong>s.<br />

(5) For any σ-projective module P such that t(P ) ∈ F σ , t(P ) is a direct sum<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

Then (1) ⇐ (5) ⇐= (2) ⇐⇒ (1) ⇐⇒ (3), (4) =⇒ (1) hold. Moreover if F t is closed<br />

under taking F σ -factor modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) → (2) : Let P be a σ-projective module. Since P/t(P ) ∈ F t , it follows that<br />

P σ (P/t(P )) ∈ F t by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P<br />

f ↙ ↓ h<br />

0 → K σ (P/t(P )) → P σ (P/t(P )) → P/t(P ) → 0,<br />

g<br />

where h is a can<strong>on</strong>ical epimorphism, g is an epimorphism associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-<br />

projective cover <str<strong>on</strong>g>of</str<strong>on</strong>g> P/t(P ) <strong>and</strong> f is a morphism induced by σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (P/t(P )).<br />

Since f(t(P )) ⊆ t(P σ (P/t(P ))) = 0, f induces f ′ : P/t(P ) → P σ (P/t(P )) (x + t(P ) ↦−→<br />

f(x)). Thus for x ∈ P , h(x) = gf(x) = gf ′ h(x). So <str<strong>on</strong>g>the</str<strong>on</strong>g> above exact sequence splits.<br />

Therefore P/t(P ) is a direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> σ-projective module P σ (P/t(P )), <strong>and</strong> so P/t(P )<br />

is also a σ-projective module, as desired.<br />

(2) → (5) : Let P be σ-projective <strong>and</strong> t(P ) ∈ F σ . By <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> P/t(P ) is σ-<br />

projective. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence (0 → t(P ) → P → P/t(P ) → 0) splits, <strong>and</strong> so t(P ) is a<br />

direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

(5) → (1) : Let M be in F t . C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence 0 → K σ (M) → P σ (M) →<br />

f<br />

M → 0. Since f(t(P σ (M))) ⊆ t(M) = 0, K σ (M) = ker f ⊇ t(P σ (M)). As K σ (M) ∈ F σ ,<br />

t(P σ (M)) ∈ F σ . Since P σ (M) is σ-projective, t(P σ (M)) is a direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M)<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule K <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M) such that P σ (M) =<br />

t(P σ (M)) ⊕ K. Since K σ (M) = ker f ⊇ t(P σ (M)), P σ (M) = K σ (M) + K. As K σ (M) is<br />

small in P σ (M), P σ (M) = K. Thus t(P σ (M)) = 0, as desired.<br />

(1) → (3) : C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P σ (M) → M → 0<br />

f ↓<br />

↓ j<br />

P σ (M/t(M)) → g M/t(M) → 0,<br />

where j is a can<strong>on</strong>ical epimorphism, h <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

projective covers <strong>and</strong> f is a morphism induced by σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M). As g is a<br />

minimal epimorphism, f is an epimorphism. By <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> P σ (M/t(M)) ∈ F t , <strong>and</strong><br />

so f(t(P σ (M))) ⊆ t(P σ (M/t(M))) = 0. Hence t(P σ (M)) ⊆ ker f.<br />

h<br />

–210–


(3) → (1) : Let M be in F t . By <str<strong>on</strong>g>the</str<strong>on</strong>g> above commutative diagram, f is an identity. Thus<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> t(P σ (M)) ⊆ ker f = 0, as desired.<br />

(1) → (4) : Let N ∈ F σ be a small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M such that M/N ∈ F t . By<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> P σ (M/N) ∈ F t . By Lemma1, P σ (M/N) ≃ P σ (M), <strong>and</strong> so P σ (M) ∈ F t .<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence 0 → K σ (M) → P σ (M) → M → 0. Since F t is closed under taking<br />

F σ -factor modules, it follows that M ∈ F t , as desired.<br />

(4) → (1) : Since P σ (M) is σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M in F t , F t is closed<br />

under taking σ-projective covers.<br />

□<br />

Remark 3. It is well known that t is epi-preserving if <strong>and</strong> <strong>on</strong>ly if t is a radical <strong>and</strong> F t is<br />

closed under taking factor modules. Therefore if t is epi-preserving <strong>and</strong> σ be an idempotent<br />

radical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s in Theorem 2 are equivalent.<br />

Next if σ is identity, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary holds. The following have <str<strong>on</strong>g>the</str<strong>on</strong>g> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem1.1 <str<strong>on</strong>g>of</str<strong>on</strong>g> [3].<br />

Corollary 4. For a radical t <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s except (4) are equivalent. Moreover<br />

if t is an epi-preserving preradical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) t is costable, that is, F t is closed under taking projective covers.<br />

(2) P/t(P ) is projective for any projective module P .<br />

(3) P (M)<br />

↓ f<br />

h<br />

→ M → 0<br />

↓ j<br />

P (M/t(M)) →<br />

g<br />

M/t(M) → 0,<br />

where j is a can<strong>on</strong>ical epimorphism, h <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

projective covers <strong>and</strong> f is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P (M). Then t(P (M)) is c<strong>on</strong>tained<br />

in kerf.<br />

(4) F t is closed under taking coessential extensi<strong>on</strong>s.<br />

(5) For any projective module P , t(P ) is a direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

3. DUALIZATION OF ECKMAN & SHOPF’S THEOREM<br />

In [8] we state a torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eckman & Shopf’s Theorem, as<br />

follows. Let σ be a left exact radical <strong>and</strong> 0 → M → E be a exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s from (1) to (4) are equivalent. (1) E is σ-injective <strong>and</strong> σ-<br />

essential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. (2) E is minimal in {Y ∈ Mod-R|M ↩→ Y <strong>and</strong> Y is σ-injective}.<br />

(3) E is maximal in {Y ∈ Mod-R|M ↩→ Y <strong>and</strong> Y is σ-essential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M}. (4) E<br />

is isomorphic to E σ (M), where σ(E(M)/M) = E σ (M)/M. Here we dualised this.<br />

Lemma 5. If P is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n P σ (P ) is isomorphic to P .<br />

Theorem 6. Let P → f M → 0 be a exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R. Let σ is an idempotent<br />

radical. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s (1) ⇐⇒ (3) <strong>and</strong> (1) =⇒<br />

(2) hold. Moreover if σ is an epi-preserving preradical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) P is σ-projective <strong>and</strong> P f ↠ M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

(2) P is a minimal σ-projective extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P is σ-projective <strong>and</strong> if I is σ-<br />

projective <strong>and</strong> P h ↠ I, I ↠ M, <str<strong>on</strong>g>the</str<strong>on</strong>g>n h is an isomorphism.).<br />

–211–


(3) P is a maximal σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P f ↠ M is σ-coessential extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an epimorphism I h ↠ P <strong>and</strong> I h ↠ P ↠ M is σ-coessential <str<strong>on</strong>g>of</str<strong>on</strong>g> M,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n h is an isomorphism.).<br />

(4) P is isomorphic to P σ (M).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1)→(2): Let P be σ-projective <strong>and</strong> P ↠ f M be a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagram.<br />

0→ ker h → P → h I → 0<br />

↘ f ↓ g<br />

M,<br />

where I is σ-projective, g <strong>and</strong> h are epimorphisms such that gh = f.<br />

Since F σ ∋ f −1 (0) = h −1 (g −1 (0)) ⊇ h −1 (0), it follows that F σ ∋ h −1 (0) = ker h. As f is<br />

a minimal epimorphism <strong>and</strong> g is an epimorphism, h is also a minimal epimorphism. Since<br />

I is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule L <str<strong>on</strong>g>of</str<strong>on</strong>g> P such that P = ker h ⊕ L <strong>and</strong> L ∼ = I.<br />

As ker h is small in P , P = L, <strong>and</strong> so P ∼ = I.<br />

(2)→(1): Let σ be an epi-preserving idempotent radical <strong>and</strong> P be a minimal σ-<br />

projective extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P σ (P ) → j P → 0<br />

g ↓ ↓ f<br />

P σ (M) → h M → 0,<br />

where h <strong>and</strong> j are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> projective covers <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> P<br />

respectively <strong>and</strong> g is an induced epimorphism by <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (P ). Since P is<br />

σ-projective, j is an isomorphism by Lemma 4. As P σ (P ) <strong>and</strong> P σ (M) are σ-projective,<br />

g is an isomorphism by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>. By Lemma 1, it follows that P → f M → 0 is a<br />

σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

(1)→(3): Let I → g P be an epimorphism. Let P ↠ f M <strong>and</strong> I ↠ h M be σ-coessential<br />

extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> M such that fg = h. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following exact diagram.<br />

I<br />

g ↙ ↓ h<br />

P → M → 0<br />

f<br />

Since f is a minimal epimorphism, g is an epimorphim. As h <strong>and</strong> f are minimal<br />

epimorphisms, g is a minimal epimorphim. Since F σ ∋ h −1 (0) = g −1 (f −1 (0)) ⊇ g −1 (0), it<br />

follows that F σ ∋ g −1 (0). Since P is σ-projective, 0 → ker g → I → g P → 0 splits, <strong>and</strong> so<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule H <str<strong>on</strong>g>of</str<strong>on</strong>g> I such that H ∼ = P <strong>and</strong> I = ker g ⊕ H. As ker g is small<br />

in I, I = H ∼ = P , as desired.<br />

(3)→(1): We show that P is σ-projective. Since P ↠ f M is a σ-coessential extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>, an induced morphism P σ (P ) → P σ (M) is an isomorphism by<br />

Lemma 1. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P σ (P ) → P → 0<br />

↓ ↓<br />

P σ (M) → M → 0.<br />

–212–


Since P σ (P ) ≃ P σ (M) ↠ M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> P ↠ f M is a σ-<br />

coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M, it follows that P σ (P ) ∼ = P by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>, <strong>and</strong> so P is<br />

σ-projective.<br />

(1)→(4): By Lemma 1, P σ (P ) ≃ P σ (M). By Lemma 4, P σ (P ) ≃ P, <strong>and</strong> so P ≃ P σ (M)<br />

as desired.<br />

(4)→(1): It is clear.<br />

□<br />

In Theorem 5, if σ = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary is obtained.<br />

Corollary 7. Let P f → M → 0 be a exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) P is projective <strong>and</strong> P f ↠ M is a coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(that is, kerf is small<br />

in M).<br />

(2) P is a minimal projective extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P is projective <strong>and</strong> if I is projective<br />

<strong>and</strong> P h ↠ I, I ↠ M, <str<strong>on</strong>g>the</str<strong>on</strong>g>n h is an isomorphism).<br />

(3) P is a maximal coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P f ↠ M is coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M <strong>and</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an epimorphism I h ↠ P <strong>and</strong> I h ↠ P ↠ M is coessential <str<strong>on</strong>g>of</str<strong>on</strong>g> M, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

h is an isomorphism.).<br />

(4) P is isomorphic to P (M).<br />

4. A GENERALIZATION OF WU, JANS AND MIYASHITA’S THEOREM<br />

AND AZUMAYA’S THEOREM<br />

In [8] we state a torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Johns<strong>on</strong> <strong>and</strong> W<strong>on</strong>g’s Theorem.<br />

Here we study a dualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this. For a module M <strong>and</strong> N, we call M σ-N-projective<br />

if Hom R (M, ) preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> exactness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact sequence 0 → K → N →<br />

N/K → 0 with K ∈ F σ .<br />

Theorem 8. Let M <strong>and</strong> N be modules. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s for an idempotent<br />

radical σ.<br />

(1) γ(K σ (M)) ⊆ K σ (N) holds for any γ ∈ Hom R (P σ (M), P σ (N)).<br />

(2) M is σ-N-projective.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1)→(2) holds. If σ is epi-preserving, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (2)→(1)<br />

holds.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1)→(2): Let f be in Hom R (M, N/K) with K ∈ F σ . Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists h ∈<br />

Hom R (P σ (M), N) such that fπM σ = nh, where n is a can<strong>on</strong>ical epimorphism from N to<br />

N/K. And <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists γ ∈ Hom R (P σ (M), P σ (N)) such that h = πN σ γ. So we have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following commutative diagramm.<br />

P σ (M) πσ M<br />

↠ M<br />

γ ↙ ↓ h ↓ f<br />

P σ (N) ↠<br />

π σ<br />

N<br />

N →<br />

n<br />

N/K<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>, γ induces γ ′ : P σ (M)/K σ (M) → P σ (N)/K σ (N), <strong>and</strong> so γ ′ induces<br />

γ ′′ : M → N such that f = γ ′′ n, as desired.<br />

–213–


(2)→(1): Let σ be epi-preserving <strong>and</strong> γ ∈ Hom R (P σ (M), P σ (N)). We will show that<br />

γ(K σ (M)) ⊆ K σ (N). We put T = γ(K σ (M)) + K σ (N). Since T ⊇ γ(K σ (M)), γ induces<br />

γ ′ : M ≃ P σ (M)/K σ (M) → P σ (N)/γ(K σ (M)) → P σ (N)/T → N/πN σ (T ) (πσ M (x) ←→<br />

x + K σ (M) → γ(x) + γ(K σ (M)) → γ(x) + T → πN σ (γ(x)) + πσ N (T )). Let n N be a<br />

can<strong>on</strong>ical epimorphism from N to N/πN σ (T ). Since πσ N (T ) = πσ N (γ(K σ(M)) + K σ (N)) =<br />

πN σ (γ(K σ(M)), K σ (M) ∈ F σ <strong>and</strong> F σ is closed under taking factor modules, it follows that<br />

πN σ (T ) ∈ F σ. Since M is σ-N-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists β : M → N such that γ ′ = n N β.<br />

Therefore we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagramm.<br />

M<br />

β ↙ ↓ γ ′<br />

0 → πN σ (T ) → N → N/πN σ (T ) → 0<br />

n N<br />

·By <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists α : P σ (M) → P σ (N) such that πN σ α =<br />

. Thus we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagramm.<br />

βπ σ M<br />

0 → K σ (M) → P σ (M) πσ M<br />

→ M → 0<br />

↓ α<br />

↓ β<br />

0 → K σ (N) → P σ (N) →<br />

π σ<br />

N<br />

N → 0<br />

Thus by <str<strong>on</strong>g>the</str<strong>on</strong>g> commutativity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above diagram, we have α(K σ (M)) ⊆ K σ (N).<br />

We put X = {x ∈ P σ (M)|γ(x) − α(x) ∈ K σ (N)}. We will show that X + K σ (M) =<br />

P σ (M). For any x ∈ P σ (M) it follows that γ ′ (πM σ (x)) = πσ N (γ(x))+πσ N (T ), (n Nβ)(πM σ (x)) =<br />

β(πM σ x) + πσ N (T ) <strong>and</strong> γ′ = n N β, it follows that πN σ (γ(x)) + πσ N (T ) = β(πσ M x) + πσ N (T ), <strong>and</strong><br />

so πN σ (γ(x))−β(πσ M x) ∈ πσ N (T ). Since πσ N α = βπσ M , it follows that πσ N (γ(x))−πσ N (α(x)) ∈<br />

πN σ (T ), <strong>and</strong> so γ(x) − α(x) ∈ T + (πσ N )−1 (0) = T + K σ (N) = γ(K σ (M)) + K σ (N). Thus<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists m ∈ K σ (M) such that γ(x) − α(x) − γ(m) ∈ K σ (N), <strong>and</strong> so γ(x − m) −<br />

α(x − m) ∈ α(m) + K σ (N) ⊆ α(K σ (M)) + K σ (N) = K σ (N). Therefore it follows that<br />

x − m ∈ X, <strong>and</strong> so x ∈ K σ (M) + X. Thus we c<strong>on</strong>clude that P σ (M) = K σ (M) + X.<br />

Since K σ (M) is small in P σ (M), it holds that X = P σ (M). Thus it follows that<br />

{x ∈ P σ (M)|γ(x) − α(x) ∈ K σ (N)} = P σ (M). Thus if x ∈ K σ (M)(⊆ P σ (M)), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

γ(x) − α(X) ∈ K σ (N), <strong>and</strong> so γ(x) ∈ α(x) + K σ (N) ⊆ α(K σ (M)) + K σ (N) = K σ (N),<br />

<strong>and</strong> so it follows that γ(K σ (M)) ⊆ K σ (N).<br />

□<br />

In Theorem 7 we put σ = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Azumaya’s Theorem in<br />

[2]. In Theorem 7 we put M = N <strong>and</strong> σ = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wu, Jans<br />

<strong>and</strong> Miyashita’s Theorem in [9] <strong>and</strong> [5].<br />

References<br />

[1] E. P. Armendariz, Quasi-injective modules <strong>and</strong> stale torsi<strong>on</strong> classes, P. J. M. (1969), 277-280.<br />

[2] G. Azumaya, M-projective <strong>and</strong> M-injective modules, unpublished.<br />

[3] R. L. Bernhardt, On Splitting in Hereditary Torsi<strong>on</strong> Theories, P. J. M. (1971), 31-38.<br />

[4] L. Bican, P. Jambor, T. Kepka <strong>and</strong> P. Nemec, Stable <strong>and</strong> costable preradicals, Acta Universitatis<br />

Carolinae-Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticaet Physica, 16(2) (1975), 63-69.<br />

[5] Y. Miyashita, Quasi-projective modules, Perfect modules <strong>and</strong> a Theorem for modular lattice, J. Fac.<br />

Sci. Hokkaido Univ. 19, 86-110.<br />

[6] Y. Takehana, On generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QF-3’ modules <strong>and</strong> hereditary torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ories, Math. J. Okayama<br />

Univ. 54 (2012), 53-63.<br />

–214–


[7] Y. Takehana, On generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CQF-3’ modules <strong>and</strong> cohereditary torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ories, Math. J.<br />

Okayama Univ. 54 (2012), 65-76.<br />

[8] Y. Takehana, On a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 43rd <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong>, 2011, 71-78.<br />

[9] L. E. T. Wu <strong>and</strong> J. P. Jans, On Quasi Projectives, Illinois J. Math. Volume 11, Issue 3 (1967), 439-448.<br />

GENERAL EDUCATION<br />

HAKODATE NATIONAL COLLEGE OF TECHNOLOGY<br />

14-1 TOKURA-CHO HAKODATE-SI HOKKAIDO, 042-8501 JAPAN<br />

E-mail address: takehana@hakodate-ct.ac.jp<br />

–215–


GRADED FROBENIUS ALGEBRAS AND QUANTUM BEILINSON<br />

ALGEBRAS<br />

KENTA UEYAMA<br />

Abstract. Frobenius algebras are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> important classes <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras studied in<br />

representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al algebras. In this article, we will study when<br />

given graded Frobenius Koszul algebras are graded Morita equivalent. As applicati<strong>on</strong>s,<br />

we apply our results to quantum Beilins<strong>on</strong> algebras.<br />

Key Words:<br />

equivalence.<br />

Frobenius Koszul algebras, quantum Beilins<strong>on</strong> algebras, graded Morita<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 16W50, 16S37; Sec<strong>on</strong>dary 16D90.<br />

1. Introducti<strong>on</strong><br />

This is based <strong>on</strong> a joint work with Izuru Mori.<br />

Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Frobenius algebras is an active project in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite dimensi<strong>on</strong>al algebras. This article tries to answer <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> when given graded<br />

Frobenius Koszul algebras are graded Morita equivalent, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g>y have equivalent<br />

graded module categories.<br />

This problem is related to classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-Fano algebras. It is known that every<br />

finite dimensi<strong>on</strong>al algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 1 is a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite acyclic<br />

quiver up to Morita equivalence, so such algebras can be classified in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers.<br />

As an obvious next step, it is interesting to classify finite dimensi<strong>on</strong>al algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global<br />

dimensi<strong>on</strong> 2 or higher. Recently, Minamoto introduced a nice class <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global dimensi<strong>on</strong>, called (quasi-)Fano algebras [2], which are a very<br />

interesting class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras to study <strong>and</strong> classify. It was shown that, for a graded Frobenius<br />

Koszul algebra A, we can define ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r algebra ∇A, called <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum Beilins<strong>on</strong><br />

algebra associated to A, <strong>and</strong> with some additi<strong>on</strong>al assumpti<strong>on</strong>s, ∇A turns out to be a<br />

quasi-Fano algebra. Moreover, it was shown that two graded Frobenius algebras A, A ′<br />

are graded Morita equivalent if <strong>and</strong> <strong>on</strong>ly if ∇A, ∇A ′ are isomorphic as algebras, so classifying<br />

graded Frobenius (Koszul) algebra up to graded Morita equivalence is related to<br />

classifying quasi-Fano algebras up to isomorphism (see [3] for details).<br />

In additi<strong>on</strong>, this problem is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> AS-regular algebras which are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most important class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras in n<strong>on</strong>commutative algebraic geometry (see [8]).<br />

Our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem (Theorem 9) is as follows. For every co-geometric Frobenius Koszul<br />

algebra A, we define ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r graded algebra A, <strong>and</strong> see that if two co-geometric Frobenius<br />

Koszul algebras A, A ′ are graded Morita equivalent, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A, A ′ are isomorphic as graded<br />

algebras. Unfortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse does not hold in general. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse is also true for many co-geometric Frobenius Koszul algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein<br />

parameter −3.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–216–


2. Frobenius Koszul algebras<br />

Throughout this paper, we fix an algebraically closed field k <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0, <strong>and</strong><br />

we assume that all vector spaces <strong>and</strong> algebras are over k unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise stated. In this<br />

paper, a graded algebra means a c<strong>on</strong>nected graded algebra finitely generated in degree<br />

1, that is, every graded algebra can be presented as A = T (V )/I where V is a finite<br />

dimensi<strong>on</strong>al vector space, T (V ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor algebra <strong>on</strong> V over k, <strong>and</strong> I is a homogeneous<br />

two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> T (V ). We denote by GrMod A <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> graded right A-modules.<br />

Morphisms in GrMod A are right A-module homomorphisms preserving degrees. We say<br />

that two graded algebras A <strong>and</strong> A ′ are graded Morita equivalent if GrMod A ∼ = GrMod A ′ .<br />

For a graded module M ∈ GrMod A <strong>and</strong> an integer n ∈ Z, we define <str<strong>on</strong>g>the</str<strong>on</strong>g> truncati<strong>on</strong><br />

M ≥n := ⊕ i≥n M i ∈ GrMod A <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shift M(n) ∈ GrMod A by M(n) i := M n+i for<br />

i ∈ Z. For M, N ∈ GrMod A, we write<br />

Hom A (M, N) := ⊕ n∈Z<br />

Hom GrMod A (M, N(n)).<br />

We denote by V ∗ <str<strong>on</strong>g>the</str<strong>on</strong>g> dual vector space <str<strong>on</strong>g>of</str<strong>on</strong>g> a vector space V . If M is a graded right<br />

(resp. left) module over a graded algebra A, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we denote by M ∗ := Hom k (M, k) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dual graded vector space <str<strong>on</strong>g>of</str<strong>on</strong>g> M by abuse <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong>, i.e. (M ∗ ) i := (M −i ) ∗ . Note that M ∗<br />

has a graded left (resp. right) A-module structure.<br />

Let A be a graded algebra, <strong>and</strong> τ ∈ Aut k A a graded algebra automorphism. For a<br />

graded right A-module M ∈ GrMod A, we define a new graded right A-module M τ ∈<br />

GrMod A by M τ = M as a graded vector space with <str<strong>on</strong>g>the</str<strong>on</strong>g> new right acti<strong>on</strong> m ∗ a := mτ(a)<br />

for m ∈ M <strong>and</strong> a ∈ A. If M is a graded A-A bimodule, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M τ is also a graded A-A<br />

bimodule by this new right acti<strong>on</strong>. The rule M ↦→ M τ is a k-linear autoequivalence for<br />

GrMod A.<br />

A graded algebra A is called quadratic if A ∼ = T (V )/(R) where R ⊆ V ⊗ k V is a<br />

subspace <strong>and</strong> (R) is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> T (V ) generated by R. If A = T (V )/(R) is a quadratic<br />

algebra, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we define <str<strong>on</strong>g>the</str<strong>on</strong>g> dual graded algebra by A ! := T (V ∗ )/(R ⊥ ) where<br />

R ⊥ := {λ ∈ V ∗ ⊗ k V ∗ ∼ = (V ⊗k V ) ∗ | λ(r) = 0 for all r ∈ R}.<br />

Clearly, A ! is again a quadratic algebra <strong>and</strong> (A ! ) ! ∼ = A as graded algebras.<br />

We now recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Koszul algebras <strong>and</strong> graded Frobenius algebras. Frobenius<br />

algebras are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main classes <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> study in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite dimensi<strong>on</strong>al algebras.<br />

Definiti<strong>on</strong> 1. Let A be a c<strong>on</strong>nected graded algebra, <strong>and</strong> suppose k ∈ GrMod A has a<br />

minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

⊕<br />

· · · ri<br />

j=1 A(−s ⊕<br />

ij) · · · r0<br />

j=1 A(−s 0j) k 0.<br />

The complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> A is defined by<br />

c A := inf{d ∈ R + | r i ≤ ci d−1 for some c<strong>on</strong>stant c > 0, i ≫ 0}.<br />

We say that A is Koszul if s ij = i for all 1 ≤ j ≤ r i <strong>and</strong> all i ∈ N.<br />

It is known that if A is Koszul, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A is quadratic, <strong>and</strong> its dual graded algebra A ! is<br />

also Koszul, which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Koszul dual <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

–217–


Definiti<strong>on</strong> 2. A graded algebra A is called a graded Frobenius algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein<br />

parameter l if A ∗ ∼ = ν A(−l) as graded A-A bimodules for some graded algebra automorphism<br />

ν ∈ Aut k A, called <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> A. We say that A is graded<br />

symmetric if A ∗ ∼ = A(−l) as graded A-A bimodules.<br />

A skew exterior algebra<br />

A = k〈x 1 , . . . , x n 〉/(α ij x i x j + x j x i , x 2 i )<br />

where α ij ∈ k such that α ij α ji = α ii = 1 for 1 ≤ i, j ≤ n is a typical example <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Frobenius Koszul algebra.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>, we give an interesting result about graded Morita equivalence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded skew exterior algebras. It is known that every (ungraded) Frobenius algebra<br />

which is Morita equivalent to symmetric algebra is symmetric. The situati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> graded<br />

case is different as <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem shows.<br />

Propositi<strong>on</strong> 3. [7] Every skew exterior algebra is graded Morita equivalent to a graded<br />

symmetric skew exterior algebra.<br />

For example, a 3-dimensi<strong>on</strong>al skew exterior algebra<br />

A = k〈x, y, z〉/(αyz + zy, βzx + xz, γxy + yx, x 2 , y 2 , z 2 )<br />

is graded Morita equivalent to a symmetric skew exterior algebra<br />

A = k〈x, y, z〉/( 3√ αβγyz + zy, 3√ αβγzx + xz, 3√ αβγxy + yx, x 2 , y 2 , z 2 ).<br />

3. Co-geometric Frobenius Koszul algebras<br />

In order to state our main result, let us define a co-geometric algebra (see [4] for details).<br />

Definiti<strong>on</strong> 4. [4] Let A = T (V )/I be a graded algebra. We say that N ∈ GrMod A is a<br />

co-point module if N has a free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

· · · A(−2) A(−1) A N 0 .<br />

For a graded algebra A = T (V )/I, we can define <str<strong>on</strong>g>the</str<strong>on</strong>g> pair P ! (A) = (E, σ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set E ⊆ P(V ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> map σ : E → E as follows:<br />

• E := {p ∈ P(V ) | N p := A/pA ∈ GrMod A is a co-point module}, <strong>and</strong><br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> map σ : E → E is defined by ΩN p (1) = N σ(p) .<br />

Meanwhile, for a geometric pair (E, σ) c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed subscheme E ⊆ P(V ) <strong>and</strong> an<br />

automorphism σ ∈ Aut k E, we can define <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra A ! (E, σ) as follows:<br />

A ! (E, σ) := (T (V ∗ )/(R)) !<br />

where R := {f ∈ V ∗ ⊗ k V ∗ | f(p, σ(p)) = 0, ∀p ∈ E}.<br />

Definiti<strong>on</strong> 5. [4] A graded algebra A = T (V )/I is called co-geometric if A satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following c<strong>on</strong>diti<strong>on</strong>s:<br />

• P ! (A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed subscheme E ⊆ P(V ) <strong>and</strong> an automorphism σ ∈<br />

Aut k E,<br />

• A ! is noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian, <strong>and</strong><br />

• A ∼ = A ! (P ! (A)).<br />

–218–


Example 6. [4] Let A = k〈x, y〉/(αxy + yx, x 2 , y 2 ) be a 2-dimensi<strong>on</strong>al skew exterior<br />

algebra. Then for any point p = (a, b) ∈ P(V ) = P 1 , N p = A/(ax + by)A has a free<br />

resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

· · · A(−2) (α2 ax+by)· A(−1) (αax+by)· A (ax+by)· N p<br />

0 .<br />

Since ΩN p (1) = A/(αax + by)A, it follow that<br />

In fact, A is co-geometric.<br />

P ! (A) = (P 1 , σ), where σ(a, b) := (αa, b).<br />

Example 7. The algebras below are examples <str<strong>on</strong>g>of</str<strong>on</strong>g> co-geometric algebras.<br />

• A Frobenius Koszul algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3.<br />

For example, if A = k〈x, y, z〉 with <str<strong>on</strong>g>the</str<strong>on</strong>g> defining relati<strong>on</strong>s<br />

αx 2 − γyz, αy 2 − γzx, αz 2 − γxy,<br />

βyz − αzy, βzx − αxz, βxy − αyx.<br />

for a generic choice <str<strong>on</strong>g>of</str<strong>on</strong>g> α, β, γ ∈ k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A = A ! (E, σ) is a Frobenius Koszul algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> complexity 3 <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3 such that<br />

E = V(αβγ(x 3 + y 3 + z 3 ) − (α 3 + β 3 + γ 3 )xyz) ⊂ P 2<br />

is an elliptic curve <strong>and</strong> σ ∈ Aut k E is <str<strong>on</strong>g>the</str<strong>on</strong>g> translati<strong>on</strong> automorphism by <str<strong>on</strong>g>the</str<strong>on</strong>g> point<br />

(α, β, γ) ∈ E.<br />

• The skew exterior algebra.<br />

Let A = A ! (E, σ) be a co-geometric Frobenius Koszul algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter<br />

−l with <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama automorphism ν ∈ Aut k A. The restricti<strong>on</strong> ν| A1 = τ| V induces an<br />

automorphism ν ∈ Aut k P(V ). Moreover, ν ∈ Aut k P(V ) restricts to an automorphism<br />

ν ∈ Aut k E by abuse <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong> (see [5] for details). We can now define a new graded<br />

algebra A as follows:<br />

A := A ! (E, νσ l ).<br />

Example 8. If A = k〈x, y, z〉 with <str<strong>on</strong>g>the</str<strong>on</strong>g> defining relati<strong>on</strong>s<br />

x 2 + βxz, zx + xz, z 2 ,<br />

y 2 + αyz, zy + yz, xy + yx − (β + γ)xz − (α + γ)yz,<br />

where α, β, γ ∈ k, α + β + γ ≠ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A = A ! (E, σ) is a Frobenius Koszul algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complexity 3 <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3 such that<br />

E = V(x) ∪ V(y) ∪ V(x − y) ⊂ P 2<br />

is a uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three lines meeting at <strong>on</strong>e point, <strong>and</strong> σ ∈ Aut k E is given by<br />

σ| V(x) (0, b, c) = (0, b, αb + c),<br />

σ| V(y) (a, 0, c) = (a, 0, βa + c),<br />

σ| V(x−y) (a, a, c) = (a, a, −γa + c)<br />

–219–


In this case, ν ∈ Aut k E induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama automorphism ν ∈ Aut k A is given by<br />

ν(a, b, c) = (a, b, (α + γ − 2β)a + (β + γ − 2α)b + c)<br />

It follows that A = A ! (E, νσ 3 ) is k〈x, y, z〉 with <str<strong>on</strong>g>the</str<strong>on</strong>g> defining relati<strong>on</strong>s<br />

x 2 + (α + β + γ)xz, zx + xz, z 2 ,<br />

y 2 + (α + β + γ)yz, zy + yz, xy + yx − 2(α + β + γ)xz − 2(α + β + γ)yz.<br />

Our main result is as follows.<br />

Theorem 9. [7] Let A, A ′ be co-geometric Frobenius Koszul algebras. Then<br />

GrMod A ∼ = GrMod A ′ =⇒ A ∼ = A ′ as graded algebras.<br />

In particular, let A = A ! (E, σ), A ′ = A ! (E ′ , σ ′ ) be Frobenius Koszul algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite<br />

complexities <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3 such that E ∼ = E ′ . Suppose that E = P 2 or<br />

E is a reduced <strong>and</strong> reducible cubic in P 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

GrMod A ∼ = GrMod A ′ ⇐⇒ A ∼ = A ′ as graded algebras.<br />

4. Quantum Beilins<strong>on</strong> Algebras<br />

Finally, we apply our results to quantum Beilins<strong>on</strong> algebras.<br />

Definiti<strong>on</strong> 10. [1], [6] Let A be a graded Frobenius algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −l.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum Beilins<strong>on</strong> algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> A is defined by<br />

⎛<br />

⎞<br />

A 0 A 1 · · · A l−1<br />

0 A<br />

∇A := ⎜ 0 · · · A l−2<br />

⎝ .<br />

⎟<br />

. . .. . ⎠ .<br />

0 0 · · · A 0<br />

Theorem 11. [3] Let A, A ′ be graded Frobenius algebras. Then<br />

GrMod A ∼ = GrMod A ′<br />

⇐⇒ ∇A ∼ = ∇A ′ as algebras.<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, classifying graded Frobenius algebras up to graded Morita equivalence<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as classifying quantum Beilins<strong>on</strong> algebras up to isomorphism.<br />

Quasi-Fano algebras introduced by Minamoto [2] are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nice classes <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite<br />

dimensi<strong>on</strong>al algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global dimensi<strong>on</strong>s (see [3], [6] for details).<br />

Definiti<strong>on</strong> 12. A finite dimensi<strong>on</strong>al algebra R is called quasi-Fano <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> n if<br />

gldim R = n <strong>and</strong> w −1<br />

R<br />

is a quasi-ample two-sided tilting complex, that is, hi ((w −1<br />

R )⊗L R j ) = 0<br />

for all i ≠ 0 <strong>and</strong> all j ≥ 0, where w R := R ∗ [−n].<br />

Let A be a graded Frobenius Koszul algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −d. Assume that<br />

A has <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert series<br />

H A (t) := ∑ i<br />

(dim k A i )t i = (1 + t) d<br />

<strong>and</strong> that A ! is noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Then ∇A is a quasi-Fano algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> d − 1.<br />

In general, it is not easy to check if two algebras given as path algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with<br />

relati<strong>on</strong>s are isomorphic as algebras by c<strong>on</strong>structing an explicit algebra isomorphism. On<br />

–220–


<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, it is much easier to check if two graded algebras T (V )/I <strong>and</strong> T (V ′ )/I ′<br />

generated in degree 1 over k are isomorphic as graded algebras since any such isomorphism<br />

is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> vector space isomorphism V → V ′ . In this sense, our main result is<br />

useful for <str<strong>on</strong>g>the</str<strong>on</strong>g> classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2,<br />

namely, quantum Beilins<strong>on</strong> algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2.<br />

Fix <str<strong>on</strong>g>the</str<strong>on</strong>g> Beilins<strong>on</strong> quiver<br />

Q = •<br />

x 1<br />

y 1<br />

z 1<br />

x 2<br />

y 2<br />

•<br />

z 2<br />

•<br />

<strong>and</strong> let<br />

B = kQ/I, B ′ = kQ/I ′ , B ′′ = kQ/I ′′<br />

be path algebras with relati<strong>on</strong>s<br />

I = (αy 1 z 2 + z 1 y 2 , βz 1 x 2 + x 1 z 2 , γx 1 y 2 + y 1 x 2 , x 1 x 2 , y 1 y 2 , z 1 z 2 )<br />

I ′ = (x 1 x 2 + α ′ y 1 z 2 , y 1 y 2 + β ′ z 1 x 2 , z 1 z 2 + γ ′ x 1 y 2 , z 1 y 2 , x 1 z 2 , y 1 x 2 )<br />

I ′′ = (α ′′ y 1 z 2 + z 1 y 2 , β ′′ z 1 x 2 + x 1 z 2 , β ′′ x 1 y 2 + y 1 x 2 , x 1 x 2 + y 1 z 2 , y 1 y 2 , z 1 z 2 )<br />

where αβγ ≠ 0, 1, α ′ β ′ γ ′ ≠ 0, 1, α ′′ (β ′′ ) 2 ≠ 0, 1. Then B, B ′ , B ′′ are <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum Beilins<strong>on</strong><br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> co-geometric Frobenius Koszul algebras A, A ′ , A ′′ <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3<br />

A = A ! (E, σ) = k〈x, y, z〉/(αyz + zy, βzx + xz, γxy + yx, x 2 , y 2 , z 2 ),<br />

A ′ = A ! (E ′ , σ ′ ) = k〈x, y, z〉/(x 2 + α ′ yz, y 2 + β ′ zx, z 2 + γ ′ xy, zy, xz, yx),<br />

A ′′ = A ! (E ′′ , σ ′′ ) = k〈x, y, z〉/(α ′′ yz + zy, β ′′ zx + xz, β ′′ xy + yx, x 2 + yz, y 2 , z 2 ),<br />

where E is a triangle <strong>and</strong> σ ∈ Aut k E stabilizes each comp<strong>on</strong>ent, E ′ is a triangle <strong>and</strong><br />

σ ′ ∈ Aut k E ′ circulates three comp<strong>on</strong>ents, <strong>and</strong> E ′′ is a uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a line <strong>and</strong> a c<strong>on</strong>ic meeting<br />

at two points <strong>and</strong> σ ′′ ∈ Aut k E ′′ stabilizes each comp<strong>on</strong>ent <strong>and</strong> two intersecti<strong>on</strong> points.<br />

Since<br />

E ∼ = E ′ ≇ E ′′ ,<br />

we see that<br />

B ≇ B ′′ , B ′ ≇ B ′′ .<br />

Moreover, it is not difficult to compute<br />

A = A ! (E, νσ 3 )<br />

= k〈x, y, z〉/(αβγyz + zy, αβγzx + xz, αβγxy + yx, x 2 , y 2 , z 2 ),<br />

A ′ = A ! (E ′ , ν ′ (σ ′ ) 3 )<br />

= k〈x, y, z〉/(yz + α ′ β ′ γ ′ zy, zx + α ′ β ′ γ ′ xz, xy + α ′ β ′ γ ′ yx, x 2 , y 2 , z 2 ).<br />

Since A, A ′ are skew exterior algebras, it is easy to check when <str<strong>on</strong>g>the</str<strong>on</strong>g>y are isomorphic as<br />

graded algebras. Using <str<strong>on</strong>g>the</str<strong>on</strong>g>orems, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) B ∼ = B ′ as algebras.<br />

(2) GrMod A ∼ = GrMod A ′ .<br />

(3) A ∼ = A ′ as graded algebras.<br />

(4) α ′ β ′ γ ′ = (αβγ) ±1 .<br />

–221–


References<br />

[1] X. W. Chen, Graded self-injective algebras “are” trivial extensi<strong>on</strong>s, J. Algebra 322 (2009), 2601–2606.<br />

[2] H. Minamoto, Ampleness <str<strong>on</strong>g>of</str<strong>on</strong>g> two-sided tilting complexes, Int. Math. Res. Not., to appear.<br />

[3] H. Minamoto <strong>and</strong> I. Mori, The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> AS-Gorenstein algebras, Adv. Math., 226 (2011), 4061–<br />

4095.<br />

[4] I. Mori, Co-point modules over Koszul algebras, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. 74 (2006), 639–656.<br />

[5] , Co-point modules over Frobenius Koszul algebras, Comm. Algebra 36 (2008), 4659–4677.<br />

[6] , B-cosntrcuti<strong>on</strong> <strong>and</strong> C-c<strong>on</strong>structi<strong>on</strong>, preprint.<br />

[7] I. Mori <strong>and</strong> K. Ueyama, Graded Morita equivalences for geometric AS-regular algebras, preprint.<br />

[8] S. P. Smith, Some finite dimensi<strong>on</strong>al algebras related to elliptic curves, in “Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algebras <strong>and</strong> related topics” (Mexico City, 1994) CMS C<strong>on</strong>f. Proc. 19, Amer. Math. Soc., Providence,<br />

RI (1996), 315–348.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Science <strong>and</strong> Technology<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <strong>and</strong> Technology<br />

Shizuoka University<br />

836 Ohya, Suruga-ku, Shizuoka 422-8529 JAPAN<br />

E-mail address: f5144004@ipc.shizuoka.ac.jp<br />

–222–


APPLICATIONS OF FINITE FROBENIUS RINGS TO THE<br />

FOUNDATIONS OF ALGEBRAIC CODING THEORY<br />

JAY A. WOOD<br />

Abstract. This article addresses some foundati<strong>on</strong>al issues that arise in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

linear codes defined over finite rings. Linear coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is particularly well-behaved<br />

over finite Frobenius rings. This follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> character module <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

finite ring is free if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> ring is Frobenius.<br />

Key Words: Frobenius ring, generating character, linear code, extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

MacWilliams identities.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 16P10, 94B05; Sec<strong>on</strong>dary 16D50,<br />

16L60.<br />

1. Introducti<strong>on</strong><br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory lies a very practical problem: how to ensure <str<strong>on</strong>g>the</str<strong>on</strong>g> integrity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a message being transmitted over a noisy channel? Even children are aware <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

problem: <str<strong>on</strong>g>the</str<strong>on</strong>g> game <str<strong>on</strong>g>of</str<strong>on</strong>g> “teleph<strong>on</strong>e” has <strong>on</strong>e child whisper a sentence to a sec<strong>on</strong>d child,<br />

who in turn whispers it to a third child, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> whispering c<strong>on</strong>tinues. The last child says<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sentence out loud. Usually <str<strong>on</strong>g>the</str<strong>on</strong>g> children burst out laughing, because <str<strong>on</strong>g>the</str<strong>on</strong>g> final sentence<br />

bears little resemblance to <str<strong>on</strong>g>the</str<strong>on</strong>g> original.<br />

Using electr<strong>on</strong>ic devices, messages are transmitted over many different noisy channels:<br />

copper wires, fiber optic cables, saving to storage devices, <strong>and</strong> radio, cell ph<strong>on</strong>e, <strong>and</strong><br />

deep-space communicati<strong>on</strong>s. In all cases, it is desirable that <str<strong>on</strong>g>the</str<strong>on</strong>g> message being received<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> message being sent. The st<strong>and</strong>ard approach to error-correcti<strong>on</strong> is to<br />

incorporate redundancy in a cleverly designed way (encoding), so that transmissi<strong>on</strong> errors<br />

can be efficiently detected <strong>and</strong> corrected (decoding).<br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics has played an essential role in coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, with <str<strong>on</strong>g>the</str<strong>on</strong>g> seminal work <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Claude Shann<strong>on</strong> [27] leading <str<strong>on</strong>g>the</str<strong>on</strong>g> way. Many c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> encoding <strong>and</strong> decoding<br />

schemes make str<strong>on</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> algebra <strong>and</strong> combinatorics, with linear algebra over finite<br />

fields <str<strong>on</strong>g>of</str<strong>on</strong>g>ten playing a prominent part. The rich interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> ideas from multiple areas has<br />

led to discoveries that are <str<strong>on</strong>g>of</str<strong>on</strong>g> independent ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical interest.<br />

This article addresses some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> topics that lie at <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, specifically topics related to linear codes defined over finite rings.<br />

This article is not an encyclopedic survey; <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical questi<strong>on</strong>s addressed are <strong>on</strong>es<br />

in which <str<strong>on</strong>g>the</str<strong>on</strong>g> author has been actively involved <strong>and</strong> are <strong>on</strong>es that apply to broad classes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite rings, not just to specific examples.<br />

Prepared for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong>s <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> Japan, 2011.<br />

Supported in part by a sabbatical leave from Western Michigan University.<br />

This paper is in final form <strong>and</strong> no versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it will be submitted for publicati<strong>on</strong> elsewhere.<br />

–223–


The topics covered are ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic analogs <str<strong>on</strong>g>of</str<strong>on</strong>g> results that go back to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early<br />

leaders <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field, Florence Jessie MacWilliams (1917–1990). MacWilliams worked for<br />

many years at Bell Labs, <strong>and</strong> she received her doctorate from Harvard University in 1962,<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Andrew Gleas<strong>on</strong> [22]. She is <str<strong>on</strong>g>the</str<strong>on</strong>g> co-author, with Neil Sloane, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most famous textbook <strong>on</strong> coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [23].<br />

Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> topics discussed in this article are found in <str<strong>on</strong>g>the</str<strong>on</strong>g> doctoral dissertati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

MacWilliams [22]. One topic is <str<strong>on</strong>g>the</str<strong>on</strong>g> famous MacWilliams identities, which relate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Hamming weight enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code to that <str<strong>on</strong>g>of</str<strong>on</strong>g> its dual code. The MacWilliams<br />

identities have wide applicati<strong>on</strong>, especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes (linear codes that<br />

equal <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dual code). The MacWilliams identities are discussed in Secti<strong>on</strong> 4, <strong>and</strong> some<br />

interesting aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes due originally to Gleas<strong>on</strong> are discussed in Secti<strong>on</strong> 6.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r topic to be discussed, also found in MacWilliams’s dissertati<strong>on</strong>, is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MacWilliams extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. This <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is not as well known as <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams<br />

identities, but it underlies <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> linear codes. It is easy to show that<br />

a m<strong>on</strong>omial transformati<strong>on</strong> defines an isomorphism between linear codes that preserves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. What is not so obvious is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse: whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r every isomorphism<br />

between linear codes that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight must extend to a m<strong>on</strong>omial<br />

transformati<strong>on</strong>. MacWilliams proves that this is indeed <str<strong>on</strong>g>the</str<strong>on</strong>g> case over finite fields. The<br />

MacWilliams extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is a coding-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic analog <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orems<br />

for isometries <str<strong>on</strong>g>of</str<strong>on</strong>g> bilinear forms <strong>and</strong> quadratic forms due to Witt [30] <strong>and</strong> Arf [1].<br />

This article describes, in large part, how <str<strong>on</strong>g>the</str<strong>on</strong>g>se two results, <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, generalize to linear codes defined over finite<br />

rings. The punch line is that both <str<strong>on</strong>g>the</str<strong>on</strong>g>orems are valid for linear codes defined over finite<br />

Frobenius rings. Moreover, Frobenius rings are <str<strong>on</strong>g>the</str<strong>on</strong>g> largest class <str<strong>on</strong>g>of</str<strong>on</strong>g> finite rings over which<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is valid.<br />

Why finite Frobenius rings? Over finite fields, both <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem have pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s that make use <str<strong>on</strong>g>of</str<strong>on</strong>g> character <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. In<br />

particular, finite fields F have <str<strong>on</strong>g>the</str<strong>on</strong>g> simple, but crucial, properties that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir characters<br />

̂F form a vector space over F <strong>and</strong> ̂F ∼ = F as vector spaces. The same pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s will work<br />

over a finite ring R, provided R has <str<strong>on</strong>g>the</str<strong>on</strong>g> same crucial property that ̂R ∼ = R as <strong>on</strong>esided<br />

modules. It turns out that finite Frobenius rings are exactly characterized by this<br />

property ([14, Theorem 1] <strong>and</strong>, independently, [31, Theorem 3.10]). The character <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings is discussed in Secti<strong>on</strong> 2, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is discussed<br />

in Secti<strong>on</strong> 5. Some st<strong>and</strong>ard terminology from algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is discussed in<br />

Secti<strong>on</strong> 3.<br />

While much <str<strong>on</strong>g>of</str<strong>on</strong>g> this article is drawn from earlier works, especially [31] <strong>and</strong> [33], some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> generating characters for Frobenius rings in Secti<strong>on</strong> 2 has not appeared<br />

before. The new results are marked with a dagger (†).<br />

Acknowledgments. I thank <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong>s <strong>and</strong> Representati<strong>on</strong><br />

<strong>Theory</strong> Japan, 2011, especially Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Kunio Yamagata, for inviting me to<br />

address <str<strong>on</strong>g>the</str<strong>on</strong>g> symposium <strong>and</strong> prepare this article, <strong>and</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir generous support. I thank<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Yun Fan for suggesting subsecti<strong>on</strong> 2.4 <strong>and</strong> Steven T. Dougherty for bringing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> a generating character to my attenti<strong>on</strong> (answered by Corollary<br />

15). I also thank M. Klemm, H. L. Claasen, <strong>and</strong> R. W. Goldbach for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir early work<br />

–224–


<strong>on</strong> generating characters, which helped me develop my approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> subject. Finally,<br />

I thank my wife Elizabeth S. Moore for her encouragement <strong>and</strong> support.<br />

2. Finite Frobenius <strong>Ring</strong>s<br />

In an effort to make this article somewhat self-c<strong>on</strong>tained, both for ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>orists <strong>and</strong><br />

coding-<str<strong>on</strong>g>the</str<strong>on</strong>g>orists, I include some background material <strong>on</strong> finite Frobenius rings. The goal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to show that finite Frobenius rings are characterized by having free<br />

character modules. Useful references for this material are Lam’s books [19] <strong>and</strong> [20].<br />

All rings will be associative with 1, <strong>and</strong> all modules will be unitary. While left modules<br />

will appear most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are comparable results for right modules. Almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rings used in this article will be finite, so that some definiti<strong>on</strong>s that are more broadly<br />

applicable may be simplified in <str<strong>on</strong>g>the</str<strong>on</strong>g> finite c<strong>on</strong>text.<br />

2.1. Definiti<strong>on</strong>s. Given a finite ring R, its (Jacobs<strong>on</strong>) radical rad(R) is <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R; rad(R) is itself a two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R. A left R-module<br />

is simple if it has no n<strong>on</strong>zero proper submodules. Given a left R-module M, its socle<br />

soc(M) is <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> simple submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> M. A ring R has a left socle soc( R R)<br />

<strong>and</strong> a right socle soc(R R ) (from viewing R as a left R-module or as a right R-module);<br />

both socles are two-sided ideals, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y may not be equal. (They are equal if R is<br />

semiprime, which, for finite rings, is equivalent to being semisimple.)<br />

Let R be a finite ring. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient ring R/ rad(R) is semi-simple <strong>and</strong> is isomorphic<br />

to a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix rings over finite fields (Wedderburn-Artin):<br />

(2.1) R/ rad(R) ∼ =<br />

k⊕<br />

M mi (F qi ),<br />

where each q i is a prime power; F q denotes a finite field <str<strong>on</strong>g>of</str<strong>on</strong>g> order q, q a prime power, <strong>and</strong><br />

M m (F q ) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over F q .<br />

Definiti<strong>on</strong> 1 ([19, Theorem 16.14]). A finite ring R is Frobenius if R (R/ rad(R)) ∼ =<br />

soc( R R) <strong>and</strong> (R/ rad(R)) R<br />

∼ = soc(RR ).<br />

This definiti<strong>on</strong> applies more generally to Artinian rings. It is a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>old [15,<br />

Theorem 2] that, for finite rings, <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphisms (left or right) is needed.<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix rings M mi (F qi ) in (2.1) has a simple left module T i := M mi ×1(F qi ),<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> all m i × 1 matrices over F qi , under left matrix multiplicati<strong>on</strong>. From (2.1) it<br />

follows that, as left R-modules, we have an isomorphism<br />

i=1<br />

(2.2) R(R/ rad(R)) ∼ =<br />

k⊕<br />

m i T i .<br />

It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> T i , i = 1, . . . , k, form a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> simple left R-modules, up to<br />

isomorphism.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> left socle <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-module is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> simple left R-modules, it can be<br />

expressed as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> T i . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> left socle <str<strong>on</strong>g>of</str<strong>on</strong>g> R itself admits such an<br />

expressi<strong>on</strong>:<br />

–225–<br />

i=1


(2.3) soc( R R) ∼ =<br />

k⊕<br />

s i T i ,<br />

for some n<strong>on</strong>negative integers s 1 , . . . , s k . Thus a finite ring is Frobenius if <strong>and</strong> <strong>on</strong>ly if<br />

m i = s i for all i = 1, . . . , k.<br />

2.2. Characters. Let G be a finite abelian group. In this article, a character is a group<br />

homomorphism ϖ : G → Q/Z. The set <str<strong>on</strong>g>of</str<strong>on</strong>g> all characters <str<strong>on</strong>g>of</str<strong>on</strong>g> G forms a group called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

character group Ĝ := Hom Z(G, Q/Z). It is well-known that |Ĝ| = |G|. (Characters<br />

with values in <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicative group <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>zero complex numbers can be obtained<br />

by composing with <str<strong>on</strong>g>the</str<strong>on</strong>g> complex exp<strong>on</strong>ential functi<strong>on</strong> a ↦→ exp(2πia), a ∈ Q/Z; this<br />

multiplicative form <str<strong>on</strong>g>of</str<strong>on</strong>g> characters will be needed in later secti<strong>on</strong>s.)<br />

If R is a finite ring <strong>and</strong> A is a finite left R-module, <str<strong>on</strong>g>the</str<strong>on</strong>g>n  c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> characters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive group <str<strong>on</strong>g>of</str<strong>on</strong>g> A; Â is naturally a right R-module via <str<strong>on</strong>g>the</str<strong>on</strong>g> scalar multiplicati<strong>on</strong><br />

(ϖr)(a) := ϖ(ra), for ϖ ∈ Â, r ∈ R, <strong>and</strong> a ∈ A. The module  will be called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

character module <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Similarly, if B is a right R-module, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ̂B is naturally a left<br />

R-module.<br />

Example 2. Let F p be a finite field <str<strong>on</strong>g>of</str<strong>on</strong>g> prime order. Define ϑ p : F p → Q/Z by ϑ p (a) = a/p,<br />

where we view F p as Z/pZ. Then ϑ p is a character <str<strong>on</strong>g>of</str<strong>on</strong>g> F p , <strong>and</strong> every o<str<strong>on</strong>g>the</str<strong>on</strong>g>r character ϖ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

F p has <str<strong>on</strong>g>the</str<strong>on</strong>g> form ϖ = aϑ p , for some a ∈ F p (because ̂F p is a <strong>on</strong>e-dimensi<strong>on</strong>al vector space<br />

over F p ).<br />

Let F q be a finite field with q = p l for some prime p. Let tr q/p : F q → F p be <str<strong>on</strong>g>the</str<strong>on</strong>g> trace.<br />

Define ϑ q : F q → Q/Z by ϑ q = ϑ p ◦ tr q/p . Then ϑ q is a character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q , <strong>and</strong> every o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

character ϖ <str<strong>on</strong>g>of</str<strong>on</strong>g> F q has <str<strong>on</strong>g>the</str<strong>on</strong>g> form ϖ = aϑ q , for some a ∈ F q .<br />

Example 3. Let R = M m (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over a finite field F q , <strong>and</strong><br />

let A = M m×k (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-module c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> all m × k matrices over F q . Then<br />

 ∼ = M k×m (F q ) as right R-modules. Indeed, given a matrix Q ∈ M k×m (F q ), define a<br />

character ϖ Q <str<strong>on</strong>g>of</str<strong>on</strong>g> A by ϖ Q (P ) = ϑ q (tr(QP )), for P ∈ A, where tr is <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix trace <strong>and</strong><br />

ϑ q is <str<strong>on</strong>g>the</str<strong>on</strong>g> character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q defined in Example 2. The map M k×m (F q ) → Â, Q ↦→ ϖ Q is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desired isomorphism.<br />

Given a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finite left R-modules 0 → A → B → C → 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

an induced short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> right R-modules<br />

(2.4) 0 → Ĉ → ̂B → Â → 0.<br />

In particular, if we define <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator ( ̂B : A) := {ϖ ∈ ̂B : ϖ(A) = 0}, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

(2.5) ( ̂B : A) ∼ = Ĉ <strong>and</strong> |( ̂B : A)| = |C| = |B|/|A|.<br />

2.3. Generating Characters. In <str<strong>on</strong>g>the</str<strong>on</strong>g> special case that A = R, R is both a left <strong>and</strong><br />

a right R-module. A character ϖ ∈ ̂R induces both a left <strong>and</strong> a right homomorphism<br />

R → ̂R (r ↦→ rϖ is a left homomorphism, while r ↦→ ϖr is a right homomorphism). The<br />

character ϖ is called a left (resp., right) generating character if r ↦→ rϖ (resp., r ↦→ ϖr) is<br />

a module isomorphism. In this situati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> character ϖ generates <str<strong>on</strong>g>the</str<strong>on</strong>g> left (resp., right)<br />

i=1<br />

–226–


R-module ̂R. Because | ̂R| = |R|, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se homomorphisms is an isomorphism if <strong>and</strong><br />

<strong>on</strong>ly if it is injective if <strong>and</strong> <strong>on</strong>ly if it is surjective.<br />

Remark 4. The phrase generating character (“erzeugenden Charakter”) is due to Klemm<br />

[17]. Claasen <strong>and</strong> Goldbach [6] used <str<strong>on</strong>g>the</str<strong>on</strong>g> adjective admissible to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> same phenomen<strong>on</strong>,<br />

although <str<strong>on</strong>g>the</str<strong>on</strong>g>ir use <str<strong>on</strong>g>of</str<strong>on</strong>g> left <strong>and</strong> right is <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse <str<strong>on</strong>g>of</str<strong>on</strong>g> ours.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>orem below relates generating characters <strong>and</strong> finite Frobenius rings. While <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem is over ten years old, we will give a new pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Theorem 5 ([14, Theorem 1], [31, Theorem 3.10]). Let R be a finite ring. Then <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following are equivalent:<br />

(1) R is Frobenius;<br />

(2) R admits a left generating character, i.e., ̂R is a free left R-module;<br />

(3) R admits a right generating character, i.e., ̂R is a free right R-module.<br />

Moreover, when <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s are satisfied, every left generating character is also a<br />

right generating character, <strong>and</strong> vice versa.<br />

Example 6. Here are several examples <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings <strong>and</strong> generating characters<br />

(when easy to describe).<br />

(1) Finite field F q with generating character ϑ q <str<strong>on</strong>g>of</str<strong>on</strong>g> Example 2. Note that ϑ p is injective,<br />

but that for q > p, ker ϑ q = ker tr q/p is a n<strong>on</strong>zero F p -linear subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> F q . However,<br />

ker ϑ q is not an F q -linear subspace. (Compare with Propositi<strong>on</strong> 7 below.)<br />

(2) Integer residue ring Z/nZ with generating character ϑ n defined by ϑ n (a) = a/n,<br />

for a ∈ Z/nZ.<br />

(3) Finite chain ring R; i.e., a finite ring all <str<strong>on</strong>g>of</str<strong>on</strong>g> whose left ideals form a chain under<br />

inclusi<strong>on</strong>. See Corollary 15 for informati<strong>on</strong> about a generating character.<br />

(4) If R 1 , . . . , R n are Frobenius with generating characters ϱ 1 , . . . , ϱ n , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>ir direct<br />

sum R = ⊕R i is Frobenius with generating character ϱ = ∑ ϱ i . C<strong>on</strong>versely, if<br />

R = ⊕R i is Frobenius with generating character ϱ, <str<strong>on</strong>g>the</str<strong>on</strong>g>n each R i is Frobenius, with<br />

generating character ϱ i = ϱ ◦ ι i , where ι i : R i → R is <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong>; ϱ = ∑ ϱ i .<br />

(5) If R is Frobenius with generating character ϱ, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix ring M m (R) is<br />

Frobenius with generating character ϱ ◦ tr, where tr is <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix trace.<br />

(6) If R is Frobenius with generating character ϱ <strong>and</strong> G is any finite group, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> group ring R[G] is Frobenius with generating character ϱ ◦ pr e , where pr e :<br />

R[G] → R is <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong> that associates to every element a = ∑ a g g ∈ R[G]<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient a e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> identity element <str<strong>on</strong>g>of</str<strong>on</strong>g> G.<br />

In preparati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5, we prove several propositi<strong>on</strong>s c<strong>on</strong>cerning<br />

generating characters.<br />

Propositi<strong>on</strong> 7 ([6, Corollary 3.6]). Let R be a finite ring. A character ϖ <str<strong>on</strong>g>of</str<strong>on</strong>g> R is a left<br />

(resp., right) generating character if <strong>and</strong> <strong>on</strong>ly if ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left (resp.,<br />

right) ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <strong>and</strong> | ̂R| = |R|, ϖ is a left generating character if <strong>and</strong> <strong>on</strong>ly if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism f : R → ̂R, r ↦→ rϖ, is injective. Then r ∈ ker f if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

–227–


principal ideal Rr ⊂ ker ϖ. Thus, ker f = 0 if <strong>and</strong> <strong>on</strong>ly if ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left<br />

ideals. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> for right generating characters is similar.<br />

□<br />

Propositi<strong>on</strong> 8 ([31, Theorem 4.3]). A character ϱ <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite ring R is a left generating<br />

character if <strong>and</strong> <strong>on</strong>ly if it is a right generating character.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Suppose ϱ is a left generating character, <strong>and</strong> suppose that I ⊂ ker ϱ is a right<br />

ideal. Then for every r ∈ R, Ir ⊂ ker ϱ, so that I ⊂ ker(rϱ), for all r ∈ R. But<br />

every character <str<strong>on</strong>g>of</str<strong>on</strong>g> R is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form rϱ, because ϱ is a left generating character. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

annihilator ( ̂R : I) = ̂R, <strong>and</strong> it follows from (2.5) that I = 0. By Propositi<strong>on</strong> 7, ϱ is a<br />

right generating character.<br />

□<br />

Propositi<strong>on</strong> 9 ([33, Propositi<strong>on</strong> 3.3]). Let A be a finite left R-module. Then soc(Â) ∼ =<br />

(A/ rad(R)A)̂.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. There is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> left R-modules<br />

0 → rad(R)A → A → A/ rad(R)A → 0.<br />

Taking character modules, as in (2.4), yields<br />

0 → (A/ rad(R)A)̂ → Â → (rad(R)A)̂ → 0.<br />

Because A/ rad(R)A is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> simple modules, <str<strong>on</strong>g>the</str<strong>on</strong>g> same is true for (A/ rad(R)A)̂ ∼ =<br />

(Â : rad(R)A). Thus (Â : rad(R)A) ⊂ soc(Â).<br />

C<strong>on</strong>versely, soc(Â) rad(R) = 0, because <str<strong>on</strong>g>the</str<strong>on</strong>g> radical annihilates simple modules [7, Exercise<br />

25.4]. Thus soc(Â) ⊂ (Â : rad(R)A), <strong>and</strong> we have <str<strong>on</strong>g>the</str<strong>on</strong>g> equality soc(Â) = (Â :<br />

rad(R)A). Now remember that (Â : rad(R)A) ∼ = (A/ rad(R)A)̂.<br />

□<br />

Using Propositi<strong>on</strong> 7 as a model, we extend <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generating character to<br />

modules. Let A be a finite left (resp., right) R-module. A character ϖ <str<strong>on</strong>g>of</str<strong>on</strong>g> A is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> A if ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left (resp., right) R-submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

Lemma 10 (†). Let A be a finite left R-module, <strong>and</strong> let B ⊂ A be a submodule. If A<br />

admits a left generating character, <str<strong>on</strong>g>the</str<strong>on</strong>g>n B admits a left generating character.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Simply restrict a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A to B. Any submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> B inside <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

kernel <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> will also be a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A inside <str<strong>on</strong>g>the</str<strong>on</strong>g> kernel <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

generating character.<br />

□<br />

Lemma 11 (†). Let R be any finite ring. Define ϱ : ̂R → Q/Z by ϱ(ϖ) = ϖ(1), evaluati<strong>on</strong><br />

at 1 ∈ R, for ϖ ∈ ̂R. Then ϱ is a left <strong>and</strong> right generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂R.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Suppose ϖ 0 ≠ 0 has <str<strong>on</strong>g>the</str<strong>on</strong>g> property that Rϖ 0 ⊂ ker ϱ. This means that for every<br />

r ∈ R, 0 = ϱ(rϖ 0 ) = (rϖ 0 )(1) = ϖ 0 (r), so that ϖ 0 = 0. Thus ϱ is a left generating<br />

character by definiti<strong>on</strong>. Similarly for ϱ being a right generating character.<br />

□<br />

Propositi<strong>on</strong> 12 (†). Let A be a finite left R-module. Then A admits a left generating<br />

character if <strong>and</strong> <strong>on</strong>ly if A can be embedded in ̂R.<br />

–228–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If A embeds in ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A admits a generating character, by Lemmas 10 <strong>and</strong> 11.<br />

C<strong>on</strong>versely, let ϱ be a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. We use ϱ to define f : A → ̂R, as<br />

follows. For a ∈ A, define f(a) ∈ ̂R by f(a)(r) = ϱ(ra), r ∈ R. It is easy to check that<br />

f(a) is indeed in ̂R, i.e., that f(a) is a character <str<strong>on</strong>g>of</str<strong>on</strong>g> R. It is also easy to verify that f is<br />

a left R-module homomorphism from A to ̂R. If a ∈ ker f, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ϱ(ra) = 0 for all r ∈ R.<br />

Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-submodule Ra ⊂ ker ϱ. Because ϱ is a generating character, we c<strong>on</strong>clude<br />

that Ra = 0. Thus a = 0, <strong>and</strong> f is injective.<br />

□<br />

When A = R, Propositi<strong>on</strong> 12 is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a ring. Indeed, if R embeds into ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R <strong>and</strong> ̂R are isomorphic as <strong>on</strong>e-sided modules,<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g>y have <str<strong>on</strong>g>the</str<strong>on</strong>g> same number <str<strong>on</strong>g>of</str<strong>on</strong>g> elements.<br />

Theorem 13 (†). Let R = M m (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over a finite field F q .<br />

Let A = M m×k (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> all m × k matrices over F q . Then A admits a<br />

left generating character if <strong>and</strong> <strong>on</strong>ly if m ≥ k.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If m ≥ k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, by appending m − k columns <str<strong>on</strong>g>of</str<strong>on</strong>g> zeros, A can be embedded inside<br />

R as a left ideal. By Example 3 <strong>and</strong> Lemma 10, A admits a generating character.<br />

C<strong>on</strong>versely, suppose m < k. We will show that no character <str<strong>on</strong>g>of</str<strong>on</strong>g> A is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. To that end, let ϖ be any character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. By Example 3, ϖ has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form ϖ Q for some k × m matrix Q over F q . Because k > m, <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q are linearly<br />

dependent over F q . Let P be any n<strong>on</strong>zero matrix over F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size m × k such that P Q = 0.<br />

Such a P exists because <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q are linearly dependent: use <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

n<strong>on</strong>zero dependency relati<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> entries for a row <str<strong>on</strong>g>of</str<strong>on</strong>g> P . We claim that <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>zero<br />

left submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A generated by P is c<strong>on</strong>tained in ker ϖ Q . Indeed, for any B ∈ R,<br />

ϖ Q (BP ) = ϑ q (tr(Q(BP ))) = ϑ q (tr((BP )Q)) = ϑ q (tr(B(P Q))) = 0, using P Q = 0 <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> well-known property tr(BC) = tr(CB) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix trace. Thus, no character <str<strong>on</strong>g>of</str<strong>on</strong>g> A<br />

is a generating character.<br />

□<br />

Propositi<strong>on</strong> 14 (†). Suppose A is a finite left R-module. Then A admits a left generating<br />

character if <strong>and</strong> <strong>on</strong>ly if soc(A) admits a left generating character.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If A admits a generating character, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so does soc(A), by Lemma 10.<br />

C<strong>on</strong>versely, suppose soc(A) admits a generating character ϑ. Utilizing <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact<br />

sequence (2.4), let ϱ be any extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ϑ to a character <str<strong>on</strong>g>of</str<strong>on</strong>g> A . We claim that ϱ is<br />

a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. To that end, suppose B is a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A such that<br />

B ⊂ ker ϱ. Then soc(B) ⊂ soc(A) ∩ ker ϱ = soc(A) ∩ ker ϑ, because ϱ is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ϑ. But ϑ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> soc(A), so soc(B) = 0. Since B is a finite module,<br />

we c<strong>on</strong>clude that B = 0. Thus ϱ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

□<br />

Corollary 15 (†). Let A be a finite left R-module. Suppose soc(A) admits a left generating<br />

character ϑ. Then any extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ϑ to a character <str<strong>on</strong>g>of</str<strong>on</strong>g> A is a left generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

We now (finally) turn to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5.<br />

(†) Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5. Statements (2) <strong>and</strong> (3) are equivalent by Propositi<strong>on</strong> 8. We next<br />

show that (3) implies (1).<br />

–229–


By Example 3, <str<strong>on</strong>g>the</str<strong>on</strong>g> right R-module (R/ rad(R)) R equals <str<strong>on</strong>g>the</str<strong>on</strong>g> character module <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

left R-module R (R/ rad(R)). By Propositi<strong>on</strong> 9 applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-module A = R R, we<br />

have ( R (R/ rad(R)))̂ ∼ = soc( ̂R R ) ∼ = soc(R R ), because ̂R is assumed to be right free. We<br />

thus have an isomorphism (R/ rad(R)) R<br />

∼ = soc(RR ) <str<strong>on</strong>g>of</str<strong>on</strong>g> right R-modules. One can ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

repeat <str<strong>on</strong>g>the</str<strong>on</strong>g> argument for a left isomorphism (using (2)) or appeal to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>old<br />

[15, Theorem 2] menti<strong>on</strong>ed after Definiti<strong>on</strong> 1.<br />

Now assume (1). Referring to (2.1), we see that R being Frobenius implies that soc(R)<br />

is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form M mi (F qi ). By Theorem 13 <strong>and</strong> summing, soc(R)<br />

admits a left generating character. By Propositi<strong>on</strong>s 7 <strong>and</strong> 14, R itself admits a left<br />

generating character. Thus (2) holds.<br />

□<br />

2.4. Frobenius Algebras. In this subsecti<strong>on</strong> I want to point out <str<strong>on</strong>g>the</str<strong>on</strong>g> similarity between<br />

a general (not necessarily finite) Frobenius algebra <strong>and</strong> a finite Frobenius ring. I thank<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Yun Fan for suggesting this short expositi<strong>on</strong>.<br />

Definiti<strong>on</strong> 16. A finite-dimensi<strong>on</strong>al algebra A over a field F is a Frobenius algebra if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a linear functi<strong>on</strong>al λ : A → F such that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

It is apparent that <str<strong>on</strong>g>the</str<strong>on</strong>g> structure functi<strong>on</strong>al λ plays a role for a Frobenius algebra<br />

comparable to that played by a left generating character ϱ <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite Frobenius ring. As<br />

<strong>on</strong>e might expect, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between λ <strong>and</strong> ϱ is even str<strong>on</strong>ger when <strong>on</strong>e c<strong>on</strong>siders<br />

a finite Frobenius algebra. Recall that every finite field F q admits a generating character<br />

ϑ q , by Example 2.<br />

Theorem 17 (†). Let R be a Frobenius algebra over a finite field F q , with structure<br />

functi<strong>on</strong>al λ : R → F q . Then R is a finite Frobenius ring with left generating character<br />

ϱ = ϑ q ◦ λ.<br />

C<strong>on</strong>versely, suppose R is a finite-dimensi<strong>on</strong>al algebra over a finite field F q <strong>and</strong> that R<br />

is a Frobenius ring with generating character ϱ. Then R is a Frobenius algebra, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists a structure functi<strong>on</strong>al λ : R → F q such that ϱ = ϑ q ◦ λ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Both R ∗ := Hom Fq (R, F q ) <strong>and</strong> ̂R = Hom Z (R, Q/Z) are (R, R)-bimodules satisfying<br />

|R ∗ | = | ̂R| = |R|. A generating character ϑ q <str<strong>on</strong>g>of</str<strong>on</strong>g> F q induces a bimodule homomorphism<br />

f : R ∗ → ̂R via λ ↦→ ϑ q ◦ λ. We claim that f is injective. To that end, suppose λ ∈ ker f.<br />

Then ϑ q ◦λ = 0, so that λ(R) ⊂ ker ϑ q . Note that λ(R) is an F q -vector subspace c<strong>on</strong>tained<br />

in ker ϑ q ⊂ F q . Because ϑ q is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q , λ(R) = 0, by Propositi<strong>on</strong> 7.<br />

Thus λ = 0, <strong>and</strong> f is injective. Because |R ∗ | = | ̂R|, f is in fact a bimodule isomorphism.<br />

We next claim that <str<strong>on</strong>g>the</str<strong>on</strong>g> structure functi<strong>on</strong>als in R ∗ corresp<strong>on</strong>d under f to <str<strong>on</strong>g>the</str<strong>on</strong>g> generating<br />

characters in ̂R. That is, if ϖ = f(λ), where λ ∈ R ∗ <strong>and</strong> ϖ ∈ ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n λ satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong> that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R if <strong>and</strong> <strong>on</strong>ly if ϖ is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> R (i.e., ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R).<br />

Suppose ϖ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> suppose that I is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R with<br />

I ⊂ ker λ. Since ϖ = ϑ q ◦ λ, we also have I ⊂ ker ϖ. Because ϖ is a generating character,<br />

Propositi<strong>on</strong> 7 implies I = 0, as desired.<br />

C<strong>on</strong>versely, suppose λ satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> suppose that I is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R with I ⊂ ker ϖ. Then λ(I) is an F q -linear<br />

–230–


subspace inside ker ϑ q ⊂ F q . Because ϑ q is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q , we have λ(I) = 0,<br />

i.e., I ⊂ ker λ. By <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> λ, we c<strong>on</strong>clude that I = 0, as desired.<br />

□<br />

Remark 18. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 17 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Morita duality functors<br />

∗ <strong>and</strong> ̂ when R is a finite-dimensi<strong>on</strong>al algebra over a finite field F (cf., [31, Remark 3.12]).<br />

For a finite R-module M, observe that M ∗ := Hom F (M, F) ∼ = Hom R (M, R ∗ ) <strong>and</strong> ̂M =<br />

Hom Z (M, Q/Z) ∼ = Hom R (M, ̂R).<br />

3. The Language <str<strong>on</strong>g>of</str<strong>on</strong>g> Algebraic Coding <strong>Theory</strong><br />

3.1. Background <strong>on</strong> Error-Correcting Codes. Error-correcting codes provide a way<br />

to protect messages from corrupti<strong>on</strong> during transmissi<strong>on</strong> (or storage). This is accomplished<br />

by adding redundancies in such a way that, with high probability, <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

message can be recovered from <str<strong>on</strong>g>the</str<strong>on</strong>g> received message.<br />

Let us be a little more precise. Let I be a finite set (<str<strong>on</strong>g>of</str<strong>on</strong>g> “informati<strong>on</strong>”) which will<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> possible messages that can be transmitted. An example: numbers from 0 to 63<br />

representing gray scales <str<strong>on</strong>g>of</str<strong>on</strong>g> a photograph. Let A be ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r finite set (<str<strong>on</strong>g>the</str<strong>on</strong>g> “alphabet”);<br />

A = {0, 1} is a typical example. An encoding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> set I is an injecti<strong>on</strong><br />

f : I → A n for some n. The image f(I) is a code in A n .<br />

For a given message x ∈ I, <str<strong>on</strong>g>the</str<strong>on</strong>g> string f(x) is transmitted across a channel (which could<br />

be copper wire, fiber optic cable, saving to a storage device, or transmissi<strong>on</strong> by radio or<br />

cell ph<strong>on</strong>e). During <str<strong>on</strong>g>the</str<strong>on</strong>g> transmissi<strong>on</strong> process, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entries in <str<strong>on</strong>g>the</str<strong>on</strong>g> string f(x) might<br />

be corrupted, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> string y ∈ A n that is received may be different from <str<strong>on</strong>g>the</str<strong>on</strong>g> string<br />

f(x) that was originally sent.<br />

The challenge is this: for a given channel, to choose an encoding f in such a way that<br />

it is possible, with high probability, to recover <str<strong>on</strong>g>the</str<strong>on</strong>g> original message x knowing <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corrupted received message y (<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> encoding). The process <str<strong>on</strong>g>of</str<strong>on</strong>g> recovering x<br />

is called decoding.<br />

The seminal <str<strong>on</strong>g>the</str<strong>on</strong>g>orem that launched <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is due to Claude Shann<strong>on</strong><br />

[27]. Paraphrasing, it says: up to a limit determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> channel, it is always possible<br />

to find an encoding which will decode with as high a probability as <strong>on</strong>e desires, provided<br />

<strong>on</strong>e takes <str<strong>on</strong>g>the</str<strong>on</strong>g> encoding length n sufficiently large. Shann<strong>on</strong>’s pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is not c<strong>on</strong>structive;<br />

it does not build an encoding, nor does it describe how to decode. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> research<br />

in coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory since Shann<strong>on</strong>’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem has been devoted to finding good codes <strong>and</strong><br />

developing decoding algorithms for <str<strong>on</strong>g>the</str<strong>on</strong>g>m. Good references for background <strong>on</strong> coding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory are [16] <strong>and</strong> [23].<br />

3.2. Algebraic Coding <strong>Theory</strong>. Researchers have more tools at <str<strong>on</strong>g>the</str<strong>on</strong>g>ir disposal in c<strong>on</strong>structing<br />

codes if <str<strong>on</strong>g>the</str<strong>on</strong>g>y assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> codes C ⊂ A n are equipped<br />

with algebraic structures. The first important case is to assume that A is a finite field<br />

<strong>and</strong> that C ⊂ A n is a linear subspace.<br />

Definiti<strong>on</strong> 19. Let F be a finite field. A linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over F is a linear subspace<br />

C ⊂ F n . The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code is traditi<strong>on</strong>ally denoted by k = dim F C.<br />

Given two vectors x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ F n , <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hamming distance<br />

d(x, y) = |{i : x i ≠ y i }| is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>s where <str<strong>on</strong>g>the</str<strong>on</strong>g> vectors differ. The Hamming<br />

–231–


weight wt(x) = d(x, 0) <str<strong>on</strong>g>of</str<strong>on</strong>g> a vector x ∈ F n equals <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>s where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vector is n<strong>on</strong>zero. Note that d(x, y) = wt(x − y); d is symmetric <strong>and</strong> satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle<br />

inequality. The minimum distance <str<strong>on</strong>g>of</str<strong>on</strong>g> a code C ⊂ F n is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest value d C <str<strong>on</strong>g>of</str<strong>on</strong>g> d(x, y)<br />

for x ≠ y, x, y ∈ C. When C is a linear code, d C equals <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest value <str<strong>on</strong>g>of</str<strong>on</strong>g> wt(x) for<br />

x ≠ 0, x ∈ C.<br />

The minimum distance <str<strong>on</strong>g>of</str<strong>on</strong>g> a code C is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> code’s error-correcting capability.<br />

Let B(x, r) = {y ∈ F n : d(x, y) ≤ r} be <str<strong>on</strong>g>the</str<strong>on</strong>g> ball in F n centered at x <str<strong>on</strong>g>of</str<strong>on</strong>g> radius r. Set<br />

r 0 = [(d C − 1)/2], <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest integer less than or equal to (d C − 1)/2. Then all <str<strong>on</strong>g>the</str<strong>on</strong>g> balls<br />

B(x, r 0 ) for x ∈ C are disjoint. Suppose x ∈ C is transmitted <strong>and</strong> y ∈ F n is received.<br />

Decode y to <str<strong>on</strong>g>the</str<strong>on</strong>g> nearest element in <str<strong>on</strong>g>the</str<strong>on</strong>g> code C (<strong>and</strong> flip a coin if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a tie). If at<br />

most r 0 entries <str<strong>on</strong>g>of</str<strong>on</strong>g> x are corrupted in <str<strong>on</strong>g>the</str<strong>on</strong>g> transmissi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n this method always decodes<br />

correctly. We say that C corrects r 0 errors. The larger d C is, <str<strong>on</strong>g>the</str<strong>on</strong>g> more errors that can be<br />

corrected.<br />

3.3. Weight Enumerators. It is useful to keep track <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> weights <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> elements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a code C. The Hamming weight enumerator W C (X, Y ) is a polynomial (generating<br />

functi<strong>on</strong>) defined by<br />

W C (X, Y ) = ∑ x∈C<br />

X n−wt(x) Y wt(x) =<br />

n∑<br />

A i X n−i Y i ,<br />

i=0<br />

where A i is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> weight i in C. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> zero vector has weight 0.<br />

In a linear code, A 0 = 1, <strong>and</strong> A i = 0 for 0 < i < d C .<br />

Define an F-valued inner product <strong>on</strong> F n by<br />

x · y =<br />

n∑<br />

x i y i , x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ F n .<br />

i=1<br />

Associated to every linear code C ⊂ F n is its dual code C ⊥ :<br />

C ⊥ = {y ∈ F n : x · y = 0, x ∈ C}.<br />

If k = dim C, <str<strong>on</strong>g>the</str<strong>on</strong>g>n dim C ⊥ = n − k.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most famous results in algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory relates <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight<br />

enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code C to that <str<strong>on</strong>g>of</str<strong>on</strong>g> its dual code C ⊥ : <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities,<br />

which is <str<strong>on</strong>g>the</str<strong>on</strong>g> subject <str<strong>on</strong>g>of</str<strong>on</strong>g> Secti<strong>on</strong> 4.<br />

Theorem 20 (MacWilliams Identities). Let C be a linear code in F n q . Then<br />

W C (X, Y ) = 1<br />

|C ⊥ | W C⊥(X + (q − 1)Y, X − Y ).<br />

Of special interest are self-dual codes. A linear code C is self-orthog<strong>on</strong>al if C ⊂ C ⊥ ; C<br />

is self-dual if C = C ⊥ . Note that a self-dual code C <str<strong>on</strong>g>of</str<strong>on</strong>g> length n <strong>and</strong> dimensi<strong>on</strong> k satisfies<br />

n = 2k, so that n must be even.<br />

–232–


3.4. Linear Codes over <strong>Ring</strong>s. While <str<strong>on</strong>g>the</str<strong>on</strong>g>re had been some early work <strong>on</strong> linear codes<br />

defined over <str<strong>on</strong>g>the</str<strong>on</strong>g> rings Z/kZ, a major breakthrough came in 1994 with <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [13].<br />

(There was similar, independent work in [25].) It had been noticed that <str<strong>on</strong>g>the</str<strong>on</strong>g>re were<br />

two families <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear binary codes that behaved as if <str<strong>on</strong>g>the</str<strong>on</strong>g>y were duals; <str<strong>on</strong>g>the</str<strong>on</strong>g>ir weight<br />

enumerators satisfied <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities. This phenomen<strong>on</strong> was explained in [13].<br />

The authors discovered two families <str<strong>on</strong>g>of</str<strong>on</strong>g> linear codes over Z/4Z that are duals <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir weight enumerators satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities. In additi<strong>on</strong>,<br />

by using a so-called Gray map g : Z/4Z → F 2 2 defined by g(0) = 00, g(1) = 01, g(2) = 11,<br />

<strong>and</strong> g(3) = 10 (g is not a homomorphism), <str<strong>on</strong>g>the</str<strong>on</strong>g> authors showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> two families <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

linear codes over Z/4Z are mapped to <str<strong>on</strong>g>the</str<strong>on</strong>g> original families <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear codes over F 2 .<br />

The paper [13] launched an interest in linear codes defined over rings that c<strong>on</strong>tinues to<br />

this day.<br />

Definiti<strong>on</strong> 21. Let R be a finite ring. A left (right) linear code C <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R is<br />

a left (right) R-submodule C ⊂ R n .<br />

It will be useful in Secti<strong>on</strong> 5 to be even more general <strong>and</strong> to define linear codes over<br />

modules. These ideas were introduced first by Nechaev <strong>and</strong> his colloborators [18].<br />

Definiti<strong>on</strong> 22. Let R be a finite ring, <strong>and</strong> let A (for alphabet) be a finite left R-module.<br />

A left linear code C over A <str<strong>on</strong>g>of</str<strong>on</strong>g> length n is a left R-submodule C ⊂ A n .<br />

The Hamming weight is defined in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as for fields. For x = (x 1 , . . . , x n ) ∈ R n<br />

(or A n ), define wt(x) = |{i : x i ≠ 0}|, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>zero entries in <str<strong>on</strong>g>the</str<strong>on</strong>g> vector x.<br />

4. The MacWilliams Identities<br />

In this secti<strong>on</strong>, we present a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities that is valid over any<br />

finite Frobenius ring. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, which dates to [31, Theorem 8.3], is essentially <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

as <strong>on</strong>e due to Gleas<strong>on</strong> found in [3, §1.12]. While <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities hold in even<br />

more general settings (see <str<strong>on</strong>g>the</str<strong>on</strong>g> later secti<strong>on</strong>s in [33], for example), <str<strong>on</strong>g>the</str<strong>on</strong>g> setting <str<strong>on</strong>g>of</str<strong>on</strong>g> linear<br />

codes over a finite Frobenius ring will show clearly <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> characters in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Let R be a finite ring. As we did earlier for fields, we define a dot product <strong>on</strong> R n by<br />

n∑<br />

x · y = x i y i , x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ R n .<br />

i=1<br />

For a left linear code C ⊂ R n , define <str<strong>on</strong>g>the</str<strong>on</strong>g> right annihilator r(C) by r(C) = {y ∈ R n :<br />

x·y = 0, x ∈ C}. The right annihilator will play <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual code C ⊥ . (Because R<br />

may be n<strong>on</strong>-commutative, <strong>on</strong>e must choose between a left <strong>and</strong> a right annihilator.) The<br />

Hamming weight enumerator W C (X, Y ) <str<strong>on</strong>g>of</str<strong>on</strong>g> a left linear code C is defined exactly as for<br />

fields.<br />

Theorem 23 (MacWilliams Identities). Let R be a finite Frobenius ring, <strong>and</strong> let C ⊂ R n<br />

be a left linear code. Then<br />

W C (X, Y ) = 1<br />

|r(C)| W r(C)(X + (|R| − 1)Y, X − Y ).<br />

–233–


4.1. Fourier Transform. Gleas<strong>on</strong>’s pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities uses <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier<br />

transform <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong> formula, which we describe in this subsecti<strong>on</strong>. Let<br />

(G, +) be a finite abelian group.<br />

Throughout this secti<strong>on</strong>, we will use <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicative form <str<strong>on</strong>g>of</str<strong>on</strong>g> characters; that is,<br />

characters are group homomorphisms π : (G, +) → (C × , ·) from a finite abelian group to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicative group <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>zero complex numbers. The set Ĝ <str<strong>on</strong>g>of</str<strong>on</strong>g> all characters <str<strong>on</strong>g>of</str<strong>on</strong>g> G<br />

forms an abelian group under pointwise multiplicati<strong>on</strong>. The following list <str<strong>on</strong>g>of</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

characters is well-known <strong>and</strong> presented without pro<str<strong>on</strong>g>of</str<strong>on</strong>g> (see [26] or [28]).<br />

Lemma 24. Characters <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite abelian group G satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties.<br />

(1) |Ĝ| = |G|;<br />

(2) (G 1 × G 2 )̂ ∼ = Ĝ1 × Ĝ2;<br />

(3) ∑ {<br />

x∈G π(x) = |G|, π = 1,<br />

0, π ≠ 1;<br />

(4) ∑ {<br />

π∈Ĝ π(x) = |G|, x = 0,<br />

0, x ≠ 0;<br />

(5) The characters form a linearly independent subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vector space <str<strong>on</strong>g>of</str<strong>on</strong>g> complexvalued<br />

functi<strong>on</strong>s <strong>on</strong> G. (In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> characters form a basis.)<br />

□<br />

Let V be a vector space over <str<strong>on</strong>g>the</str<strong>on</strong>g> complex numbers. For any functi<strong>on</strong> f : G → V , define<br />

its Fourier transform ˆf : Ĝ → V by<br />

ˆf(π) = ∑ x∈G<br />

π(x)f(x), π ∈ Ĝ.<br />

Given a subgroup H ⊂ G, define <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator (Ĝ : H) = {π ∈ Ĝ : π(H) = 1}. As we<br />

saw in (2.5), |(Ĝ : H)| = |G|/|H|.<br />

The Poiss<strong>on</strong> summati<strong>on</strong> formula relates <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a functi<strong>on</strong> over a subgroup to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> its Fourier transform over <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subgroup. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is an exercise.<br />

Propositi<strong>on</strong> 25 (Poiss<strong>on</strong> Summati<strong>on</strong> Formula). Let H ⊂ G be a subgroup, <strong>and</strong> let<br />

f : G → V be any functi<strong>on</strong> from G to a complex vector space V . Then<br />

∑<br />

1 ∑<br />

f(x) =<br />

|(Ĝ : H)|<br />

x∈H<br />

π∈(Ĝ:H) ˆf(π).<br />

The next technical result describes <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier transform <str<strong>on</strong>g>of</str<strong>on</strong>g> a functi<strong>on</strong> that is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e variable. Again, <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is an exercise for <str<strong>on</strong>g>the</str<strong>on</strong>g> reader.<br />

Lemma 26. Suppose V is a commutative algebra over <str<strong>on</strong>g>the</str<strong>on</strong>g> complex numbers, <strong>and</strong> suppose<br />

f i : G → V , i = 1, . . . , n, are functi<strong>on</strong>s from G to V . Let f : G n → V be defined by<br />

f(x 1 , . . . , x n ) = ∏ n<br />

i=1 f i(x i ). Then<br />

n∏<br />

ˆf(π 1 , . . . , π n ) = ˆf i (π i ).<br />

–234–<br />

i=1


4.2. Gleas<strong>on</strong>’s Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 23. Given a left linear code C ⊂ R n , we apply <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong><br />

formula with G = R n , H = C, <strong>and</strong> V = C[X, Y ], <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring over C in two<br />

indeterminates. Define f i : R → C[X, Y ] by f i (x i ) = X 1−wt(xi) Y wt(xi) , x i ∈ R, where<br />

wt(r) = 0 for r = 0, <strong>and</strong> wt(r) = 1 for r ≠ 0 in R. Let f : R n → C[X, Y ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> f i ; i.e.,<br />

n∏<br />

f(x 1 , . . . , x n ) = X 1−wt(xi) Y wt(xi) = X n−wt(x) Y wt(x) ,<br />

i=1<br />

where x = (x 1 , . . . , x n ) ∈ R n . We recognize that ∑ x∈H<br />

f(x), <str<strong>on</strong>g>the</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong><br />

summati<strong>on</strong> formula, is simply <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight enumerator W C (X, Y ).<br />

To begin to simplify <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong> formula, we must calculate<br />

ˆf. By Lemma 26, we first calculate ˆf i .<br />

ˆf i (π i ) = ∑ π i (a)f i (a) = ∑ π i (a)X 1−wt(a) Y wt(a) = X + ∑ π i (a)Y<br />

a∈R<br />

a∈R<br />

a≠0<br />

{<br />

X + (|R| − 1)Y, π i = 1,<br />

=<br />

X − Y, π i ≠ 1.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first line, <strong>on</strong>e evaluates <str<strong>on</strong>g>the</str<strong>on</strong>g> case a = 0 versus <str<strong>on</strong>g>the</str<strong>on</strong>g> cases where a ≠ 0. In<br />

going to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d line, <strong>on</strong>e uses Lemma 24. Using Lemma 26, we see that<br />

ˆf(π) = (X + (|R| − 1)Y ) n−wt(π) (X − Y ) wt(π) ,<br />

where π = (π 1 , . . . , π n ) ∈ ̂R n <strong>and</strong> wt(π) counts <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> π i such that π i ≠ 1.<br />

The last task is to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> character-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic annihilator (Ĝ : H) = ( ̂R n : C) with<br />

r(C), which is where R being Frobenius enters <str<strong>on</strong>g>the</str<strong>on</strong>g> picture. Let ρ be a generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R. We use ρ to define a homomorphism β : R → ̂R. For r ∈ R, <str<strong>on</strong>g>the</str<strong>on</strong>g> character β(r) ∈ ̂R<br />

has <str<strong>on</strong>g>the</str<strong>on</strong>g> form β(r)(s) = (rρ)(s) = ρ(sr) for s ∈ R. One can verify that β : R → ̂R is an<br />

isomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> left R-modules. In particular, wt(r) = wt(β(r)).<br />

Extend β to an isomorphism β : R n → ̂R n <str<strong>on</strong>g>of</str<strong>on</strong>g> left R-modules, via β(x)(y) = ρ(y · x), for<br />

x, y ∈ R n . Again, wt(x) = wt(β(x)). For x ∈ R n , when is β(x) ∈ ( ̂R n : C)? This occurs<br />

when β(x)(C) = 1; that is, when ρ(C · x) = 1. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> left ideal C · x <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R is c<strong>on</strong>tained in ker ρ. Because ρ is a generating character, Propositi<strong>on</strong> 7 implies that<br />

C · x = 0. Thus x ∈ r(C). The c<strong>on</strong>verse is obvious. Thus r(C) corresp<strong>on</strong>ds to ( ̂R n : C)<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism β.<br />

The right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong> formula now simplifies as follows:<br />

1 ∑<br />

1 ∑<br />

ˆf(π) =<br />

|(Ĝ : H)|<br />

(X + (|R| − 1)Y ) n−wt(x) (X − Y ) wt(x)<br />

|r(C)|<br />

π∈(Ĝ:H) x∈r(C)<br />

as desired.<br />

= 1<br />

|r(C)| W r(C)(X + (|R| − 1)Y, X − Y ),<br />

–235–<br />


5. The Extensi<strong>on</strong> Problem<br />

In this secti<strong>on</strong>, we will discuss <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> problem, which originated from underst<strong>and</strong>ing<br />

equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> codes. The main result is that a finite ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong><br />

property for linear codes with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> ring is<br />

Frobenius.<br />

5.1. Equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> Codes. When should two linear codes be c<strong>on</strong>sidered to be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same? That is, what should it mean for two linear codes to be equivalent? There are<br />

two (related) approaches to this questi<strong>on</strong>: via m<strong>on</strong>omial transformati<strong>on</strong>s <strong>and</strong> via weightpreserving<br />

isomorphisms.<br />

Definiti<strong>on</strong> 27. Let R be a finite ring. A (left) m<strong>on</strong>omial transformati<strong>on</strong> T : R n → R n<br />

is a left R-linear homomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

T (x 1 , . . . , x n ) = (x σ(1) u 1 , . . . , x σ(n) u n ), (x 1 , . . . , x n ) ∈ R n ,<br />

for some permutati<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g> {1, 2, . . . , n} <strong>and</strong> units u 1 , . . . , u n <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Two left linear codes C 1 , C 2 ⊂ R n are equivalent if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a m<strong>on</strong>omial transformati<strong>on</strong><br />

T : R n → R n such that T (C 1 ) = C 2 .<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r possible definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> linear codes C 1 , C 2 ⊂ R n is this: <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists an R-linear isomorphism f : C 1 → C 2 that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, i.e.,<br />

wt(f(x)) = wt(x), for all x ∈ C 1 . The next lemma shows that equivalence using m<strong>on</strong>omial<br />

transformati<strong>on</strong>s implies equivalence using a Hamming weight-preserving isomorphism.<br />

Lemma 28. If T : R n → R n is a m<strong>on</strong>omial transformati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n T preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight: wt(T (x)) = wt(x), for all x ∈ R n . If linear codes C 1 , C 2 ⊂ R n are equivalent<br />

via a m<strong>on</strong>omial transformati<strong>on</strong> T , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> f <str<strong>on</strong>g>of</str<strong>on</strong>g> T to C 1 is an R-linear isomorphism<br />

C 1 → C 2 that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For any r ∈ R <strong>and</strong> any unit u ∈ R, r = 0 if <strong>and</strong> <strong>on</strong>ly if ru = 0. The result follows<br />

easily from this.<br />

□<br />

Does <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse hold? This is an extensi<strong>on</strong> problem: given C 1 , C 2 ⊂ R n <strong>and</strong> an<br />

R-linear isomorphism f : C 1 → C 2 that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, does f extend to<br />

a m<strong>on</strong>omial transformati<strong>on</strong> T : R n → R n ? We will phrase this in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a property.<br />

Definiti<strong>on</strong> 29. Let R be a finite ring. The ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property (EP) with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if, whenever two left linear codes C 1 , C 2 ⊂ R n admit an<br />

R-linear isomorphism f : C 1 → C 2 that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, it follows that f<br />

extends to a m<strong>on</strong>omial transformati<strong>on</strong> T : R n → R n .<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> two noti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence coincide precisely when <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> property. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r important <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> MacWilliams is that finite fields have<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property [21], [22].<br />

Theorem 30 (MacWilliams). Finite fields have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Hamming weight.<br />

–236–


O<str<strong>on</strong>g>the</str<strong>on</strong>g>r pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s that finite fields have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight have been given by Bogart, Goldberg, <strong>and</strong> Gord<strong>on</strong> [5] <strong>and</strong> by Ward <strong>and</strong> Wood<br />

[29]. We will not prove <str<strong>on</strong>g>the</str<strong>on</strong>g> finite field case separately, because it is a special case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>:<br />

Theorem 31. Let R be a finite ring. Then R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if <strong>and</strong> <strong>on</strong>ly if R is Frobenius.<br />

One directi<strong>on</strong>, that finite Frobenius rings have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, first appeared in<br />

[31, Theorem 6.3]. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> (which will be given in subsecti<strong>on</strong> 5.2) is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear<br />

independence <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <strong>and</strong> is modeled <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> in [29] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> finite field case. A<br />

combinatorial pro<str<strong>on</strong>g>of</str<strong>on</strong>g> appears in work <str<strong>on</strong>g>of</str<strong>on</strong>g> Greferath <strong>and</strong> Schmidt [12]. More generally yet,<br />

Greferath, Nechaev, <strong>and</strong> Wisbauer have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> character module <str<strong>on</strong>g>of</str<strong>on</strong>g> any finite<br />

ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weights [11]. Ideas<br />

from this latter paper greatly influenced <str<strong>on</strong>g>the</str<strong>on</strong>g> work presented in subsecti<strong>on</strong> 5.4.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r directi<strong>on</strong>, that <strong>on</strong>ly finite Frobenius rings have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, first<br />

appeared in [32]. That paper carried out a strategy due to Dinh <strong>and</strong> López-Permouth [8].<br />

Additi<strong>on</strong>al relevant material appeared in [33].<br />

The rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> will be devoted to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 31.<br />

5.2. Frobenius is Sufficient. In this subsecti<strong>on</strong> we prove half <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 31, that a<br />

finite Frobenius ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, following <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment in [31, Theorem<br />

6.3].<br />

Assume C 1 , C 2 ⊂ R n are two left linear codes, <strong>and</strong> assume f : C 1 → C 2 is an R-linear<br />

isomorphism that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. We want to show that f extends to<br />

a m<strong>on</strong>omial transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R n . The core idea is to express <str<strong>on</strong>g>the</str<strong>on</strong>g> weight-preservati<strong>on</strong><br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> f as an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <str<strong>on</strong>g>of</str<strong>on</strong>g> C 1 <strong>and</strong> to use <str<strong>on</strong>g>the</str<strong>on</strong>g> linear independence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

characters to match up terms.<br />

Let pr 1 , . . . , pr n : R n → R be <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate projecti<strong>on</strong>s, so that pr i (x 1 , . . . , x n ) = x i ,<br />

(x 1 , . . . , x n ) ∈ R n . Let λ 1 , . . . , λ n denote <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pr 1 , . . . , pr n to C 1 ⊂ R n .<br />

Similarly, let µ 1 , . . . , µ n : C 1 → R be given by µ i = pr i ◦f. Then λ 1 , . . . , λ n , µ 1 , . . . , µ n ∈<br />

Hom R (C 1 , R) are left R-linear functi<strong>on</strong>als <strong>on</strong> C 1 . It will suffice to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a permutati<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g> {1, . . . , n} <strong>and</strong> units u 1 , . . . , u n <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that µ i = λ σ(i) u i , for<br />

i = 1, . . . , n.<br />

For any x ∈ C 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> x is given by wt(x) = ∑ n<br />

i=1 wt(λ i(x)), while<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> f(x) is given by wt(f(x)) = ∑ n<br />

i=1 wt(µ i(x)). Because f preserves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, we have<br />

n∑<br />

n∑<br />

(5.1)<br />

wt(λ i (x)) = wt(µ i (x)).<br />

i=1<br />

Using Lemma 24, observe that 1 − wt(r) = (1/|R|) ∑ π∈ ̂R<br />

π(r), for any r ∈ R. Apply this<br />

observati<strong>on</strong> to (5.1) <strong>and</strong> simplify:<br />

n∑ ∑<br />

n∑ ∑<br />

(5.2)<br />

π(λ i (x)) = π(µ i (x)), x ∈ C 1 .<br />

i=1 π∈ ̂R<br />

i=1<br />

i=1 π∈ ̂R<br />

–237–


Because R is assumed to be Frobenius, R admits a (left) generating character ρ. Every<br />

character π ∈ ̂R thus has <str<strong>on</strong>g>the</str<strong>on</strong>g> form π = aρ, for some a ∈ R. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> scalar<br />

multiplicati<strong>on</strong> means that π(r) = (aρ)(r) = ρ(ra), for r ∈ R. Use this to simplify (5.2)<br />

(<strong>and</strong> use different indices <strong>on</strong> each side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting equati<strong>on</strong>):<br />

n∑ ∑<br />

n∑ ∑<br />

(5.3)<br />

ρ ◦ (λ i a) = ρ ◦ (µ j b).<br />

i=1 a∈R<br />

j=1 b∈R<br />

This is an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <str<strong>on</strong>g>of</str<strong>on</strong>g> C 1 . Because characters are linearly independent, we<br />

can match up terms from <str<strong>on</strong>g>the</str<strong>on</strong>g> left <strong>and</strong> right sides <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3). In order to get unit multiples,<br />

some care must be taken.<br />

Because C 1 is a left R-module, Hom R (C 1 , R) is a right R-module. Define a preorder ≼<br />

<strong>on</strong> Hom R (C 1 , R) by λ ≼ µ if λ = µr for some r ∈ R. By a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Bass [4, Lemma 6.4],<br />

λ ≼ µ <strong>and</strong> µ ≼ λ imply µ = λu for some unit u <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> linear functi<strong>on</strong>als λ 1 , . . . , λ n , µ 1 , . . . , µ n (a finite list), choose <strong>on</strong>e that is<br />

maximal in <str<strong>on</strong>g>the</str<strong>on</strong>g> preorder ≼. Without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality, assume µ 1 is maximal in ≼. (This<br />

means: if µ 1 ≼ λ for some λ, <str<strong>on</strong>g>the</str<strong>on</strong>g>n µ 1 = λu for some unit u <str<strong>on</strong>g>of</str<strong>on</strong>g> R.) In (5.3), c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

term <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side with j = 1 <strong>and</strong> b = 1. By linear independence <str<strong>on</strong>g>of</str<strong>on</strong>g> characters, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists i 1 , 1 ≤ i 1 ≤ n, <strong>and</strong> a ∈ R such that ρ ◦ (λ i1 a) = ρ ◦ µ 1 . This equati<strong>on</strong> implies<br />

that im(µ 1 − λ i1 a) ⊂ ker ρ. But im(µ 1 − λ i1 a) is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> ρ is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> R. By Propositi<strong>on</strong> 7, im(µ 1 − λ i1 a) = 0, so that µ 1 = λ i1 a. This means that<br />

µ 1 ≼ λ i1 . Because µ 1 was chosen to be maximal, we have µ 1 = λ i1 u 1 , for some unit u 1 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R. Begin to define a permutati<strong>on</strong> σ by σ(1) = i 1 .<br />

By a reindexing argument, all <str<strong>on</strong>g>the</str<strong>on</strong>g> terms <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3) with i = i 1 match <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

terms <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3) with j = 1. That is, ∑ a∈R ρ ◦ (λ i 1<br />

a) = ∑ b∈R ρ ◦ (µ 1b).<br />

Subtract <str<strong>on</strong>g>the</str<strong>on</strong>g>se sums from (5.3), <str<strong>on</strong>g>the</str<strong>on</strong>g>reby reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer summati<strong>on</strong>s by<br />

<strong>on</strong>e. Proceed by inducti<strong>on</strong>, building a permutati<strong>on</strong> σ <strong>and</strong> finding units u 1 , . . . , u n <str<strong>on</strong>g>of</str<strong>on</strong>g> R,<br />

as desired.<br />

5.3. Reformulating <str<strong>on</strong>g>the</str<strong>on</strong>g> Problem. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that being a finite Frobenius ring is sufficient<br />

for having <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight was based<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem over finite fields that used <str<strong>on</strong>g>the</str<strong>on</strong>g> linear independence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> characters [29]. In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that Frobenius is necessary will make use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> approach for proving <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem due to Bogart, et al. [5]. This requires a<br />

reformulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> problem.<br />

Every left linear code C ⊂ R n can be viewed as <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> map C →<br />

R n . More generally, every left linear code is <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-linear homomorphism<br />

Λ : M → R n , for some finite left R-module M. By composing with <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

projecti<strong>on</strong>s pr i , <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism Λ can be expressed as an n-tuple Λ = (λ 1 , . . . , λ n ),<br />

where each λ i ∈ Hom R (M, R). The λ i will be called <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate functi<strong>on</strong>als <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

linear code.<br />

Remark 32. It is typical in coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to present a linear code C ⊂ R n by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a generator matrix G. The matrix G has entries from R, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> columns <str<strong>on</strong>g>of</str<strong>on</strong>g> G<br />

equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length n <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> code C, <strong>and</strong> (most importantly) <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> G generate C as<br />

a left submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> R n .<br />

–238–


The descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code via coordinate functi<strong>on</strong>als is essentially equivalent to<br />

that using generator matrices. If <strong>on</strong>e has coordinate functi<strong>on</strong>als λ 1 , . . . , λ n , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong>e can<br />

produce a generator matrix G by choosing a set v 1 , . . . , v k <str<strong>on</strong>g>of</str<strong>on</strong>g> generators for C as a left<br />

module over R <strong>and</strong> taking as <str<strong>on</strong>g>the</str<strong>on</strong>g> (i, j)-entry <str<strong>on</strong>g>of</str<strong>on</strong>g> G <str<strong>on</strong>g>the</str<strong>on</strong>g> value λ j (v i ). C<strong>on</strong>versely, given<br />

a generator matrix, its columns define coordinate functi<strong>on</strong>als. Thus, using coordinate<br />

functi<strong>on</strong>als is a “basis-free” approach to generator matrices. This idea goes back to [2].<br />

We are interested in linear codes up to equivalence. For a linear code given by Λ =<br />

(λ 1 , . . . , λ n ) : M → R n , <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate functi<strong>on</strong>als λ 1 , . . . , λ n is irrelevant, as<br />

is replacing any λ i with λ i u i , for some unit u i <str<strong>on</strong>g>of</str<strong>on</strong>g> R. We want to encode this informati<strong>on</strong><br />

systematically. Let U be <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> units <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R. The group U acts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> module<br />

Hom R (M, R) by right scalar multiplicati<strong>on</strong>; let O ♯ denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> this acti<strong>on</strong>:<br />

O ♯ = Hom R (M, R)/U. Then a linear code M → R n , up to equivalence, is specified by<br />

choosing n elements <str<strong>on</strong>g>of</str<strong>on</strong>g> O ♯ (counting with multiplicities). This choice can be encoded<br />

by specifying a functi<strong>on</strong> (a multiplicity functi<strong>on</strong>) η : O ♯ → N, <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>negative integers,<br />

where η(λ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> times λ (or a unit multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> λ) appears as a coordinate<br />

functi<strong>on</strong>al. The length n <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code is given by ∑ λ∈O<br />

η(λ).<br />

♯<br />

In summary, linear codes M → R n (for fixed M, but any n), up to equivalence, are<br />

given by multiplicity functi<strong>on</strong>s η : O ♯ → N. Denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all such functi<strong>on</strong>s by<br />

F (O ♯ , N) = {η : O ♯ → N}, <strong>and</strong> define F 0 (O ♯ , N) = {η ∈ F (O ♯ , N) : η(0) = 0}.<br />

We are also interested in <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> codewords <strong>and</strong> in how to describe<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity functi<strong>on</strong> η. Fix a multiplicity functi<strong>on</strong><br />

η : O ♯ → N. Define W η : M → N by<br />

(5.4) W η (x) = ∑ λ∈O ♯ wt(λ(x)) η(λ), x ∈ M.<br />

Then W η (x) equals <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> codeword given by x ∈ M. Notice that<br />

W η (0) = 0.<br />

Lemma 33. For x ∈ M <strong>and</strong> unit u ∈ U, W η (ux) = W η (x).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. This follows immediately from <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that wt(ur) = wt(r) for r ∈ R <strong>and</strong> unit<br />

u ∈ U; that is, ur = 0 if <strong>and</strong> <strong>on</strong>ly if r = 0.<br />

□<br />

Because M is a left R-module, <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> units U acts <strong>on</strong> M <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left. Let O denote<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> this acti<strong>on</strong>. Observe that Lemma 33 implies that W η is a well-defined<br />

functi<strong>on</strong> from O to N. Let F (O, N) denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all functi<strong>on</strong>s from O to N, <strong>and</strong><br />

define F 0 (O, N) = {w ∈ F (O, N) : w(0) = 0}. Now define W : F (O ♯ , N) → F 0 (O, N) by<br />

η ∈ F (O ♯ , N) ↦→ W η ∈ F 0 (O, N). (Remember that W η (0) = 0.) Thus W associates to<br />

every linear code, up to equivalence, a listing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weights <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> codewords.<br />

The discussi<strong>on</strong> to this point (plus a technical argument <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> zero functi<strong>on</strong>al,<br />

which is relegated to subsecti<strong>on</strong> 5.5) proves <str<strong>on</strong>g>the</str<strong>on</strong>g> following reformulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong><br />

property.<br />

Theorem 34. A finite ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong><br />

W : F 0 (O ♯ , N) → F 0 (O, N), η ↦→ W η ,<br />

–239–


is injective for every finite left R-module M.<br />

Observe that <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> spaces F 0 (O ♯ , N), F 0 (O, N) are additive m<strong>on</strong>oids <strong>and</strong> that<br />

W : F 0 (O ♯ , N) → F 0 (O, N) is additive, i.e., a m<strong>on</strong>oid homomorphism. If we tensor<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> rati<strong>on</strong>al numbers Q (which means we formally allow coordinate functi<strong>on</strong>als to<br />

have multiplicities equal to any rati<strong>on</strong>al number), it is straight-forward to generalize<br />

Theorem 34 to:<br />

Theorem 35. A finite ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> Q-linear homomorphism<br />

W : F 0 (O ♯ , Q) → F 0 (O, Q), η ↦→ W η ,<br />

is injective for every finite left R-module M.<br />

Theorem 35 is very c<strong>on</strong>venient because <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> spaces F 0 (O ♯ , Q), F 0 (O, Q) are Q-<br />

vector spaces, <strong>and</strong> we can use <str<strong>on</strong>g>the</str<strong>on</strong>g> tools <str<strong>on</strong>g>of</str<strong>on</strong>g> linear algebra over fields to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> linear<br />

homomorphism W . In fact, in [5], Bogart et al. prove <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem over finite<br />

fields by showing that <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix representing W is invertible. The form <str<strong>on</strong>g>of</str<strong>on</strong>g> that matrix<br />

is apparent from (5.4). Greferath generalized that approach in [10].<br />

For use in <str<strong>on</strong>g>the</str<strong>on</strong>g> next subsecti<strong>on</strong>, we will need a versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 35 for linear codes<br />

defined over an alphabet A. Let A be a finite left R-module, with automorphism group<br />

Aut(A). A left R-linear code in A n is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-linear homomorphism<br />

M → A n , for some finite left R-module M. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate functi<strong>on</strong>als will<br />

bel<strong>on</strong>g to Hom R (M, A). The group Aut(A) acts <strong>on</strong> Hom R (M, A) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right; let O ♯<br />

denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> this acti<strong>on</strong>. A linear code over A, up to equivalence, is again<br />

specified by a multiplicity functi<strong>on</strong> η ∈ F (O ♯ , N).<br />

Just as before, <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> units U <str<strong>on</strong>g>of</str<strong>on</strong>g> R acts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> module M <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left, with set O<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> orbits. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as above, we formulate <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet<br />

A as:<br />

Theorem 36. Let A be a finite left R-module. Then A has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> linear homomorphism<br />

W : F 0 (O ♯ , Q) → F 0 (O, Q), η ↦→ W η ,<br />

is injective for every finite left R-module M.<br />

5.4. Frobenius is Necessary. In this subsecti<strong>on</strong> we follow a strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> Dinh <strong>and</strong> López-<br />

Permouth [8] <strong>and</strong> use Theorem 35 to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 31; viz., if a<br />

finite ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> ring<br />

must be Frobenius.<br />

The strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> Dinh <strong>and</strong> López-Permouth [8] can be summarized as follows.<br />

(1) If a finite ring R is not Frobenius, <str<strong>on</strong>g>the</str<strong>on</strong>g>n its left socle c<strong>on</strong>tains a left R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> form M m×k (F q ) with m < k, for some q (cf., (2.1) <strong>and</strong> (2.3)).<br />

(2) Use <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix module M m×k (F q ) as <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A. If m < k, show that A does<br />

not have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property.<br />

(3) Take <str<strong>on</strong>g>the</str<strong>on</strong>g> counter-examples over A to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g>m as R-<br />

modules, <strong>and</strong> show that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are also counter-examples to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property<br />

over R.<br />

–240–


The first <strong>and</strong> last points were already proved in [8]. Here’s <strong>on</strong>e way to see <str<strong>on</strong>g>the</str<strong>on</strong>g> first point.<br />

We know from (2.3) that soc( R R) is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix modules M mi ×s i<br />

(F qi ). If m i ≥ s i for<br />

all i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> M mi ×s i<br />

(F qi ) would admit a generating character, by Theorem 13. By<br />

adding <str<strong>on</strong>g>the</str<strong>on</strong>g>se generating characters, <strong>on</strong>e would obtain a generating character for soc( R R)<br />

itself. Then, by Propositi<strong>on</strong> 14, R would admit a generating character, <strong>and</strong> hence would<br />

be Frobenius by Theorem 5.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> third point, c<strong>on</strong>sider counter-examples C 1 , C 2 ⊂ A n to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. Because A n ⊂ soc( R R) n ⊂ R R n ,<br />

C 1 , C 2 can also be viewed as R-modules via (2.1). The Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> an element<br />

x <str<strong>on</strong>g>of</str<strong>on</strong>g> A n equals <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> x c<strong>on</strong>sidered as an element <str<strong>on</strong>g>of</str<strong>on</strong>g> R n , because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Hamming weight just depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> entries <str<strong>on</strong>g>of</str<strong>on</strong>g> x being zero or not. In this way, C 1 , C 2<br />

will also be counter-examples to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet R with respect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> key step remaining is <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d point in <str<strong>on</strong>g>the</str<strong>on</strong>g> strategy. An explicit c<strong>on</strong>structi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> counter-examples to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A = M m×k (F q ),<br />

m < k, was given in [32]. Here, we give a short existence pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; more details are available<br />

in [32] <strong>and</strong> [33].<br />

Let R = M m (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over F q . Let A = M m×k (F q ), with<br />

m < k; A is a left R-module. It is clear from Theorem 36 that A will fail to have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if we can find a finite left R-<br />

module M with dim Q F 0 (O ♯ , Q) > dim Q F 0 (O, Q). It turns out that this inequality will<br />

hold for any n<strong>on</strong>zero M.<br />

Because R is simple, any finite left R-module M has <str<strong>on</strong>g>the</str<strong>on</strong>g> form M = M m×l (F q ), for some<br />

l. First, let us determine O, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> left U-orbits <strong>on</strong> M. The group U is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> units <str<strong>on</strong>g>of</str<strong>on</strong>g> R, which is precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> general linear group GL m (F q ). The left orbits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> GL m (F q ) <strong>on</strong> M = M m×l (F q ) are represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> row reduced echel<strong>on</strong> matrices 1 over<br />

F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size m × l.<br />

Now, let us determine O ♯ , which is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> right Aut(A)-orbits <strong>on</strong> Hom R (M, A). The<br />

automorphism group Aut(A) equals GL k (F q ), acting <strong>on</strong> A = M m×k (F q ) by right matrix<br />

multiplicati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, Hom R (M, A) = M l×k (F q ), again using right matrix<br />

multiplicati<strong>on</strong>. Thus O ♯ c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> right orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> GL k (F q ) acting <strong>on</strong> M l×k (F q ). These<br />

orbits are represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> column reduced echel<strong>on</strong> matrices over F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size l × k.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix transpose interchanges row reduced echel<strong>on</strong> matrices <strong>and</strong> column<br />

reduced echel<strong>on</strong> matrices, we see that |O ♯ | > |O| if <strong>and</strong> <strong>on</strong>ly if k > m (for any positive l).<br />

Finally, notice that dim Q F 0 (O ♯ , Q) = |O ♯ |−1 <strong>and</strong> dim Q F 0 (O, Q) = |O|−1. Thus, for any<br />

n<strong>on</strong>zero module M, dim Q F 0 (O ♯ , Q) > dim Q F 0 (O, Q) if <strong>and</strong> <strong>on</strong>ly if m < k. C<strong>on</strong>sequently,<br />

if m < k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n W fails to be injective <strong>and</strong> A fails to have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with<br />

respect to Hamming weight.<br />

5.5. Technical Remarks. Here is <str<strong>on</strong>g>the</str<strong>on</strong>g> technical argument regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> zero functi<strong>on</strong>al<br />

needed to justify Theorem 34.<br />

Remark 37. For η ∈ F (O ♯ , N), define <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> η to be l(η) = ∑ λ∈O<br />

η(λ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

♯<br />

essential length <str<strong>on</strong>g>of</str<strong>on</strong>g> η to be l 0 (η) = ∑ λ≠0<br />

η(λ). The length l(η) equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

1 Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Yamagata tells me that <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese name for this c<strong>on</strong>cept translates literally as “step matrices.”<br />

–241–


linear code defined by η; <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced length l 0 (η) equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code<br />

defined by η after any all-zero positi<strong>on</strong>s have been removed. (In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a generator<br />

matrix, <strong>on</strong>e removes all <str<strong>on</strong>g>the</str<strong>on</strong>g> zero columns.)<br />

Assume <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property holds with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. This means<br />

that if η, η ′ ∈ F (O ♯ , N) satisfy l(η) = l(η ′ ) <strong>and</strong> W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n η = η ′ . That is, W is<br />

injective al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> level sets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> length functi<strong>on</strong> l. If l(η ′ ) < l(η) <strong>and</strong> W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

we can append zeros to η ′ until its length is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as l(η) without changing W η ′. More<br />

precisely, define η ′′ by η ′′ (λ) = η ′ (λ) for λ ≠ 0 <strong>and</strong> set η ′′ (0) = η ′ (0) + l(η) − l(η ′ ). Then<br />

l(η ′′ ) = l(η) <strong>and</strong> W η ′′ = W η . Then η ′′ = η, by <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reduced lengths are equal: l 0 (η) = l 0 (η ′ ) = l 0 (η ′′ ).<br />

There is a projecti<strong>on</strong> pr : F (O ♯ , N) → F 0 (O ♯ , N) which sets (pr η)(0) = 0 <strong>and</strong> leaves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r values unchanged, (pr η)(λ) = η(λ), λ ≠ 0. This projecti<strong>on</strong> splits <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>oid<br />

as F (O ♯ , N) = F 0 (O ♯ , N) ⊕ N. The argument <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous paragraph shows that if<br />

W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n pr η = pr η ′ as elements <str<strong>on</strong>g>of</str<strong>on</strong>g> F 0 (O ♯ , N).<br />

C<strong>on</strong>versely, suppose W : F 0 (O ♯ , N) → F 0 (O, N) is injective. Let η, η ′ ∈ F (O ♯ , N) satisfy<br />

l(η) = l(η ′ ) <strong>and</strong> W η = W η ′. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> η(0) does not affect W η , we see that<br />

W pr η = W pr η ′. By assumpti<strong>on</strong>, W is injective <strong>on</strong> F 0 (O ♯ , N), so that pr η = pr η ′ . In<br />

particular, l 0 (η) = l 0 (η ′ ). Since l(η) = l(η ′ ), we must also have η(0) = η ′ (0), <strong>and</strong> thus<br />

η = η ′ .<br />

6. Self-Dual Codes<br />

I want to finish this article by touching <strong>on</strong> a very active research topic: self-dual codes.<br />

As we saw in subsecti<strong>on</strong> 3.3, if C ⊂ F n is a linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over a finite field F,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n its dual code C ⊥ is defined by C ⊥ = {y ∈ F n : x · y = 0, x ∈ C}. A linear code C<br />

is self-orthog<strong>on</strong>al if C ⊂ C ⊥ <strong>and</strong> is self-dual if C = C ⊥ . Because dim C ⊥ = n − dim C,<br />

a necessary c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code C over a finite field is that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

length n must be even; <str<strong>on</strong>g>the</str<strong>on</strong>g>n dim C = n/2.<br />

The Hamming weight enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code appears <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MacWilliams identities:<br />

W C (X, Y ) = 1<br />

|C| W C(X + (q − 1)Y, X − Y ),<br />

where C is self-dual over F q . As |C| = q n/2 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> total degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial<br />

W C (X, Y ) is n, <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities for a self-dual code can be written in <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

W C (X, Y ) = W C<br />

( X + (q − 1)Y<br />

√ q<br />

, X √ − Y )<br />

. q<br />

Every element x <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code satisfies x · x = 0. In <str<strong>on</strong>g>the</str<strong>on</strong>g> binary case, q = 2, notice<br />

that x · x ≡ wt(x) mod 2. Thus, every element <str<strong>on</strong>g>of</str<strong>on</strong>g> a binary self-dual code C has even<br />

length. This implies that W C (X, −Y ) = W C (X, Y ).<br />

Restrict to <str<strong>on</strong>g>the</str<strong>on</strong>g> binary case, q = 2. Define two complex 2 × 2 matrices P, Q by<br />

P =<br />

(<br />

1/<br />

√<br />

2 1/<br />

√<br />

2<br />

1/ √ 2 −1/ √ 2<br />

–242–<br />

)<br />

, Q =<br />

(<br />

1 0<br />

0 −1<br />

)<br />

.


Notice that P 2 = Q 2 = I. Let G be <str<strong>on</strong>g>the</str<strong>on</strong>g> group generated by P <strong>and</strong> Q (inside GL 2 (C)).<br />

Define an acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring C[X, Y ] by linear substituti<strong>on</strong>: (fS)(X, Y ) =<br />

f((X, Y )S) for S ∈ G. The paragraphs above prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Propositi<strong>on</strong> 38. Let C be a self-dual binary code. Then its Hamming weight enumerator<br />

W C (X, Y ) is invariant under <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group G. That is, W C (X, Y ) ∈ C[X, Y ] G ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials.<br />

Much more is true, in fact. Let C 2 ⊂ F 2 2 be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code C 2 = {00, 11}. Then C 2 is<br />

self-dual, <strong>and</strong> W C2 (X, Y ) = X 2 + Y 2 . Let E 8 ⊂ F 8 2 be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code generated by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rows <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following binary matrix<br />

⎛<br />

⎞<br />

1 1 1 1 0 0 0 0<br />

⎜0 0 1 1 1 1 0 0<br />

⎟<br />

⎝0 0 0 0 1 1 1 1⎠ .<br />

1 0 1 0 1 0 1 0<br />

Then E 8 is also self-dual, with W E8 (X, Y ) = X 8 + 14X 4 Y 4 + Y 8 .<br />

Theorem 39 (Gleas<strong>on</strong> (1970)). The ring <str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials is generated as an<br />

algebra by W C2 <strong>and</strong> W E8 . That is,<br />

C[X, Y ] G = C[X 2 + Y 2 , X 8 + 14X 4 Y 4 + Y 8 ].<br />

Gleas<strong>on</strong> proved similar statements in several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>texts (doubly-even self-dual binary<br />

codes, self-dual ternary codes, Hermitian self-dual quaternary codes) [9]. The results<br />

all have this form: for linear codes <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain type (e.g., binary self-dual), <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hamming<br />

weight enumerators are invariant under a certain finite matrix group G, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials is generated as an algebra by <str<strong>on</strong>g>the</str<strong>on</strong>g> weight enumerators <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

explicit linear codes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type.<br />

Gleas<strong>on</strong>’s Theorem has been generalized greatly by Nebe, Rains, <strong>and</strong> Sloane [24]. Those<br />

authors have a general definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual linear code defined over an<br />

alphabet A, where A is a finite left R-module. Associated to every type is a finite group<br />

G, called <str<strong>on</strong>g>the</str<strong>on</strong>g> Clifford-Weil group, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> (complete) weight enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> every selfdual<br />

linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type is G-invariant. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> authors show (under certain<br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R) that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> all G-invariant polynomials is spanned by<br />

weight enumerators <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type.<br />

In order to define self-dual codes over n<strong>on</strong>-commutative rings, Nebe, Rains, <strong>and</strong> Sloane<br />

must cope with <str<strong>on</strong>g>the</str<strong>on</strong>g> difficulty that <str<strong>on</strong>g>the</str<strong>on</strong>g> dual code <str<strong>on</strong>g>of</str<strong>on</strong>g> a left linear code C in A n is a right linear<br />

code <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form (Ân : C) ⊂ Ân (cf., <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 23 in subsecti<strong>on</strong> 4.2). This<br />

difficulty can be addressed first by assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R admits an anti-isomorphism ε,<br />

i.e., an isomorphism ε : R → R <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive group, with ε(rs) = ε(s)ε(r), for r, s ∈ R.<br />

Then every left (resp., right) R-module M defines a right (resp., left) R-module ε(M).<br />

The additive group <str<strong>on</strong>g>of</str<strong>on</strong>g> ε(M) is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as that <str<strong>on</strong>g>of</str<strong>on</strong>g> M, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right scalar multiplicati<strong>on</strong><br />

<strong>on</strong> ε(M) is mr := ε(r)m, m ∈ M, r ∈ R, where ε(r)m uses <str<strong>on</strong>g>the</str<strong>on</strong>g> left scalar multiplicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M. (And similarly for right modules.)<br />

Sec<strong>on</strong>dly, in order to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> character-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic annihilator (Ân : C) ⊂ Ân with<br />

a submodule in A n , Nebe, Rains, <strong>and</strong> Sloane assume <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an isomorphism<br />

–243–


ψ : ε(A) → Â. In this way, C⊥ := ε −1 ψ −1 (Ân : C) can be viewed as <str<strong>on</strong>g>the</str<strong>on</strong>g> dual code <str<strong>on</strong>g>of</str<strong>on</strong>g> C;<br />

C ⊥ is a left linear code in A n if C is. With <strong>on</strong>e additi<strong>on</strong>al hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <strong>on</strong> ψ, C ⊥ satisfies all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> properties <strong>on</strong>e would want from a dual code, such as (C ⊥ ) ⊥ = C <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams<br />

identities. (See [34] for an expositi<strong>on</strong>.)<br />

There are several questi<strong>on</strong>s that arise immediately from <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Nebe, Rains, <strong>and</strong><br />

Sloane that may be <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to ring <str<strong>on</strong>g>the</str<strong>on</strong>g>orists.<br />

(1) Which finite rings admit anti-isomorphisms? Involuti<strong>on</strong>s?<br />

(2) Assume a finite ring R admits an anti-isomorphism ε. Which finite left R-modules<br />

A admit an isomorphism ψ : ε(A) → Â?<br />

(3) Even in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> complete answers to <str<strong>on</strong>g>the</str<strong>on</strong>g> preceding, are <str<strong>on</strong>g>the</str<strong>on</strong>g>re good sources<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> examples?<br />

There are a few results in [34], but much more is needed. Progress <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se questi<strong>on</strong>s may<br />

prove helpful in underst<strong>and</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> limits <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> proper setting for <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Nebe,<br />

Rains, <strong>and</strong> Sloane.<br />

References<br />

[1] Č. Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I., J. Reine.<br />

Angew. Math. 183 (1941), 148–167. MR 0008069 (4,237f)<br />

[2] E. F. Assmus, Jr. <strong>and</strong> H. F. Matts<strong>on</strong>, Jr., Error-correcting codes: An axiomatic approach, Inform.<br />

<strong>and</strong> C<strong>on</strong>trol 6 (1963), 315–330. MR 0178997 (31 #3251)<br />

[3] , Coding <strong>and</strong> combinatorics, SIAM Rev. 16 (1974), 349–388. MR 0359982 (50 #12432)<br />

[4] H. Bass, K-<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60.<br />

MR 0174604 (30 #4805)<br />

[5] K. Bogart, D. Goldberg, <strong>and</strong> J. Gord<strong>on</strong>, An elementary pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>on</strong> equivalence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> codes, Inform. <strong>and</strong> C<strong>on</strong>trol 37 (1978), no. 1, 19–22. MR 0479646 (57 #19067)<br />

[6] H. L. Claasen <strong>and</strong> R. W. Goldbach, A field-like property <str<strong>on</strong>g>of</str<strong>on</strong>g> finite rings, Indag. Math. (N.S.) 3 (1992),<br />

no. 1, 11–26. MR 1157515 (93b:16038)<br />

[7] C. W. Curtis <strong>and</strong> I. Reiner, Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups <strong>and</strong> associative algebras, Pure <strong>and</strong><br />

Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol. XI, Interscience Publishers, a divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> John Wiley & S<strong>on</strong>s, New York,<br />

L<strong>on</strong>d<strong>on</strong>, 1962. MR 0144979 (26 #2519)<br />

[8] H. Q. Dinh <strong>and</strong> S. R. López-Permouth, On <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> codes over rings <strong>and</strong> modules, Finite<br />

Fields Appl. 10 (2004), no. 4, 615–625. MR 2094161 (2005g:94098)<br />

[9] A. M. Gleas<strong>on</strong>, Weight polynomials <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities, Actes du<br />

C<strong>on</strong>grès Internati<strong>on</strong>al des Mathématiciens (Nice, 1970), Tome 3, Gauthier-Villars, Paris, 1971,<br />

pp. 211–215. MR 0424391 (54 #12354)<br />

[10] M. Greferath, Orthog<strong>on</strong>ality matrices for modules over finite Frobenius rings <strong>and</strong> MacWilliams’<br />

equivalence <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, Finite Fields Appl. 8 (2002), no. 3, 323–331. MR 1910395 (2003d:94107)<br />

[11] M. Greferath, A. Nechaev, <strong>and</strong> R. Wisbauer, Finite quasi-Frobenius modules <strong>and</strong> linear codes, J.<br />

Algebra Appl. 3 (2004), no. 3, 247–272. MR 2096449 (2005g:94099)<br />

[12] M. Greferath <strong>and</strong> S. E. Schmidt, Finite-ring combinatorics <strong>and</strong> MacWilliams’s equivalence <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

J. Combin. <strong>Theory</strong> Ser. A 92 (2000), no. 1, 17–28. MR 1783936 (2001j:94045)<br />

[13] A. R. Hamm<strong>on</strong>s, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, <strong>and</strong> P. Solé, The Z 4 -linearity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Kerdock, Preparata, Goethals, <strong>and</strong> related codes, IEEE Trans. Inform. <strong>Theory</strong> 40 (1994), no. 2,<br />

301–319. MR 1294046 (95k:94030)<br />

[14] Y. Hirano, On admissible rings, Indag. Math. (N.S.) 8 (1997), no. 1, 55–59. MR 1617802 (99b:16034)<br />

[15] T. H<strong>on</strong>old, Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406–415.<br />

MR 1831096 (2002b:16033)<br />

–244–


[16] W. C. Huffman <strong>and</strong> V. Pless, Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> error-correcting codes, Cambridge University Press,<br />

Cambridge, 2003. MR 1996953 (2004k:94077)<br />

[17] M. Klemm, Eine Invarianzgruppe für die vollständige Gewichtsfunkti<strong>on</strong> selbstdualer Codes, Arch.<br />

Math. (Basel) 53 (1989), no. 4, 332–336. MR 1015996 (91a:94032)<br />

[18] V. L. Kurakin, A. S. Kuzmin, V. T. Markov, A. V. Mikhalev, <strong>and</strong> A. A. Nechaev, Linear codes<br />

<strong>and</strong> polylinear recurrences over finite rings <strong>and</strong> modules (a survey), Applied algebra, algebraic algorithms<br />

<strong>and</strong> error-correcting codes (H<strong>on</strong>olulu, HI, 1999) (M. Fossorier, H. Imai, S. Lin, <strong>and</strong> A. Poli,<br />

eds.), Lecture Notes in Comput. Sci., vol. 1719, Springer, Berlin, 1999, pp. 365–391. MR 1846512<br />

(2002h:94092)<br />

[19] T. Y. Lam, Lectures <strong>on</strong> modules <strong>and</strong> rings, Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol. 189, Springer-Verlag,<br />

New York, 1999. MR 1653294 (99i:16001)<br />

[20] , A first course in n<strong>on</strong>commutative rings, sec<strong>on</strong>d ed., Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol.<br />

131, Springer-Verlag, New York, 2001. MR 1838439 (2002c:16001)<br />

[21] F. J. MacWilliams, Error-correcting codes for multiple-level transmissi<strong>on</strong>, Bell System Tech. J. 40<br />

(1961), 281–308. MR 0141541 (25 #4945)<br />

[22] , Combinatorial properties <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary abelian groups, Ph.D. <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Radcliffe College, Cambridge,<br />

Mass., 1962.<br />

[23] F. J. MacWilliams <strong>and</strong> N. J. A. Sloane, The <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> error-correcting codes, North-Holl<strong>and</strong> Publishing<br />

Co., Amsterdam, 1977, North-Holl<strong>and</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Library, Vol. 16. MR 0465509 (57 #5408a)<br />

[24] G. Nebe, E. M. Rains, <strong>and</strong> N. J. A. Sloane, Self-dual codes <strong>and</strong> invariant <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Algorithms <strong>and</strong><br />

Computati<strong>on</strong> in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol. 17, Springer-Verlag, Berlin, 2006. MR 2209183 (2007d:94066)<br />

[25] A. A. Nechaev, Kerdock code in cyclic form, Discrete Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics <strong>and</strong> Applicati<strong>on</strong>s 1 (1991), no. 4,<br />

365–384.<br />

[26] J.-P. Serre, Linear representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups, Springer-Verlag, New York, 1977, Translated<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d French editi<strong>on</strong> by Le<strong>on</strong>ard L. Scott, Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 42.<br />

MR 0450380 (56 #8675)<br />

[27] C. E. Shann<strong>on</strong>, A ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> communicati<strong>on</strong>, Bell System Tech. J. 27 (1948), 379–423,<br />

623–656. MR 0026286 (10,133e)<br />

[28] A. Terras, Fourier analysis <strong>on</strong> finite groups <strong>and</strong> applicati<strong>on</strong>s, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Student<br />

Texts, vol. 43, Cambridge University Press, Cambridge, 1999. MR 1695775 (2000d:11003)<br />

[29] H. N. Ward <strong>and</strong> J. A. Wood, Characters <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> codes, J. Combin. <strong>Theory</strong> Ser. A 73<br />

(1996), no. 2, 348–352. MR 1370137 (96i:94028)<br />

[30] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine. Angew. Math. 176<br />

(1937), 31–44.<br />

[31] J. A. Wood, Duality for modules over finite rings <strong>and</strong> applicati<strong>on</strong>s to coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Amer. J. Math.<br />

121 (1999), no. 3, 555–575. MR 1738408 (2001d:94033)<br />

[32] , Code equivalence characterizes finite Frobenius rings, Proc. Amer. Math. Soc. 136 (2008),<br />

no. 2, 699–706. MR 2358511 (2008j:94062)<br />

[33] , Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> linear codes defined over finite modules: <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MacWilliams identities, Codes over rings (Ankara, 2008) (P. Solé, ed.), World Scientific, Singapore,<br />

2009.<br />

[34] , Anti-isomorphisms, character modules <strong>and</strong> self-dual codes over n<strong>on</strong>-commutative rings, Int.<br />

J. Informati<strong>on</strong> <strong>and</strong> Coding <strong>Theory</strong> 1 (2010), no. 4, 429–444, Special Issue <strong>on</strong> Algebraic <strong>and</strong> Combinatorial<br />

Coding <strong>Theory</strong>: in H<strong>on</strong>our <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Retirement <str<strong>on</strong>g>of</str<strong>on</strong>g> Vera Pless. Series 3.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Western Michigan University<br />

1903 W. Michigan Ave.<br />

Kalamazoo, MI 49008–5248 USA<br />

E-mail address: jay.wood@wmich.edu<br />

–245–


REALIZING STABLE CATEGORIES AS DERIVE CATEGORIES<br />

KOTA YAMAURA<br />

Abstract. In this paper, we compare two different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories.<br />

First <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category modA <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded modules over a positively<br />

grade self-injective algebra A. Sec<strong>on</strong>d <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category D b (modΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over an algebra Λ. Our aim is give <str<strong>on</strong>g>the</str<strong>on</strong>g> complete answer to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>. For a positively graded self-injective algebra A, when is modA<br />

triangle-equivalent to D b (modΛ) for some algebra Λ ? The main result <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper<br />

gives <str<strong>on</strong>g>the</str<strong>on</strong>g> following very simple answer. modA is triangle-equivalent to D b (modΛ) for<br />

some algebra Λ if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> 0-th subring A 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> A has finite global dimensi<strong>on</strong>.<br />

1. Main Result<br />

There are two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories which are important for representati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory for algebras. First <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category D b (modΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category modA <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules over an algebra Λ. Sec<strong>on</strong>d <strong>on</strong>e is algebraic triangulated categories, that is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable categories <str<strong>on</strong>g>of</str<strong>on</strong>g> Frobenius categories (cf. [5]). A typical example is <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category<br />

modA <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category modA <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over a self-injective algebra A.<br />

In this paper, our aim is to compare derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable<br />

categories <str<strong>on</strong>g>of</str<strong>on</strong>g> self-injective algebras, <strong>and</strong> find a ”nice” relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g>m. If we<br />

find it, <str<strong>on</strong>g>the</str<strong>on</strong>g>n those triangulated categories can be investigated from mutual viewpoints.<br />

There several method to compare derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable categories<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> self-injective algebras. We focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following Happel’s result. For any algebra Λ,<br />

<strong>on</strong>e can associate a self-injective algebra A which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ.<br />

A admits a natural positively grading such that A 0 = Λ where A 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> 0-th subring.<br />

Therefore A is a positively graded self-injective algebra. So <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> category mod Z A <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-modules has <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category.<br />

In this setting, D. Happel [6] showed that Λ has finite global dimensi<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-eqiuvalence<br />

(1.1)<br />

mod Z A ≃ D b (modΛ).<br />

This equivalence gives a ”nice” relati<strong>on</strong>ship between derived category D b (modΛ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable categories mod Z A. The above result asserts that sometimes representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Λ <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> A are deeply related.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> drastic generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above Happel’s result. Happel started<br />

from an algebra Λ, <strong>and</strong> c<strong>on</strong>structed <str<strong>on</strong>g>the</str<strong>on</strong>g> special positively graded self-injective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A. In c<strong>on</strong>trast, we start from a positively graded self-injective algebra A = ⊕ i≥0 A i, <strong>and</strong><br />

suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

The author is supported by JSPS Fellowships for Young Scientists No.22-5801.<br />

–246–


Questi<strong>on</strong>. When is mod Z A triangle-equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category D b (modΛ) for<br />

some algebra Λ ?<br />

The following result is main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper which gives <str<strong>on</strong>g>the</str<strong>on</strong>g> complete answer to<br />

our questi<strong>on</strong>.<br />

Theorem 1. Let A be a positively graded self-injective algebra. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following are<br />

equivalent.<br />

(1) The global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A 0 is finite.<br />

(2) There exists an algebra Λ, <strong>and</strong> a triangle-equivalence<br />

(1.2)<br />

mod Z A ≃ D b (modΛ).<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to give an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1,<br />

<strong>and</strong> some examples. Our plan is as follows.<br />

In Secti<strong>on</strong> 2, we give two preliminaries. First we recall that mod Z A for a positively<br />

graded algebra A is a Frobenius category, <strong>and</strong> so its stable category mod Z A is an algebraic<br />

triangulated category. Sec<strong>on</strong>dly we give an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Our approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> is using Keller’s titling <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated<br />

categories. B. Keller [7] introduced <strong>and</strong> investigated differential graded categories <strong>and</strong><br />

its derived categories. In his work, it was determine when is an algebraic triangulated<br />

category triangle-equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> some algebra by <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tilting objects (tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem). In Secti<strong>on</strong> 3, we apply Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem to our<br />

study.<br />

In Secti<strong>on</strong> 3, we give an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1. We omit <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2) ⇒<br />

(1). We give pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s (1) ⇒ (2). We start from finding a c<strong>on</strong>crete tilting object in mod Z A<br />

which has ”good” properties. After finding it, we show two ways to prove (1) ⇒ (2). The<br />

first pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is based <strong>on</strong> Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, namely we entrust with c<strong>on</strong>structing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

triangle-equivalence (1.2). The sec<strong>on</strong>d pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is direct more than <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e, namely we<br />

c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence (1.2) explicitly.<br />

In Secti<strong>on</strong> 4, we give some examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1. In particular as an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we show Happel’s result, <strong>and</strong> its generalizati<strong>on</strong> shown by X-W Chen<br />

[2].<br />

Throughout this paper, let K be an algebraically closed field. An algebra means a<br />

finite dimensi<strong>on</strong>al associative algebra over K. We always deal with finitely generated<br />

right modules over algebras. For an algebra Λ, we denote by modΛ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ-<br />

modules, projΛ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> projective Λ-modules. The same notati<strong>on</strong>s is used for<br />

graded case. For an additive category A, we denote by K b (A) <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> A. For an abelian category A, we denote by D b (A) <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

2. Preliminaries<br />

In this secti<strong>on</strong>, we recall basic facts about representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> a positively graded<br />

algebras, <strong>and</strong> tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated categories for <str<strong>on</strong>g>the</str<strong>on</strong>g> readers c<strong>on</strong>venient.<br />

–247–


2.1. Positively graded self-injective algebras. In this subsecti<strong>on</strong>, our aim is to recall<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded modules over positively graded self-injective algebras<br />

are algebraic triangulated categories. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> results stated here are due to Gord<strong>on</strong>-Green<br />

[3, 4]. In details, readers should refer to [3, 4].<br />

We start with setting notati<strong>on</strong>s. Let A = ⊕ i≥0 A i be a positively graded self-injective<br />

algebra. We say that an A-module is Z-gradable if it can be regarded as a Z-graded<br />

A-module. For a Z-graded A-module X, we write X i <str<strong>on</strong>g>the</str<strong>on</strong>g> i-degree part <str<strong>on</strong>g>of</str<strong>on</strong>g> X. We denote<br />

by mod Z A <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-modules. For Z-graded A-modules X <strong>and</strong> Y , we<br />

write Hom A (X, Y ) 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism space in mod Z A from X to Y .<br />

We recall that mod Z A has two important functors. The first <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> grading shift<br />

functor. For i ∈ Z, we denote by<br />

(i) : mod Z A → mod Z A<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> grading shift functor, that is defined as follows. For a Z-graded A-module X,<br />

• X(i) := X as an A-module,<br />

• Z-grading <strong>on</strong> X(i) is defined by X(i) j := X j+i for any j ∈ Z.<br />

This is an aut<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor <strong>on</strong> mod Z A whose inverse is (−i).<br />

The sec<strong>on</strong>d <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> K-dual. It is already known that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard duality<br />

D := Hom K (−, K) : modA → modA op .<br />

This functor induces <str<strong>on</strong>g>the</str<strong>on</strong>g> following duality. For a Z-graded A-module X, we regard DX as<br />

a Z-graded A op -module by defining (DX) i := D(X −i ) for any i ∈ Z. By this observati<strong>on</strong>,<br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> duality<br />

D : mod Z A → mod Z A op .<br />

Next we recall a few important facts about objects <strong>and</strong> morphism spaces in mod Z A.<br />

The following results are two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most basic categorical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Z A.<br />

Propositi<strong>on</strong> 2. mod Z A is a Hom-finite Krull-Schmidt category<br />

Propositi<strong>on</strong> 3. [3, Theorem 3.2. Theorem 3.3.] The following asserti<strong>on</strong>s hold.<br />

(1) A Z-graded A-module is indecomposable in mod Z A if <strong>and</strong> <strong>on</strong>ly if it is an indecompsable<br />

A-module.<br />

(2) Any direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Z-gradable A-module is also Z-gradable.<br />

(3) Let X <strong>and</strong> Y be indecomposable Z-graded A-modules. If X <strong>and</strong> Y are isomorphic<br />

to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r in modA, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists i ∈ Z such that X <strong>and</strong> Y (i) are isomorphic<br />

to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r in mod Z A.<br />

Next we recall what are projective objects <strong>and</strong> injective objects in mod Z A. A is naturally<br />

regarded as a Z-graded A-module. By Propositi<strong>on</strong> 3 (2), any projective A-modules<br />

are Z-gradable. Moreover it is easy to check that all projective object in mod Z A is given<br />

by projective A-modules. By <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard duality, <str<strong>on</strong>g>the</str<strong>on</strong>g> same argument hold for injective<br />

objects in mod Z A.<br />

Propositi<strong>on</strong> 4. A complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable projective objects in mod Z A is given<br />

by<br />

{P (i) | i ∈ Z, P is an indecomposable projective A-module}.<br />

–248–


Dually a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable injective objects in mod Z A is given by<br />

{I(i) | i ∈ Z, I is an indecomposable injective A-module}.<br />

If A is self-injective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n mod Z A is a Frobenius category by Propositi<strong>on</strong> 3 <strong>and</strong> Propositi<strong>on</strong><br />

4. So in this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category<br />

by [5].<br />

Lemma 5. If A is self-injective, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) mod Z A is a Frobenius category.<br />

(2) mod Z A has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category whose shift functor [1] is given by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> graded cosyzygy functor Ω −1 : mod Z A → mod Z A.<br />

2.2. Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated categories. In this subsecti<strong>on</strong>, we<br />

recall tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated categories which is due to Keller [7]. It<br />

is a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which provides a method for comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> given triangulated category <strong>and</strong><br />

homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules over some algebra.<br />

First let us recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic triangulated categories again.<br />

Definiti<strong>on</strong> 6. A triangulated category T is algebraic if it is triangle-equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> some Frobenius category.<br />

A class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic triangulated categories c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> following important examples.<br />

Example 7. (1) Let Z be an abelian group, <strong>and</strong> A a Z-graded self-injective algebra.<br />

Then mod Z A is a Frobenius category, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A is an algebraic<br />

triangulated category (Lemma 5).<br />

(2) Let Λ be an algebra. The category C b (projΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective<br />

Λ-modules can be regarded as a Frobenius category whose stable category is <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy<br />

category K b (projΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective Λ-modules (cf. [5]).<br />

In tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, tilting objects which is defined as follows play an important role.<br />

Definiti<strong>on</strong> 8. Let T be a triangulated category. An object T ∈ T is called a tilting object<br />

in T if it satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s.<br />

(1) Hom T (T, T [i]) = 0 for i ≠ 0.<br />

(2) T = thickT .<br />

Here thickT is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T which c<strong>on</strong>tains T , <strong>and</strong> is<br />

closed under direct summ<strong>and</strong>s.<br />

The following is a typical example <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting objects.<br />

Example 9. Let Λ be a ring. Λ can be regarded as a complex which c<strong>on</strong>centrates in<br />

degree 0. So Λ is c<strong>on</strong>tained in a triangulated category K b (projΛ). It is a tilting object in<br />

K b (projΛ).<br />

The following result is Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which determine when is an algebraic<br />

triangulated category triangle-equivalent to K b (projΛ) for some algebra Λ,<br />

Theorem 10. [7, Theorem 4.3.] Let T be an algebraic triangulated category. If T has a<br />

tilting object T , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-equivalence up to direct summ<strong>and</strong>s<br />

T ≃ K b (projEnd T (T )).<br />

–249–


By <str<strong>on</strong>g>the</str<strong>on</strong>g> above result, finding tilting objects is a basic problem for <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> a given<br />

algebraic triangulated category. We will c<strong>on</strong>sider this problem for Example 7 (1) in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next secti<strong>on</strong> (Theorem 11).<br />

3. Triangle-equivalences between stable categories <strong>and</strong> derived<br />

categories<br />

Throughout this secti<strong>on</strong>, let A be a positively graded self-injective algebra. In this<br />

secti<strong>on</strong>, we discuss triangle-equivalences between <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A <strong>and</strong> derived<br />

categories <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras.<br />

First we prove Theorem 1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> half <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>. We omit <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2) ⇒ (1).<br />

We prove (1) ⇒ (2). We begin <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> from giving <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong><br />

for existence <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting objects in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A. The necessary <strong>and</strong> sufficient<br />

c<strong>on</strong>diti<strong>on</strong> is described by important homological property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subring A 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> A which is<br />

stated as follows.<br />

Theorem 11. mod Z A has a tilting object if <strong>and</strong> <strong>on</strong>ly if A 0 has finite global dimensi<strong>on</strong>.<br />

We omit <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly if part <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 11. In <str<strong>on</strong>g>the</str<strong>on</strong>g> following, we show <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> if part <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 11 which is given by c<strong>on</strong>structing a tilting object in mod Z A. To<br />

c<strong>on</strong>struct it, we c<strong>on</strong>sider truncati<strong>on</strong> functors<br />

<strong>and</strong><br />

(−) ≥i : modA → modA<br />

(−) ≤i : modA → modA<br />

which are defined as follows. For a Z-graded A-module X, X ≥i is a Z-graded sub A-module<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X defined by<br />

{<br />

0 (j < i)<br />

(X ≥i ) j :=<br />

(j ≥ i),<br />

<strong>and</strong> X ≤i is a Z-graded factor A-module X/X ≥i+1 <str<strong>on</strong>g>of</str<strong>on</strong>g> X.<br />

Now we define<br />

(3.1)<br />

X j<br />

T := ⊕ i≥0<br />

A(i) ≤0 .<br />

which is an object in Mod Z A but not an object in mod Z A. However since A(i) ≤0 = A(i)<br />

for enough large i, T can be regarded as an object in mod Z A.<br />

Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 12. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) T is a tilting object in thickT .<br />

(2) If A 0 has finite global dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n T is a tilting object in mod Z A.<br />

It is proved that T satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> first c<strong>on</strong>diti<strong>on</strong> in Definiti<strong>on</strong> 8 with no assumpti<strong>on</strong>s for<br />

A, <strong>and</strong> T satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d c<strong>on</strong>diti<strong>on</strong> in Definiti<strong>on</strong> 8 if A 0 has finite global dimensi<strong>on</strong>.<br />

Then we finish <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> if part <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 11.<br />

□<br />

–250–


Now we keep <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> as above <strong>and</strong> put<br />

Γ := End A (T ) 0 .<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> T in mod Z A.<br />

homological property if so does A 0 .<br />

Theorem 13. If A 0 has finite global dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so does Γ.<br />

Now we ready to prove Theorem 1 (1) ⇒ (2).<br />

This endomorphism algebra Γ has a nice<br />

Theorem 14. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) There exists a triangle-equivalence<br />

thickT −→ K b (projΓ).<br />

(2) If A 0 has finite global dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-equivalence<br />

mod Z A −→ D b (modΓ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) By Theorem 10 <strong>and</strong> Theorem 12 (1), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence thickT −→<br />

K b (projΓ).<br />

(2) We assume that A 0 has finite global dimensi<strong>on</strong>. First by Theorem 10 <strong>and</strong> Theorem<br />

12 (2), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence mod Z A −→ K b (projΓ). Next by Theorem 13, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

natural triangle-functor K b (projΛ) −→ D b (modΓ) is an equivalence. Finally by composing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se equivalences, we have a triangle-equivalence<br />

mod Z A −→ D b (modΓ).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> above pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence mod Z A → D b (modΓ) was given by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting object T in mod Z A <strong>and</strong> Keller’s Theorem 10 automatically. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>, we c<strong>on</strong>struct a triangle-equivalence D b (modΓ) → mod Z A by derived<br />

tensor functor directly.<br />

To c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence, first we want to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> derived tensor functor<br />

− L ⊗ Γ T : D b (modΓ) → D b (mod Z A). However Γ does not act <strong>on</strong> T naturally since Γ<br />

is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism space in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A. To solve this problem,<br />

we give <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T in mod Z A below. The descripti<strong>on</strong> allow us to realize Γ as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

morphism space in <str<strong>on</strong>g>the</str<strong>on</strong>g> category mod Z A.<br />

Propositi<strong>on</strong> 15. T is decomposed as T = T ⊕ P where T is a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all indecomposable<br />

n<strong>on</strong>-projective direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) T is in mod Z A.<br />

(2) T <strong>and</strong> T are isomorphic to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r in mod Z A.<br />

(3) There exists an algebra isomorphism Γ ≃ End A (T ) 0 .<br />

Let T = T ⊕P be <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> which was given in Propositi<strong>on</strong> 15. By Propositi<strong>on</strong><br />

15 (3), T is regarded as a Z-graded Γ op ⊗ K A-module naturally. So we have <str<strong>on</strong>g>the</str<strong>on</strong>g> left derived<br />

tensor functor<br />

− L ⊗ Γ T : D b (modΓ) → D b (mod Z A).<br />

–251–<br />


Next we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category D b (mod Z A)/K b (proj Z A) <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod Z A), <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quotient functor<br />

D b (mod Z A) −→ D b (mod Z A)/K b (proj Z A).<br />

The following triangle-equivalence is <str<strong>on</strong>g>the</str<strong>on</strong>g> realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Z A as <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category<br />

D b (mod Z A)/K b (proj Z A). The ungraded versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this realizati<strong>on</strong> was studied by several<br />

authors [1], [8] <strong>and</strong> [9].<br />

Theorem 16. [9, Theorem 2.1.] The natural embedding mod Z A → D b (mod Z A) induces<br />

a triangle-equivalence<br />

mod Z A −→ D b (mod Z A)/K b (proj Z A)<br />

Now we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above three functors<br />

G : D b (modΓ)<br />

− L ⊗ Γ T<br />

−−−−→ D b (mod Z A) −→ D b (mod Z A)/K b (proj Z A) −→ mod Z A.<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient functor, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> third <strong>on</strong>e is a quasi-inverse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theorem 16. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-functor which we want.<br />

Theorem 17. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) G is fully faithful <strong>on</strong> K b (projΓ).<br />

(2) A 0 has finite global dimensi<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if G is a triangle-equivalence.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) It is easy to check that G(Γ) is isomorphic to T , so is isomorphic to T . Moreover<br />

by Theorem 12 (1), G induces an isomorphism<br />

Hom D b (modΓ)(Γ, Γ[i]) ≃ Hom A (G(Γ), G(Γ)[i]) 0<br />

for any i ∈ Z. By this <strong>and</strong> thickΓ = K b (projΓ), G is fully faithful <strong>on</strong> K b (projΓ). Thus G<br />

induces a triangle-equivalence K b (projΓ) → thickT .<br />

(2) We assume that A 0 has finite global dimensi<strong>on</strong>. Then Γ has finite global dimensi<strong>on</strong><br />

by Theorem 13. Thus we have thickΓ = D b (modΓ), <strong>and</strong> so G is fully faithful. Again since<br />

A 0 has finite global dimensi<strong>on</strong>, we have thickT = mod Z A by Theorem 12 (2). Thus G is<br />

dense.<br />

We omit <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>verse.<br />

□<br />

4. Examples<br />

In this secti<strong>on</strong>, we show some examples <strong>and</strong> applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> results which was shown in<br />

previous secti<strong>on</strong>.<br />

First example is famous Happel’s result [6], which gives a relati<strong>on</strong>ship between representati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial extensi<strong>on</strong>s. We show it as an applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1.<br />

Example 18. If an algebra is given, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we can always c<strong>on</strong>struct a positively graded selfinjective<br />

algebra called trivial extensi<strong>on</strong>, which c<strong>on</strong>tains original algebra as a subalgebra.<br />

Let us recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trivial extensi<strong>on</strong>s. Let Λ be an algebra. The trivial extensi<strong>on</strong><br />

A <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ is defined as follows.<br />

• A := Λ ⊕ DΛ as an abelian group.<br />

–252–


• The multiplicati<strong>on</strong> <strong>on</strong> A is defined by<br />

(x, f) · (y, g) := (xy, xg + fy).<br />

for any x, y ∈ Λ <strong>and</strong> f, g ∈ DΛ. Here xg <strong>and</strong> fy is defined by (Λ, Λ)-bimodule<br />

structure <strong>on</strong> DΛ.<br />

This A becomes an algebra with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> above operati<strong>on</strong>s. Moreover it is known<br />

that A is self-injective.<br />

Now we introduce a positively grading <strong>on</strong> A by<br />

⎧<br />

⎪⎨ Λ (i = 0),<br />

A i := DΛ (i = 1),<br />

⎪⎩<br />

0 (i ≥ 2).<br />

Then obviously A = ⊕ i≥0 A i becomes a positively graded self-injective algebra.<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, we apply Theorem 17 to <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial extensi<strong>on</strong> A <str<strong>on</strong>g>of</str<strong>on</strong>g> an algebra<br />

Λ. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following Happel’s triangle-equivalence.<br />

Theorem 19. [6, Theorem 2. 3.] Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) Λ has finite global dimensi<strong>on</strong>.<br />

(2) There exists an triangle-equivalence<br />

mod Z A ≃ D b (modΛ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We calculate T c<strong>on</strong>structed in (3.1) for our setting. Then <strong>on</strong>e can check that<br />

T = Λ, <strong>and</strong> End A (T ) 0 = End A (T ) 0 ≃ Λ. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> follows from this <strong>and</strong><br />

Theorem 17.<br />

□<br />

Next example is X-W Chen’s result [2] which gives a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Happel’s result.<br />

Example 20. Chen [2] studied relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

positively graded self-injective algebra A which has Gorenstein parameter <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived<br />

category D b (modΓ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Beilins<strong>on</strong> algebra Γ <str<strong>on</strong>g>of</str<strong>on</strong>g> A. The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter<br />

is defined as follows.<br />

Definiti<strong>on</strong> 21. Let A be a positively graded self-injective algebra. We say that A has<br />

Gorenstein parameter l if SocA is c<strong>on</strong>tained in A l .<br />

Let A be a positively graded self-injective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter l.<br />

Beilins<strong>on</strong> algebra Γ <str<strong>on</strong>g>of</str<strong>on</strong>g> A is defined by<br />

⎛<br />

⎞<br />

A 0 A 1 · · · A l−2 A l−1<br />

A 0 · · · A l−3 A l−2<br />

Γ :=<br />

. ⎜ . . . .<br />

⎟<br />

⎝<br />

A 0 A ⎠ .<br />

1<br />

0 A 0<br />

Then Chen showed <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 22. [2, Corollary 1.2.] Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) A 0 has finite global dimensi<strong>on</strong>.<br />

–253–<br />

The


(2) There exists a triangle-equivalence<br />

mod Z A ≃ D b (modΓ).<br />

As an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 12, we give a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above result. Let T be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

object defined in (3.1), <strong>and</strong> T <str<strong>on</strong>g>the</str<strong>on</strong>g> direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T defined in Propositi<strong>on</strong> 15. We<br />

calculate T <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra End A (T ) 0 . Then since A has Gorenstein<br />

parameter l, those can be represented as <str<strong>on</strong>g>the</str<strong>on</strong>g> following explicit form.<br />

Propositi<strong>on</strong> 23. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold<br />

(1) T = ⊕ l−1<br />

i=0 A(i) ≤0.<br />

(2) There exists an algebra isomorphism End A (T ) 0 ≃ Γ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Since A has Gorenstein parameter l, we have T = ⊕ l−1<br />

i=0 A(i) ≤0 by <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T . ( Moreover it is easy to calculate that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an algebra isomorphism End A (T ) 0 =<br />

⊕l−1<br />

)<br />

End A i=0 A(i) ≤0 ≃ Γ.<br />

□<br />

0<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 22. The asserti<strong>on</strong> follows from Theorem 17 <strong>and</strong> Propositi<strong>on</strong> 23.<br />

Remark 24. The trivial extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras are positively graded self-injective algebras<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter 1. Thus Theorem 22 c<strong>on</strong>tains Theorem 19.<br />

Next we show a c<strong>on</strong>crete examples.<br />

Example 25. We c<strong>on</strong>sider A := K[x]/(x n+1 ), <strong>and</strong> define a grading <strong>on</strong> A by deg x := 1.<br />

Then A is a positively graded self-injective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter n.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A 0 = K is equal to zero, mod Z A has a tilting object by<br />

Theorem 11. Let T be <str<strong>on</strong>g>the</str<strong>on</strong>g> object in mod Z A which was defined in (3.1). Since A has a<br />

unique chain<br />

A ⊃ (x)/(x n+1 ) ⊃ (x 2 )/(x n+1 ) ⊃ · · · ⊃ (x n )/(x n+1 )<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> A, it is easy to calculate that <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra<br />

Γ := End A (T ) 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> T is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> n × n upper triangular matrix algebra over K.<br />

By Theorem 12, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-equivalence<br />

mod Z A ≃ D b (modΓ).<br />

We observe <str<strong>on</strong>g>the</str<strong>on</strong>g> above triangle-equivalences by c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> case that n = 2, namely<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case that A = K[x]/(x 3 ). For i = 1, 2, we put X i := (x i )/(x 3 ) <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-graded A-<br />

submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Then we have a chain A ⊃ X 1 ⊃ X 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> A. It<br />

is known that {X i (j) | i = 1, 2, j ∈ Z} is a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable n<strong>on</strong>-projective<br />

Z-graded A-modules.<br />

The Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Z A is as follows.<br />

X 1 (−2) X 1 (−1) <br />

❄<br />

X 1 X 1 (1) X 1 (2)<br />

❄<br />

❄❄❄❄❄<br />

❄<br />

<br />

❄❄❄❄❄<br />

❄<br />

❄❄❄❄❄<br />

❄❄❄❄❄<br />

· · · · · · · · · · · ·<br />

88888<br />

X 2 8<br />

88888<br />

(−2) X 2 8<br />

8 88888<br />

(−1) X 2 8<br />

88888<br />

X 2 8<br />

(1) X 2 8<br />

<br />

888888<br />

(2)<br />

Here dotted arrows mean <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in mod Z A. We can observe<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> graded shift functor (−1).<br />

–254–<br />


Next we write <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (modΓ). In this case, Γ = End A (T ) 0<br />

is isomorphic to 2 × 2 upper triangular matrix algebra over K. We put P 1 := (KK),<br />

P 2 := (0K) <strong>and</strong> I 1 := (K0). It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> set {P 1 , P 2 , I 1 } is a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

indecomposable Γ-modules, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (modΓ) is as follows.<br />

I 1 [−1] <br />

❄ P 1 P 2 [1] I 1 [1] P 1 [2]<br />

❄<br />

<br />

❄❄❄❄❄<br />

❄ ❄<br />

❄❄❄❄❄<br />

❄<br />

❄❄❄❄❄<br />

❄❄❄❄❄<br />

· · · · · · · · · · · ·<br />

88888<br />

P 1 8<br />

8 88888<br />

[−1] P 2 8<br />

88888<br />

I 1 8<br />

88888<br />

P 1 8<br />

[1] P 2 8<br />

<br />

888888<br />

[2]<br />

Here dotted arrows mean <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in D b (modΓ).<br />

From shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above Ausl<strong>and</strong>er-Reiten quivers, <strong>on</strong>e can see that mod Z A <strong>and</strong><br />

D b (modΓ) should be equivalent to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. In fact, we gave a triangle-equivalence<br />

between those.<br />

References<br />

[1] R. O. Buchweitz, Maximal Cohen-Macaulay modules <strong>and</strong> Tate-cohomology over Gorenstein rings,<br />

preprint.<br />

[2] Xiao-Wu Chen, Graded self-injective algebras ”are” trivial extensi<strong>on</strong>s, J. Algebra 322 (2009), no. 7,<br />

2601–2606.<br />

[3] R. Gord<strong>on</strong> <strong>and</strong> E. L . Green, Graded Artin algebras, J. Algebra 76 (1982), no. 1, 111–137.<br />

[4] , Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> graded Artin algebras, J. Algebra 76 (1982), no. 1, 138–152.<br />

[5] D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.<br />

[6] , Ausl<strong>and</strong>er-Reiten triangles in derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, Proc. Amer.<br />

Math. Soc. 112 (1991), no. 3, 641–648.<br />

[7] B. Keller, Deriving DG categories, Ann. Sci. Ecole Norm. Sup. (4) 27 (1994), no. 1, 63–102.<br />

[8] B. Keller, D. Vossieck, Sous les catégories dérivées, (French), C. R. Acad. Sci. Paris Sér. I Math. 305<br />

(1987), no. 6, 225–228.<br />

[9] J. Rickard, Derived categories <strong>and</strong> stable equivalence, J. Pure Appl. Algebra 61 (1989), no. 3, 303–317.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

NagoyaUniversity<br />

Frocho, Chikusaku, Nagoya 464-8602 Japan<br />

E-mail address: m07052d@math.nagoya-u.ac.jp<br />

–255–


ALGEBRAIC STRATIFICATIONS OF DERIVED MODULE<br />

CATEGORIES AND DERIVED SIMPLE ALGEBRAS<br />

DONG YANG<br />

Abstract. In this note I will survey <strong>on</strong> some recent progress in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories.<br />

Key Words: Recollement, Algebraic stratificati<strong>on</strong>, Derived simple algebra.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: 16E35.<br />

The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories was introduced in [5] as an analogue<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> modules or groups. In representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras it<br />

provides us with reducti<strong>on</strong> techniques, which have proved very useful, for example, in<br />

• proving c<strong>on</strong>jectures <strong>on</strong> homological dimensi<strong>on</strong>s, see [9];<br />

• computing homological invariants, see [11, 12];<br />

• classifying t-structures, see [14].<br />

In this note I will survey <strong>on</strong> some recent progress in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived<br />

module categories.<br />

1. Recollements<br />

Let k be a field. For a k-algebra A denote by D(A) = D(Mod A) <str<strong>on</strong>g>the</str<strong>on</strong>g> (unbounded)<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category Mod A <str<strong>on</strong>g>of</str<strong>on</strong>g> right A-modules. The objects <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) are<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> right A-modules. The category D(A) is triangulated with shift functor Σ<br />

being <str<strong>on</strong>g>the</str<strong>on</strong>g> shift <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes. See [10] for a nice introducti<strong>on</strong> <strong>on</strong> derived categories.<br />

A recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories is a diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories<br />

<strong>and</strong> triangle functors<br />

(1.1)<br />

i ∗<br />

j !<br />

D(B) i ∗ =i !<br />

D(A) j ! =j ∗ D(C),<br />

i !<br />

j ∗<br />

where A, B <strong>and</strong> C are k-algebras, such that<br />

(1) (i ∗ , i ∗ = i ! , i ! ) <strong>and</strong> (j ! , j ! = j ∗ , j ∗ ) are adjoint triples;<br />

(2) j ! , i ∗ <strong>and</strong> j ∗ are fully faithful;<br />

(3) j ∗ i ∗ = 0;<br />

The detailed /final/ versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be /has been/ submitted for publicati<strong>on</strong> elsewhere.<br />

–256–


(4) for every object M <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two triangles<br />

<strong>and</strong><br />

i ! i ! M M j ∗ j ∗ M Σi ! i ! M<br />

j ! j ! M M i ∗ i ∗ M Σj ! j ! M ,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> four morphisms starting from <strong>and</strong> ending at M are <str<strong>on</strong>g>the</str<strong>on</strong>g> units <strong>and</strong> counits.<br />

Necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s under which such a recollement exists were discussed<br />

in [13, 16].<br />

Example 1. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver<br />

1<br />

The trivial path e 1 at 1 is an idempotent <str<strong>on</strong>g>of</str<strong>on</strong>g> A <strong>and</strong> e 1 A is a projective A-module. The<br />

following diagram is a recollement<br />

? L ⊗ A A/Ae 1 A<br />

<br />

2 .<br />

? L ⊗ e1 Ae 1 e 1 A<br />

D(A/Ae 1 A) ? ⊗ L A/Ae1 AA/Ae 1 A D(A) ? ⊗ L <br />

A Ae 1<br />

D(e 1 Ae 1 ).<br />

RHom A (A/Ae 1 A,?)<br />

RHom e1 Ae 1 (Ae 1 ,?)<br />

Note that both e 1 Ae 1 <strong>and</strong> A/Ae 1 A are isomorphic to k.<br />

2. Algebraic stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories<br />

Let A be an algebra. An algebraic stratificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> iterated n<strong>on</strong>trivial<br />

recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories. It can be depicted as a binary tree as<br />

below, where each edge represents an adjoint triple <str<strong>on</strong>g>of</str<strong>on</strong>g> triangle functors <strong>and</strong> each hook<br />

represents a recollement<br />

D(A)<br />

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥ ❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙<br />

D(B)<br />

D(C)<br />

✈ ✈✈✈✈✈✈✈✈<br />

D(B ′ )<br />

✽ ✽✽✽✽ ✽<br />

❍ ❍❍❍❍❍❍ ❍<br />

❍<br />

D(B ′′ )<br />

✽ ✽✽✽✽ ✽<br />

✈ ✈✈✈✈✈✈✈✈<br />

D(C ′ )<br />

❍ ❍❍❍❍❍❍ ❍<br />

❍<br />

D(C ′′ )<br />

✞ ✞✞✞✞✞✞ ✽<br />

✝ ✝✝✝✝✝✝ ✽<br />

✞ ✞✞✞✞✞✞ ✼<br />

✝ ✝✝✝✝✝✝ ✽<br />

· · · · · · · ·<br />

✼ ✼✼✼✼ ✼<br />

.<br />

.<br />

.<br />

✽ ✽✽✽✽ ✽<br />

–257–


The leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tree are <str<strong>on</strong>g>the</str<strong>on</strong>g> simple factors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stratificati<strong>on</strong>. The following questi<strong>on</strong>s<br />

are basic:<br />

(a) Does every derived module category admit a finite algebraic stratificati<strong>on</strong>?<br />

(b) Do two finite algebraic stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a derived module category have <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> simple factors? Do <str<strong>on</strong>g>the</str<strong>on</strong>g>y have <str<strong>on</strong>g>the</str<strong>on</strong>g> same simple factors (up to triangle<br />

equivalence <strong>and</strong> up to reordering)?<br />

(c) Which derived module categories occur as simple factors <str<strong>on</strong>g>of</str<strong>on</strong>g> some algebraic stratificati<strong>on</strong>s?<br />

The questi<strong>on</strong> (c) will be discussed in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>. The questi<strong>on</strong>s (a) <strong>and</strong> (b) ask for<br />

a Jordan–Hölder type result for derived module categories. For general (possibly infinitedimensi<strong>on</strong>al)<br />

algebras <str<strong>on</strong>g>the</str<strong>on</strong>g> answers are negative. Below we give some (counter-)examples.<br />

Example 2. ([2]) Let A = ∏ N<br />

k. Then D(A) does not admit a finite algebraic stratificati<strong>on</strong>.<br />

Example 3. ([6]) Let A be as in Example 1. Let V be a regular simple A-module, namely,<br />

V corresp<strong>on</strong>ds to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver<br />

k<br />

1 <br />

λ<br />

k (λ ∈ k),<br />

k<br />

0 <br />

1<br />

k .<br />

Let ϕ : A → A V be <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding universal localisati<strong>on</strong>. Then T = A ⊕ A V /ϕ(A) is<br />

an (infinitely generated) tilting A-module. We refer to [6] for <str<strong>on</strong>g>the</str<strong>on</strong>g> unexplained noti<strong>on</strong>s.<br />

Let B = End A (T ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two algebraic stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> D(B) <str<strong>on</strong>g>of</str<strong>on</strong>g> length 3 <strong>and</strong><br />

2 respectively :<br />

D(B)<br />

D(B)<br />

<br />

D(k (t ))<br />

❍ ❍❍❍❍❍❍ ❍<br />

D(A)<br />

● ●●●●● ●<br />

✉ ✉✉✉✉✉✉✉✉<br />

D(k[t])<br />

❏ ❏❏❏❏❏❏ ❏ ❏<br />

D(k [t])<br />

✈ ✈✈✈✈✈✈✈✈<br />

D(k)<br />

●<br />

D(k)<br />

Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> this type are systematically studied in [7].<br />

Notice that <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra B in <str<strong>on</strong>g>the</str<strong>on</strong>g> preceding example is infinite-dimensi<strong>on</strong>al. For finitedimensi<strong>on</strong>al<br />

algebras, <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong>s (a) <strong>and</strong> (b) are open. For piecewise hereditary algebras<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> answers to <str<strong>on</strong>g>the</str<strong>on</strong>g>m are positive. Recall that a finite-dimensi<strong>on</strong>al algebra is piecewise<br />

hereditary if it is derived equivalent to a hereditary abelian category.<br />

Theorem 4. ([1, 3]) Let A be a piecewise hereditary algebra. Then any algebraic stratificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) has <str<strong>on</strong>g>the</str<strong>on</strong>g> same set (with multiplicities) <str<strong>on</strong>g>of</str<strong>on</strong>g> simple factors: <str<strong>on</strong>g>the</str<strong>on</strong>g>y are precisely<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple A-modules.<br />

–258–


3. Derived simple algebras<br />

An algebra is said to be derived simple if its derived category does not admit any<br />

n<strong>on</strong>-trivial recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> field k is derived<br />

simple. Derived simple algebras are precisely those algebras whose derived categories<br />

occur as simple factors <str<strong>on</strong>g>of</str<strong>on</strong>g> some algebraic stratificati<strong>on</strong>s.<br />

Example 5. ([17, 4]) Let n ∈ N. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

1<br />

α<br />

β<br />

2<br />

with relati<strong>on</strong>s (αβ) n = 0 = (βα) n or with relati<strong>on</strong>s (αβ) n α = 0 = β(αβ) n . Then A is<br />

derived simple.<br />

Example 6. ([8]) There are finite-dimensi<strong>on</strong>al derived simple algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global<br />

dimensi<strong>on</strong>. In [8], Happel c<strong>on</strong>structed a family <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras A m (m ∈ N)<br />

such that<br />

– <str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A m is 6m − 3,<br />

– A m is derived simple.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras have exactly two isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> simple modules. For example,<br />

A 1 is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

with relati<strong>on</strong>s βα = 0 = γβ.<br />

1<br />

α<br />

β<br />

γ<br />

The classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> derived simple algebras turns out to be a wild problem. Besides<br />

those in <str<strong>on</strong>g>the</str<strong>on</strong>g> above examples, <strong>on</strong>ly a few families <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras have been shown to be derived<br />

simple.<br />

Theorem 7. The following algebras are derived simple:<br />

(a) ([2]) local algebras,<br />

(b) ([2]) simple artinian algebras,<br />

(c) ([4]) indecomposable commutative algebras,<br />

(d) ([15]) blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> finite group algebras.<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> for (d): First recall that a block <str<strong>on</strong>g>of</str<strong>on</strong>g> an algebra is an indecomposable<br />

algebra direct summ<strong>and</strong>.<br />

Step 1: Let A, B <strong>and</strong> C be finite-dimensi<strong>on</strong>al algebras such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a recollement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form (1.1). Then i ∗ (B) <strong>and</strong> j ! (C) has no self-extensi<strong>on</strong>s. Moreover,<br />

i ∗ (B) ∈ D b (mod A), j ! (C) ∈ K b (proj A) <strong>and</strong> i ∗ (A) ∈ K b (proj B). Here D b (mod) denotes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules <strong>and</strong> K b (proj) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al projective modules. They<br />

can be c<strong>on</strong>sidered as triangulated subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (unbounded) derived category.<br />

2<br />

–259–


Step 2: Let A be a finite-dimensi<strong>on</strong>al symmetric algebra, i.e. D(A) ∼ = A as A-Abimodules.<br />

Here D = Hom k (?, k) is <str<strong>on</strong>g>the</str<strong>on</strong>g> k-dual. Then for M, N ∈ K b (proj A), we have<br />

D Hom A (M, N) ∼ = Hom A (N, M).<br />

Step 3: Let A be a finite-dimensi<strong>on</strong>al symmetric algebra satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong><br />

(#) for any finite-dimensi<strong>on</strong>al A-module M, <str<strong>on</strong>g>the</str<strong>on</strong>g> space ⊕ i∈Z Exti A(M, M) is infinitedimensi<strong>on</strong>al.<br />

Let M ∈ D b (mod A). Then ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r M ∈ K b (proj A) or <str<strong>on</strong>g>the</str<strong>on</strong>g> space ⊕ i∈Z Hom A(M, Σ i M) is<br />

infinite-dimensi<strong>on</strong>al.<br />

Step 4: Let G be a finite group. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra kG satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (#).<br />

So each block <str<strong>on</strong>g>of</str<strong>on</strong>g> kG is a finite-dimensi<strong>on</strong>al indecomposable symmetric algebra satisfying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (#).<br />

Step 5: Let A be a finite-dimensi<strong>on</strong>al indecomposable symmetric algebra satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong> (#). Then A is derived simple.<br />

To show this, suppose <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a n<strong>on</strong>-trivial recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form (1.1). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle<br />

(3.1)<br />

j ! j ! (A) A i ∗ i ∗ (A) Σj ! j ! (A).<br />

By Steps 1 <strong>and</strong> 3, we know that i ∗ (B) ∈ K b (proj A), which implies that i ∗ i ∗ (A) ∈<br />

K b (proj A), <strong>and</strong> hence j ! j ! (A) ∈ K b (proj A) as well. For any n ∈ Z we have<br />

(3.2)<br />

Hom A (j ! j ! (A), Σ n i ∗ i ∗ (A)) = Hom A (j ! (A), Σ n j ∗ i ∗ i ∗ (A)) = 0,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> first equality follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> adjointness <str<strong>on</strong>g>of</str<strong>on</strong>g> j ! <strong>and</strong> j ∗ , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d <strong>on</strong>e<br />

follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that j ∗ i ∗ = 0 (<str<strong>on</strong>g>the</str<strong>on</strong>g> third c<strong>on</strong>diti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a recollement).<br />

It <str<strong>on</strong>g>the</str<strong>on</strong>g>n follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> formula in Step 2 that for any n ∈ Z<br />

(3.3)<br />

Hom A (i ∗ i ∗ (A), Σ n j ! j ! (A)) = 0.<br />

Taking n = 1, we see that <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle (3.1) splits, <strong>and</strong> hence A = j ! j ! (A) ⊕ i ∗ i ∗ (A). The<br />

formulas (3.2) <strong>and</strong> (3.3) for n = 0 say that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no morphisms between j ! j ! (A) <strong>and</strong><br />

i ∗ i ∗ (A). Thus we have<br />

A = End A (A) = End A (j ! j ! (A) ⊕ i ∗ i ∗ (A)) = End A (j ! j ! (A)) ⊕ End A (i ∗ i ∗ (A)),<br />

c<strong>on</strong>tradicting <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that A is indecomposable.<br />

References<br />

[1] Lidia Angeleri Hügel, Steffen Koenig, <strong>and</strong> Qunhua Liu, On <str<strong>on</strong>g>the</str<strong>on</strong>g> uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived<br />

module categories, J. Algebra, to appear. Also arXiv:1006.5301.<br />

[2] , Recollements <strong>and</strong> tilting objects, J. Pure Appl. Algebra 215 (2011), no. 4, 420–438.<br />

[3] , Jordan-Hölder <str<strong>on</strong>g>the</str<strong>on</strong>g>orems for derived module categories <str<strong>on</strong>g>of</str<strong>on</strong>g> piecewise hereidtary algebras, J.<br />

Algebra 352 (2012), 361–381.<br />

–260–<br />


[4] Lidia Angeleri Hügel, Steffen Koenig, Qunhua Liu, <strong>and</strong> D<strong>on</strong>g Yang, Derived simple algebras <strong>and</strong><br />

restricti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories, preprint, 2012.<br />

[5] Alex<strong>and</strong>er A. Beilins<strong>on</strong>, Joseph Bernstein, <strong>and</strong> Pierre Deligne, Analyse et topologie sur les espaces<br />

singuliers, Astérisque, vol. 100, Soc. Math. France, 1982 (French).<br />

[6] H<strong>on</strong>gxing Chen <strong>and</strong> Changchang Xi, Good tilting modules <strong>and</strong> recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories,<br />

Proc. L<strong>on</strong>. Math. Soc, to appear. Also arXiv:1012.2176.<br />

[7] , Stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories from tilting modules over tame hereditary algebras,<br />

preprint, 2011, arXiv:1107.0444.<br />

[8] Dieter Happel, A family <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras with two simple modules <strong>and</strong> Fib<strong>on</strong>acci numbers, Arch. Math.<br />

(Basel) 57 (1991), no. 2, 133–139.<br />

[9] , Reducti<strong>on</strong> techniques for homological c<strong>on</strong>jectures, Tsukuba J. Math. 17 (1993), no. 1, 115–<br />

130.<br />

[10] Bernhard Keller, Introducti<strong>on</strong> to abelian <strong>and</strong> derived categories, Representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reductive groups,<br />

Publ. Newt<strong>on</strong> Inst., Cambridge Univ. Press, Cambridge, 1998, pp. 41–61.<br />

[11] , Invariance <strong>and</strong> localizati<strong>on</strong> for cyclic homology <str<strong>on</strong>g>of</str<strong>on</strong>g> DG algebras, J. Pure Appl. Algebra 123<br />

(1998), no. 1-3, 223–273.<br />

[12] Steffen Koenig <strong>and</strong> Hiroshi Nagase, Hochschild cohomologies <strong>and</strong> stratifying ideals, J. Pure Appl.<br />

Algebra 213 (2009), no. 4, 886–891.<br />

[13] Steffen König, Tilting complexes, perpendicular categories <strong>and</strong> recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rings, J. Pure Appl. Algebra 73 (1991), no. 3, 211–232.<br />

[14] Qunhua Liu <strong>and</strong> Jorge Vitória, t-structures via recollements for piecewise hereditary algebras, J. Pure<br />

Appl. Algebra 216 (2012), 837–849.<br />

[15] Qunhua Liu <strong>and</strong> D<strong>on</strong>g Yang, Blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> group algebras are derived simple, in press,<br />

doi:10.1007/s00209-011-0963-y. Also arXiv:1104.0500.<br />

[16] Pedro Nicolás <strong>and</strong> Manuel Saorín, Parametrizing recollement data for triangulated categories, J.<br />

Algebra 322 (2009), no. 4, 1220–1250.<br />

[17] Alfred Wiedemann, On stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories, Canad. Math. Bull. 34 (1991),<br />

no. 2, 275–280.<br />

Universität Stuttgart<br />

Institut für Algebra und Zahlen<str<strong>on</strong>g>the</str<strong>on</strong>g>orie<br />

Pfaffenwaldring 57, D-70569 Stuttgart, Germany<br />

E-mail address: d<strong>on</strong>gyang2002@gmail.com<br />

–261–


RECOLLEMENTS GENERATED BY IDEMPOTENTS AND<br />

APPLICATION TO SINGULARITY CATEGORIES<br />

DONG YANG<br />

Abstract. In this note I report <strong>on</strong> an <strong>on</strong>going work joint with Martin Kalck, which<br />

generalises <strong>and</strong> improves a c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Van den Bergh.<br />

Key Words: Recollement, Singularity category, N<strong>on</strong>-commutative resoluti<strong>on</strong>.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: 16E35, 16E45, 16G50.<br />

In [15] Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Van den Bergh showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal Cohen–Macaulay modules over a local complete commutative Gorenstein algebra<br />

with isolated singularity can be realized as <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle quotient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect derived<br />

category by <str<strong>on</strong>g>the</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al category <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain nice dg algebra c<strong>on</strong>structed from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> given Gorenstein algebra. We generalises <strong>and</strong> improves <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>structi<strong>on</strong> by studying<br />

recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories generated by idempotents.<br />

1. Recollements generated by idempotents<br />

Let k be a field, let A be a k-algebra <strong>and</strong> e ∈ A be an idempotent. Let D(A) denote<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> (unbounded) derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> right modules over A. This is a<br />

triangulated category with shift functor Σ being <str<strong>on</strong>g>the</str<strong>on</strong>g> shift <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following st<strong>and</strong>ard diagram<br />

(1.1)<br />

i ∗<br />

j !<br />

D(A/AeA) i ∗ =i !<br />

D(A) j ! =j ∗ D(eAe)<br />

where<br />

i !<br />

i ∗ =? ⊗ L A A/AeA,<br />

j ! =? ⊗ L eAe eA,<br />

i ∗ = RHom A/AeA (A/AeA, ?), j ! = RHom A (eA, ?),<br />

i ! =? ⊗ L A/AeA A/AeA, j ∗ =? ⊗ L A Ae,<br />

i ! = RHom A (A/AeA, ?), j ∗ = RHom eAe (Ae, ?).<br />

One asks when this diagram is a recollement ([3]), i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s hold<br />

(1) (i ∗ , i ∗ = i ! , i ! ) <strong>and</strong> (j ! , j ! = j ∗ , j ∗ ) are adjoint triples;<br />

(2r) j ! <strong>and</strong> j ∗ are fully faithful;<br />

(2l) i ∗ = i ! is fully faithful;<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–262–<br />

j ∗


(3) j ∗ i ∗ = 0;<br />

(4) for every object M <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two triangles<br />

<strong>and</strong><br />

i ! i ! M M j ∗ j ∗ M Σi ! i ! M<br />

j ! j ! M M i ∗ i ∗ M Σj ! j ! M ,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> four morphisms starting from <strong>and</strong> ending at M are <str<strong>on</strong>g>the</str<strong>on</strong>g> units <strong>and</strong> counits.<br />

This type <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements attracts c<strong>on</strong>siderable attenti<strong>on</strong>, see for example [6, 8, 7, 14]. The<br />

c<strong>on</strong>diti<strong>on</strong>s (1) <strong>and</strong> (3) are easy to check, <strong>and</strong> it is known that (2r) holds (by applying [11,<br />

Propositi<strong>on</strong> 3.2] to eA). However, in general (2l) is not necessarily true, as seen from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next example.<br />

Example 1. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

1<br />

α<br />

β<br />

2<br />

with relati<strong>on</strong> αβ = 0. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> idempotent e = e 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial path at <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex 1. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> associated functor i ∗ : D(A/AeA) → D(A) is not fully faithful. Indeed, i ∗ (A/AeA)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple A-module at vertex 2, which has n<strong>on</strong>-vanishing self-extensi<strong>on</strong>s in degree 2,<br />

while as an A/AeA-module A/AeA has no self-extensi<strong>on</strong>s.<br />

Theorem 2. ([8]) The following c<strong>on</strong>diti<strong>on</strong>s are equivalent<br />

(i) <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard diagram (1.1) is a recollement,<br />

(ii) <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism A → A/AeA is a homological epimorphism, i.e.<br />

i ∗ : D(A/AeA) → D(A) is fully faithful,<br />

(iii) <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal AeA is a stratifying ideal, i.e.<br />

isomorphism Ae L ⊗ eAe eA ∼ = AeA.<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> functor<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> counit Ae L ⊗ eAe eA → A induces an<br />

In general, to make <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard diagram (1.1) a recollement, <strong>on</strong>e needs to replace<br />

A/AeA by a dg (=differential graded) algebra, which, in some sense, enhances A/AeA.<br />

For dg algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir derived categories, we refer to [13]. We remark that a k-algebra<br />

can be viewed as a dg k-algebra c<strong>on</strong>centrated in degree 0.<br />

Theorem 3. ([12]) Let A <strong>and</strong> e ∈ A be as above. There is a dg k-algebra B with a<br />

homomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> dg algebras f : A → B <strong>and</strong> a recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

i ∗<br />

D(B) i ∗ =i !<br />

D(A) j ! =j ∗ D(eAe) ,<br />

j !<br />

i !<br />

j ∗<br />

such that<br />

–263–


(a) <str<strong>on</strong>g>the</str<strong>on</strong>g> adjoint triples (i ∗ , i ∗ = i ! , i ! ) <strong>and</strong> (j ! , j ! = j ∗ , j ∗ ) are given by<br />

i ∗ =? ⊗ L A B, j ! =? ⊗ L eAe eA,<br />

i ∗ = RHom B (B, ?), j ! = RHom A (eA, ?),<br />

i ! =? ⊗ L B B, j ∗ =? ⊗ L A Ae,<br />

i ! = RHom A (B, ?), j ∗ = RHom eAe (Ae, ?),<br />

where B is c<strong>on</strong>sidered as a left A-module <strong>and</strong> as a right A-module via <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism<br />

f;<br />

(b) <str<strong>on</strong>g>the</str<strong>on</strong>g> degree i comp<strong>on</strong>ent B i <str<strong>on</strong>g>of</str<strong>on</strong>g> B vanishes for i > 0;<br />

(c) <str<strong>on</strong>g>the</str<strong>on</strong>g> 0-th cohomology H 0 (B) <str<strong>on</strong>g>of</str<strong>on</strong>g> B is isomorphic to A/AeA.<br />

As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> recollement, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle equivalence<br />

per(B) ∼ = (K b (proj A)/ thick(eA)) ω .<br />

Here per(B) is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D(B) which c<strong>on</strong>tains B <strong>and</strong> which<br />

is closed under taking direct summ<strong>and</strong>s, K b (proj A) is <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated projective A-modules, thick(eA) is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated<br />

subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> K b (proj A) which c<strong>on</strong>tains eA <strong>and</strong> which is closed under taking direct<br />

summ<strong>and</strong>s, <strong>and</strong> () ω denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> idempotent completi<strong>on</strong>.<br />

Assume fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r that A/AeA is finite-dimensi<strong>on</strong>al <strong>and</strong> that each simple A/AeA-module<br />

has finite projective dimensi<strong>on</strong> over A. Then<br />

(d) H i (B) is finite-dimensi<strong>on</strong>al over k for any i ∈ Z, equivalently, per(B) is Homfinite,<br />

i.e. Hom(M, N) is finite-dimensi<strong>on</strong>al over k for any M, N ∈ per(B),<br />

(e) D fd (B) ⊆ per(B), here D fd (B) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D(B) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

those objects whose total cohomology is finite-dimensi<strong>on</strong>al over k,<br />

(f) per(B) has a t-structure whose heart is fdmod −A/AeA, <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitedimensi<strong>on</strong>al<br />

modules over A/AeA,<br />

(g) if moreover <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a quasi-isomorphism from a dg algebra à = ( ̂kQ, d) to A, where<br />

Q is a graded quiver c<strong>on</strong>centrated in n<strong>on</strong>-positive degrees <strong>and</strong> d : ̂kQ → ̂kQ is a<br />

c<strong>on</strong>tinuous k-linear differential satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> graded Leibniz rule <strong>and</strong> d(̂m) ⊆ ̂m 2 ,<br />

such that e is <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> a sum ẽ <str<strong>on</strong>g>of</str<strong>on</strong>g> some trivial paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, <str<strong>on</strong>g>the</str<strong>on</strong>g>n B is quasiisomorphic<br />

to Ã/ÃẽÃ. Here ̂kQ is <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra kQ with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> m-adic topology in <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> graded algebras for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal m<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by all arrows, <strong>and</strong> ÃẽÃ is <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> ÃẽÃ under <str<strong>on</strong>g>the</str<strong>on</strong>g> ̂m-adic<br />

topology for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal ̂m <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂kQ generated by all arrows.<br />

Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma due to Keller, Theorem 3 (g) becomes practical when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A is 2.<br />

Lemma 4. Let A = ̂kQ ′ /(R) be <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2, where Q ′ is a finite (ordinary)<br />

quiver <strong>and</strong> R is a finite set <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal relati<strong>on</strong>s. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> graded quiver obtained<br />

from Q ′ by adding an arrow ρ r <str<strong>on</strong>g>of</str<strong>on</strong>g> degree −1 from <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> r to <str<strong>on</strong>g>the</str<strong>on</strong>g> target <str<strong>on</strong>g>of</str<strong>on</strong>g> r for<br />

–264–


each relati<strong>on</strong> r ∈ R. Let d be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique c<strong>on</strong>tinuous k-linear automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂kQ which<br />

satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> graded Leibniz rule <strong>and</strong> which takes ρ r to r for each relati<strong>on</strong> r ∈ R. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is a quasi-isomorphism from ( ̂kQ, d) to A.<br />

Example 5. Let A be as in Example 1. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> graded quiver<br />

1<br />

α<br />

β<br />

2<br />

ρ<br />

where α <strong>and</strong> β are in degree 0 <strong>and</strong> ρ is in degree −1. Let d be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique c<strong>on</strong>tinuous<br />

k-linear automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂kQ which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> graded Leibniz rule <strong>and</strong> which takes ρ<br />

to αβ. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> obvious map from ( ̂kQ, d) to A is a quasi-isomorphism.<br />

Let e = e 1 . The associated dg algebra B as in Theorem 3 is (quasi-isomorphic to) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dg algebra k[ρ] with ρ in degree −1 <strong>and</strong> with vanishing differential.<br />

2. Applicati<strong>on</strong> to singularity categories<br />

Let k be a field, <strong>and</strong> let R be a Iwanaga–Gorenstein k-algebra, i.e. R is left <strong>and</strong> right<br />

noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian as a ring <strong>and</strong> R has finite injective dimensi<strong>on</strong> both as left R-module <strong>and</strong> as<br />

right R-module. Let mod R denote <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated right R-modules.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e h<strong>and</strong>, <strong>on</strong>e defines <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity category<br />

D sg (R) := D b (mod R)/K b (proj R),<br />

which measures <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity <str<strong>on</strong>g>of</str<strong>on</strong>g> R. (K b (proj R) is c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

smooth part.) On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <strong>on</strong>e defines <str<strong>on</strong>g>the</str<strong>on</strong>g> category MCM(R) <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen–<br />

Macaulay R-modules<br />

MCM(R) := {M ∈ mod R | Ext i R(M, R) = 0 for any i > 0}.<br />

The following nice result <str<strong>on</strong>g>of</str<strong>on</strong>g> Buchweitz relates <str<strong>on</strong>g>the</str<strong>on</strong>g>se categories.<br />

Theorem 6. ([4]) MCM(R) is a Frobenius category whose full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> projectiveinjective<br />

objects is precisely proj R. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding MCM(R) → mod R induces a<br />

triangle equivalence from <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category MCM(R) to <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity category D sg (R).<br />

Let M 1 , . . . , M r ∈ MCM(R) be pairwise n<strong>on</strong>-isomorphic n<strong>on</strong>-projective R-modules <strong>and</strong><br />

let M = R ⊕ M 1 ⊕ . . . ⊕ M r . Let A = End R (M) <strong>and</strong> e = id R c<strong>on</strong>sidered as an element <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A. Then R = eAe <strong>and</strong> A/AeA = End MCM(R) (M). For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R = k[x]/x 2 has<br />

a unique simple module S, <strong>and</strong> letting M = R ⊕ S we obtain that A = End R (M) is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

algebra given in Example 1.<br />

There is always an embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> K b (proj R) into K b (proj A) with essential image being<br />

thick(eA). If <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong> is satisfied<br />

(c1) A has finite global dimensi<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n A becomes a n<strong>on</strong>-commutative/categorical resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R. The c<strong>on</strong>diti<strong>on</strong> (c1) has<br />

an interesting c<strong>on</strong>sequence: <str<strong>on</strong>g>the</str<strong>on</strong>g> object M generates MCM(R) as a triangulated category.<br />

–265–


Cluster-tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory comes into <str<strong>on</strong>g>the</str<strong>on</strong>g> story because cluster-tilting objects are closely related<br />

to Van den Bergh’s n<strong>on</strong>-commutative crepant resoluti<strong>on</strong>s [16], see [10].<br />

The triangle quotient K b (proj A)/ thick(eA) measures <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong><br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> smooth part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity, see [5]. So K b (proj A)/ thick(eA) is in some<br />

sense a ‘categorical excepti<strong>on</strong>al locus’. A natural questi<strong>on</strong> is: how is K b (proj A)/ thick(eA)<br />

related to D sg (R)?<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong><br />

(c2) MCM(R) is Hom-finite.<br />

Theorem 7. ([12]) Keep <str<strong>on</strong>g>the</str<strong>on</strong>g> above notati<strong>on</strong>s <strong>and</strong> assume that (c1) <strong>and</strong> (c2) hold. There<br />

is a dg algebra B with a morphism f : A → B such that f induces a triangle equivalence<br />

per(B) ∼ = (K b (proj A)/ thick(eA)) ω .<br />

Moreover, B satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties:<br />

(a) B i = 0 for any i > 0,<br />

(b) H 0 (B) ∼ = A/AeA,<br />

(c) D fd (B) ⊆ per(B),<br />

(d) per(B) is Hom-finite,<br />

(e) <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle equivalence<br />

D sg (R) ω ∼ = (per(B)/Dfd (B)) ω .<br />

Theorem 7 (a–d) are obtained by applying Theorem 3, <strong>and</strong> part (e) needs more work.<br />

This <str<strong>on</strong>g>the</str<strong>on</strong>g>orem was proved by Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Van den Bergh in [15] for R<br />

being a local complete commutative Gorenstein k-algebra with isolated singularity. As an<br />

applicati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following result, which was independently proved by Amiot,<br />

Iyama <strong>and</strong> Reiten.<br />

Theorem 8. ([2, 15]) Let d ∈ N. Let G ⊂ SL d (k) be a finite subgroup, acting naturally<br />

<strong>on</strong> S = k [x 1 , . . . , x d ] <strong>and</strong> let R = S G be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> invariants. Then MCM(R) is a<br />

generalized (d − 1)-cluster category in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Amiot [1] <strong>and</strong> Guo [9].<br />

References<br />

[1] Claire Amiot, Cluster categories for algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2 <strong>and</strong> quivers with potential, Ann.<br />

Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525–2590.<br />

[2] Claire Amiot, Osamu Iyama, <strong>and</strong> Idun Reiten, Stable categories <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macauley modules <strong>and</strong><br />

cluster categories, arXiv:1104.3658.<br />

[3] Alex<strong>and</strong>er A. Beilins<strong>on</strong>, Joseph Bernstein, <strong>and</strong> Pierre Deligne, Analyse et topologie sur les espaces<br />

singuliers, Astérisque, vol. 100, Soc. Math. France, 1982 (French).<br />

[4] Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules <strong>and</strong> Tate-Cohomology over Gorenstein<br />

rings, preprint 1987.<br />

[5] Igor Burban <strong>and</strong> Martin Kalck, Singularity category <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-commutative resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> singularities,<br />

arXiv:1103.3936.<br />

[6] Edward Cline, Brian Parshall, <strong>and</strong> Le<strong>on</strong>ard L. Scott, Finite-dimensi<strong>on</strong>al algebras <strong>and</strong> highest weight<br />

categories, J. reine ang. Math. 391 (1988), 85–99.<br />

–266–


[7] , Endomorphism algebras <strong>and</strong> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Algebraic groups <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir representati<strong>on</strong>s<br />

(Cambridge, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 517, Kluwer Acad.<br />

Publ., Dordrecht, 1998, pp. 131–149.<br />

[8] , Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124 (1996), no. 591.<br />

[9] Lingyan Guo, Cluster tilting objects in generalized higher cluster categories, J. Pure Appl. Algebra<br />

215 (2011), no. 9, 2055–2071.<br />

[10] Osamu Iyama, Ausl<strong>and</strong>er corresp<strong>on</strong>dence, Adv. Math. 210 (2007), no. 1, 51–82.<br />

[11] Peter Jørgensen, Recollement for differential graded algebras, J. Algebra 299 (2006), no. 2, 589–601.<br />

[12] Martin Kalck <strong>and</strong> D<strong>on</strong>g Yang, work in preparati<strong>on</strong>.<br />

[13] , Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102.<br />

[14] Steffen Koenig <strong>and</strong> Hiroshi Nagase, Hochschild cohomologies <strong>and</strong> stratifying ideals, J. Pure Appl.<br />

Algebra 213 (2009), no. 4, 886–891.<br />

[15] Louis de Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Michel Van den Bergh, Explicit models for some stable categories<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-Macaulay modules, arXiv:1006.2021.<br />

[16] Michel Van den Bergh, N<strong>on</strong>-commutative crepant resoluti<strong>on</strong>s, The legacy <str<strong>on</strong>g>of</str<strong>on</strong>g> Niels Henrik Abel,<br />

Springer, Berlin, 2004, pp. 749–770.<br />

Universität Stuttgart<br />

Institut für Algebra und Zahlen<str<strong>on</strong>g>the</str<strong>on</strong>g>orie<br />

Pfaffenwaldring 57, D-70569 Stuttgart, Germany<br />

E-mail address: d<strong>on</strong>gyang2002@gmail.com<br />

–267–


INTRODUCTION TO REPRESENTATION THEORY OF<br />

COHEN-MACAULAY MODULES AND THEIR DEGENERATIONS<br />

YUJI YOSHINO<br />

Abstract. This is a quick introducti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-<br />

Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir degenerati<strong>on</strong>s.<br />

1. Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules.<br />

Let k be a field <strong>and</strong> let R be commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian complete local k-algebra with<br />

unique maximal ideal m. We assume k ∼ = R/m naturally. Then it is known that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

a regular local k-subalgebra T <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that R is a module-finite T -algebra. (Cohen’s<br />

structure <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for complete local rings.) Note that T is isomorphic to a formal power<br />

series ring over k.<br />

Definiti<strong>on</strong> 1. (1) R is called a Cohen-Macaulay ring (a CM ring for short) if R<br />

is free as a T -module.<br />

(2) A finitely generated R-module M is called a Cohen-Macaulay module over R,<br />

or a maximal Cohen-Macaulay module (a CM module or an MCM module for<br />

short) if M is free as a T -module.<br />

Given a CM module M, since M ∼ = T n for some n ≥ 0, we have a k-algebra homomorphism<br />

R → End T (M) ∼ = T n×n , which is a matrix-representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R over T .<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> following we always assume that R is a CM complete local k-algebra. We<br />

denote by mod(R) (res. CM(R) ) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules (resp. CM<br />

modules over R ) <strong>and</strong> R-homomorphisms.<br />

CM(R) := { CM modules over R} ⊆ mod(R) := {finitely generated R-modules }<br />

Since R is complete, mod(R) <strong>and</strong> CM(R) are Krull-Schmidt categories. Note that CM(R)<br />

is a resolving subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod(R) in <str<strong>on</strong>g>the</str<strong>on</strong>g> following sense: Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact<br />

sequence 0 → L → M → N → 0 in mod(R).<br />

(i) If L, N ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ CM(R).<br />

(ii) If M, N ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n L ∈ CM(R).<br />

Let d be <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull-dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R (so that we can take T = k[[t 1 , . . . , t d ]] <strong>on</strong><br />

which R is finite). If d = 1 <strong>and</strong> if R is reduced, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM modules are just torsi<strong>on</strong>-free<br />

modules. If d = 2 <strong>and</strong> if R is normal, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM modules are nothing but reflexive modules.<br />

In general, if d ≥ 3 <strong>and</strong> if R is normal, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM(R) ⊆ {reflexive modules} but this is not<br />

necessarily an equality. If R is regular (i.e. gl-dimR < ∞) <str<strong>on</strong>g>the</str<strong>on</strong>g>n all CM modules over R<br />

are free.<br />

Let K R := Hom T (R, T ) <strong>and</strong> call it <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical module <str<strong>on</strong>g>of</str<strong>on</strong>g> R. Since R is a CM ring,<br />

K R ∈ CM(R). For any X ∈ mod(R), we have a natural isomorphism Hom R (X, K R ) ∼ =<br />

–268–


Hom T (X, T ). It follows that Hom R (−, K R ) gives duality CM(R) → CM(R) op . Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck’s<br />

local duality <str<strong>on</strong>g>the</str<strong>on</strong>g>orem claims <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> natural isomorphisms<br />

Ext i R(M, K R ) ∼ = Hom R (H d−i<br />

m (M), E R (k)) (∀i ∈ N)<br />

whenever R is a CM complete ring <strong>and</strong> M ∈ mod(R). Thus it is easy to see <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Lemma 2. The following are equivalent for M ∈ mod(R):<br />

(1) M ∈ CM(R),<br />

(2) Ext i R(M, K R ) = 0 (∀i > 0),<br />

(3) H j m(M) = 0 (∀j < d),<br />

(4) Ext i R(k, M) = 0 (∀i < d).<br />

Now recall that R is called an isolated singularity if R p is a regular local ring for<br />

each prime p ≠ m. It is not hard to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Lemma 3. Let R be a CM local ring as above. The R is an isolated singularity if <strong>and</strong><br />

<strong>on</strong>ly if Ext 1 R(M, N) is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite length for each M, N ∈ CM(R).<br />

Definiti<strong>on</strong> 4. A CM local ring R is said to be <str<strong>on</strong>g>of</str<strong>on</strong>g> finite CM representati<strong>on</strong> type if<br />

CM(R) has <strong>on</strong>ly a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable modules.<br />

The first celebrated result about finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> CM representati<strong>on</strong> type was due to<br />

M. Ausl<strong>and</strong>er.<br />

Theorem 5. [Ausl<strong>and</strong>er, 1986] Let R be a CM complete local ring. If R is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite CM<br />

representati<strong>on</strong> type, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R is an isolated singularity.<br />

We prove this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem by using an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> Huneke <strong>and</strong> Leuschke [6].<br />

Lemma 3 it is enough to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(*) Let a 1 , a 2 , a 3 , . . . be any countable sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in m <strong>and</strong> let M, N ∈ CM(R)<br />

be any indecomposable CM modules. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an integer n such that<br />

a 1 a 2 · · · · a n Ext 1 R(M, N) = 0.<br />

Actually this will imply that a power <str<strong>on</strong>g>of</str<strong>on</strong>g> m annihilates Ext 1 R(M, N), hence <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ext 1 R(M, N) is finite. To prove (∗), take a σ ∈ Ext 1 R(M, N) that corresp<strong>on</strong>ds to a short<br />

exact sequence σ : 0 → N → E 0 → M → 0. Now assume <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding sequence<br />

to a 1 a 2 · · · a n σ ∈ Ext 1 R(M, N) is 0 → N → E n → M → 0 for any integer n. Note that<br />

each E n is a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable CM modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity (or <str<strong>on</strong>g>the</str<strong>on</strong>g> rank<br />

if it is defined) e(E n ) is c<strong>on</strong>stantly equal to e(M) + e(N). Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such E n are finite, <strong>and</strong> hence <str<strong>on</strong>g>the</str<strong>on</strong>g>re are integers n <strong>and</strong> r > 0 such that E n<br />

∼ = En+r . By<br />

definiti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a commutative diagram with exact rows:<br />

a 1 · · · a n σ :<br />

0 −−−→ N<br />

j<br />

−−−→ E n −−−→ M −−−→ 0<br />

b:=a n+1···a n+r<br />

⏐ ⏐↓<br />

⏐ ⏐↓<br />

⏐ ⏐↓<br />

=<br />

a 1 · · · a n+r σ : 0 −−−→ N −−−→ E n+r −−−→ M −−−→ 0,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> first square is a push-out. Hence,<br />

0 −−−→ N (j b)<br />

−−−→ E n ⊕ N −−−→ E n+r −−−→ 0<br />

–269–


is exact. Since E n<br />

∼ = En+r , Miyata’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem forces that ( j<br />

b)<br />

is a split m<strong>on</strong>omorphism.<br />

Then <strong>on</strong>e can see that j is also a split m<strong>on</strong>omorphism. (pj + qb = 1 N in <str<strong>on</strong>g>the</str<strong>on</strong>g> local ring<br />

End R (N).) Hence a 1 · · · a n σ = 0 as an element <str<strong>on</strong>g>of</str<strong>on</strong>g> Ext 1 R(M, N). ✷<br />

By a similar idea to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> above, Huneke <strong>and</strong> Leuschke [7] was able to prove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which had been c<strong>on</strong>jectured by F.-O.Schreyer in 1987.<br />

Theorem 6. [Huneke-Leuschke 2003] Let R be a CM complete local ring <strong>and</strong> assume<br />

that R is <str<strong>on</strong>g>of</str<strong>on</strong>g> countable CM representati<strong>on</strong> type (i.e. CM(R) has <strong>on</strong>ly a countable number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable modules). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> singular locus <str<strong>on</strong>g>of</str<strong>on</strong>g> R has at<br />

most <strong>on</strong>e-dimensi<strong>on</strong>, i.e. R p is regular for each prime p with dim R/p > 1.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) Let {M i | i = 1, 2, . . .} be a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable<br />

CM modules, <strong>and</strong> set<br />

Λ = {p ∈ Spec(R) | p = Ann R Ext 1 R(M i , M j ) for some i, j <strong>and</strong> dim R/p = 1},<br />

which is a countable set <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals. Let J be an ideal defining <str<strong>on</strong>g>the</str<strong>on</strong>g> singular locus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Spec(R) <strong>and</strong> we want to show dim R/J ≤ 1. Assume c<strong>on</strong>trarily dim R/J ≥ 2. If p ∈ Λ<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n, since (M i ) p is not free, we have J ⊆ p. Thus J ⊆ ∩ p∈Λ<br />

p. By countable prime<br />

avoidance, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an f ∈ m\ ∪ p∈Λ<br />

p, <strong>and</strong> we can find a prime q so that q ⊇ J + fR <strong>and</strong><br />

dim R/q = 1. Set X i = Ω i R (R/q) <str<strong>on</strong>g>the</str<strong>on</strong>g> ith syzygy for i ≥ 0. Then X i ∈ CM(R) if i ≥ d<br />

<strong>and</strong> <strong>on</strong>e can show that Ann R Ext 1 R(X d , X d+1 ) = q. The CM modules X d <strong>and</strong> X d+1 is a<br />

direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposables as X d<br />

∼<br />

⊕ r = u=1 M i u<br />

<strong>and</strong> X d+1<br />

∼<br />

⊕ s = v=1 M j u<br />

. Thus since<br />

q = ∩ u,v Ann R Ext 1 R(M iu , M jv ), we have q = Ann R Ext 1 R(M iu , M jv ) for some u, v. Thus<br />

q ∈ Λ, but this is a c<strong>on</strong>tradicti<strong>on</strong> for f ∈ q. ✷<br />

Ausl<strong>and</strong>er’s original pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5 uses AR-sequences.<br />

Definiti<strong>on</strong> 7. A n<strong>on</strong>-split short exact sequence 0 → N → E<br />

called an AR-sequence (ending in M) if<br />

p → M → 0 in CM(R) is<br />

(1) M <strong>and</strong> N are indecomposable,<br />

(2) if f : X → M is any morphism in CM(R) that is not a splitting epimorphism,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n f factors through p.<br />

We say that <str<strong>on</strong>g>the</str<strong>on</strong>g> category CM(R) admits AR-sequences if, for any indecomposable M ∈<br />

CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an AR-sequence ending in M.<br />

M.Ausl<strong>and</strong>er proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orems.<br />

Theorem 8. Let R be a CM complete local ring <strong>and</strong> assume that R is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite CM<br />

representati<strong>on</strong> type. Then CM(R) admits AR-sequences.<br />

Theorem 9. Let R be a CM complete local ring. Then CM(R) admits AR-sequences if<br />

<strong>and</strong> <strong>on</strong>ly if R is an isolated singularity.<br />

The most difficult part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorems 8 <strong>and</strong> 9 is to show <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong><br />

”being isolated singularity ⇒ admitting AR-sequences”. This implicati<strong>on</strong> follows from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following isomorphism which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten duality :<br />

–270–


Theorem 10. Assume that a CM complete local ring R is an isolated singularity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dimensi<strong>on</strong> d. Then, for any M, N ∈ CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a natural isomorphism<br />

Ext d R(Hom R (N, M), K R ) ∼ = Ext 1 R(M, Hom R (Ω d Rtr(N), K R )).<br />

Now we discuss some generalities about stable categories. For this let R be a CM<br />

complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> d. We denote by CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R).<br />

By definiti<strong>on</strong>, CM(R) is <str<strong>on</strong>g>the</str<strong>on</strong>g> factor category CM(R)/[R]. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> objects <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R)<br />

is CM modules over R, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> morphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> Hom R (M, N) :=<br />

Hom R (M, N)/P (M, N) for M, N ∈ CM(R), where P (M, N) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms<br />

from M to N factoring through projective R-modules. For a CM module M we denote<br />

it by M to indicate that it is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R).<br />

Since R is a complete local ring, note that M is isomorphic to N in CM(R) if <strong>and</strong> <strong>on</strong>ly<br />

if M ⊕ P ∼ = N ⊕ Q in CM(R) for some projective (hence free) R-modules P <strong>and</strong> Q.<br />

For any R-module M, we denote <str<strong>on</strong>g>the</str<strong>on</strong>g> first syzygy module <str<strong>on</strong>g>of</str<strong>on</strong>g> M by Ω R M. We should<br />

note that Ω R M is uniquely determined up to isomorphism as an object in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable<br />

category. The nth syzygy module Ω n R M is defined inductively by Ωn R M = Ω R(Ω n−1<br />

R<br />

M),<br />

for any n<strong>on</strong>negative integer n.<br />

We say that R is a Gorenstein ring if K R<br />

∼ = R. If R is Gorenstein, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it is easy<br />

to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy functor Ω A : CM(R) → CM(R) is an autoequivalence. Hence, in<br />

particular, <strong>on</strong>e can define <str<strong>on</strong>g>the</str<strong>on</strong>g> cosyzygy functor Ω −1<br />

R<br />

<strong>on</strong> CM(R) which is <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ω R . We note from [3, 2.6] that CM(R) is a triangulated category with shifting functor<br />

[1] = Ω −1<br />

R<br />

. In fact, if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence 0 → L → M → N → 0 in CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> pushout:<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0<br />

⏐ ⏐<br />

∥ ↓ ↓<br />

0 −−−→ L −−−→ P −−−→ Ω −1 L −−−→ 0,<br />

where P is projective (hence free). We define <str<strong>on</strong>g>the</str<strong>on</strong>g> triangles in CM(R) are <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences<br />

L −−−→ M −−−→ N −−−→ L[1]<br />

obtained in such a way.<br />

Now we remark <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental dualities called <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten-Serre<br />

duality, which essentially follows from Theorem 10.<br />

Theorem 11. Let R be a Gorenstein complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> d. Suppose that R is<br />

an isolated singularity. Then, for any X, Y ∈ CM(R), we have a functorial isomorphism<br />

Ext d R(Hom R (X, Y ), R) ∼ = Hom R (Y, X[d − 1]).<br />

Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> triangulated category CM(R) is a (d − 1)-Calabi-Yau category.<br />

2. Degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules<br />

Let us recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

algebra, which is given in [12].<br />

Let R be an associative k-algebra where k is any field. We take a discrete valuati<strong>on</strong><br />

ring (V, tV, k) which is a k-algebra <strong>and</strong> t is a prime element. We denote by K <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient<br />

–271–


field <str<strong>on</strong>g>of</str<strong>on</strong>g> V . We denote by mod(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> all finitely generated left R-modules<br />

<strong>and</strong> R-homomorphisms as before. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> natural functors<br />

mod(R)<br />

r<br />

←−−− mod(R ⊗ k V )<br />

l<br />

−−−→ mod(R ⊗ k K),<br />

where r = − ⊗ V V/tV <strong>and</strong> l = − ⊗ V K. (”r” for residue, <strong>and</strong> ”l” for localizati<strong>on</strong>.)<br />

Definiti<strong>on</strong> 12. For modules M, N ∈ mod(R), we say that M degenerates to N if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exist a discrete valuati<strong>on</strong> ring (V, tV, k) which is a k-algebra <strong>and</strong> a module Q ∈<br />

mod(R ⊗ k V ) that is V -flat such that l(Q) ∼ = M ⊗ k K <strong>and</strong> r(Q) ∼ = N.<br />

The module Q, regarded as a bimodule R Q V , is a flat family <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with parameter<br />

in V . At <str<strong>on</strong>g>the</str<strong>on</strong>g> closed point in <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter space SpecV , <str<strong>on</strong>g>the</str<strong>on</strong>g> fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is N,<br />

which is a meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism r(Q) ∼ = N. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism<br />

l(Q) ∼ = M ⊗ k K means that <str<strong>on</strong>g>the</str<strong>on</strong>g> generic fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is essentially given by M.<br />

Example 13. Let R = k[[x, y]]/(x 2 ), where k is a field. In this case, a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices<br />

(( ) ( ))<br />

x y<br />

2 x −y<br />

2<br />

(ϕ, ψ) = ,<br />

0 x 0 x<br />

over k[[x, y]] is a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x 2 , giving a CM R-module N that is isomorphic<br />

to an ideal I = (x, y 2 )R. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a periodic free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N;<br />

· · · −−−→ R 2 ψ<br />

−−−→ R 2 ϕ<br />

−−−→ R 2<br />

Now we deform <str<strong>on</strong>g>the</str<strong>on</strong>g> matices to<br />

(( )<br />

x + ty y<br />

2<br />

(Φ, Ψ) =<br />

−t 2 x − ty<br />

ψ<br />

−−−→ R 2<br />

ϕ<br />

−−−→ R 2 −−−→ N −−−→ 0.<br />

( ))<br />

x − ty −y<br />

2<br />

,<br />

t 2 x + ty<br />

over R ⊗ k V . Since this is a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x 2 again, we have a free resoluti<strong>on</strong><br />

· · ·<br />

Φ<br />

−−−→ (R ⊗ k V ) 2<br />

Ψ<br />

−−−→ (R ⊗ k V ) 2<br />

Φ<br />

−−−→ (R ⊗ k V ) 2 −−−→ Q −−−→ 0.<br />

It is obvious to see that r(Q) = Q/tQ ∼ = N, since ( Φ ⊗)<br />

V V/tV = ϕ. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>,<br />

since t 2 is a unit in R ⊗ k K, we have Φ ⊗ V K ∼ 0 0<br />

= after elementary transformati<strong>on</strong>s<br />

1 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> matrices. Hence, l(Q) = Q t<br />

∼ = R ⊗k K. As a c<strong>on</strong>clusi<strong>on</strong>, we see that R degenerates to<br />

I = (x, y 2 )R !<br />

Theorem 14 ([12]). The following c<strong>on</strong>diti<strong>on</strong>s are equivalent for finitely generated left<br />

R-modules M <strong>and</strong> N.<br />

(1) M degenerates to N.<br />

(2) There is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

0 → Z (φ ψ)<br />

−→ M ⊕ Z → N → 0,<br />

such that <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism ψ <str<strong>on</strong>g>of</str<strong>on</strong>g> Z is nilpotent, i.e. ψ n = 0 for n ≫ 1.<br />

Example 15. In Example 13, we have an exact sequence<br />

such that x y<br />

0 −−−→ m (−1, x y<br />

−−−−→ )<br />

R ⊕ m (x y)<br />

−−−→ I −−−→ 0,<br />

: m → m is nilpotent, where m = (x, y)R.<br />

–272–


By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> Zwara [17, Theorem 1], we see that<br />

if R is a finite-dimensi<strong>on</strong>al algebra over k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n our definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> agrees with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> classical (geometric) definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s using module varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> R-module<br />

structures.<br />

We prove here <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (2) ⇒ (1).<br />

Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

0 → Z f= ( φ ψ)<br />

−→ M ⊕ Z → N → 0,<br />

such that ψ is nilpotent. C<strong>on</strong>sidering a trivial exact sequence<br />

0 → Z j=(0 1)<br />

−→ M ⊕ Z → M → 0,<br />

we shall combine <str<strong>on</strong>g>the</str<strong>on</strong>g>se two exact sequences al<strong>on</strong>g a [0, 1]-interval. More precisely, let V<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete valuati<strong>on</strong> ring k[t] (t) , where t in an indeterminate over k, <strong>and</strong> c<strong>on</strong>sider a<br />

left R ⊗ k V -homomorphism<br />

(<br />

g = j ⊗ t + f ⊗ (1 − t) =<br />

φ ⊗ (1 − t)<br />

1 ⊗ t + ψ ⊗ (1 − t)<br />

)<br />

: Z ⊗ k V → (M ⊕ Z) ⊗ k V.<br />

We can easily show that g is a m<strong>on</strong>omorphism.<br />

Setting <str<strong>on</strong>g>the</str<strong>on</strong>g> cokernel <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>omorphism g as Q, we have an exact sequence in<br />

modR ⊗ k V :<br />

0 → Z ⊗ k V g → (Z ⊗ k V ) ⊕ (M ⊗ k V ) → Q → 0.<br />

Since g ⊗ k V/tV = f is an injecti<strong>on</strong> <strong>and</strong> since <strong>on</strong>e can easily show Tor V 1 (Q, V/tV ) = 0,<br />

we c<strong>on</strong>clude that Q is flat over V <strong>and</strong> Q/tQ ∼ = N.<br />

Finally note that <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism g ⊗ k V [ 1 ] is essentially <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism<br />

t<br />

Z ⊗ k V [ 1 t ]<br />

⎛<br />

⎞<br />

sφ ⎝ ⎠<br />

1 + sψ<br />

−−−−−−−→ M ⊗ k V [ 1] ⊕ Z ⊗ t k V [ 1],<br />

t<br />

where s = 1−t ∈ V [ 1]. Note that sψ : Z ⊗ t t k V [ 1] → Z ⊗ t k V [ 1 ] is nilpotent as well as<br />

t<br />

ψ, hence 1 + sψ is an automorphism <strong>on</strong> Z ⊗ k V [ 1 ]. Therefore we have an isomorphism<br />

t<br />

Q[ 1] ∼ t<br />

= M ⊗ k V [ 1 ]. This completes <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. ✷<br />

t<br />

We remark from this pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that we can always take k[t] (t) as V in Definiti<strong>on</strong> 12.<br />

We give an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) ⇒ (2). (See [12] for <str<strong>on</strong>g>the</str<strong>on</strong>g> detail.)<br />

We can take Q in Definiti<strong>on</strong> 12 so that M ⊗ k V ⊆ Q. Then we have an exact sequence<br />

0 → Q/(M ⊗ k V )<br />

t<br />

−→ Q/(M ⊗ k tV ) −→ Q/tQ → 0<br />

Setting Z = Q/(M ⊗ k V ), we can see that <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term will be M ⊕ Z <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right<br />

term is N. ✷<br />

Lemma 16. If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence 0 → L → i M<br />

degenerates to L ⊕ N.<br />

p → N → 0 in mod(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>n M<br />

–273–


(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>)<br />

( ) p 0<br />

0 −−−→ L (i 0)<br />

0 1<br />

−−−→ M ⊕ L −−−−→ N ⊕ L −−−→ 0<br />

is exact where 0 : L → L is <str<strong>on</strong>g>of</str<strong>on</strong>g> course nilpotent. ✷<br />

Such a degenerati<strong>on</strong> given as in <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma will be called a degenerati<strong>on</strong> by an extensi<strong>on</strong>.<br />

There is a degenerati<strong>on</strong> which is not a degenerati<strong>on</strong> by an extensi<strong>on</strong>. See <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Example 13.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest we mainly treat <str<strong>on</strong>g>the</str<strong>on</strong>g> case when R is a commutative ring.<br />

Remark 17. Let R be a commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra over k, <strong>and</strong> suppose that a finitely<br />

generated R-module M degenerates to a finitely generated R-module N. Then:<br />

(1) The modules M <strong>and</strong> N give <str<strong>on</strong>g>the</str<strong>on</strong>g> same class in <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck group, i.e. [M] = [N]<br />

as elements <str<strong>on</strong>g>of</str<strong>on</strong>g> K 0 (mod(R)). This is actually a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 → Z → M ⊕<br />

Z → N → 0. In particular, rank M = rank N if <str<strong>on</strong>g>the</str<strong>on</strong>g> ranks are defined for R-modules.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, if (R, m) is a local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n e(I, M) = e(I, N) for any m-primary ideal I,<br />

where e(I, M) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> M al<strong>on</strong>g I.<br />

(2) If L is an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> finite length, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following inequalities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lengths for any integer i:<br />

{<br />

length R (Ext i R(L, M)) ≦ length R (Ext i R(L, N)),<br />

length R (Ext i R(M, L)) ≦ length R (Ext i R(N, L)).<br />

In particular, when R is a local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

ν(M) ≦ ν(N), β i (M) ≦ β i (N) <strong>and</strong> µ i (M) ≦ µ i (N) (i ≧ 0),<br />

where ν, β i <strong>and</strong> µ i denote <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal number <str<strong>on</strong>g>of</str<strong>on</strong>g> generators, <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Betti number <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ith Bass number respectively.<br />

(3) We also have pd R M ≤ pd R N, depth R M ≥ depth R N <strong>and</strong> similar inequalities like<br />

G-dim R M ≤ G-dim R N. Roughly speaking, when <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a degenerati<strong>on</strong> from M to N,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n M is a better module than N.<br />

Recall that a finitely generated R-module is called rigid if it satisfies Ext 1 R(N, N) = 0.<br />

Lemma 18. Let R be a complete local k-algebra <strong>and</strong> let M, N ∈ mod(R). Assume that<br />

N is rigid. If M degenerates to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∼ = N.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) From <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence 0 → Z (φ ψ)<br />

−→ M ⊕ Z → N → 0, we have an exact sequence<br />

Ext 1 R(N, Z) (φ ψ)<br />

−→ Ext 1 R(N, M) ⊕ Ext 1 R(N, Z) → Ext 1 R(N, N),<br />

where ψ is nilpotent <strong>and</strong> Ext 1 R(N, N) = 0. Thus we have Ext 1 R(N, Z) = 0. It follows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

first sequence splits, <strong>and</strong> thus M ⊕ Z ∼ = N ⊕ Z. Since R is complete, it forces M ∼ = N. ✷<br />

We recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely presented module. Suppose<br />

that a module M over a commutative ring R is given by a finitely free presentati<strong>on</strong><br />

R m<br />

C<br />

−−−→ R n −−−→ M −−−→ 0,<br />

–274–


where C is an n × m-matrix with entries in R. Then recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal<br />

F R i (M) <str<strong>on</strong>g>of</str<strong>on</strong>g> M is defined to be <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal I n−i (C) <str<strong>on</strong>g>of</str<strong>on</strong>g> R generated by all <str<strong>on</strong>g>the</str<strong>on</strong>g> (n − i)-minors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix C. (We use <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong> that I r (C) = R for r ≦ 0 <strong>and</strong> I r (C) = 0 for<br />

r > min{m, n}.) It is known that F R i (M) depends <strong>on</strong>ly <strong>on</strong> M <strong>and</strong> i, <strong>and</strong> independent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> free presentati<strong>on</strong>, <strong>and</strong> F R 0 (M) ⊆ F R 1 (M) ⊆ · · · ⊆ F R n (M) = R. The<br />

following lemma will be used to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Lemma 19. Let f : A → B be a ring homomorphism <strong>and</strong> let M be an A-module which<br />

possesses a finitely free presentati<strong>on</strong>. Then F B i (M ⊗ A B) = f(F A i (M))B for all i ≧ 0.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) If M has a presentati<strong>on</strong> A m → C A n → M → 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊗ A B has a presentati<strong>on</strong><br />

B m f(C)<br />

→ B n → M ⊗ A B → 0. Thus Fi B (M ⊗ A B) = I n−i (f(C)) = f(I n−i (C))B =<br />

f(Fi A (M))B. ✷<br />

Theorem 20. [Y, 2011] Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative algebra over k, <strong>and</strong> M <strong>and</strong><br />

N finitely generated R-modules. Suppose M degenerates to N. Then we have F R i (M) <br />

F R i (N) for all i ≧ 0.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) By <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a finitely generated R ⊗ k V -module Q such that<br />

Q t<br />

∼ = M ⊗k K <strong>and</strong> Q/tQ ∼ = N, where V = k[t] (t) <strong>and</strong> K = k(t). Note that R ⊗ k V ∼ =<br />

S −1 R[t] where S = k[t]\(t). Since Q is finitely generated, we can find a finitely generated<br />

R[t]-module Q ′ such that Q ′ ⊗ R[t] (R ⊗ k V ) ∼ = Q. For a fixed integer i we now c<strong>on</strong>sider<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Fitting ideal J := F R[t]<br />

i (Q ′ ) R[t]. Apply Lemma 19 to <str<strong>on</strong>g>the</str<strong>on</strong>g> ring homomorphism<br />

R[t] → R = R[t]/tR[t], <strong>and</strong> noting that Q ′ ⊗ R[t] R ∼ = N, we have<br />

(2.1) F R i (N) = J + tR[t]/tR[t]<br />

as an ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R = R[t]/tR[t]. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, applying Lemma 19 to R[t] → R⊗ k K =<br />

T −1 R[t] where T = k[t]\{0}, we have F R i (M)T −1 R[t] = JT −1 R[t]. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an<br />

element f(t) ∈ T such that f(t)J ⊆ F R i (M)R[t].<br />

Now to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> F R i (N) F R i (M), take an arbitrary element a ∈ F R i (N). It<br />

follows from (2.1) that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form a + b 1 t + b 2 t 2 + · · · + b r t r (b i ∈ R)<br />

that bel<strong>on</strong>gs to J. Then, we have f(t)(a + b 1 t + b 2 t 2 + · · · + b r t r ) ∈ F R i (M)R[t]. Since<br />

f(t) is a n<strong>on</strong>-zero polynomial whose coefficients are all in k, looking at <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-zero term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> least degree in <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial f(t)(a + b 1 t + · · · + b r t r ), we have<br />

that a ∈ F R i (M). ✷<br />

Example 21. Let R = k[[x, y]]/(x 2 , y 2 ). Note that R is an artinian Gorenstein local ring.<br />

Now c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> modules M λ = R/(x − λy)R for all λ ∈ k. We denote by k <str<strong>on</strong>g>the</str<strong>on</strong>g> unique<br />

simple module R/(x, y)R over R.<br />

(1) R degenerates to M λ ⊕M −λ for ∀λ ∈ k, since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence 0 → M −λ →<br />

R → M λ → 0.<br />

(2) There is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s from R ⊕ k 2 to M λ ⊕ M µ ⊕ k 2 for any choice<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> λ, µ ∈ k. ([9, Example 3.1])<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) There are exact sequences; 0 → m → R⊕m/(xy) → R/(xy) → 0, 0 → M λ →<br />

m → k → 0 <strong>and</strong> 0 → k x−µy<br />

→ R/(xy) → M µ → 0 for any λ, µ ∈ k. Noting m/(xy) ∼ = k 2 ,<br />

–275–


we have a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s R ⊕ k 2 ⇒ m ⊕ R/(xy) ⇒ (M µ ⊕ k) ⊕ (M λ ⊕ k) =<br />

M λ ⊕ M µ ⊕ k 2 . ✷<br />

(3) There is no sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s from R to M λ ⊕ M µ if λ + µ ≠ 0.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) If <str<strong>on</strong>g>the</str<strong>on</strong>g>re are such degenerati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have an inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fitting ideals;<br />

F R n (M λ ⊕ M µ ) ⊆ F R n (R) for all n. Note that F R 0 (R) = 0, <strong>and</strong><br />

F R 0 (M λ ⊕ M µ ) = F R 0 (M λ )F R 0 (M µ ) = (x − λy)(x − µy)R = (λ + µ)xyR.<br />

Hence we must have λ + µ = 0. ✷<br />

This example shows <str<strong>on</strong>g>the</str<strong>on</strong>g> cancellati<strong>on</strong> law does not hold for degenerati<strong>on</strong>.<br />

Example 22. Let R = k[[t]] be a formal power series ring over a field k with <strong>on</strong>e variable<br />

t <strong>and</strong> let M be an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> length n. It is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an isomorphism<br />

(2.2) M ∼ = R/(t p 1<br />

) ⊕ · · · ⊕ R/(t p n<br />

),<br />

where<br />

(2.3) p 1 ≥ p 2 ≥ · · · ≥ p n ≥ 0 <strong>and</strong><br />

In this case <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> M is given as<br />

n∑<br />

p i = n.<br />

i=1<br />

F R i (M) = (t p i+1+···+p n<br />

) (i ≥ 0).<br />

We denote by p M <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers. Recall that such<br />

a sequence satisfying (2.3) is called a partiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n.<br />

C<strong>on</strong>versely, given a partiti<strong>on</strong> p = (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n, we can associate an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

length n by (2.2), which we denote by M(p). In such a way <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-<strong>on</strong>e corresp<strong>on</strong>dence<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> length n.<br />

Let p = (p 1 , p 2 , · · · , p n ) <strong>and</strong> q = (q 1 , q 2 , · · · , q n ) be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n. Then we denote<br />

p ≽ q if it satisfies ∑ j<br />

i=1 p i ≥ ∑ j<br />

i=1 q i for all 1 ≤ j ≤ n. This ≽ is known to be a partial<br />

order <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> called <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order.<br />

Then we can show that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a degenerati<strong>on</strong> from M to N if <strong>and</strong> <strong>on</strong>ly if p M ≽ p N .<br />

3. Stable degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CM modules<br />

In this secti<strong>on</strong> we are interested in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-<br />

Macaulay modules over a commutative Gorenstein local ring. For this purpose, (R, m, k)<br />

always denotes a Gorenstein local ring which is a k-algebra, <strong>and</strong> V = k[t] (t) <strong>and</strong> K = k(t)<br />

where t is a variable. We note that R ⊗ k V <strong>and</strong> R ⊗ k K are Gorenstein as well as R <strong>and</strong><br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> equality <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong>;<br />

dim R ⊗ k V = dim R + 1, dim R ⊗ k K = dim R.<br />

If dim R = 0 (i.e. R is artinian), <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> rings R ⊗ k V <strong>and</strong> R ⊗ k K are local. However<br />

we should note that R ⊗ k V <strong>and</strong> R ⊗ k K will never be local rings if dim R > 0. Since<br />

R ⊗ k K is n<strong>on</strong>-local, <str<strong>on</strong>g>the</str<strong>on</strong>g>re may be a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules which are not free.<br />

–276–


Example 23. Let R = k[[x, y]]/(x 3 −y 2 ). It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal m = (x, y) is<br />

a unique n<strong>on</strong>-free indecomposable Cohen-Macaulay module over R. See [10, Propositi<strong>on</strong><br />

5.11]. In fact it is given by a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial x 3 − y 2 ;<br />

((<br />

y x<br />

(ϕ, ψ) =<br />

x 2 y<br />

Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence<br />

)<br />

,<br />

(<br />

y −x<br />

−x 2 y<br />

))<br />

.<br />

· · · −−−→ R 2 ϕ<br />

−−−→ R 2 ψ<br />

−−−→ R 2 ϕ<br />

−−−→ R 2 −−−→ m −−−→ 0.<br />

Now we deform <str<strong>on</strong>g>the</str<strong>on</strong>g>se matrices <strong>and</strong> c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> pair <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices over R ⊗ k K;<br />

(( ) ( ))<br />

y − xt x − t<br />

2 y + xt −x + t<br />

2<br />

(Φ, Ψ) =<br />

x 2<br />

,<br />

y + xt −x 2<br />

.<br />

y − xt<br />

Define <str<strong>on</strong>g>the</str<strong>on</strong>g> R ⊗ k K-module P by <str<strong>on</strong>g>the</str<strong>on</strong>g> following exact sequence;<br />

· · · −−−→ (R ⊗ k K) 2 Ψ<br />

−−−→ (R ⊗ k K) 2<br />

Φ<br />

−−−→ (R ⊗ k K) 2 −−−→ P −−−→ 0.<br />

In this case we can prove that P is a projective module <str<strong>on</strong>g>of</str<strong>on</strong>g> rank <strong>on</strong>e over R ⊗ k K but n<strong>on</strong>-free.<br />

(Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> R ⊗ k K is n<strong>on</strong>-trivial.)<br />

Let A be a commutative Gorenstein ring which is not necessarily local. We say that a<br />

finitely generated A-module M is CM if Ext i A(M, A) = 0 for all i > 0. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> all CM modules over A with all A-module homomorphisms:<br />

CM(A) := {M ∈ mod(A) | M is a Cohen-Macaulay module over A}.<br />

We can <str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A), which we denote by CM(A). This<br />

is similarly defined as in local cases, but <str<strong>on</strong>g>the</str<strong>on</strong>g> morphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hom A (M, N) := Hom A (M, N)/P (M, N) for M, N ∈ CM(A), where P (M, N) denotes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms from M to N factoring through projective A-modules (not necessarily<br />

free).<br />

Note that M ∼ = N in CM(A) if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re are projective A-modules P 1 <strong>and</strong> P 2<br />

such that M ⊕ P 1<br />

∼ = N ⊕ P2 in CM(A).<br />

Under such circumstances it is known that CM(A) has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated<br />

category as well as in local cases.<br />

Let x ∈ A be a n<strong>on</strong>-zero divisor <strong>on</strong> A. Note that x is a n<strong>on</strong>-zero divisor <strong>on</strong> every<br />

CM module over A. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> functor − ⊗ A A/xA sends a CM module over A to that<br />

over A/xA. Therefore it yields a functor CM(A) → CM(A/xA). Since this functor maps<br />

projective A-modules to projective A/xA-modules, it induces <str<strong>on</strong>g>the</str<strong>on</strong>g> functor R : CM(A) →<br />

CM(A/xA). It is easy to verify that R is a triangle functor.<br />

Now let S ⊂ A be a multiplicative subset <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Then, by a similar reas<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> above,<br />

we have a triangle functor L : CM(A) → CM(S −1 A) which maps M to S −1 M.<br />

As before, let (R, m, k) be a Gorenstein local ring that is a k-algebra <strong>and</strong> let V = k[t] (t)<br />

<strong>and</strong> K = k(t). Since R⊗ k V <strong>and</strong> R⊗ k K are Gorenstein rings, we can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong><br />

above. Actually, t ∈ R ⊗ k V is a n<strong>on</strong>-zero divisor <strong>on</strong> R ⊗ k V <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re are isomorphisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> k-algebras; (R ⊗ k V )/t(R ⊗ k V ) ∼ = R <strong>and</strong> (R ⊗ k V ) t<br />

∼ = R ⊗k K. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

triangle functors L : CM(R ⊗ k V ) → CM(R ⊗ k K) defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong> by t, <strong>and</strong><br />

–277–


R : CM(R⊗ k V ) → CM(R) defined by taking −⊗ R⊗k V (R⊗ k V )/t(R⊗ k V ) = −⊗ V V/tV .<br />

Now we define <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CM modules.<br />

Definiti<strong>on</strong> 24. Let M, N ∈ CM(R). We say that M stably degenerates to N if <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is a Cohen-Macaulay module Q ∈ CM(R⊗ k V ) such that L(Q) ∼ = M ⊗ k K in CM(R⊗ k K)<br />

<strong>and</strong> R(Q) ∼ = N in CM(R).<br />

Lemma 25. [15, Lemma 4.2, Propositi<strong>on</strong> 4.3]<br />

(1) Let M, N ∈ CM(R). If M degenerates to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M stably degenerates to N.<br />

(2) Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle in CM(R);<br />

L<br />

α<br />

−−−→ M<br />

β<br />

−−−→ N<br />

Then M stably degenerates to L ⊕ N.<br />

γ<br />

−−−→ L[1].<br />

Lemma 26. [15, Propositi<strong>on</strong> 4.4] Let M, N ∈ CM(R) <strong>and</strong> suppose that M stably degenerates<br />

to N. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) M[1] (resp. M[−1]) stably degenerates to N[1] (resp. N[−1]).<br />

(2) M ∗ stably degenerates to N ∗ , where M ∗ denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> R-dual Hom R (M, R).<br />

Lemma 27. [15, Propositi<strong>on</strong> 4.5] Let M, N, X ∈ CM(R). If M ⊕ X stably degenerates<br />

to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M stably degenerates to N ⊕ X[1].<br />

Remark 28. The zero object in CM(R) can stably degenerate to a n<strong>on</strong>-zero object. In<br />

fact, in Example 13 <str<strong>on</strong>g>the</str<strong>on</strong>g> free module R degenerates to an ideal N. Hence it follows from<br />

Propositi<strong>on</strong> 25(1) that 0 = R stably degenerates to N.<br />

For ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r example, note that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle<br />

X −−−→ 0 −−−→ X[1]<br />

1<br />

−−−→ X[1],<br />

for any X ∈ CM(R). Hence 0 stably degenerates to X ⊕ X[1] by Propositi<strong>on</strong> 25(2).<br />

Let (R, m, k) be a Gorenstein complete local k-algebra <strong>and</strong> assume for simplicity that<br />

k is an infinite field. For Cohen-Macaulay R-modules M <strong>and</strong> N we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

four c<strong>on</strong>diti<strong>on</strong>s:<br />

(1) R m ⊕ M degenerates to R n ⊕ N for some m, n ∈ N.<br />

(2) There is a triangle Z (φ ψ)<br />

→ M ⊕ Z → N → Z[1] in CM(R), where ψ is a nilpotent<br />

element <str<strong>on</strong>g>of</str<strong>on</strong>g> End R (Z).<br />

(3) M stably degenerates to N.<br />

(4) There exists an X ∈ CM(R) such that M ⊕ R m ⊕ X degenerates to N ⊕ R n ⊕ X<br />

for some m, n ∈ N.<br />

In [15] we proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following implicati<strong>on</strong>s <strong>and</strong> equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s:<br />

Theorem 29. (i) In general, (1) ⇒ (2) ⇒ (3) ⇒ (4) holds.<br />

(ii) If dim R = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n (1) ⇔ (2) ⇔ (3) holds.<br />

(iii) If R is an isolated singularity <str<strong>on</strong>g>of</str<strong>on</strong>g> any dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n (2) ⇔ (3) holds.<br />

(iv) There is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> isolated singularity <str<strong>on</strong>g>of</str<strong>on</strong>g> dim R = 1 for which (2) ⇒ (1) fails.<br />

(v) There is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> dim R = 0 for which (4) ⇒ (3) fails.<br />

–278–


We give here an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) ⇒ (2) : By Theorem 14, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an exact sequence<br />

0 → Z (φ ψ)<br />

−→ (R m ⊕ M) ⊕ Z → (R n ⊕ N) → 0,<br />

where ψ is nilpotent. In such a case Z ia a Cohen-Macaulay module as well. Then<br />

c<strong>on</strong>verting this into a triangle in CM(R), <strong>and</strong> noting that <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotency <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ∈ End R (Z)<br />

forces <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotency <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ∈ End R (Z), we can see that (2) holds. ✷<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2) ⇒ (3): Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle Z (φ ψ)<br />

−→ M ⊕ Z → N → Z[1],<br />

where ψ is nilpotent. Then we have a triangle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form;<br />

Z ⊗ k V ( t+ψ)<br />

φ<br />

−→ M ⊗ k V ⊕ Z ⊗ k V −→ Q −→ Z ⊗ k V [1],<br />

for a Q ∈ CM(R ⊗ k V ). Note L(t + ψ) is an isomorphism in CM(R ⊗ k K). Thus<br />

L(Q) ∼ = L(M ⊗ k V ) = M ⊗ k K. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, since R(t + ψ) = ψ, R(Q) ∼ = N.<br />

Thus M stably degenerates to N. ✷<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (3) ⇒ (1) when dim R = 0: In this pro<str<strong>on</strong>g>of</str<strong>on</strong>g> we assume dim R = 0. Suppose that<br />

M stably degenerates to N. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a Q ∈ CM(R ⊗ k V ) with L(Q) ∼ = M ⊗ k K<br />

<strong>and</strong> R(Q) ∼ = N. By definiti<strong>on</strong>, we have isomorphisms Q t ⊕ P 1<br />

∼ = (M ⊗k K) ⊕ P 2 in<br />

CM(R ⊗ k K) for some projective R ⊗ k K-modules P 1 , P 2 , <strong>and</strong> Q/tQ ⊕ R a ∼ = N ⊕ R<br />

b<br />

in CM(R) for some a, b ∈ N. Since R ⊗ k K is a local ring, P 1 <strong>and</strong> P 2 are free. Thus<br />

Q t ⊕ (R ⊗ k K) c ∼ = (M ⊗k K) ⊕ (R ⊗ k K) d for some c, d ∈ N. Setting ˜Q = Q ⊕ (R ⊗ k V ) a+c ,<br />

we have isomorphisms<br />

˜Q t<br />

∼ = (M ⊕ R a+d ) ⊗ k K, ˜Q/t ˜Q ∼ = N ⊕ R b+c .<br />

Since ˜Q is V -flat, M ⊕ R a+d degenerates to N ⊕ R b+c . ✷<br />

The difficult part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is to show <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s (3) ⇒ (4) <strong>and</strong> (3) ⇒ (2).<br />

Actually it is technically difficult to show <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a Cohen-Macaulay module Z<br />

<strong>and</strong> X in each case. To get over this difficulty, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma called Swan’s<br />

Lemma in Algebraic K-<strong>Theory</strong>.<br />

Lemma 30. [8, Lemma 5.1] Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <strong>and</strong> t a variable. Assume that an<br />

R[t]-module L is a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> W ⊗ R R[t] with W being a finitely generated R-module.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R[t]-modules;<br />

0 −−−→ X ⊗ R R[t] −−−→ Y ⊗ R R[t] −−−→ L −−−→ 0,<br />

where X <strong>and</strong> Y are finitely generated R-modules.<br />

By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Swan’s lemma we can prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> that will play an<br />

essential role in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 29.<br />

Propositi<strong>on</strong> 31. Let R be a Gorenstein local k-algebra, where k is an infinite field.<br />

Suppose we are given a Cohen-Macaulay R ⊗ k V -module P ′ satisfying that <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong><br />

–279–


P = P ′<br />

t by t is a projective R ⊗ k K-module. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a Cohen-Macaulay R-module<br />

X with a triangle in CM(R ⊗ k V ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following form:<br />

(3.1) X ⊗ k V −−−→ X ⊗ k V −−−→ P ′ −−−→ X ⊗ k V [1].<br />

As a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 29, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary.<br />

Corollary 32. Let (R 1 , m 1 , k) <strong>and</strong> (R 2 , m 2 , k) be Gorenstein complete local k-algebras.<br />

Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> both R 1 <strong>and</strong> R 2 are isolated singularities, <strong>and</strong> that k is an infinite field.<br />

Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a k-linear equivalence F : CM(R 1 ) → CM(R 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories.<br />

Then, for M, N ∈ CM(R 1 ), M stably degenerates to N if <strong>and</strong> <strong>on</strong>ly if F (M) stably<br />

degenerates to F (N).<br />

Remark 33. Let (R 1 , m 1 , k) <strong>and</strong> (R 2 , m 2 , k) be Gorenstein complete local k-algebras as<br />

above. Then it hardly occurs that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a k-linear equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> categories between<br />

CM(R 1 ) <strong>and</strong> CM(R 2 ). In fact, if it occurs, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R 1 is isomorphic to R 2 as a k-algebra.<br />

(See [4, Propositi<strong>on</strong> 5.1].)<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, an equivalence between CM(R 1 ) <strong>and</strong> CM(R 2 ) may happen for n<strong>on</strong>isomorphic<br />

k-algebras. For example, let R 1 = k[[x, y, z]]/(x n +y 2 +z 2 ) <strong>and</strong> R 2 = k[[x]]/(x n )<br />

with characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> k not being 2 <strong>and</strong> n ∈ N. Then, by Knoerrer’s periodicity ([10, Theorem<br />

12.10]), we have an equivalence CM(k[[x, y, z]]/(x n + y 2 + z 2 )) ∼ = CM(k[[x]]/(x n )).<br />

Since k[[x]]/(x n ) is an artinian Gorenstein ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over<br />

k[[x]]/(x n ) is equivalent to a degenerati<strong>on</strong> up to free summ<strong>and</strong>s by Theorem 29(ii). Moreover<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> problem for modules over k[[x]]/(x n ) is known to be equivalent to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> problem for Jordan can<strong>on</strong>ical forms <str<strong>on</strong>g>of</str<strong>on</strong>g> square matrices <str<strong>on</strong>g>of</str<strong>on</strong>g> size n. (See Example<br />

22.) Thus by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 32, it is easy to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules over k[[x, y, z]]/(x n + y 2 + z 2 ).<br />

References<br />

1. K. B<strong>on</strong>gartz, A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Ausl<strong>and</strong>er, Bull. L<strong>on</strong>d<strong>on</strong> Math. Soc. 21 (1989), no.<br />

3, 255-256.<br />

2. K. B<strong>on</strong>gartz, On degenerati<strong>on</strong>s <strong>and</strong> extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules, Adv. Math. 121 (1996),<br />

no. 2, 245–287.<br />

3. D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series, vol.119. Cambridge University Press, Cambridge, 1988.<br />

x+208 pp.<br />

4. N. Hiramatsu <strong>and</strong> Y. Yoshino, Automorphism groups <strong>and</strong> Picard groups <str<strong>on</strong>g>of</str<strong>on</strong>g> additive full subcategories,<br />

Math. Sc<strong>and</strong>. 107 (2010), 5–29.<br />

5. , Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, Preprint (2010). [arXiv:1012.5346]<br />

6. C.Huneke <strong>and</strong> G.Leuschke, Two <str<strong>on</strong>g>the</str<strong>on</strong>g>orems about maximal Cohen-Macaulay modules, Math. Ann. 324<br />

(2002), no. 2, 391-404.<br />

7. C.Huneke <strong>and</strong> G.Leuschke, Local rings <str<strong>on</strong>g>of</str<strong>on</strong>g> countable Cohen-Macaulay type, Proc. Amer. Math. Soc.<br />

131 (2003), no. 10, 3003-3007.<br />

8. T. Y. Lam, Serre’s c<strong>on</strong>jecture, Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 635. Springer-Verlag, Berlin-New<br />

York, 1978. xv+227 pp. ISBN: 3-540-08657-9<br />

9. Ch. Riedtmann, Degenerati<strong>on</strong>s for representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with relati<strong>on</strong>s, Ann. Scient. École Normale<br />

Sup. 4 e sèrie 19 (1986), 275–301.<br />

10. Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society,<br />

Lecture Notes Series vol. 146, Cambridge University Press, 1990. viii+177 pp.<br />

–280–


11. , On degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Algebra 248 (2002), 272–290.<br />

12. , On degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Algebra 278 (2004), 217–226.<br />

13. , Degenerati<strong>on</strong> <strong>and</strong> G-dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules, Lecture Notes in Pure <strong>and</strong> Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

vol. 244, ’Commutative Algebra’ Chapman <strong>and</strong> Hall/CRC (2006), 259 – 265.<br />

14. , Universal lifts <str<strong>on</strong>g>of</str<strong>on</strong>g> chain complexes over n<strong>on</strong>-commutative parameter algebras, J. Math. Kyoto<br />

Univ. 48 (2008), no. 4, 793–845.<br />

15. , Stable degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, J. Algebra 332 (2011), 500–521.<br />

16. G. Zwara, A degenerati<strong>on</strong>-like order for modules, Arch. Math. 71 (1998), 437–444.<br />

17. , Degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al modules are given by extensi<strong>on</strong>s, Compositio Math. 121<br />

(2000), 205–218.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Science <strong>and</strong> Tech<strong>on</strong>ology<br />

Okayama University<br />

Okayama, 700-8530 JAPAN<br />

E-mail address: yoshino@math.okayama-u.ac.jp<br />

–281–


SUBCATEGORIES OF EXTENSION MODULES<br />

RELATED TO SERRE SUBCATEGORIES<br />

TAKESHI YOSHIZAWA<br />

Abstract. We c<strong>on</strong>sider subcategories c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules in two<br />

given Serre subcategories to find a method <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structing Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

module category. We shall give a criteri<strong>on</strong> for this subcategory to be a Serre subcategory.<br />

1. Introducti<strong>on</strong><br />

Let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. We denote by R-Mod <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> R-<br />

modules <strong>and</strong> by R-mod <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules.<br />

In [2], P. Gabriel showed that <strong>on</strong>e has lattice isomorphisms between <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> Serre<br />

subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-mod, <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod which are closed under<br />

arbitrary direct sums <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> closed subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> Spec (R). By this<br />

result, Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-mod are classified. However, it has not yet classified<br />

Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. In this paper, we shall give a way <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structing Serre<br />

subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod by c<strong>on</strong>sidering subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules related to Serre<br />

subcategories.<br />

2. The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules<br />

by Serre subcategories<br />

We assume that all full subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod are closed under isomorphisms. We<br />

recall that a subcategory S <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod is said to be Serre subcategory if <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong> is satisfied: For any short exact sequence<br />

0 → L → M → N → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules, it holds that M is in S if <strong>and</strong> <strong>on</strong>ly if L <strong>and</strong> N are in S. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words,<br />

S is called a Serre subcategory if it is closed under submodules, quotient modules <strong>and</strong><br />

extensi<strong>on</strong>s.<br />

We give <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules by Serre subcategories.<br />

Definiti<strong>on</strong> 1. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. We denote by (S 1 , S 2 ) a<br />

subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules M with a short exact sequence<br />

0 → X → M → Y → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 , that is<br />

⎧<br />

∣<br />

⎨<br />

∣∣∣∣∣ <str<strong>on</strong>g>the</str<strong>on</strong>g>re are X ∈ S 1 <strong>and</strong> Y ∈ S 2 such that<br />

(S 1 , S 2 ) =<br />

⎩ M ∈ R-Mod 0 → X → M → Y → 0<br />

is a short exact sequence.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–282–<br />

⎫<br />

⎬<br />

⎭ .


Remark 2. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

(1) Since <str<strong>on</strong>g>the</str<strong>on</strong>g> zero module bel<strong>on</strong>gs to any Serre subcategory, <strong>on</strong>e has S 1 ⊆ (S 1 , S 2 ) <strong>and</strong><br />

S 2 ⊆ (S 1 , S 2 ).<br />

(2) It holds S 1 ⊇ S 2 if <strong>and</strong> <strong>on</strong>ly if (S 1 , S 2 ) = S 1 .<br />

(3) It holds S 1 ⊆ S 2 if <strong>and</strong> <strong>on</strong>ly if (S 1 , S 2 ) = S 2 .<br />

(4) A subcategory (S 1 , S 2 ) is closed under finite direct sums.<br />

Example 3. We denote by S f.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-<br />

modules <strong>and</strong> by S Artin <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> Artinian R-modules. If R is a complete<br />

local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n a subcategory (S f.g. , S Artin ) is known as <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Matlis reflexive R-modules. Therefore, (S f.g. , S Artin ) is a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

The following example shows that a subcategory (S 1 , S 2 ) needs not be a Serre subcategory<br />

for Serre subcategories S 1 <strong>and</strong> S 2 .<br />

Example 4. We shall see that <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory (S Artin , S f.g. ) needs not be closed under<br />

extensi<strong>on</strong>s.<br />

Let R be a <strong>on</strong>e dimensi<strong>on</strong>al Gorenstein local ring with a maximal ideal m. Then <strong>on</strong>e<br />

has a minimal injective resoluti<strong>on</strong><br />

0 → R → ⊕<br />

E R (R/p) → E R (R/m) → 0<br />

p ∈ Spec(R)<br />

htp = 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R. (E R (M) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> injective hull <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-module M.) We note that R <strong>and</strong><br />

E R (R/m) are in (S Artin , S f.g. ).<br />

Now, we assume that a subcategory (S Artin , S f.g. ) is closed under extensi<strong>on</strong>s. Then<br />

E R (R) = ⊕ htp=0 E R (R/p) is in (S Artin , S f.g. ). It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (S Artin , S f.g. )<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an Artinian R-submodule X <str<strong>on</strong>g>of</str<strong>on</strong>g> E R (R) such that E R (R)/X is a finitely<br />

generated R-module.<br />

If X = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n E R (R) is a finitely generated injective R-module. It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Bass formula that <strong>on</strong>e has dim R = depth R = inj dim E R (R) = 0. However, this equality<br />

c<strong>on</strong>tradicts dim R = 1. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, if X ≠ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n X is a n<strong>on</strong>-zero Artinian<br />

R-module. Therefore, <strong>on</strong>e has Ass R (X) = {m}. Since X is an R-submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> E R (R),<br />

<strong>on</strong>e has<br />

Ass R (X) ⊆ Ass R (E R (R)) = {p ∈ Spec(R) | ht p = 0}.<br />

This is c<strong>on</strong>tradicti<strong>on</strong> as well.<br />

3. The main result<br />

In this secti<strong>on</strong>, we shall give a criteri<strong>on</strong> for a subcategory (S 1 , S 2 ) to be a Serre subcategory<br />

for Serre subcategories S 1 <strong>and</strong> S 2 .<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, it is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong> holds.<br />

Propositi<strong>on</strong> 5. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

(S 1 , S 2 ) is closed under submodules <strong>and</strong> quotient modules.<br />

–283–<br />

Then a subcategory


Lemma 6. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. We suppose that a sequence<br />

0 → L → M → N → 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules is exact. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) If L ∈ S 1 <strong>and</strong> N ∈ (S 1 , S 2 ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ (S 1 , S 2 ).<br />

(2) If L ∈ (S 1 , S 2 ) <strong>and</strong> N ∈ S 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ (S 1 , S 2 ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) We assume that L is in S 1 <strong>and</strong> N is in (S 1 , S 2 ). Since N bel<strong>on</strong>gs to (S 1 , S 2 ),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence<br />

0 → X → N → Y → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 . Then we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following pull buck<br />

diagram<br />

0 0<br />

⏐ ⏐<br />

↓ ↓<br />

0 −−−→ L −−−→ X ′ −−−→ X −−−→ 0<br />

⏐ ⏐<br />

‖ ↓ ↓<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0<br />

⏐ ⏐<br />

↓ ↓<br />

Y<br />

⏐<br />

↓<br />

Y<br />

⏐<br />

↓<br />

0 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> columns. Since S 1 is a Serre subcategory, it follows<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> first row in <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram that X ′ bel<strong>on</strong>gs to S 1 . C<strong>on</strong>sequently, we see that M is<br />

in (S 1 , S 2 ) by <str<strong>on</strong>g>the</str<strong>on</strong>g> middle column in <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram.<br />

(2) We can show that <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> holds by <str<strong>on</strong>g>the</str<strong>on</strong>g> similar argument in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1). □<br />

Now, we can show <str<strong>on</strong>g>the</str<strong>on</strong>g> main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper.<br />

Theorem 7. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s<br />

are equivalent:<br />

(1) A subcategory (S 1 , S 2 ) is a Serre subcategory;<br />

(2) One has (S 2 , S 1 ) ⊆ (S 1 , S 2 ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) ⇒ (2) We assume that M is in (S 2 , S 1 ). By <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a subcategory<br />

(S 2 , S 1 ), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence<br />

0 → Y → M → X → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 . We note that X <strong>and</strong> Y are also in (S 1 , S 2 ).<br />

Since a subcategory (S 1 , S 2 ) is closed under extensi<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> (1), we see that<br />

M is in (S 1 , S 2 ).<br />

–284–


(2) ⇒ (1) We <strong>on</strong>ly have to prove that a subcategory (S 1 , S 2 ) is closed under extensi<strong>on</strong>s<br />

by Propositi<strong>on</strong> 5. Let 0 → L → M → N → 0 be a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules<br />

such that L <strong>and</strong> N are in (S 1 , S 2 ). We shall show that M is also in (S 1 , S 2 ).<br />

Since L is in (S 1 , S 2 ), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence<br />

0 → S → L → L/S → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where S is in S 1 such that L/S is in S 2 . We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following push<br />

out diagram<br />

0 0<br />

⏐ ⏐<br />

↓ ↓<br />

S<br />

⏐<br />

↓<br />

S<br />

⏐<br />

↓<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0<br />

⏐ ⏐<br />

↓ ↓ ‖<br />

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0<br />

⏐ ⏐<br />

↓ ↓<br />

0 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> columns. Next, since N is in (S 1 , S 2 ), we have a short<br />

exact sequence<br />

0 → T → N → N/T → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where T is in S 1 such that N/T is in S 2 . We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following pull<br />

back diagram<br />

0 0<br />

⏐ ⏐<br />

↓ ↓<br />

0 −−−→ L/S −−−→ P ′ −−−→ T −−−→ 0<br />

⏐ ⏐<br />

‖ ↓ ↓<br />

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0<br />

⏐ ⏐<br />

↓ ↓<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> columns.<br />

N/T<br />

⏐<br />

↓<br />

N/T<br />

⏐<br />

↓<br />

0 0<br />

–285–


In <str<strong>on</strong>g>the</str<strong>on</strong>g> first row <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d diagram, since L/S is in S 2 <strong>and</strong> T is in S 1 , P ′ is in<br />

(S 2 , S 1 ). Now here, it follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> (2) that P ′ is in (S 1 , S 2 ). Next, in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

middle column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d diagram, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact sequence such that P ′ is<br />

in (S 1 , S 2 ) <strong>and</strong> N/T is in S 2 . Therefore, it follows from Lemma 6 that P is in (S 1 , S 2 ).<br />

Finally, in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first diagram, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact sequence<br />

such that S is in S 1 <strong>and</strong> P is in (S 1 , S 2 ). C<strong>on</strong>sequently, we see that M is in (S 1 , S 2 ) by<br />

Lemma 6.<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is completed.<br />

□<br />

Corollary 8. A subcategory (S f.g. , S) is a Serre subcategory for a Serre subcategory S <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let S be a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. To prove our asserti<strong>on</strong>, it is enough to<br />

show that <strong>on</strong>e has (S, S f.g. ) ⊆ (S f.g. , S) by Theorem 7. Let M be in (S, S f.g. ). Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence 0 → Y → M → M/Y → 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where Y<br />

is in S such that M/Y is in S f.g. . It is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a finitely generated<br />

R-submodule X <str<strong>on</strong>g>of</str<strong>on</strong>g> M such that M = X + Y . Since X ⊕ Y is in (S f.g. , S) <strong>and</strong> M is a<br />

homomorphic image <str<strong>on</strong>g>of</str<strong>on</strong>g> X ⊕ Y , M is in (S f.g. , S) by Propositi<strong>on</strong> 5.<br />

□<br />

We note that a subcategory S Artin c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> Artinian R-modules is a Serre subcategory<br />

which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we<br />

can see that a subcategory (S, S Artin ) is also Serre subcategory for a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod by <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>.<br />

Corollary 9. Let S 2 be a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod which is closed under injective<br />

hulls. Then a subcategory (S 1 , S 2 ) is a Serre subcategory for a Serre subcategory S 1 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By Theorem 7, it is enough to show that <strong>on</strong>e has (S 2 , S 1 ) ⊆ (S 1 , S 2 ).<br />

We assume that M is in (S 2 , S 1 ) <strong>and</strong> shall show that M is in (S 1 , S 2 ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists<br />

a short exact sequence<br />

0 → Y → M → X → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 . Since S 2 is closed under injective hulls, we<br />

note that <str<strong>on</strong>g>the</str<strong>on</strong>g> injective hull E R (Y ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Y is also in S 2 . We c<strong>on</strong>sider a push out diagram<br />

0 −−−→ Y −−−→ M −−−→ X −−−→ 0<br />

⏐ ⏐<br />

↓ ↓ ‖<br />

0 −−−→ E R (Y ) −−−→ T −−−→ X −−−→ 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> injective vertical maps. The sec<strong>on</strong>d exact sequence<br />

splits, <strong>and</strong> we have an injective homomorphism M → X ⊕ E R (Y ). Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a short<br />

exact sequence<br />

0 → X → X ⊕ E R (Y ) → E R (Y ) → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules, <str<strong>on</strong>g>the</str<strong>on</strong>g> R-module X ⊕ E R (Y ) is in (S 1 , S 2 ). C<strong>on</strong>sequently, we see that M is<br />

also in (S 1 , S 2 ) by Propositi<strong>on</strong> 5.<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is completed.<br />

□<br />

–286–


Example 10. Let R be a domain but not a field <strong>and</strong> let Q be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

We denote by S T or a subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> torsi<strong>on</strong> R-modules, that is<br />

Then we shall see that <strong>on</strong>e has<br />

S T or = {M ∈ R-Mod | M ⊗ R Q = 0}.<br />

(S T or , S f.g. ) (S f.g. , S T or ) = {M ∈ R-Mod | dim Q M ⊗ R Q < ∞}.<br />

Therefore, a subcategory (S f.g. , S T or ) is a Serre subcategory by Corollary 8, but a subcategory<br />

(S T or , S f.g. ) is not closed under extensi<strong>on</strong>s by Theorem 7.<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, we shall show that <str<strong>on</strong>g>the</str<strong>on</strong>g> above equality holds. We suppose that M is in<br />

(S f.g. , S T or ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence<br />

0 → X → M → Y → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S f.g. <strong>and</strong> Y is in S T or . We apply an exact functor − ⊗ R Q to<br />

this sequence. Then we see that <strong>on</strong>e has M ⊗ R Q ∼ = X ⊗ R Q <strong>and</strong> this module is a finite<br />

dimensi<strong>on</strong>al Q-vector space.<br />

C<strong>on</strong>versely, let M be an R-module with dim Q M ⊗ R Q < ∞. Then we can denote<br />

M ⊗ R Q = ∑ n<br />

i=1 Q(m i ⊗ 1 Q ) with m i ∈ M <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> unit element 1 Q <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. We c<strong>on</strong>sider a<br />

short exact sequence<br />

n∑<br />

n∑<br />

0 → Rm i → M → M/ Rm i → 0<br />

i=1<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules. It is clear that ∑ n<br />

i=1 Rm i is in S f.g. <strong>and</strong> M/ ∑ n<br />

i=1 Rm i is in S T or . So M is<br />

in (S f.g. , S T or ). C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> above equality holds.<br />

Next, it is clear that M ⊗ R Q has finite dimensi<strong>on</strong> as Q-vector space for an R-module<br />

M <str<strong>on</strong>g>of</str<strong>on</strong>g> (S T or , S f.g. ). Thus, <strong>on</strong>e has (S T or , S f.g. ) ⊆ (S f.g. , S T or ).<br />

Finally, we shall see that a field <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>s Q <str<strong>on</strong>g>of</str<strong>on</strong>g> R is in (S f.g. , S T or ) but not in<br />

(S T or , S f.g. ), so <strong>on</strong>e has (S T or , S f.g. ) (S f.g. , S T or ). Indeed, it follows from dim Q Q⊗ R Q =<br />

1 that Q is in (S f.g. , S T or ). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, we assume that Q is in (S T or , S f.g. ). Since<br />

R is a domain, a torsi<strong>on</strong> R-submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> zero module. It means that Q<br />

must be a finitely generated R-module. But, this is a c<strong>on</strong>tradicti<strong>on</strong>.<br />

i=1<br />

References<br />

[1] M. Aghapournahr <strong>and</strong> L. Melkerss<strong>on</strong>, Local cohomology <strong>and</strong> Serre subcategories, J. Algebra 320<br />

(2008), 1275–1287.<br />

[2] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.<br />

[3] T. Yoshizawa, Subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules by Serre subcategories, To appear in Proc. Amer.<br />

Math. Soc.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Science <strong>and</strong> Technology<br />

Okayama University<br />

3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 JAPAN<br />

E-mail address: tyoshiza@math.okayama-u.ac.jp<br />

–287–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!