28.02.2015 Views

Download this document - Toolbox PRO V2

Download this document - Toolbox PRO V2

Download this document - Toolbox PRO V2

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Trigonometry<br />

4<br />

4.1 Radian and Degree Measure<br />

4.2 Trigonometric Functions: The Unit Circle<br />

4.3 Right Triangle Trigonometry<br />

4.4 Trigonometric Functions of Any Angle<br />

4.5 Graphs of Sine and Cosine Functions<br />

4.6 Graphs of Other Trigonometric Functions<br />

4.7 Inverse Trigonometric Functions<br />

4.8 Applications and Models<br />

In Mathematics<br />

Trigonometry is used to find relationships<br />

between the sides and angles of triangles,<br />

and to write trigonometric functions as<br />

models of real-life quantities.<br />

In Real Life<br />

Trigonometric functions are used to model<br />

quantities that are periodic. For instance,<br />

throughout the day, the depth of water at<br />

the end of a dock in Bar Harbor, Maine<br />

varies with the tides. The depth can be<br />

modeled by a trigonometric function.<br />

(See Example 7, page 325.)<br />

Andre Jenny/Alamy<br />

IN CAREERS<br />

There are many careers that use trigonometry. Several are listed below.<br />

• Biologist<br />

Exercise 70, page 308<br />

• Meteorologist<br />

Exercise 99, page 318<br />

• Mechanical Engineer<br />

Exercise 95, page 339<br />

• Surveyor<br />

Exercise 41, page 359<br />

279


280 Chapter 4 Trigonometry<br />

4.1 RADIAN AND DEGREE MEASURE<br />

What you should learn<br />

• Describe angles.<br />

• Use radian measure.<br />

• Use degree measure.<br />

• Use angles to model and solve<br />

real-life problems.<br />

Why you should learn it<br />

You can use angles to model and solve<br />

real-life problems. For instance, in<br />

Exercise 119 on page 291, you are<br />

asked to use angles to find the speed<br />

of a bicycle.<br />

Angles<br />

As derived from the Greek language, the word trigonometry means “measurement of<br />

triangles.” Initially, trigonometry dealt with relationships among the sides and angles of<br />

triangles and was used in the development of astronomy, navigation, and surveying.<br />

With the development of calculus and the physical sciences in the 17th century, a<br />

different perspective arose—one that viewed the classic trigonometric relationships as<br />

functions with the set of real numbers as their domains. Consequently, the applications<br />

of trigonometry expanded to include a vast number of physical phenomena involving<br />

rotations and vibrations. These phenomena include sound waves, light rays, planetary<br />

orbits, vibrating strings, pendulums, and orbits of atomic particles.<br />

The approach in <strong>this</strong> text incorporates both perspectives, starting with angles and<br />

their measure.<br />

Terminal side<br />

Terminal<br />

side<br />

y<br />

Vertex<br />

Initial side<br />

Initial side<br />

x<br />

© Wolfgang Rattay/Reuters/Corbis<br />

Angle<br />

Angle in standard position<br />

FIGURE 4.1 FIGURE 4.2<br />

An angle is determined by rotating a ray (half-line) about its endpoint. The starting<br />

position of the ray is the initial side of the angle, and the position after rotation is the<br />

terminal side, as shown in Figure 4.1. The endpoint of the ray is the vertex of the<br />

angle. This perception of an angle fits a coordinate system in which the origin is the<br />

vertex and the initial side coincides with the positive x-axis. Such an angle is in<br />

standard position, as shown in Figure 4.2. Positive angles are generated by counterclockwise<br />

rotation, and negative angles by clockwise rotation, as shown in Figure 4.3.<br />

Angles are labeled with Greek letters (alpha), (beta), and (theta), as well as uppercase<br />

letters A, B, and C. In Figure 4.4, note that angles and have the same<br />

initial and terminal sides. Such angles are coterminal.<br />

<br />

<br />

<br />

<br />

<br />

y<br />

y<br />

y<br />

Positive angle<br />

(counterclockwise)<br />

x<br />

Negative angle<br />

(clockwise)<br />

α<br />

β<br />

x<br />

β<br />

α<br />

x<br />

FIGURE 4.3 FIGURE 4.4 Coterminal angles


Section 4.1 Radian and Degree Measure 281<br />

y<br />

s = r<br />

r<br />

θ<br />

x<br />

r<br />

Arc length radius when 1 radian<br />

FIGURE 4.5<br />

<br />

Radian Measure<br />

The measure of an angle is determined by the amount of rotation from the initial side<br />

to the terminal side. One way to measure angles is in radians. This type of measure is<br />

especially useful in calculus. To define a radian, you can use a central angle of a<br />

circle, one whose vertex is the center of the circle, as shown in Figure 4.5.<br />

Definition of Radian<br />

One radian is the measure of a central angle that intercepts an arc s equal in<br />

length to the radius r of the circle. See Figure 4.5. Algebraically, <strong>this</strong> means that<br />

s r<br />

<br />

where<br />

<br />

is measured in radians.<br />

y<br />

Because the circumference of a circle is 2r units, it follows that a central angle<br />

of one full revolution (counterclockwise) corresponds to an arc length of<br />

3<br />

radians<br />

2 radians<br />

r<br />

4 radians<br />

FIGURE 4.6<br />

r<br />

r<br />

r<br />

1 radian<br />

r<br />

r<br />

5 radians<br />

6<br />

radians<br />

x<br />

s 2r.<br />

Moreover, because<br />

there are just over six radius lengths in a full circle, as<br />

shown in Figure 4.6. Because the units of measure for s and r are the same, the ratio sr<br />

has no units—it is simply a real number.<br />

Because the radian measure of an angle of one full revolution is 2, you can obtain<br />

the following.<br />

1<br />

revolution 2 radians<br />

2 <br />

2<br />

1<br />

4<br />

revolution<br />

2 6.28,<br />

<br />

2 radians<br />

4 2<br />

1<br />

6<br />

revolution<br />

<br />

2 radians<br />

6 3<br />

These and other common angles are shown in Figure 4.7.<br />

One revolution around a circle<br />

of radius r corresponds to an<br />

angle of radians because<br />

2<br />

s r 2r<br />

r<br />

2 radians.<br />

π<br />

6<br />

π<br />

4<br />

π<br />

3<br />

π<br />

2<br />

π<br />

2π<br />

FIGURE 4.7<br />

Recall that the four quadrants in a coordinate system are numbered I, II, III, and<br />

IV. Figure 4.8 on page 282 shows which angles between 0 and lie in each of the four<br />

quadrants. Note that angles between 0 and 2 are acute angles and angles between<br />

2 and are obtuse angles.<br />

<br />

2


282 Chapter 4 Trigonometry<br />

θ =<br />

π<br />

2<br />

Quadrant II<br />

π<br />

< θ < π<br />

2<br />

Quadrant I<br />

0 < θ <<br />

π<br />

2<br />

θ = π<br />

θ = 0<br />

Quadrant III Quadrant IV<br />

π < θ <<br />

3π<br />

3π<br />

< θ < 2π<br />

2 2<br />

The phrase “the terminal side<br />

of lies in a quadrant” is often<br />

abbreviated by simply saying<br />

that “ lies in a quadrant.” The<br />

terminal sides of the “quadrant<br />

angles” 0, 2, , and 32 do<br />

not lie within quadrants.<br />

<br />

<br />

FIGURE 4.8<br />

Two angles are coterminal if they have the same initial and terminal sides. For<br />

instance, the angles 0 and are coterminal, as are the angles 6 and 136. You can<br />

find an angle that is coterminal to a given angle by adding or subtracting (one<br />

revolution), as demonstrated in Example 1. A given angle has infinitely many<br />

coterminal angles. For instance, is coterminal with<br />

<br />

6 2n<br />

where n is an integer.<br />

2<br />

6<br />

θ =<br />

3 π 2<br />

<br />

<br />

2<br />

You can review operations<br />

involving fractions in Appendix<br />

A.1.<br />

Example 1<br />

Sketching and Finding Coterminal Angles<br />

a. For the positive angle 136, subtract 2 to obtain a coterminal angle<br />

See Figure 4.9.<br />

6 2 <br />

6 .<br />

13<br />

b. For the positive angle 34, subtract 2 to obtain a coterminal angle<br />

See Figure 4.10.<br />

4 2 5<br />

4 .<br />

3<br />

<br />

c. For the negative angle 23, add 2 to obtain a coterminal angle<br />

2<br />

See Figure 4.11.<br />

3 2 4<br />

3 .<br />

π<br />

π<br />

2<br />

θ = 13 π<br />

6 6<br />

π<br />

3π<br />

2<br />

0<br />

π<br />

FIGURE 4.9 FIGURE 4.10 FIGURE 4.11<br />

Now try Exercise 27.<br />

π<br />

2<br />

3π<br />

2<br />

θ =<br />

3π<br />

4<br />

−<br />

5π<br />

4<br />

0<br />

π<br />

4π<br />

3<br />

π<br />

2<br />

θ = −<br />

2π<br />

3<br />

3π<br />

2<br />

0


Section 4.1 Radian and Degree Measure 283<br />

<br />

<br />

Two positive angles and are complementary (complements of each other) if<br />

their sum is 2. Two positive angles are supplementary (supplements of each other)<br />

if their sum is . See Figure 4.12.<br />

β<br />

α<br />

β<br />

α<br />

Complementary angles<br />

FIGURE 4.12<br />

Supplementary angles<br />

Example 2<br />

Complementary and Supplementary Angles<br />

If possible, find the complement and the supplement of (a) 25 and (b) 45.<br />

Solution<br />

a. The complement of 25 is<br />

<br />

2 2<br />

5 5<br />

10 4<br />

10 10 .<br />

The supplement of 25 is<br />

2<br />

b. Because 45 is greater than 2, it has no complement. (Remember that complements<br />

are positive angles.) The supplement is<br />

4<br />

<br />

5 5<br />

5 2<br />

5 3<br />

5 .<br />

<br />

5 5<br />

5 4<br />

5 5 .<br />

Now try Exercise 31.<br />

120°<br />

135°<br />

150°<br />

180°<br />

1<br />

90 ° = (360 ° ) 4<br />

1<br />

60°= (360 ° )<br />

6<br />

1<br />

45°= (360 ° )<br />

8<br />

1<br />

30°= (360 ° )<br />

12<br />

θ 0°<br />

360°<br />

210°<br />

330°<br />

225° 315°<br />

240° 270° 300°<br />

FIGURE 4.13<br />

y<br />

x<br />

Degree Measure<br />

A second way to measure angles is in terms of degrees, denoted by the symbol .<br />

1<br />

A measure of one degree (1 ) is equivalent to a rotation of 360 of a complete revolution<br />

about the vertex. To measure angles, it is convenient to mark degrees on the<br />

circumference of a circle, as shown in Figure 4.13. So, a full revolution (counterclockwise)<br />

corresponds to 360, a half revolution to 180, a quarter revolution to 90, and<br />

so on.<br />

Because radians corresponds to one complete revolution, degrees and radians<br />

are related by the equations<br />

360 2 rad and 180 rad.<br />

From the latter equation, you obtain<br />

180<br />

1 <br />

and 1 rad <br />

180 rad <br />

<br />

2<br />

which lead to the conversion rules at the top of the next page.


284 Chapter 4 Trigonometry<br />

Conversions Between Degrees and Radians<br />

rad<br />

1. To convert degrees to radians, multiply degrees by<br />

180 .<br />

180<br />

2. To convert radians to degrees, multiply radians by<br />

rad .<br />

To apply these two conversion rules, use the basic relationship<br />

(See Figure 4.14.)<br />

rad 180.<br />

π<br />

6<br />

π<br />

4<br />

30° 45°<br />

π<br />

3<br />

60°<br />

π<br />

2<br />

90°<br />

FIGURE 4.14<br />

π<br />

180°<br />

2π<br />

360°<br />

When no units of angle measure are specified, radian measure is implied. For<br />

instance, if you write you imply that radians.<br />

2,<br />

2<br />

Example 3<br />

Converting from Degrees to Radians<br />

TECHNOLOGY<br />

With calculators it is convenient<br />

to use decimal degrees to denote<br />

fractional parts of degrees.<br />

Historically, however, fractional<br />

parts of degrees were expressed<br />

in minutes and seconds, using<br />

the prime ( ) and double prime<br />

( ) notations, respectively. That is,<br />

<br />

<br />

1 one minute 1 601<br />

1 one second 1<br />

Consequently, an angle of<br />

64 degrees, 32 minutes, and<br />

47 seconds is represented by<br />

Many calculators<br />

have special keys for converting<br />

an angle in degrees, minutes,<br />

and seconds D M S to decimal<br />

degree form, and vice versa.<br />

64 32 47.<br />

36001.<br />

a. 135 135 deg <br />

Multiply by 180.<br />

180 deg 3<br />

4 radians<br />

b. 540 540 deg <br />

Multiply by 180.<br />

c. 270 270 deg <br />

Multiply by 180.<br />

180 deg 3<br />

2 radians<br />

Example 4<br />

Now try Exercise 57.<br />

Converting from Radians to Degrees<br />

a. <br />

2 rad 2 rad 180 deg<br />

Multiply by<br />

b.<br />

2 rad 9<br />

2 rad 180 deg<br />

Multiply by 180.<br />

9<br />

<br />

<br />

rad<br />

rad<br />

180 deg 3 radians<br />

rad<br />

rad 90<br />

rad 810 180.<br />

c. 2 rad 2 rad <br />

180 deg<br />

114.59<br />

Multiply by 180.<br />

rad 360<br />

<br />

Now try Exercise 61.<br />

If you have a calculator with a “radian-to-degree” conversion key, try using it to<br />

verify the result shown in part (b) of Example 4.


Section 4.1 Radian and Degree Measure 285<br />

Applications<br />

The radian measure formula,<br />

sr,<br />

can be used to measure arc length along a circle.<br />

s<br />

θ = 240°<br />

r = 4<br />

Arc Length<br />

For a circle of radius r, a central angle intercepts an arc of length s given by<br />

s r Length of circular arc<br />

<br />

where is measured in radians. Note that if r 1, then s , and the radian<br />

measure of equals the arc length.<br />

<br />

<br />

Example 5<br />

Finding Arc Length<br />

FIGURE 4.15<br />

A circle has a radius of 4 inches. Find the length of the arc intercepted by a central angle<br />

of 240, as shown in Figure 4.15.<br />

Solution<br />

To use the formula s r, first convert 240 to radian measure.<br />

240 240 deg 180 deg<br />

Then, using a radius of r 4 inches, you can find the arc length to be<br />

s r<br />

4<br />

3 radians<br />

4 <br />

4<br />

3 <br />

16 16.76 inches.<br />

3<br />

r<br />

rad<br />

Note that the units for are determined by the units for r because is given in radian<br />

measure, which has no units.<br />

Now try Exercise 89.<br />

<br />

Linear speed measures how fast<br />

the particle moves, and angular<br />

speed measures how fast the<br />

angle changes. By dividing the<br />

formula for arc length by t,<br />

you can establish a relationship<br />

between linear speed v and<br />

angular speed , as shown.<br />

s r<br />

s<br />

t r<br />

t<br />

v r<br />

The formula for the length of a circular arc can be used to analyze the motion of a<br />

particle moving at a constant speed along a circular path.<br />

Linear and Angular Speeds<br />

Consider a particle moving at a constant speed along a circular arc of radius r. If s<br />

is the length of the arc traveled in time t, then the linear speed v of the particle is<br />

Linear speed v <br />

<br />

Moreover, if is the angle (in radian measure) corresponding to the arc length s,<br />

then the angular speed (the lowercase Greek letter omega) of the particle is<br />

Angular speed <br />

arc length<br />

time<br />

<br />

s t .<br />

central angle<br />

time<br />

<br />

<br />

t .


286 Chapter 4 Trigonometry<br />

Example 6<br />

Finding Linear Speed<br />

FIGURE 4.16<br />

10.2 cm<br />

The second hand of a clock is 10.2 centimeters long, as shown in Figure 4.16. Find the<br />

linear speed of the tip of <strong>this</strong> second hand as it passes around the clock face.<br />

Solution<br />

In one revolution, the arc length traveled is<br />

s 2r<br />

210.2<br />

20.4 centimeters.<br />

Substitute for r.<br />

The time required for the second hand to travel <strong>this</strong> distance is<br />

t 1 minute 60 seconds.<br />

So, the linear speed of the tip of the second hand is<br />

116 ft<br />

Linear speed s t<br />

20.4 centimeters<br />

60 seconds<br />

1.068 centimeters per second.<br />

Now try Exercise 111.<br />

Example 7<br />

Finding Angular and Linear Speeds<br />

The blades of a wind turbine are 116 feet long (see Figure 4.17). The propeller rotates<br />

at 15 revolutions per minute.<br />

a. Find the angular speed of the propeller in radians per minute.<br />

b. Find the linear speed of the tips of the blades.<br />

FIGURE 4.17<br />

Solution<br />

a. Because each revolution generates radians, it follows that the propeller turns<br />

152 30 radians per minute. In other words, the angular speed is<br />

Angular speed <br />

t<br />

b. The linear speed is<br />

<br />

30 radians<br />

1 minute<br />

2<br />

30 radians per minute.<br />

Linear speed s t<br />

r<br />

t<br />

11630 feet<br />

1 minute<br />

Now try Exercise 113.<br />

10,933 feet per minute.


Section 4.1 Radian and Degree Measure 287<br />

A sector of a circle is the region bounded by two radii of the circle and their<br />

intercepted arc (see Figure 4.18).<br />

θ<br />

r<br />

FIGURE 4.18<br />

Area of a Sector of a Circle<br />

For a circle of radius r, the area A of a sector of the circle with central angle is<br />

given by<br />

where<br />

A 1 2 r2<br />

<br />

is measured in radians.<br />

<br />

Example 8<br />

Area of a Sector of a Circle<br />

A sprinkler on a golf course fairway sprays water over a distance of 70 feet and rotates<br />

through an angle of 120 (see Figure 4.19). Find the area of the fairway watered by the<br />

sprinkler.<br />

Solution<br />

First convert 120 to radian measure as follows.<br />

FIGURE 4.19<br />

120°<br />

70 ft<br />

120<br />

120 deg 180 deg<br />

2<br />

3 radians<br />

rad<br />

Multiply by 180.<br />

23<br />

Then, using and r 70, the area is<br />

A 1 2 r2<br />

Formula for the area of a sector of a circle<br />

1 2 702 2<br />

3 <br />

4900<br />

3<br />

5131 square feet.<br />

Now try Exercise 117.<br />

Substitute for r and .<br />

Simplify.<br />

Simplify.


288 Chapter 4 Trigonometry<br />

4.1<br />

EXERCISES<br />

VOCABULARY: Fill in the blanks.<br />

1. ________ means “measurement of triangles.”<br />

2. An ________ is determined by rotating a ray about its endpoint.<br />

3. Two angles that have the same initial and terminal sides are ________.<br />

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.<br />

4. One ________ is the measure of a central angle that intercepts an arc equal to the radius of the circle.<br />

5. Angles that measure between 0 and 2 are ________ angles, and angles that measure between 2 and<br />

are ________ angles.<br />

6. Two positive angles that have a sum of 2 are ________ angles, whereas two positive angles that have a sum<br />

of are ________ angles.<br />

<br />

7. The angle measure that is equivalent to a rotation of 360 of a complete revolution about an angle’s vertex is<br />

one ________.<br />

8. 180 degrees ________ radians.<br />

9. The ________ speed of a particle is the ratio of arc length to time traveled, and the ________ speed of a particle<br />

is the ratio of central angle to time traveled.<br />

10. The area A of a sector of a circle with radius r and central angle , where is measured in radians, is given by<br />

the formula ________.<br />

SKILLS AND APPLICATIONS<br />

1<br />

<br />

<br />

In Exercises 11–16, estimate the angle to the nearest one-half<br />

radian.<br />

11. 12.<br />

11<br />

25. (a) (b)<br />

6<br />

26. (a) 4 (b)<br />

3<br />

7<br />

13. 14.<br />

In Exercises 27–30, determine two coterminal angles (one<br />

positive and one negative) for each angle. Give your answers<br />

in radians.<br />

27. (a) π<br />

(b)<br />

2<br />

π<br />

θ = π 6<br />

0<br />

π<br />

π<br />

2<br />

5<br />

θ = π 6<br />

0<br />

15. 16.<br />

In Exercises 17–22, determine the quadrant in which each<br />

angle lies. (The angle measure is given in radians.)<br />

<br />

17. (a) (b) 18. (a) (b)<br />

4 4<br />

8<br />

19. (a) (b) 20. (a) 5 (b)<br />

6 3<br />

6<br />

21. (a) 3.5 (b) 2.25 22. (a) 6.02 (b)<br />

In Exercises 23–26, sketch each angle in standard position.<br />

<br />

<br />

5<br />

<br />

11<br />

23. (a) (b) 2 24. (a) 7 (b)<br />

3<br />

3<br />

4<br />

9<br />

8<br />

11<br />

9<br />

4.25<br />

5<br />

2<br />

28. (a) π<br />

(b)<br />

2<br />

7<br />

θ = π 6<br />

π<br />

3π<br />

2<br />

3π<br />

2<br />

2<br />

29. (a) (b)<br />

3<br />

9<br />

30. (a) (b)<br />

4<br />

0<br />

π<br />

3π<br />

2<br />

<br />

<br />

12<br />

π<br />

2<br />

3π<br />

2<br />

2<br />

15<br />

0<br />

θ = −<br />

11π<br />

6


Section 4.1 Radian and Degree Measure 289<br />

In Exercises 31–34, find (if possible) the complement and<br />

supplement of each angle.<br />

31. (a) 3 (b) 4 32. (a) 12 (b) 1112<br />

33. (a) 1 (b) 2 34. (a) 3 (b) 1.5<br />

In Exercises 35–40, estimate the number of degrees in the<br />

angle. Use a protractor to check your answer.<br />

35. 36.<br />

37. 38.<br />

39. 40.<br />

In Exercises 41–44, determine the quadrant in which each<br />

angle lies.<br />

41. (a) 130<br />

(b) 285<br />

42. (a) 8.3<br />

(b) 257 30<br />

43. (a) 132 50 (b) 336<br />

44. (a) 260<br />

(b) 3.4<br />

In Exercises 45–48, sketch each angle in standard position.<br />

45. (a) 90 (b) 180 46. (a) 270 (b) 120<br />

47. (a) 30 (b) 135<br />

48. (a) 750 (b) 600<br />

In Exercises 49–52, determine two coterminal angles (one<br />

positive and one negative) for each angle. Give your answers<br />

in degrees.<br />

49. (a) 90° (b)<br />

θ = 45°<br />

180°<br />

50. (a) (b)<br />

180°<br />

240<br />

270°<br />

90°<br />

270°<br />

51. (a) (b)<br />

0<br />

θ = 120°<br />

0<br />

180°<br />

θ = −420°<br />

180°<br />

90°<br />

90°<br />

270°<br />

180<br />

0<br />

θ = −36°<br />

270°<br />

0<br />

52. (a) (b)<br />

In Exercises 53–56, find (if possible) the complement and<br />

supplement of each angle.<br />

53. (a) 18 (b) 85 54. (a) 46 (b) 93<br />

55. (a) 150 (b) 79 56. (a) 130 (b) 170<br />

In Exercises 57–60, rewrite each angle in radian measure as a<br />

multiple of . (Do not use a calculator.)<br />

57. (a) 30 (b) 45 58. (a) 315 (b) 120<br />

59. (a) 20 (b) 60 60. (a) 270 (b) 144<br />

In Exercises 61–64, rewrite each angle in degree measure.<br />

(Do not use a calculator.)<br />

3<br />

61. (a) (b) 62. (a) 7 (b)<br />

2<br />

6<br />

12 9<br />

5<br />

63. (a) (b) 7 64. (a) (b)<br />

4<br />

3<br />

6<br />

In Exercises 65–72, convert the angle measure from degrees<br />

to radians. Round to three decimal places.<br />

65. 45<br />

66. 87.4<br />

67. 216.35<br />

68. 48.27<br />

69. 532<br />

70. 345<br />

71. 0.83<br />

72. 0.54<br />

In Exercises 73–80, convert the angle measure from radians<br />

to degrees. Round to three decimal places.<br />

73. 7<br />

74. 511<br />

75. 158<br />

76. 132<br />

77. 78.<br />

4.2<br />

390<br />

7<br />

79. 2<br />

80. 0.57<br />

In Exercises 81–84, convert each angle measure to decimal<br />

degree form without using a calculator. Then check your<br />

answers using a calculator.<br />

81. (a) 54 45 (b) 128 30<br />

82. (a) 245 10 (b) 2 12<br />

83. (a) 85 18 30 (b) 330 25<br />

84. (a) 135 36 (b) 408 16 20<br />

In Exercises 85–88, convert each angle measure to degrees,<br />

minutes, and seconds without using a calculator. Then check<br />

your answers using a calculator.<br />

85. (a) 240.6 (b) 145.8<br />

86. (a) 345.12 (b) 0.45<br />

87. (a) 2.5 (b) 3.58<br />

88. (a) 0.36 (b) 0.79<br />

230<br />

4.8<br />

11<br />

<br />

34<br />

15


290 Chapter 4 Trigonometry<br />

In Exercises 89–92, find the length of the arc on a circle of<br />

radius r intercepted by a central angle .<br />

Radius r<br />

89. 15 inches<br />

90. 9 feet<br />

91. 3 meters<br />

92. 20 centimeters<br />

Central Angle<br />

In Exercises 93–96, find the radian measure of the central<br />

angle of a circle of radius r that intercepts an arc of length s.<br />

Radius r<br />

Arc Length s<br />

93. 4 inches 18 inches<br />

94. 14 feet 8 feet<br />

95. 25 centimeters 10.5 centimeters<br />

96. 80 kilometers 150 kilometers<br />

In Exercises 97–100, use the given arc length and radius to<br />

find the angle (in radians).<br />

<br />

120<br />

60<br />

150<br />

45<br />

97. 98.<br />

25<br />

θ<br />

1<br />

θ<br />

2<br />

10<br />

<br />

City<br />

106. San Francisco, California<br />

Seattle, Washington<br />

Latitude<br />

37 47 36 N<br />

47 37 18 N<br />

107. DIFFERENCE IN LATITUDES Assuming that Earth<br />

is a sphere of radius 6378 kilometers, what is the<br />

difference in the latitudes of Syracuse, New York<br />

and Annapolis, Maryland, where Syracuse is about<br />

450 kilometers due north of Annapolis?<br />

108. DIFFERENCE IN LATITUDES Assuming that Earth<br />

is a sphere of radius 6378 kilometers, what is the<br />

difference in the latitudes of Lynchburg, Virginia and<br />

Myrtle Beach, South Carolina, where Lynchburg is<br />

about 400 kilometers due north of Myrtle Beach?<br />

109. INSTRUMENTATION The pointer on a voltmeter is<br />

6 centimeters in length (see figure). Find the angle<br />

through which the pointer rotates when it moves<br />

2.5 centimeters on the scale.<br />

10 in.<br />

99. 28<br />

100.<br />

θ<br />

In Exercises 101–104, find the area of the sector of the circle<br />

with radius r and central angle .<br />

Radius r<br />

101. 6 inches<br />

102. 12 millimeters<br />

103. 2.5 feet<br />

104. 1.4 miles<br />

Central Angle<br />

DISTANCE BETWEEN CITIES In Exercises 105 and 106,<br />

find the distance between the cities. Assume that Earth is a<br />

sphere of radius 4000 miles and that the cities are on the<br />

same longitude (one city is due north of the other).<br />

City<br />

7<br />

105. Dallas, Texas<br />

Omaha, Nebraska<br />

3<br />

4<br />

225<br />

330<br />

<br />

Latitude<br />

75<br />

θ<br />

32 47 39 N<br />

41 15 50 N<br />

60<br />

6 cm<br />

FIGURE FOR 109 FIGURE FOR 110<br />

110. ELECTRIC HOIST An electric hoist is being used to<br />

lift a beam (see figure). The diameter of the drum on<br />

the hoist is 10 inches, and the beam must be raised<br />

2 feet. Find the number of degrees through which the<br />

drum must rotate.<br />

111. LINEAR AND ANGULAR SPEEDS A circular power<br />

saw has a inch-diameter blade that rotates at<br />

5000 revolutions per minute.<br />

7 1 4 - 2 ft<br />

Not drawn to scale<br />

(a) Find the angular speed of the saw blade in radians<br />

per minute.<br />

(b) Find the linear speed (in feet per minute) of one of<br />

the 24 cutting teeth as they contact the wood being<br />

cut.<br />

112. LINEAR AND ANGULAR SPEEDS A carousel with<br />

a 50-foot diameter makes 4 revolutions per minute.<br />

(a) Find the angular speed of the carousel in radians<br />

per minute.<br />

(b) Find the linear speed (in feet per minute) of the<br />

platform rim of the carousel.


Section 4.1 Radian and Degree Measure 291<br />

113. LINEAR AND ANGULAR SPEEDS The diameter of<br />

a DVD is approximately 12 centimeters. The drive<br />

motor of the DVD player is controlled to rotate<br />

precisely between 200 and 500 revolutions per minute,<br />

depending on what track is being read.<br />

(a) Find an interval for the angular speed of a DVD as<br />

it rotates.<br />

(b) Find an interval for the linear speed of a point on<br />

the outermost track as the DVD rotates.<br />

114. ANGULAR SPEED A two-inch-diameter pulley on<br />

an electric motor that runs at 1700 revolutions per<br />

minute is connected by a belt to a four-inch-diameter<br />

pulley on a saw arbor.<br />

(a) Find the angular speed (in radians per minute) of<br />

each pulley.<br />

(b) Find the revolutions per minute of the saw.<br />

115. ANGULAR SPEED A car is moving at a rate of<br />

65 miles per hour, and the diameter of its wheels is 2 feet.<br />

(a) Find the number of revolutions per minute the<br />

wheels are rotating.<br />

(b) Find the angular speed of the wheels in radians per<br />

minute.<br />

116. ANGULAR SPEED A computerized spin balance<br />

machine rotates a 25-inch-diameter tire at 480 revolutions<br />

per minute.<br />

(a) Find the road speed (in miles per hour) at which<br />

the tire is being balanced.<br />

(b) At what rate should the spin balance machine be set<br />

so that the tire is being tested for 55 miles per hour?<br />

117. AREA A sprinkler on a golf green is set to spray<br />

water over a distance of 15 meters and to rotate through<br />

an angle of 140. Draw a diagram that shows the region<br />

that can be irrigated with the sprinkler. Find the area of<br />

the region.<br />

118. AREA A car’s rear windshield wiper rotates 125.<br />

The total length of the wiper mechanism is 25 inches<br />

and wipes the windshield over a distance of 14 inches.<br />

Find the area covered by the wiper.<br />

119. SPEED OF A BICYCLE The radii of the pedal<br />

sprocket, the wheel sprocket, and the wheel of the<br />

bicycle in the figure are 4 inches, 2 inches, and<br />

14 inches, respectively. A cyclist is pedaling at a rate<br />

of 1 revolution per second.<br />

14 in.<br />

2 in.<br />

4 in.<br />

(a) Find the speed of the bicycle in feet per second and<br />

miles per hour.<br />

(b) Use your result from part (a) to write a function<br />

for the distance d (in miles) a cyclist travels in<br />

terms of the number n of revolutions of the pedal<br />

sprocket.<br />

(c) Write a function for the distance d (in miles) a<br />

cyclist travels in terms of the time t (in seconds).<br />

Compare <strong>this</strong> function with the function from<br />

part (b).<br />

(d) Classify the types of functions you found in parts<br />

(b) and (c). Explain your reasoning.<br />

120. CAPSTONE Write a short paper in your own words<br />

explaining the meaning of each of the following<br />

concepts to a classmate.<br />

(a) an angle in standard position<br />

(b) positive and negative angles<br />

(c) coterminal angles<br />

(d) angle measure in degrees and radians<br />

(e) obtuse and acute angles<br />

(f) complementary and supplementary angles<br />

EXPLORATION<br />

TRUE OR FALSE? In Exercises 121–123, determine<br />

whether the statement is true or false. Justify your answer.<br />

121. A measurement of 4 radians corresponds to two<br />

complete revolutions from the initial side to the<br />

terminal side of an angle.<br />

122. The difference between the measures of two<br />

coterminal angles is always a multiple of 360 if<br />

expressed in degrees and is always a multiple of<br />

radians if expressed in radians.<br />

123. An angle that measures 1260 lies in Quadrant III.<br />

124. THINK ABOUT IT A fan motor turns at a given<br />

angular speed. How does the speed of the tips of the<br />

blades change if a fan of greater diameter is installed<br />

on the motor? Explain.<br />

125. THINK ABOUT IT Is a degree or a radian the larger<br />

unit of measure? Explain.<br />

126. WRITING If the radius of a circle is increasing and<br />

the magnitude of a central angle is held constant, how<br />

is the length of the intercepted arc changing? Explain<br />

your reasoning.<br />

127. <strong>PRO</strong>OF Prove that the area of a circular sector of<br />

radius r with central angle is A 1 2r 2 , where is<br />

measured in radians.<br />

<br />

<br />

2


292 Chapter 4 Trigonometry<br />

4.2 TRIGONOMETRIC FUNCTIONS: THE UNIT CIRCLE<br />

What you should learn<br />

• Identify a unit circle and describe<br />

its relationship to real numbers.<br />

• Evaluate trigonometric functions<br />

using the unit circle.<br />

• Use the domain and period to<br />

evaluate sine and cosine functions.<br />

• Use a calculator to evaluate<br />

trigonometric functions.<br />

Why you should learn it<br />

Trigonometric functions are used to<br />

model the movement of an oscillating<br />

weight. For instance, in Exercise 60<br />

on page 298, the displacement from<br />

equilibrium of an oscillating weight<br />

suspended by a spring is modeled as<br />

a function of time.<br />

The Unit Circle<br />

The two historical perspectives of trigonometry incorporate different methods for<br />

introducing the trigonometric functions. Our first introduction to these functions is<br />

based on the unit circle.<br />

Consider the unit circle given by<br />

x 2 y 2 1<br />

as shown in Figure 4.20.<br />

Unit circle<br />

( −1, 0)<br />

(0, 1)<br />

y<br />

(1, 0)<br />

x<br />

FIGURE 4.20<br />

(0, −1)<br />

Richard Megna/Fundamental Photographs<br />

Imagine that the real number line is wrapped around <strong>this</strong> circle, with positive numbers<br />

corresponding to a counterclockwise wrapping and negative numbers corresponding to<br />

a clockwise wrapping, as shown in Figure 4.21.<br />

t > 0<br />

y<br />

( x, y)<br />

t<br />

θ<br />

(1, 0)<br />

t<br />

x<br />

t < 0<br />

y<br />

θ<br />

(1, 0)<br />

x<br />

t<br />

( x, y)<br />

t<br />

FIGURE 4.21<br />

As the real number line is wrapped around the unit circle, each real number t<br />

corresponds to a point x, y on the circle. For example, the real number 0 corresponds<br />

to the point 1, 0. Moreover, because the unit circle has a circumference of 2, the real<br />

number also corresponds to the point 1, 0.<br />

In general, each real number t also corresponds to a central angle (in standard<br />

position) whose radian measure is t. With <strong>this</strong> interpretation of t, the arc length<br />

formula s r (with r 1) indicates that the real number t is the (directional) length<br />

of the arc intercepted by the angle , given in radians.<br />

2


Section 4.2 Trigonometric Functions: The Unit Circle 293<br />

The Trigonometric Functions<br />

From the preceding discussion, it follows that the coordinates x and y are two functions<br />

of the real variable t. You can use these coordinates to define the six trigonometric<br />

functions of t.<br />

sine cosecant cosine secant tangent cotangent<br />

These six functions are normally abbreviated sin, csc, cos, sec, tan, and cot, respectively.<br />

Note in the definition at the<br />

right that the functions in the<br />

second row are the reciprocals<br />

of the corresponding functions<br />

in the first row.<br />

Definitions of Trigonometric Functions<br />

Let t be a real number and let x, y be the point on the unit circle corresponding<br />

to t.<br />

sin t y<br />

cos t x<br />

tan t y x 0<br />

x ,<br />

csc t 1 y 0 sec t 1 x 0 cot t x y 0<br />

y , x ,<br />

y ,<br />

y<br />

(0, 1)<br />

2 2<br />

2<br />

, ,<br />

2 2<br />

2<br />

( − )<br />

2 2<br />

, −<br />

2 2<br />

( −1, 0)<br />

( − )<br />

FIGURE 4.22<br />

1 3<br />

( − , )<br />

2 2<br />

( − )<br />

3 1<br />

,<br />

2 2<br />

( − )<br />

3 1<br />

, −<br />

2 2<br />

1<br />

− , −<br />

2<br />

( −1, 0)<br />

( )<br />

FIGURE 4.23<br />

3<br />

2<br />

(0, −1)<br />

y<br />

(0, 1)<br />

(0, −1)<br />

( )<br />

(1, 0)<br />

2<br />

2<br />

x<br />

( )<br />

2 2<br />

, −<br />

2 2<br />

( )<br />

1<br />

,<br />

2<br />

(1, 0)<br />

3<br />

2<br />

( )<br />

3 1<br />

,<br />

2 2<br />

x<br />

1 3<br />

( , −<br />

2 2 )<br />

( )<br />

3 1<br />

, −<br />

2 2<br />

In the definitions of the trigonometric functions, note that the tangent and secant<br />

are not defined when x 0. For instance, because t 2 corresponds to<br />

x, y 0, 1, it follows that tan2 and sec2 are undefined. Similarly, the<br />

cotangent and cosecant are not defined when y 0. For instance, because t 0<br />

corresponds to x, y 1, 0, cot 0 and csc 0 are undefined.<br />

In Figure 4.22, the unit circle has been divided into eight equal arcs, corresponding<br />

to t-values of<br />

<br />

0,<br />

4 ,<br />

2 , 3<br />

4 , ,<br />

Similarly, in Figure 4.23, the unit circle has been divided into 12 equal arcs,<br />

corresponding to t-values of<br />

<br />

0,<br />

and 2.<br />

6 , 3 , 2 , 2<br />

3 , 5<br />

6 , ,<br />

6 , 3 , 2 , 3 , 6 ,<br />

To verify the points on the unit circle in Figure 4.22, note that 2 also lies<br />

2 , 2<br />

2 <br />

on the line y x. So, substituting x for y in the equation of the unit circle produces<br />

the following.<br />

x 2 x 2 1<br />

5 3 7<br />

4 ,<br />

and 2.<br />

2 , 4 ,<br />

7 4 3 5 11<br />

2x 2 1<br />

x 2 1 2<br />

x ± 2<br />

2<br />

Because the point is in the first quadrant, x 2 and because y x, you also<br />

have y 2<br />

2<br />

You can use similar reasoning to verify the rest of the points in<br />

2 .<br />

Figure 4.22 and the points in Figure 4.23.<br />

Using the x, y coordinates in Figures 4.22 and 4.23, you can evaluate the trigonometric<br />

functions for common t-values. This procedure is demonstrated in Examples 1,<br />

2, and 3. You should study and learn these exact function values for common t-values<br />

because they will help you in later sections to perform calculations.


294 Chapter 4 Trigonometry<br />

Example 1<br />

Evaluating Trigonometric Functions<br />

You can review dividing<br />

fractions and rationalizing<br />

denominators in Appendix A.1<br />

and Appendix A.2, respectively.<br />

Evaluate the six trigonometric functions at each real number.<br />

<br />

a. t b. t 5 c. t 0 d. t <br />

6<br />

4<br />

Solution<br />

For each t-value, begin by finding the corresponding point x, y on the unit circle. Then<br />

use the definitions of trigonometric functions listed on page 293.<br />

<br />

a. t corresponds to the point<br />

6<br />

cos<br />

<br />

sin 6 y 1 2<br />

<br />

6 x 3<br />

2<br />

<br />

tan 6 y x 12<br />

32 <br />

b. t 5 corresponds to the point<br />

4<br />

5<br />

sin<br />

4 y 2 2<br />

5<br />

cos<br />

4 x 2 2<br />

5<br />

tan<br />

4 y x 22<br />

x, y <br />

3<br />

2 , 1 2 .<br />

1<br />

3 3<br />

3<br />

x, y 2<br />

2 , 2 2 .<br />

22 1 sec 5<br />

c. t 0 corresponds to the point x, y 1, 0.<br />

csc<br />

6 1 y 1<br />

12 2<br />

sec<br />

cot<br />

<br />

<br />

6 1 x 2 3 23<br />

3<br />

<br />

6 x y 32<br />

12<br />

3<br />

csc 5<br />

4 1 y 2<br />

2 2<br />

4 1 x 2<br />

2 2<br />

cot 5<br />

4 x y 22<br />

22 1<br />

sin 0 y 0<br />

csc 0 1 is undefined.<br />

y<br />

cos 0 x 1<br />

sec 0 1 x 1 1 1<br />

tan 0 y cot 0 x is undefined.<br />

x 0 1 0 y<br />

d. t corresponds to the point x, y 1, 0.<br />

sin y 0<br />

csc 1 is undefined.<br />

y<br />

cos x 1<br />

sec 1 x 1<br />

1 1<br />

tan y cot x is undefined.<br />

x 0<br />

1 0 y<br />

Now try Exercise 23.


Section 4.2 Trigonometric Functions: The Unit Circle 295<br />

Example 2<br />

Evaluating Trigonometric Functions<br />

Evaluate the six trigonometric functions at t <br />

3 .<br />

Solution<br />

Moving clockwise around the unit circle, it follows that t 3 corresponds to the<br />

point x, y 12, 32.<br />

<br />

sin <br />

3 3 2<br />

<br />

cos 3 1 2<br />

<br />

tan <br />

3 32 3<br />

12<br />

Now try Exercise 33.<br />

csc <br />

3 2<br />

3 23 3<br />

sec <br />

3 2<br />

cot <br />

<br />

<br />

<br />

<br />

3 <br />

12<br />

32 1<br />

3 3 3<br />

y<br />

(0, 1)<br />

(−1, 0) (1, 0)<br />

x −1 ≤ y ≤ 1<br />

(0, −1)<br />

−1 ≤ x ≤ 1<br />

FIGURE 4.24<br />

π π π<br />

t = , + 2π,<br />

+ 4 π, ...<br />

2 2 y 2<br />

3π<br />

3π<br />

π π<br />

t = , + 2π<br />

t = , + 2<br />

4 4 , ...<br />

π, ...<br />

4 4<br />

t = π, 3 π, ...<br />

x<br />

t = 0, 2 π, ...<br />

5π<br />

5π<br />

t =<br />

4 , 4 + 2π, ...<br />

7π<br />

7π<br />

t = 4<br />

, 4<br />

+ 2π, ...<br />

3<br />

t = π 3<br />

2<br />

, π 3<br />

2<br />

+ 2 π,<br />

π<br />

2<br />

+ 4 π, ...<br />

FIGURE 4.25<br />

Domain and Period of Sine and Cosine<br />

The domain of the sine and cosine functions is the set of all real numbers. To determine<br />

the range of these two functions, consider the unit circle shown in Figure 4.24. By<br />

definition, sin t y and cos t x. Because x, y is on the unit circle, you know that<br />

1 y 1 and 1 x 1. So, the values of sine and cosine also range between<br />

1 and 1.<br />

and<br />

Adding to each value of t in the interval 0, 2 completes a second revolution<br />

around the unit circle, as shown in Figure 4.25. The values of sint 2 and<br />

cost 2 correspond to those of sin t and cos t. Similar results can be obtained for<br />

repeated revolutions (positive or negative) on the unit circle. This leads to the general<br />

result<br />

and<br />

1 <br />

1 sin t 1<br />

2<br />

y<br />

1<br />

sint 2n sin t<br />

cost 2 n cos t<br />

1 <br />

1 cos t 1<br />

for any integer n and real number t. Functions that behave in such a repetitive (or cyclic)<br />

manner are called periodic.<br />

Definition of Periodic Function<br />

x<br />

1<br />

A function f is periodic if there exists a positive real number c such that<br />

ft c f t<br />

for all t in the domain of f. The smallest number c for which f is periodic is<br />

called the period of f.


296 Chapter 4 Trigonometry<br />

Recall from Section 1.5 that a function f is even if f t f t, and is odd if<br />

f t f t.<br />

Even and Odd Trigonometric Functions<br />

The cosine and secant functions are even.<br />

cost cos t sect sec t<br />

The sine, cosecant, tangent, and cotangent functions are odd.<br />

sint sin t csct csc t<br />

tant tan t cott cot t<br />

Example 3<br />

Using the Period to Evaluate the Sine and Cosine<br />

From the definition of periodic<br />

function, it follows that the<br />

sine and cosine functions are<br />

periodic and have a period of<br />

2. The other four trigonometric<br />

functions are also periodic, and<br />

will be discussed further in<br />

Section 4.6.<br />

TECHNOLOGY<br />

When evaluating trigonometric<br />

functions with a calculator,<br />

remember to enclose all fractional<br />

angle measures in parentheses.<br />

For instance, if you want to<br />

evaluate sin t for t /6, you<br />

should enter<br />

<br />

6 .<br />

SIN ENTER<br />

These keystrokes yield the correct<br />

value of 0.5. Note that some<br />

calculators automatically place a<br />

left parenthesis after trigonometric<br />

functions. Check the user’s guide<br />

for your calculator for specific<br />

keystrokes on how to evaluate<br />

trigonometric functions.<br />

a. Because you have sin 13<br />

6 sin 2 <br />

6 sin 6 1 6 2 <br />

6 ,<br />

2 .<br />

b. Because 7<br />

you have<br />

2 4 <br />

2 ,<br />

c. For sin t 4 sint 4 because the sine function is odd.<br />

5 ,<br />

5<br />

Now try Exercise 37.<br />

Evaluating Trigonometric Functions with a Calculator<br />

When evaluating a trigonometric function with a calculator, you need to set the<br />

calculator to the desired mode of measurement (degree or radian).<br />

Most calculators do not have keys for the cosecant, secant, and cotangent<br />

functions. To evaluate these functions, you can use the x 1 key with their respective<br />

reciprocal functions sine, cosine, and tangent. For instance, to evaluate csc8, use<br />

the fact that<br />

<br />

csc<br />

8 1<br />

sin8<br />

and enter the following keystroke sequence in radian mode.<br />

SIN 8 x 1 ENTER Display 2.6131259<br />

Example 4<br />

13<br />

<br />

<br />

cos 7<br />

2<br />

cos 4 <br />

<br />

Using a Calculator<br />

Function Mode Calculator Keystrokes Display<br />

a. sin 2 Radian SIN 2 3 ENTER 0.8660254<br />

3<br />

b. cot 1.5 Radian TAN 1.5 x 1 ENTER 0.0709148<br />

Now try Exercise 55.<br />

<br />

<br />

2 cos 2 0.


Section 4.2 Trigonometric Functions: The Unit Circle 297<br />

4.2 EXERCISES<br />

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.<br />

VOCABULARY: Fill in the blanks.<br />

1. Each real number t corresponds to a point x, y on the ________ ________.<br />

2. A function f is ________ if there exists a positive real number c such that f t c f t for all t in the domain of f.<br />

3. The smallest number c for which a function f is periodic is called the ________ of f.<br />

4. A function f is ________ if f t f t and ________ if f t f t.<br />

SKILLS AND APPLICATIONS<br />

In Exercises 5–8, determine the exact values of the six<br />

trigonometric functions of the real number t.<br />

5. y<br />

6.<br />

12 5<br />

,<br />

7. y<br />

8.<br />

t<br />

(<br />

4 3<br />

− , −<br />

5 5<br />

In Exercises 9–16, find the point x, y on the unit circle that<br />

corresponds to the real number t.<br />

<br />

9. t <br />

10. t <br />

2<br />

<br />

11. t <br />

12. t <br />

4<br />

3<br />

13. t 5<br />

14.<br />

6<br />

15. t 4<br />

16.<br />

3<br />

In Exercises 17–26, evaluate (if possible) the sine, cosine, and<br />

tangent of the real number.<br />

<br />

17. t <br />

18. t <br />

4<br />

3<br />

<br />

19. t <br />

20. t <br />

6<br />

4<br />

21. t 7<br />

22.<br />

4<br />

<br />

t 3<br />

4<br />

t 5<br />

3<br />

<br />

<br />

t 4<br />

3<br />

(<br />

x<br />

12 5<br />

, −<br />

13 13<br />

(<br />

(<br />

θ<br />

(<br />

θ<br />

13 13<br />

t<br />

x<br />

x<br />

(<br />

8 15<br />

− ,<br />

17 17<br />

t<br />

θ<br />

(<br />

(<br />

y<br />

y<br />

θ<br />

t<br />

x<br />

23. t 11<br />

24.<br />

6<br />

25. t 3<br />

26. t 2<br />

2<br />

In Exercises 27–34, evaluate (if possible) the six trigonometric<br />

functions of the real number.<br />

27. t 2<br />

28.<br />

3<br />

29. t 4<br />

30.<br />

3<br />

31. t 3<br />

32.<br />

4<br />

<br />

33. t <br />

34. t <br />

2<br />

In Exercises 35– 42, evaluate the trigonometric function<br />

using its period as an aid.<br />

35. sin 4<br />

36. cos 3<br />

37. cos 7<br />

38.<br />

3<br />

39. cos 17<br />

40.<br />

4<br />

41. sin 8<br />

42.<br />

3<br />

<br />

In Exercises 43–48, use the value of the trigonometric<br />

function to evaluate the indicated functions.<br />

43. sin t 1 2<br />

44. sint 3 8<br />

(a) sint<br />

(a) sin t<br />

(b) csct<br />

(b) csc t<br />

45. cost 1 5 46. cos t 3 4<br />

(a) cos t<br />

(a) cost<br />

(b) sect<br />

(b) sect<br />

47. sin t 4 5<br />

48. cos t 4 5<br />

(a)<br />

(a)<br />

(b) sint <br />

(b) cost <br />

sin t<br />

t 5<br />

3<br />

t 5<br />

6<br />

t 7<br />

4<br />

t 3<br />

2<br />

sin 9<br />

4<br />

sin 19<br />

6<br />

cos 9<br />

4<br />

<br />

cos t


298 Chapter 4 Trigonometry<br />

In Exercises 49–58, use a calculator to evaluate the trigonometric<br />

function. Round your answer to four decimal places.<br />

(Be sure the calculator is set in the correct angle mode.)<br />

51. cot<br />

52.<br />

4<br />

59. HARMONIC MOTION The displacement from<br />

equilibrium of an oscillating weight suspended by a<br />

spring is given by yt 1 4 cos 6t, where y is the<br />

displacement (in feet) and t is the time (in seconds). Find<br />

the displacements when (a) t 0, (b) t 1 and (c) t 1 4 ,<br />

2 .<br />

60. HARMONIC MOTION The displacement from<br />

equilibrium of an oscillating weight suspended by a<br />

spring and subject to the damping effect of friction is<br />

given by yt 1 4 et cos 6t, where y is the displacement<br />

(in feet) and t is the time (in seconds).<br />

(a) Complete the table.<br />

(b) Use the table feature of a graphing utility to approximate<br />

the time when the weight reaches equilibrium.<br />

(c) What appears to happen to the displacement as<br />

increases?<br />

EXPLORATION<br />

TRUE OR FALSE? In Exercises 61– 64, determine whether<br />

the statement is true or false. Justify your answer.<br />

61. Because sint sin t, it can be said that the sine of<br />

a negative angle is a negative number.<br />

62. tan a tana 6<br />

63. The real number 0 corresponds to the point 0, 1 on the<br />

unit circle.<br />

64.<br />

<br />

49. sin<br />

50. tan<br />

4<br />

3<br />

<br />

53. cos1.7<br />

54. cos2.5<br />

55. csc 0.8<br />

56. sec 1.8<br />

57. sec22.8<br />

58. cot0.9<br />

t 0<br />

1<br />

4<br />

cos 7<br />

2 cos <br />

y<br />

<br />

2<br />

csc 2<br />

3<br />

65. Let x 1 , y 1 and x 2 , y 2 be points on the unit circle<br />

corresponding to t t 1 and t t 1 , respectively.<br />

(a) Identify the symmetry of the points x 1 , y 1 and<br />

x 2 , y 2 .<br />

1<br />

2<br />

<br />

3<br />

4<br />

1<br />

t<br />

(b) Make a conjecture about any relationship between<br />

sin t 1 and sin t 1 .<br />

(c) Make a conjecture about any relationship between<br />

cos t 1 and<br />

cos t 1 .<br />

66. Use the unit circle to verify that the cosine and secant<br />

functions are even and that the sine, cosecant, tangent,<br />

and cotangent functions are odd.<br />

67. Verify that cos 2t 2 cos t by approximating cos 1.5<br />

and 2 cos 0.75.<br />

68. Verify that sint 1 t 2 sin t 1 sin t 2 by approximating<br />

sin 0.25, sin 0.75, and sin 1.<br />

69. THINK ABOUT IT Because ft sin t is an odd<br />

function and gt cos t is an even function, what can<br />

be said about the function ht ftgt?<br />

70. THINK ABOUT IT Because ft sin t and<br />

gt tan t are odd functions, what can be said about<br />

the function ht ftgt?<br />

71. GRAPHICAL ANALYSIS With your graphing utility in<br />

radian and parametric modes, enter the equations<br />

X1T cos T and Y1T sin T<br />

and use the following settings.<br />

Tmin 0, Tmax 6.3, Tstep 0.1<br />

Xmin 1.5, Xmax 1.5, Xscl 1<br />

Ymin 1, Ymax 1, Yscl 1<br />

(a) Graph the entered equations and describe the graph.<br />

(b) Use the trace feature to move the cursor around the<br />

graph. What do the t-values represent? What do the<br />

x- and y-values represent?<br />

(c) What are the least and greatest values of x and y?<br />

72. CAPSTONE A student you are tutoring has used a<br />

unit circle divided into 8 equal parts to complete the<br />

table for selected values of t. What is wrong?<br />

t 0<br />

x 1<br />

y 0<br />

sin t 1<br />

cos t 0<br />

<br />

4<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

<br />

2<br />

3<br />

4<br />

0 2<br />

2<br />

1<br />

2<br />

2<br />

0 2<br />

2<br />

1<br />

2<br />

2<br />

<br />

1<br />

0<br />

1<br />

tan t Undef. 1 0 1 Undef.<br />

0


Section 4.3 Right Triangle Trigonometry 299<br />

4.3 RIGHT TRIANGLE TRIGONOMETRY<br />

Joseph Sohm/Visions of America/Corbis<br />

What you should learn<br />

• Evaluate trigonometric functions<br />

of acute angles.<br />

• Use fundamental trigonometric<br />

identities.<br />

• Use a calculator to evaluate<br />

trigonometric functions.<br />

• Use trigonometric functions to<br />

model and solve real-life problems.<br />

Why you should learn it<br />

Trigonometric functions are often used<br />

to analyze real-life situations. For<br />

instance, in Exercise 76 on page 309,<br />

you can use trigonometric functions<br />

to find the height of a helium-filled<br />

balloon.<br />

The Six Trigonometric Functions<br />

Our second look at the trigonometric functions is from a right triangle perspective.<br />

Consider a right triangle, with one acute angle labeled , as shown in Figure 4.26.<br />

Relative to the angle , the three sides of the triangle are the hypotenuse, the<br />

opposite side (the side opposite the angle ), and the adjacent side (the side adjacent to<br />

the angle ).<br />

<br />

FIGURE 4.26<br />

Hypotenuse<br />

Using the lengths of these three sides, you can form six ratios that define the six<br />

trigonometric functions of the acute angle .<br />

sine cosecant cosine secant tangent cotangent<br />

θ<br />

<br />

Side adjacent to θ<br />

In the following definitions, it is important to see that 0 < < 90 lies in the first<br />

quadrant) and that for such angles the value of each trigonometric function is positive.<br />

Right Triangle Definitions of Trigonometric Functions<br />

<br />

<br />

Let be an acute angle of a right triangle. The six trigonometric functions of the<br />

angle are defined as follows. (Note that the functions in the second row are the<br />

reciprocals of the corresponding functions in the first row.)<br />

sin<br />

csc<br />

opp<br />

hyp<br />

hyp<br />

opp<br />

cos<br />

adj<br />

hyp<br />

sec hyp<br />

adj<br />

The abbreviations opp, adj, and hyp represent the lengths of the three sides of a<br />

right triangle.<br />

opp the length of the side opposite<br />

adj the length of the side adjacent to<br />

hyp the length of the hypotenuse<br />

<br />

<br />

Side opposite θ<br />

<br />

tan opp<br />

adj<br />

cot adj<br />

opp


300 Chapter 4 Trigonometry<br />

Example 1<br />

Evaluating Trigonometric Functions<br />

θ<br />

FIGURE 4.27<br />

Hypotenuse<br />

3<br />

You can review the Pythagorean<br />

Theorem in Section 1.1.<br />

HISTORICAL NOTE<br />

Georg Joachim Rhaeticus<br />

(1514–1574) was the leading<br />

Teutonic mathematical<br />

astronomer of the 16th century.<br />

He was the first to define the<br />

trigonometric functions as ratios<br />

of the sides of a right triangle.<br />

4<br />

Use the triangle in Figure 4.27 to find the values of the six trigonometric functions of .<br />

Solution<br />

By the Pythagorean Theorem, hyp 2 opp 2 adj 2 , it follows that<br />

hyp 4 2 3 2<br />

So, the six trigonometric functions of<br />

sin<br />

25<br />

5.<br />

opp<br />

cos adj<br />

tan opp<br />

adj 4 3<br />

Now try Exercise 7.<br />

are<br />

In Example 1, you were given the lengths of two sides of the right triangle, but not<br />

the angle . Often, you will be asked to find the trigonometric functions of a given acute<br />

angle . To do <strong>this</strong>, construct a right triangle having as one of its angles.<br />

Example 2<br />

hyp 4 5<br />

hyp 3 5<br />

csc<br />

sec<br />

cot<br />

hyp<br />

hyp<br />

adj<br />

opp 5 4<br />

adj 5 3<br />

opp 3 4 .<br />

Evaluating Trigonometric Functions of 45<br />

Find the values of sin 45, cos 45, and tan 45.<br />

<br />

<br />

2<br />

45°<br />

1<br />

Solution<br />

Construct a right triangle having 45 as one of its acute angles, as shown in Figure 4.28.<br />

Choose the length of the adjacent side to be 1. From geometry, you know that the other<br />

acute angle is also 45. So, the triangle is isosceles and the length of the opposite side<br />

is also 1. Using the Pythagorean Theorem, you find the length of the hypotenuse to<br />

be2.<br />

45°<br />

FIGURE 4.28<br />

1<br />

sin 45 opp<br />

hyp <br />

cos 45 adj<br />

hyp <br />

1 2 2<br />

2<br />

1<br />

2 2<br />

2<br />

tan 45 opp<br />

adj 1 1 1<br />

Now try Exercise 23.


Section 4.3 Right Triangle Trigonometry 301<br />

Example 3<br />

Evaluating Trigonometric Functions of 30<br />

and 60<br />

Because the angles 30, 45, and<br />

60 6, 4, and 3 occur<br />

frequently in trigonometry, you<br />

should learn to construct the<br />

triangles shown in Figures 4.28<br />

and 4.29.<br />

Use the equilateral triangle shown in Figure 4.29 to find the values of<br />

cos 60, sin 30, and cos 30.<br />

30°<br />

2 3 2<br />

sin 60,<br />

1<br />

FIGURE 4.29<br />

60°<br />

1<br />

TECHNOLOGY<br />

You can use a calculator to<br />

convert the answers in Example 3<br />

to decimals. However, the<br />

radical form is the exact value<br />

and in most cases, the exact<br />

value is preferred.<br />

Solution<br />

Use the Pythagorean Theorem and the equilateral triangle in Figure 4.29 to verify the<br />

lengths of the sides shown in the figure. For you have adj 1, opp 3, and<br />

hyp 2. So,<br />

opp<br />

sin 60 <br />

hyp 3<br />

2<br />

30,<br />

and<br />

For adj 3, opp 1, and hyp 2. So,<br />

opp<br />

sin 30 <br />

hyp 1 2<br />

and<br />

Now try Exercise 27.<br />

60,<br />

cos 60 adj<br />

hyp 1 2 .<br />

cos 30 adj<br />

hyp 3<br />

2 .<br />

Sines, Cosines, and Tangents of Special Angles<br />

sin 30 sin<br />

cos 30 cos<br />

tan 30 tan<br />

6 3<br />

6 3<br />

6 1 2<br />

2<br />

3<br />

<br />

<br />

sin 45 sin<br />

4 2<br />

2<br />

<br />

sin 60 sin<br />

3 3<br />

2<br />

cos 45 cos<br />

cos 60 cos<br />

<br />

<br />

4 2<br />

2<br />

<br />

3 1 2<br />

<br />

<br />

tan 45 tan<br />

4 1<br />

<br />

tan 60 tan<br />

3 3<br />

In the box, note that sin 30 1 2 cos 60. This occurs because 30 and 60 are<br />

complementary angles. In general, it can be shown from the right triangle definitions<br />

that cofunctions of complementary angles are equal. That is, if is an acute angle, the<br />

following relationships are true.<br />

sin90 cos<br />

tan90 cot<br />

sec90 csc<br />

<br />

<br />

<br />

cos90 sin<br />

cot90 tan<br />

csc90 sec


302 Chapter 4 Trigonometry<br />

Trigonometric Identities<br />

In trigonometry, a great deal of time is spent studying relationships between trigonometric<br />

functions (identities).<br />

Fundamental Trigonometric Identities<br />

Reciprocal Identities<br />

sin<br />

csc<br />

Quotient Identities<br />

Pythagorean Identities<br />

sin 2<br />

<br />

<br />

1<br />

csc<br />

<br />

<br />

1<br />

sin<br />

tan sin<br />

cos<br />

<br />

<br />

cos 2 1<br />

cos 1<br />

sec<br />

sec<br />

cot<br />

<br />

<br />

1<br />

cos<br />

cos <br />

<br />

sin<br />

<br />

1 tan 2<br />

1 cot 2 csc 2<br />

tan<br />

cot<br />

sec 2 <br />

<br />

<br />

<br />

1<br />

cot<br />

<br />

<br />

1<br />

tan<br />

Note that sin 2 represents sin 2 , cos 2 represents cos 2 , and so on.<br />

<br />

Example 4<br />

Applying Trigonometric Identities<br />

θ<br />

FIGURE 4.30<br />

1<br />

0.8<br />

0.6<br />

<br />

Let be an acute angle such that sin Find the values of (a) cos and<br />

(b) tan using trigonometric identities.<br />

<br />

Solution<br />

a. To find the value of cos , use the Pythagorean identity<br />

sin 2 cos 2 1.<br />

So, you have<br />

0.6 2 cos 2 1<br />

Substitute 0.6 for sin .<br />

Subtract 0.6 2 from each side.<br />

Extract the positive square root.<br />

b. Now, knowing the sine and cosine of , you can find the tangent of to be<br />

tan<br />

cos<br />

sin <br />

<br />

cos<br />

0.6<br />

0.8<br />

cos 2 1 0.6 2 0.64<br />

0.75.<br />

0.64 0.8.<br />

<br />

Use the definitions of cos and tan , and the triangle shown in Figure 4.30, to check<br />

these results.<br />

Now try Exercise 33.<br />

0.6.


Section 4.3 Right Triangle Trigonometry 303<br />

Example 5<br />

Applying Trigonometric Identities<br />

<br />

Let be an acute angle such that tan Find the values of (a) cot and<br />

(b) sec using trigonometric identities.<br />

<br />

Solution<br />

<br />

<br />

1<br />

3.<br />

a. cot<br />

Reciprocal identity<br />

tan<br />

<br />

10<br />

θ<br />

1<br />

FIGURE 4.31<br />

3<br />

cot 1 3<br />

b. sec 2 1 tan 2 <br />

Pythagorean identity<br />

sec 2 1 3 2<br />

sec 2<br />

10<br />

sec 10<br />

<br />

Use the definitions of cot and sec , and the triangle shown in Figure 4.31, to check<br />

these results.<br />

Now try Exercise 35.<br />

You can also use the reciprocal<br />

identities for sine, cosine, and<br />

tangent to evaluate the cosecant,<br />

secant, and cotangent functions<br />

with a calculator. For instance,<br />

you could use the following<br />

keystroke sequence to evaluate<br />

sec 28.<br />

1 COS 28<br />

ENTER<br />

The calculator should display<br />

1.1325701.<br />

Evaluating Trigonometric Functions with a Calculator<br />

To use a calculator to evaluate trigonometric functions of angles measured in degrees,<br />

first set the calculator to degree mode and then proceed as demonstrated in Section 4.2.<br />

For instance, you can find values of cos 28 and sec 28 as follows.<br />

Function Mode Calculator Keystrokes Display<br />

a. cos 28 Degree COS 28 ENTER<br />

0.8829476<br />

b. sec 28 Degree <br />

28 1.1325701<br />

COS x 1 ENTER<br />

Throughout <strong>this</strong> text, angles are assumed to be measured in radians unless noted<br />

otherwise. For example, sin 1 means the sine of 1 radian and sin 1 means the sine of<br />

1 degree.<br />

Example 6 Using a Calculator<br />

Use a calculator to evaluate sec5 40 12.<br />

Solution<br />

Begin by converting to decimal degree form. [Recall that<br />

5 40 12 5 <br />

40<br />

60 <br />

12<br />

3600 5.67<br />

Then, use a calculator to evaluate sec 5.67.<br />

601 and<br />

Function Calculator Keystrokes Display<br />

sec5 40 12 sec 5.67<br />

Now try Exercise 51.<br />

<br />

COS<br />

<br />

1 1<br />

1 1<br />

5.67 x 1 ENTER 1.0049166<br />

36001.


304 Chapter 4 Trigonometry<br />

Observer<br />

Observer<br />

FIGURE 4.32<br />

Object<br />

Angle of<br />

elevation<br />

Horizontal<br />

Horizontal<br />

Angle of<br />

depression<br />

Object<br />

Applications Involving Right Triangles<br />

Many applications of trigonometry involve a process called solving right triangles. In<br />

<strong>this</strong> type of application, you are usually given one side of a right triangle and one of the<br />

acute angles and are asked to find one of the other sides, or you are given two sides and<br />

are asked to find one of the acute angles.<br />

In Example 7, the angle you are given is the angle of elevation, which represents<br />

the angle from the horizontal upward to an object. For objects that lie below the<br />

horizontal, it is common to use the term angle of depression, as shown in Figure 4.32.<br />

Example 7<br />

Using Trigonometry to Solve a Right Triangle<br />

A surveyor is standing 115 feet from the base of the Washington Monument, as shown<br />

in Figure 4.33. The surveyor measures the angle of elevation to the top of the monument<br />

as 78.3. How tall is the Washington Monument?<br />

y<br />

FIGURE 4.33<br />

x = 115 ft<br />

Angle of<br />

elevation<br />

78.3°<br />

Not drawn to scale<br />

Solution<br />

From Figure 4.33, you can see that<br />

tan 78.3 opp<br />

adj y x<br />

where x 115 and y is the height of the monument. So, the height of the Washington<br />

Monument is<br />

y x tan 78.3 1154.82882 555 feet.<br />

Now try Exercise 67.<br />

Example 8<br />

Using Trigonometry to Solve a Right Triangle<br />

A historic lighthouse is 200 yards from a bike path along the edge of a lake. A walkway<br />

to the lighthouse is 400 yards long. Find the acute angle between the bike path<br />

and the walkway, as illustrated in Figure 4.34.<br />

<br />

θ<br />

200 yd<br />

400 yd<br />

FIGURE 4.34<br />

Solution<br />

From Figure 4.34, you can see that the sine of the angle<br />

sin<br />

opp<br />

hyp 200<br />

400 1 2 .<br />

Now you should recognize that<br />

30.<br />

Now try Exercise 69.<br />

<br />

is


Section 4.3 Right Triangle Trigonometry 305<br />

By now you are able to recognize that is the acute angle that satisfies the<br />

equation sin Suppose, however, that you were given the equation sin<br />

and were asked to find the acute angle . Because<br />

1 2 .<br />

30<br />

0.6<br />

sin 30 1 2<br />

and<br />

0.5000<br />

sin 45 <br />

1 2<br />

0.7071<br />

<br />

you might guess that lies somewhere between 30 and 45. In a later section, you will<br />

study a method by which a more precise value of can be determined.<br />

<br />

Example 9<br />

Solving a Right Triangle<br />

Find the length c of the skateboard ramp shown in Figure 4.35.<br />

18.4°<br />

c<br />

4 ft<br />

Solution<br />

FIGURE 4.35<br />

From Figure 4.35, you can see that<br />

sin 18.4 opp<br />

hyp<br />

So, the length of the skateboard ramp is<br />

c <br />

4 c .<br />

4<br />

sin 18.4<br />

4<br />

0.3156<br />

12.7 feet.<br />

Now try Exercise 71.


306 Chapter 4 Trigonometry<br />

4.3<br />

VOCABULARY<br />

EXERCISES<br />

1. Match the trigonometric function with its right triangle definition.<br />

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.<br />

(a) Sine (b) Cosine (c) Tangent (d) Cosecant (e) Secant (f) Cotangent<br />

hypotenuse adjacent hypotenuse adjacent opposite<br />

(i) (ii) (iii) (iv) (v) (vi)<br />

adjacent opposite opposite hypotenuse hypotenuse<br />

In Exercises 2–4, fill in the blanks.<br />

2. Relative to the angle , the three sides of a right triangle are the ________ side, the ________ side, and the ________.<br />

3. Cofunctions of ________ angles are equal.<br />

4. An angle that measures from the horizontal upward to an object is called the angle of ________, whereas an angle that<br />

measures from the horizontal downward to an object is called the angle of ________.<br />

SKILLS AND APPLICATIONS<br />

opposite<br />

adjacent<br />

In Exercises 5–8, find the exact values of the six trigonometric<br />

functions of the angle shown in the figure. (Use the<br />

Pythagorean Theorem to find the third side of the triangle.)<br />

5. 6.<br />

13<br />

5<br />

6<br />

θ<br />

θ<br />

8<br />

7. 41<br />

8.<br />

θ<br />

9<br />

4<br />

θ<br />

4<br />

In Exercises 9 –12, find the exact values of the six<br />

trigonometric functions of the angle for each of the two<br />

triangles. Explain why the function values are the same.<br />

9. 10. 1.25<br />

8<br />

θ<br />

15<br />

4<br />

θ<br />

7.5<br />

11. 3 12.<br />

1<br />

θ<br />

6<br />

2<br />

θ<br />

<br />

<br />

θ 1<br />

5<br />

θ<br />

4<br />

θ<br />

1<br />

2<br />

3<br />

θ<br />

6<br />

In Exercises 13–20, sketch a right triangle corresponding to<br />

the trigonometric function of the acute angle . Use the<br />

Pythagorean Theorem to determine the third side and then<br />

find the other five trigonometric functions of .<br />

13. tan<br />

14. cos<br />

15. sec<br />

16. tan<br />

19. cot<br />

20. csc<br />

In Exercises 21–30, construct an appropriate triangle to<br />

complete the table. 0 90, 0 /2<br />

21. sin<br />

22. cos<br />

23. sec<br />

24. tan<br />

25. cot<br />

26. csc<br />

27. csc<br />

28. sin<br />

Function (deg) (rad) Function Value<br />

29. cot 1<br />

30. tan<br />

3 4<br />

3 2<br />

1 5<br />

3<br />

17. sin<br />

18. sec<br />

<br />

30<br />

45<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4<br />

<br />

3<br />

<br />

<br />

<br />

6<br />

<br />

4<br />

<br />

<br />

5 6<br />

4 5<br />

<br />

<br />

17 7<br />

9<br />

<br />

<br />

<br />

<br />

<br />

3<br />

3<br />

2<br />

<br />

<br />

3<br />

3


Section 4.3 Right Triangle Trigonometry 307<br />

In Exercises 31–36, use the given function value(s), and<br />

trigonometric identities (including the cofunction identities),<br />

to find the indicated trigonometric functions.<br />

31.<br />

32.<br />

33.<br />

34.<br />

35.<br />

36.<br />

(a)<br />

(c)<br />

(a)<br />

(c)<br />

cos 1 3<br />

(a) sin<br />

(c)<br />

(a)<br />

(c)<br />

(a)<br />

(c)<br />

(b)<br />

(b)<br />

(d)<br />

(b)<br />

(d)<br />

(b)<br />

(d)<br />

(b)<br />

(d)<br />

(b)<br />

(d)<br />

In Exercises 37– 46, use trigonometric identities to transform<br />

the left side of the equation into the right side<br />

0 < < /2.<br />

37.<br />

38.<br />

39.<br />

44.<br />

45.<br />

46.<br />

sin 60 3<br />

2 ,<br />

sec<br />

<br />

tan<br />

cos<br />

sin<br />

cos<br />

sin 30<br />

tan 60<br />

sin 30 1 2 ,<br />

csc 30<br />

cos 30<br />

sec<br />

<br />

<br />

<br />

<br />

5<br />

<br />

cos<br />

cot90 <br />

cot 5<br />

(a) tan <br />

(c) cot90 <br />

cos 7<br />

4<br />

sec <br />

cot <br />

cot 1<br />

sec 1<br />

tan cos sin <br />

tan<br />

cos<br />

sin<br />

<br />

<br />

cos 60 1 2<br />

csc<br />

tan<br />

sin 2 cos 2 2 sin 2 1<br />

tan cot <br />

csc 2 <br />

tan <br />

sec <br />

cos 30<br />

(d) cot 60<br />

tan 30 3<br />

3<br />

cot 60<br />

cot 30<br />

In Exercises 47–56, use a calculator to evaluate each function.<br />

Round your answers to four decimal places. (Be sure the<br />

calculator is in the correct angle mode.)<br />

cot<br />

sin<br />

40. cot sin cos <br />

41. 1 sin 1 sin cos 2 <br />

42. 1 cos 1 cos sin 2 <br />

43. sec sec 1<br />

47. (a) sin 10<br />

(b) cos 80<br />

<br />

tan<br />

csc90 <br />

<br />

<br />

csc <br />

cos <br />

sin <br />

sin90 <br />

48. (a) tan 23.5 (b) cot 66.5<br />

49. (a) sin 16.35 (b) csc 16.35<br />

50. (a) cot 79.56 (b) sec 79.56<br />

51. (a) cos 4 50 15 (b) sec 4 50 15<br />

52. (a) sec 42 12 (b) csc 48 7<br />

53. (a) cot 11 15 (b) tan 11 15<br />

54. (a) sec 56 8 10 (b) cos 56 8 10<br />

55. (a) csc 32 40 3 (b) tan 44 28 16<br />

56. (a) sec 9 (b) cot 9 5 20 32<br />

5 30 32<br />

In Exercises 57–62, find the values of in degrees<br />

0 < < 90 and radians 0 < < /2 without the aid<br />

of a calculator.<br />

<br />

57. (a) sin<br />

(b) csc<br />

58. (a) cos<br />

(b) tan<br />

2<br />

59. (a) sec<br />

(b) cot<br />

60. (a) tan<br />

(b) cos<br />

61. (a) csc<br />

(b) sin<br />

3<br />

62. (a) cot<br />

(b) sec<br />

3<br />

In Exercises 63–66, solve for x, y, or r as indicated.<br />

63. Solve for y.<br />

64. Solve for x.<br />

18 y<br />

60°<br />

65. Solve for x.<br />

66. Solve for r.<br />

60°<br />

x<br />

1 2<br />

2<br />

2<br />

3<br />

23<br />

3<br />

32<br />

2<br />

1<br />

1<br />

1 2<br />

2<br />

2<br />

30°<br />

45°<br />

67. EMPIRE STATE BUILDING You are standing 45 meters<br />

from the base of the Empire State Building. You<br />

estimate that the angle of elevation to the top of the 86th<br />

floor (the observatory) is 82. If the total height of the<br />

building is another 123 meters above the 86th floor,<br />

what is the approximate height of the building? One of<br />

your friends is on the 86th floor. What is the distance<br />

between you and your friend?<br />

<br />

r<br />

2<br />

x<br />

<br />

20<br />

30


308 Chapter 4 Trigonometry<br />

68. HEIGHT A six-foot person walks from the base of a<br />

broadcasting tower directly toward the tip of the<br />

shadow cast by the tower. When the person is 132 feet<br />

from the tower and 3 feet from the tip of the shadow, the<br />

person’s shadow starts to appear beyond the tower’s<br />

shadow.<br />

(a) Draw a right triangle that gives a visual<br />

representation of the problem. Show the known<br />

quantities of the triangle and use a variable to<br />

indicate the height of the tower.<br />

(b) Use a trigonometric function to write an equation<br />

involving the unknown quantity.<br />

(c) What is the height of the tower?<br />

69. ANGLE OF ELEVATION You are skiing down a<br />

mountain with a vertical height of 1500 feet. The<br />

distance from the top of the mountain to the base is<br />

3000 feet. What is the angle of elevation from the base<br />

to the top of the mountain?<br />

70. WIDTH OF A RIVER A biologist wants to know the<br />

width w of a river so that instruments for studying the<br />

pollutants in the water can be set properly. From point<br />

A, the biologist walks downstream 100 feet and sights to<br />

point C (see figure). From <strong>this</strong> sighting, it is determined<br />

that How wide is the river?<br />

54.<br />

w<br />

C<br />

θ = 54°<br />

A 100 ft<br />

71. LENGTH A guy wire runs from the ground to a cell<br />

tower. The wire is attached to the cell tower 150 feet<br />

above the ground. The angle formed between the wire<br />

and the ground is 43 (see figure).<br />

150 ft<br />

72. HEIGHT OF A MOUNTAIN In traveling across flat<br />

land, you notice a mountain directly in front of you. Its<br />

angle of elevation (to the peak) is 3.5. After you drive<br />

13 miles closer to the mountain, the angle of elevation<br />

is 9. Approximate the height of the mountain.<br />

73. MACHINE SHOP CALCULATIONS A steel plate has<br />

the form of one-fourth of a circle with a radius of<br />

60 centimeters. Two two-centimeter holes are to be<br />

drilled in the plate positioned as shown in the figure.<br />

Find the coordinates of the center of each hole.<br />

60<br />

56<br />

y<br />

(x 2<br />

, y 2<br />

)<br />

30°<br />

30°<br />

30°<br />

3.5° 9°<br />

13 mi<br />

(x 1<br />

, y 1<br />

)<br />

FIGURE FOR 73 FIGURE FOR 74<br />

74. MACHINE SHOP CALCULATIONS A tapered shaft<br />

has a diameter of 5 centimeters at the small end and is<br />

15 centimeters long (see figure). The taper is 3. Find<br />

the diameter d of the large end of the shaft.<br />

75. GEOMETRY Use a compass to sketch a quarter of a<br />

circle of radius 10 centimeters. Using a protractor,<br />

construct an angle of 20 in standard position (see<br />

figure). Drop a perpendicular line from the point of<br />

intersection of the terminal side of the angle and the<br />

arc of the circle. By actual measurement, calculate<br />

the coordinates x, y of the point of intersection<br />

and use these measurements to approximate the six<br />

trigonometric functions of a 20 angle.<br />

10<br />

y<br />

56 60<br />

x<br />

3°<br />

Not drawn to scale<br />

d<br />

5 cm<br />

15 cm<br />

θ = 43°<br />

(x, y)<br />

(a) How long is the guy wire?<br />

(b) How far from the base of the tower is the guy wire<br />

anchored to the ground?<br />

10 cm<br />

20°<br />

10<br />

x


Section 4.3 Right Triangle Trigonometry 309<br />

76. HEIGHT A 20-meter line is used to tether a<br />

helium-filled balloon. Because of a breeze, the line<br />

makes an angle of approximately 85 with the ground.<br />

(a) Draw a right triangle that gives a visual representation<br />

of the problem. Show the known quantities of<br />

the triangle and use a variable to indicate the height<br />

of the balloon.<br />

(b) Use a trigonometric function to write an equation<br />

involving the unknown quantity.<br />

(c) What is the height of the balloon?<br />

(d) The breeze becomes stronger and the angle the<br />

balloon makes with the ground decreases. How<br />

does <strong>this</strong> affect the triangle you drew in part (a)?<br />

(e) Complete the table, which shows the heights<br />

(in meters) of the balloon for decreasing angle<br />

measures .<br />

(f) As the angle the balloon makes with the ground<br />

approaches 0, how does <strong>this</strong> affect the height of the<br />

balloon? Draw a right triangle to explain your<br />

reasoning.<br />

EXPLORATION<br />

Angle,<br />

Height<br />

Angle,<br />

Height<br />

<br />

<br />

80 70 60 50<br />

40 30 20 10<br />

84. THINK ABOUT IT<br />

(a) Complete the table.<br />

<br />

sin<br />

cos<br />

<br />

<br />

0 18 36 54 72 90<br />

(b) Discuss the behavior of the sine function for in the<br />

range from 0 to 90.<br />

(c) Discuss the behavior of the cosine function for<br />

the range from 0 to 90.<br />

(d) Use the definitions of the sine and cosine functions<br />

to explain the results of parts (b) and (c).<br />

85. WRITING In right triangle trigonometry, explain why<br />

sin 30 1 2 regardless of the size of the triangle.<br />

86. GEOMETRY Use the equilateral triangle shown in<br />

Figure 4.29 and similar triangles to verify the points in<br />

Figure 4.23 (in Section 4.2) that do not lie on the axes.<br />

87. THINK ABOUT IT You are given only the value tan .<br />

Is it possible to find the value of sec without finding<br />

the measure of ? Explain.<br />

88. CAPSTONE The Johnstown Inclined Plane in<br />

Pennsylvania is one of the longest and steepest hoists<br />

in the world. The railway cars travel a distance of<br />

896.5 feet at an angle of approximately 35.4, rising to<br />

a height of 1693.5 feet above sea level.<br />

<br />

<br />

in<br />

TRUE OR FALSE? In Exercises 77–82, determine whether<br />

the statement is true or false. Justify your answer.<br />

77. sin 60 csc 60 1 78. sec 30 csc 60<br />

79. sin 45 cos 45 1 80. cot 2 10 csc 2 10 1<br />

sin 60<br />

81. sin 2 82. tan5 2 tan 2 5<br />

sin 30<br />

35.4°<br />

896.5 ft<br />

1693.5 feet<br />

above sea level<br />

Not drawn to scale<br />

83. THINK ABOUT IT<br />

(a) Complete the table.<br />

<br />

(b) Is or sin greater for in the interval 0, 0.5?<br />

<br />

<br />

sin<br />

<br />

<br />

0.1 0.2 0.3 0.4 0.5<br />

(c) As approaches 0, how do and sin compare?<br />

Explain.<br />

<br />

<br />

<br />

(a) Find the vertical rise of the inclined plane.<br />

(b) Find the elevation of the lower end of the inclined<br />

plane.<br />

(c) The cars move up the mountain at a rate of<br />

300 feet per minute. Find the rate at which they rise<br />

vertically.


310 Chapter 4 Trigonometry<br />

4.4 TRIGONOMETRIC FUNCTIONS OF ANY ANGLE<br />

What you should learn<br />

• Evaluate trigonometric functions<br />

of any angle.<br />

• Find reference angles.<br />

• Evaluate trigonometric functions of<br />

real numbers.<br />

Why you should learn it<br />

You can use trigonometric functions<br />

to model and solve real-life problems.<br />

For instance, in Exercise 99 on page<br />

318, you can use trigonometric<br />

functions to model the monthly<br />

normal temperatures in New York City<br />

and Fairbanks, Alaska.<br />

Introduction<br />

In Section 4.3, the definitions of trigonometric functions were restricted to acute angles.<br />

In <strong>this</strong> section, the definitions are extended to cover any angle. If is an acute angle,<br />

these definitions coincide with those given in the preceding section.<br />

Definitions of Trigonometric Functions of Any Angle<br />

Let be an angle in standard position with x, y a point on the terminal side of<br />

and r x 2 y 2 0.<br />

<br />

y<br />

sin<br />

cos x r<br />

( x, y)<br />

tan y x , x 0<br />

sec<br />

y r<br />

cot x y , y 0<br />

r x , x 0<br />

csc r y , y 0<br />

r<br />

<br />

θ<br />

x<br />

<br />

Because r x 2 y 2 cannot be zero, it follows that the sine and cosine<br />

functions are defined for any real value of . However, if x 0, the tangent and secant<br />

of are undefined. For example, the tangent of 90 is undefined. Similarly, if y 0, the<br />

cotangent and cosecant of are undefined.<br />

<br />

<br />

Example 1<br />

Evaluating Trigonometric Functions<br />

James Urbach/SuperStock<br />

Let 3, 4 be a point on the terminal side of . Find the sine, cosine, and tangent of .<br />

Solution<br />

Referring to Figure 4.36, you can see that x 3, y 4, and<br />

r x 2 y 2 3 2 4 2 25 5.<br />

So, you have the following.<br />

sin<br />

y r 4 5<br />

cos<br />

x r 3 5<br />

tan<br />

y x 4 3<br />

y<br />

( −3, 4)<br />

r<br />

4<br />

3<br />

2<br />

The formula r x 2 y 2 is<br />

a result of the Distance Formula.<br />

You can review the Distance<br />

Formula in Section 1.1.<br />

Now try Exercise 9.<br />

1<br />

θ<br />

−3 −2 −1 1<br />

FIGURE 4.36<br />

x


Section 4.4 Trigonometric Functions of Any Angle 311<br />

π<br />

2 < θ < π<br />

x < 0<br />

y > 0<br />

y<br />

0 < θ <<br />

π<br />

2<br />

x > 0<br />

y > 0<br />

The signs of the trigonometric functions in the four quadrants can be determined<br />

from the definitions of the functions. For instance, because cos it follows that<br />

cos is positive wherever x > 0, which is in Quadrants I and IV. (Remember, r is<br />

always positive.) In a similar manner, you can verify the results shown in Figure 4.37.<br />

<br />

xr,<br />

x<br />

Example 2<br />

Evaluating Trigonometric Functions<br />

x < 0<br />

y < 0<br />

π<br />

< θ <<br />

3π<br />

2<br />

y<br />

x > 0<br />

y < 0<br />

3π<br />

2 < θ < 2π<br />

Given tan and cos > 0, find sin and<br />

Solution<br />

5 4<br />

<br />

<br />

<br />

sec .<br />

Note that lies in Quadrant IV because that is the only quadrant in which the tangent<br />

is negative and the cosine is positive. Moreover, using<br />

Quadrant II<br />

sin θ: +<br />

cos θθ :<br />

tan : −<br />

−<br />

Quadrant III<br />

sin θ:<br />

−<br />

cos θθ : −<br />

tan : +<br />

FIGURE 4.37<br />

Quadrant I<br />

sin θ: +<br />

cos θθ : +<br />

tan : +<br />

Quadrant IV<br />

sin θ:<br />

−<br />

cos θθ : +<br />

tan : −<br />

x<br />

tan y x<br />

5 4<br />

and the fact that y is negative in Quadrant IV, you can let y 5 and x 4. So,<br />

r 16 25 41 and you have<br />

sin y r 5<br />

41<br />

0.7809<br />

sec r x 41<br />

4<br />

1.6008.<br />

Now try Exercise 23.<br />

Example 3<br />

Trigonometric Functions of Quadrant Angles<br />

(−1, 0)<br />

FIGURE 4.38<br />

π<br />

2<br />

3π<br />

2<br />

y<br />

(0, 1)<br />

π 0<br />

(0, −1)<br />

(1, 0)<br />

x<br />

Evaluate the cosine and tangent functions at the four quadrant angles 0, and<br />

2 , ,<br />

2 .<br />

Solution<br />

To begin, choose a point on the terminal side of each angle, as shown in Figure 4.38.<br />

For each of the four points, r 1, and you have the following.<br />

cos 0 x tan 0 y x, y 1, 0<br />

x 0 r 1 1 1 1 0<br />

cos<br />

tan<br />

2 y x 1 2 x r 0 1 0 0 ⇒ undefined<br />

<br />

cos x tan y x, y 1, 0<br />

x 0<br />

r 1<br />

1 0<br />

3<br />

cos tan 3<br />

x, y 0, 1<br />

2 y x 1<br />

2 x r 0 1 0 0 ⇒ undefined<br />

1 1 x, y 0, 1<br />

Now try Exercise 37.<br />

<br />

<br />

3


312 Chapter 4 Trigonometry<br />

Reference Angles<br />

The values of the trigonometric functions of angles greater than 90 (or less than 0) can<br />

be determined from their values at corresponding acute angles called reference angles.<br />

Definition of Reference Angle<br />

<br />

Let be an angle in standard position. Its reference angle is the acute angle<br />

formed by the terminal side of and the horizontal axis.<br />

<br />

<br />

Figure 4.39 shows the reference angles for<br />

<br />

in Quadrants II, III, and IV.<br />

Quadrant II<br />

θ<br />

Reference<br />

angle: ′ θ<br />

θ<br />

θ<br />

Reference<br />

angle: ′ θ<br />

Reference<br />

angle: θ ′<br />

θ′ = π − θ (radians)<br />

θ ′ = 180° − θ (degrees)<br />

FIGURE 4.39<br />

Quadrant III<br />

θ ′ = θ − (radians)<br />

′ = θ − 180° π<br />

θ<br />

(degrees)<br />

Quadrant<br />

IV<br />

θ′ = 2π<br />

− θ (radians)<br />

θ′ = 360° − θ (degrees)<br />

y<br />

Example 4<br />

Finding Reference Angles<br />

θ = 300°<br />

x<br />

θ′ = 60°<br />

Find the reference angle .<br />

300<br />

2.3<br />

a. b. c.<br />

135<br />

FIGURE 4.40<br />

θ′ = π − 2.3<br />

FIGURE 4.41<br />

θ′ = 45°<br />

225°<br />

FIGURE 4.42<br />

y<br />

y<br />

θ = 2.3<br />

x<br />

225° and −135°<br />

are coterminal.<br />

x<br />

θ = −135°<br />

Solution<br />

a. Because 300 lies in Quadrant IV, the angle it makes with the x-axis is<br />

360 300<br />

60.<br />

Degrees<br />

Figure 4.40 shows the angle<br />

and its reference angle<br />

b. Because 2.3 lies between 2 1.5708 and it follows that it is in<br />

Quadrant II and its reference angle is<br />

2.3<br />

0.8416.<br />

Radians<br />

Figure 4.41 shows the angle<br />

and its reference angle<br />

c. First, determine that 135 is coterminal with 225, which lies in Quadrant III. So,<br />

the reference angle is<br />

225 180<br />

45.<br />

Degrees<br />

Figure 4.42 shows the angle<br />

2.3<br />

Now try Exercise 45.<br />

300<br />

135<br />

3.1416,<br />

and its reference angle<br />

60.<br />

2.3.<br />

45.


Section 4.4 Trigonometric Functions of Any Angle 313<br />

(x, y)<br />

y<br />

Trigonometric Functions of Real Numbers<br />

To see how a reference angle is used to evaluate a trigonometric function, consider the<br />

point x, y on the terminal side of , as shown in Figure 4.43. By definition, you know<br />

that<br />

opp<br />

r = hyp<br />

adj<br />

θ′<br />

opp y, adj x<br />

FIGURE 4.43<br />

θ<br />

x<br />

and<br />

For the right triangle with acute angle and sides of lengths and you have<br />

sin<br />

hyp y <br />

r<br />

and<br />

sin<br />

tan<br />

So, it follows that sin and sin are equal, except possibly in sign. The same is true<br />

for tan and tan and for the other four trigonometric functions. In all cases, the sign<br />

of the function value can be determined by the quadrant in which lies.<br />

<br />

y r<br />

opp<br />

opp<br />

adj y <br />

<br />

x .<br />

<br />

tan<br />

y x .<br />

<br />

<br />

x <br />

<br />

y ,<br />

Evaluating Trigonometric Functions of Any Angle<br />

To find the value of a trigonometric function of any angle :<br />

1. Determine the function value for the associated reference angle .<br />

2. Depending on the quadrant in which lies, affix the appropriate sign to the<br />

function value.<br />

<br />

Learning the table of values<br />

at the right is worth the effort<br />

because doing so will increase<br />

both your efficiency and your<br />

confidence. Here is a pattern<br />

for the sine function that may<br />

help you remember the values.<br />

<br />

sin<br />

<br />

0 30 45 60 90<br />

0<br />

2<br />

1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

4<br />

2<br />

Reverse the order to get cosine<br />

values of the same angles.<br />

By using reference angles and the special angles discussed in the preceding<br />

section, you can greatly extend the scope of exact trigonometric values. For instance,<br />

knowing the function values of 30 means that you know the function values of all<br />

angles for which 30 is a reference angle. For convenience, the table below shows the<br />

exact values of the trigonometric functions of special angles and quadrant angles.<br />

Trigonometric Values of Common Angles<br />

<br />

<br />

sin<br />

cos<br />

tan<br />

(degrees)<br />

(radians)<br />

<br />

<br />

<br />

0 30 45 60 90 180 270<br />

0<br />

0<br />

1<br />

0<br />

<br />

6<br />

1<br />

2<br />

3<br />

2<br />

3<br />

3<br />

<br />

4<br />

2<br />

2<br />

2<br />

2<br />

<br />

3<br />

3<br />

2<br />

1<br />

2<br />

<br />

2<br />

<br />

3<br />

2<br />

1 0 1<br />

0 1 0<br />

1 3 Undef. 0 Undef.


314 Chapter 4 Trigonometry<br />

Example 5<br />

Using Reference Angles<br />

Evaluate each trigonometric function.<br />

a. cos 4 b. tan210 c.<br />

3<br />

Solution<br />

a. Because lies in Quadrant III, the reference angle is<br />

4<br />

43<br />

as shown in Figure 6.41. Moreover, the cosine is negative in Quadrant III, so<br />

1 2 .<br />

b. Because 210 360 150, it follows that 210 is coterminal with the<br />

second-quadrant angle 150. So, the reference angle is 180 150 30, as<br />

shown in Figure 4.45. Finally, because the tangent is negative in Quadrant II, you<br />

have<br />

c. Because 114 2 34, it follows that 114 is coterminal with the<br />

second-quadrant angle 34. So, the reference angle is as<br />

shown in Figure 4.46. Because the cosecant is positive in Quadrant II, you have<br />

csc 11<br />

4 csc<br />

<br />

1<br />

sin4<br />

2.<br />

<br />

3 <br />

3<br />

cos 4 cos<br />

3<br />

<br />

tan210 tan 30<br />

3<br />

3<br />

3 .<br />

<br />

4<br />

csc 11<br />

4<br />

<br />

34 4,<br />

y<br />

y<br />

y<br />

θ′ =<br />

π<br />

3<br />

θ =<br />

4π<br />

3<br />

x<br />

θ′ = 30°<br />

θ = −210°<br />

x<br />

θ′ =<br />

π<br />

4<br />

θ =<br />

11π<br />

4<br />

x<br />

FIGURE 4.44 FIGURE 4.45 FIGURE 4.46<br />

Now try Exercise 59.


Section 4.4 Trigonometric Functions of Any Angle 315<br />

Example 6<br />

Using Trigonometric Identities<br />

<br />

Let be an angle in Quadrant II such that sin Find (a) cos and (b) tan by<br />

using trigonometric identities.<br />

Solution<br />

a. Using the Pythagorean identity sin 2 cos 2 1, you obtain<br />

1 3 2 cos 2<br />

Because cos<br />

cos 8<br />

9<br />

Substitute 3 for sin .<br />

cos 2 1 1 9 8 9 .<br />

<br />

< 0 in Quadrant II, you can use the negative root to obtain<br />

22<br />

3 .<br />

b. Using the trigonometric identity tan , you obtain<br />

cos<br />

tan 13<br />

223<br />

1<br />

22<br />

2<br />

4 .<br />

1<br />

Now try Exercise 69.<br />

sin <br />

<br />

1 3 .<br />

Substitute for sin<br />

You can use a calculator to evaluate trigonometric functions, as shown in the next<br />

example.<br />

1<br />

<br />

and<br />

<br />

cos .<br />

<br />

Example 7<br />

Using a Calculator<br />

Use a calculator to evaluate each trigonometric function.<br />

a. cot 410 b. sin7 c. sec<br />

9<br />

Solution<br />

Function Mode Calculator Keystrokes Display<br />

a. cot 410 Degree TAN 410 x 1 ENTER 0.8390996<br />

b. sin7 Radian SIN 7 ENTER<br />

0.6569866<br />

<br />

c. sec Radian COS 9 <br />

1.0641778<br />

9<br />

x 1 ENTER<br />

Now try Exercise 79.


316 Chapter 4 Trigonometry<br />

4.4<br />

EXERCISES<br />

VOCABULARY: Fill in the blanks.<br />

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.<br />

<br />

In Exercises 1–6, let be an angle in standard position, with x, y a point on the terminal side of and r x 2 1 y 2 0.<br />

________<br />

1. sin<br />

2.<br />

________<br />

3. tan<br />

4. sec<br />

x<br />

5. 6.<br />

r ________<br />

7. Because r x 2 y 2 cannot be ________, the sine and cosine functions are ________ for any real value of .<br />

8. The acute positive angle that is formed by the terminal side of the angle and the horizontal axis is called<br />

the ________ angle of and is denoted by .<br />

SKILLS AND APPLICATIONS<br />

<br />

r<br />

y ________<br />

________<br />

x<br />

y ________<br />

<br />

<br />

In Exercises 9–12, determine the exact values of the six<br />

trigonometric functions of the angle .<br />

9. (a) (b)<br />

(4, 3)<br />

10. (a) (b)<br />

θ<br />

11. (a) (b)<br />

θ<br />

y<br />

y<br />

(−12, −5)<br />

y<br />

( − 3, −1)<br />

y<br />

12. (a) (b)<br />

θ<br />

θ<br />

(3, 1)<br />

In Exercises 13–18, the point is on the terminal side of an<br />

angle in standard position. Determine the exact values of the<br />

six trigonometric functions of the angle.<br />

13. 5, 12<br />

14. 8, 15<br />

15. 5, 2<br />

16. 4, 10<br />

17. 5.4, 7.2<br />

18. 3 1 2, 7 3 4<br />

x<br />

x<br />

x<br />

x<br />

(−8, 15)<br />

θ<br />

θ<br />

(−4, 4)<br />

y<br />

y<br />

y<br />

y<br />

θ<br />

(1, −1)<br />

(4, −1)<br />

θ<br />

x<br />

x<br />

x<br />

x<br />

In Exercises 19–22, state the quadrant in which<br />

19. sin > 0 and cos<br />

20. sin < 0 and<br />

21. sin > 0 and cos<br />

22. sec > 0 and cot<br />

lies.<br />

In Exercises 23–32, find the values of the six trigonometric<br />

functions of with the given constraint.<br />

23.<br />

24.<br />

Function Value<br />

Constraint<br />

25. sin<br />

lies in Quadrant II.<br />

26. cos<br />

lies in Quadrant III.<br />

27.<br />

28.<br />

29.<br />

30.<br />

tan<br />

cos<br />

cot<br />

csc<br />

sec<br />

sin<br />

<br />

15<br />

8<br />

3 5<br />

4 5<br />

3<br />

4<br />

2<br />

0<br />

<br />

31. cot is undefined.<br />

<br />

32. tan is undefined.<br />

In Exercises 33–36, the terminal side of lies on the given<br />

line in the specified quadrant. Find the values of the six<br />

trigonometric functions of by finding a point on the line.<br />

Line<br />

<br />

17<br />

8<br />

cos < 0<br />

Quadrant<br />

33. y x<br />

II<br />

34. y 1 3 x<br />

III<br />

35. 2x y 0<br />

III<br />

36. 4x 3y 0<br />

IV<br />

<br />

<br />

<br />

> 0<br />

< 0<br />

< 0<br />

<br />

sin<br />

tan<br />

<br />

<br />

cos<br />

cot<br />

sin<br />

sec<br />

2 32<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

> 0<br />

< 0<br />

< 0<br />

< 0<br />

1<br />

<br />

> 0


Section 4.4 Trigonometric Functions of Any Angle 317<br />

In Exercises 37–44, evaluate the trigonometric function of<br />

the quadrant angle.<br />

37. sin <br />

38.<br />

In Exercises 45–52, find the reference angle , and sketch<br />

and in standard position.<br />

<br />

45. 46.<br />

47. 48.<br />

49. 50.<br />

3<br />

51. 52.<br />

In Exercises 53–68, evaluate the sine, cosine, and tangent of<br />

the angle without using a calculator.<br />

2<br />

59. 60.<br />

3<br />

5<br />

61. 62.<br />

4<br />

9<br />

<br />

<br />

160<br />

125<br />

2<br />

4.8<br />

65. 66.<br />

4<br />

67. 3<br />

68.<br />

2<br />

In Exercises 69–74, find the indicated trigonometric value in<br />

the specified quadrant.<br />

Function Quadrant Trigonometric Value<br />

3 5<br />

3<br />

69. sin<br />

IV<br />

70. cot<br />

II<br />

3 2<br />

2<br />

71. tan<br />

III<br />

72. csc<br />

IV<br />

5 8<br />

73. cos<br />

I<br />

9 4<br />

74. sec<br />

III<br />

csc 3<br />

2<br />

39. sec 3<br />

40. sec <br />

2<br />

41. sin<br />

42. cot <br />

2<br />

43. csc <br />

44. cot<br />

2<br />

53. 225<br />

54. 300<br />

55. 750<br />

56. 405<br />

57. 150<br />

58. 840<br />

3<br />

63. <br />

64. <br />

6<br />

2<br />

4<br />

7<br />

6<br />

10<br />

3<br />

<br />

<br />

309<br />

215<br />

7<br />

6<br />

11.6<br />

23<br />

4<br />

cos<br />

sin<br />

sec<br />

cot<br />

sec<br />

tan<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

In Exercises 75–90, use a calculator to evaluate the<br />

trigonometric function. Round your answer to four decimal<br />

places. (Be sure the calculator is set in the correct angle mode.)<br />

75. sin 10<br />

76. sec 225<br />

77. cos110<br />

78. csc330<br />

79. tan 304<br />

80. cot 178<br />

81. sec 72<br />

82. tan188<br />

83. tan 4.5<br />

84. cot 1.35<br />

85. tan<br />

86. tan <br />

9<br />

87. sin0.65<br />

88. sec 0.29<br />

89. cot 11<br />

8 <br />

90.<br />

In Exercises 91–96, find two solutions of the equation. Give<br />

your answers in degrees 0 < 360 and in radians<br />

0 < 2. Do not use a calculator.<br />

<br />

<br />

1 2<br />

91. (a) sin<br />

(b) sin<br />

2<br />

92. (a) cos<br />

(b) cos<br />

2<br />

23<br />

93. (a) csc<br />

(b) cot<br />

3<br />

2<br />

94. (a) sec<br />

(b) sec<br />

1<br />

95. (a) tan<br />

(b) cot<br />

3<br />

96. (a) sin<br />

(b) sin<br />

2<br />

97. DISTANCE An airplane, flying at an altitude of 6 miles,<br />

is on a flight path that passes directly over an observer<br />

(see figure). If is the angle of elevation from the<br />

observer to the plane, find the distance d from the<br />

observer to the plane when (a) (b)<br />

and (c)<br />

120.<br />

θ<br />

<br />

d<br />

1 2<br />

2<br />

1<br />

2<br />

3<br />

3<br />

30,<br />

90,<br />

6 mi<br />

Not drawn to scale<br />

98. HARMONIC MOTION The displacement from<br />

equilibrium of an oscillating weight suspended by a<br />

spring is given by yt 2 cos 6t, where y is the<br />

displacement (in centimeters) and t is the time (in<br />

seconds). Find the displacement when (a) t 0,<br />

(b) t 1 and (c) t 1 4 , 2 .<br />

<br />

<br />

9<br />

csc 15<br />

14 <br />

2<br />

2


318 Chapter 4 Trigonometry<br />

99. DATA ANALYSIS: METEOROLOGY The table<br />

shows the monthly normal temperatures (in degrees<br />

Fahrenheit) for selected months in New York City N<br />

and Fairbanks, Alaska F. (Source: National<br />

Climatic Data Center)<br />

(a) Use the regression feature of a graphing utility to<br />

find a model of the form y a sinbt c d<br />

for each city. Let t represent the month, with t 1<br />

corresponding to January.<br />

(b) Use the models from part (a) to find the monthly<br />

normal temperatures for the two cities in February,<br />

March, May, June, August, September, and<br />

November.<br />

(c) Compare the models for the two cities.<br />

100. SALES A company that produces snowboards, which are<br />

seasonal products, forecasts monthly sales over the next<br />

2 years to be S 23.1 0.442t 4.3 cost6,<br />

where S is measured in thousands of units and t is<br />

the time in months, with t 1 representing January<br />

2010. Predict sales for each of the following months.<br />

(a) February 2010 (b) February 2011<br />

(c) June 2010 (d) June 2011<br />

101. HARMONIC MOTION The displacement from<br />

equilibrium of an oscillating weight suspended by a<br />

spring and subject to the damping effect of friction<br />

is given by yt 2e t cos 6t, where y is the<br />

displacement (in centimeters) and t is the time (in<br />

seconds). Find the displacement when (a) t 0,<br />

(b) t 1 and (c) t 1 4 , 2 .<br />

102. ELECTRIC CIRCUITS The current I (in amperes)<br />

when 100 volts is applied to a circuit is given by<br />

I 5e 2t sin t, where t is the time (in seconds) after<br />

the voltage is applied. Approximate the current at<br />

t 0.7 second after the voltage is applied.<br />

EXPLORATION<br />

Month<br />

January<br />

April<br />

July<br />

October<br />

December<br />

New York<br />

City, N<br />

33<br />

52<br />

77<br />

58<br />

38<br />

Fairbanks,<br />

F<br />

10<br />

32<br />

62<br />

24<br />

6<br />

TRUE OR FALSE? In Exercises 103 and 104, determine<br />

whether the statement is true or false. Justify your answer.<br />

103. In each of the four quadrants, the signs of the secant<br />

function and sine function will be the same.<br />

104. To find the reference angle for an angle (given in<br />

degrees), find the integer n such that<br />

0 360n 360. The difference 360n is<br />

the reference angle.<br />

105. WRITING Consider an angle in standard position<br />

with r 12 centimeters, as shown in the figure. Write<br />

a short paragraph describing the changes in the values<br />

of x, y, sin , cos , and tan as increases<br />

continuously from 0 to 90.<br />

y<br />

<br />

12 cm<br />

107. THINK ABOUT IT The figure shows point Px, y on<br />

a unit circle and right triangle OAP.<br />

(a) Find sin t and cos t using the unit circle definitions<br />

of sine and cosine (from Section 4.2).<br />

(b) What is the value of r? Explain.<br />

θ<br />

(c) Use the definitions of sine and cosine given in <strong>this</strong><br />

section to find sin and cos . Write your answers<br />

in terms of x and y.<br />

<br />

O<br />

y<br />

θ<br />

(d) Based on your answers to parts (a) and (c), what<br />

can you conclude?<br />

r<br />

P(x, y)<br />

A<br />

<br />

t<br />

<br />

(x, y)<br />

106. CAPSTONE Write a short paper in your own words<br />

explaining to a classmate how to evaluate the six<br />

trigonometric functions of any angle in standard<br />

position. Include an explanation of reference angles<br />

and how to use them, the signs of the functions in<br />

each of the four quadrants, and the trigonometric<br />

values of common angles. Be sure to include figures<br />

or diagrams in your paper.<br />

<br />

x<br />

<br />

x


Section 4.5 Graphs of Sine and Cosine Functions 319<br />

4.5 GRAPHS OF SINE AND COSINE FUNCTIONS<br />

What you should learn<br />

• Sketch the graphs of basic sine and<br />

cosine functions.<br />

• Use amplitude and period to help<br />

sketch the graphs of sine and cosine<br />

functions.<br />

• Sketch translations of the graphs<br />

of sine and cosine functions.<br />

• Use sine and cosine functions to<br />

model real-life data.<br />

Why you should learn it<br />

Sine and cosine functions are<br />

often used in scientific calculations.<br />

For instance, in Exercise 87 on page 328,<br />

you can use a trigonometric function<br />

to model the airflow of your<br />

respiratory cycle.<br />

Basic Sine and Cosine Curves<br />

In <strong>this</strong> section, you will study techniques for sketching the graphs of the sine and cosine<br />

functions. The graph of the sine function is a sine curve. In Figure 4.47, the black<br />

portion of the graph represents one period of the function and is called one cycle of the<br />

sine curve. The gray portion of the graph indicates that the basic sine curve repeats<br />

indefinitely in the positive and negative directions. The graph of the cosine function is<br />

shown in Figure 4.48.<br />

Recall from Section 4.2 that the domain of the sine and cosine functions is the set<br />

of all real numbers. Moreover, the range of each function is the interval 1, 1, and<br />

each function has a period of 2. Do you see how <strong>this</strong> information is consistent with<br />

the basic graphs shown in Figures 4.47 and 4.48?<br />

y = sin x<br />

1<br />

y<br />

Range:<br />

−1 ≤ y ≤ 1<br />

− 3 π −π − π π π 3π<br />

2π<br />

5 π<br />

2<br />

2<br />

2<br />

2<br />

2<br />

x<br />

−1<br />

Period: 2π<br />

FIGURE 4.47<br />

y<br />

© Karl Weatherly/Corbis<br />

Range:<br />

−1 ≤ y ≤ 1<br />

1<br />

y = cos x<br />

−<br />

3 π −π π π 3π<br />

2π 5π<br />

2<br />

2<br />

2<br />

2<br />

x<br />

−1<br />

Period: 2π<br />

FIGURE 4.48<br />

Note in Figures 4.47 and 4.48 that the sine curve is symmetric with respect to<br />

the origin, whereas the cosine curve is symmetric with respect to the y-axis. These<br />

properties of symmetry follow from the fact that the sine function is odd and the cosine<br />

function is even.


320 Chapter 4 Trigonometry<br />

To sketch the graphs of the basic sine and cosine functions by hand, it helps to note<br />

five key points in one period of each graph: the intercepts, maximum points, and<br />

minimum points (see Figure 4.49).<br />

y<br />

y<br />

Maximum Intercept Minimum Intercept<br />

Intercept π<br />

( , 1<br />

2 ) y = sin x<br />

(0, 0)<br />

Quarter<br />

period<br />

Half<br />

period<br />

Period: 2π<br />

( π, 0)<br />

3π<br />

( , − 1)<br />

2<br />

Three-quarter<br />

period<br />

(2 π, 0)<br />

Full<br />

period<br />

x<br />

(0, 1)<br />

Intercept Minimum<br />

Maximum<br />

y = cos x<br />

Quarter<br />

period<br />

Period: 2π<br />

π<br />

( , 0<br />

3π<br />

) ( , 0)<br />

2 2<br />

( π, −1)<br />

Half<br />

period<br />

Intercept<br />

(2 π, 1)<br />

Three-quarter<br />

period<br />

Maximum<br />

Full<br />

period<br />

x<br />

FIGURE 4.49<br />

Example 1<br />

Using Key Points to Sketch a Sine Curve<br />

Sketch the graph of y 2 sin x on the interval , 4.<br />

Solution<br />

Note that<br />

y 2 sin x 2sin x<br />

indicates that the y-values for the key points will have twice the magnitude of those on<br />

the graph of y sin x. Divide the period into four equal parts to get the key points<br />

for y 2 sin x.<br />

Intercept Maximum Intercept Minimum Intercept<br />

0, 0,<br />

<br />

<br />

2 , 2 ,<br />

By connecting these key points with a smooth curve and extending the curve in both<br />

directions over the interval , 4, you obtain the graph shown in Figure 4.50.<br />

y<br />

, 0,<br />

2<br />

3<br />

2 , 2 ,<br />

and<br />

2, 0<br />

TECHNOLOGY<br />

When using a graphing utility to<br />

graph trigonometric functions,<br />

pay special attention to the viewing<br />

window you use. For instance,<br />

try graphing y [sin10x]/10<br />

in the standard viewing window<br />

in radian mode. What do you<br />

observe? Use the zoom feature<br />

to find a viewing window that<br />

displays a good view of the graph.<br />

π<br />

−<br />

2<br />

FIGURE 4.50<br />

3<br />

2<br />

1<br />

−2<br />

Now try Exercise 39.<br />

y = 2 sin x<br />

3π<br />

2<br />

5π<br />

y = sin x<br />

2<br />

7π<br />

2<br />

x


Section 4.5 Graphs of Sine and Cosine Functions 321<br />

Amplitude and Period<br />

In the remainder of <strong>this</strong> section you will study the graphic effect of each of the<br />

constants a, b, c, and d in equations of the forms<br />

y d a sinbx c<br />

and<br />

y d a cosbx c.<br />

A quick review of the transformations you studied in Section 1.7 should help in <strong>this</strong><br />

investigation.<br />

The constant factor a in y a sin x acts as a scaling factor—a vertical stretch or<br />

vertical shrink of the basic sine curve. If the basic sine curve is stretched, and<br />

if a a > 1,<br />

< 1, the basic sine curve is shrunk. The result is that the graph of y a sin x<br />

ranges between a and a instead of between 1 and 1. The absolute value of a is the<br />

amplitude of the function y a sin x. The range of the function y a sin x for a > 0<br />

is a y a.<br />

Definition of Amplitude of Sine and Cosine Curves<br />

The amplitude of y a sin x and y a cos x represents half the distance<br />

between the maximum and minimum values of the function and is given by<br />

Amplitude a .<br />

Example 2<br />

Scaling: Vertical Shrinking and Stretching<br />

On the same coordinate axes, sketch the graph of each function.<br />

a. y 1 b.<br />

2 cos x<br />

y 3 cos x<br />

y<br />

3<br />

−1<br />

−2<br />

−3<br />

FIGURE 4.51<br />

y = cos x<br />

y<br />

y = 3 cos x<br />

2π<br />

1<br />

= cos<br />

2<br />

x<br />

x<br />

Solution<br />

a. Because the amplitude of 1<br />

1<br />

2 cos x is 2 , the maximum value is 2 and the minimum<br />

value is 1 2 . Divide one cycle, 0 x 2, into four equal parts to get the key<br />

0, , <br />

2 1 , 2 1 , 3<br />

2 , 0 ,<br />

2 , 0 , and 2, 1 2 .<br />

points<br />

Maximum Intercept Minimum Intercept Maximum<br />

b. A similar analysis shows that the amplitude of y 3 cos x is 3, and the key points<br />

are<br />

Maximum Intercept Minimum Intercept Maximum<br />

0, 3, , 3,<br />

and<br />

<br />

<br />

<br />

2, 3.<br />

2 , 0 ,<br />

The graphs of these two functions are shown in Figure 4.51. Notice that the graph<br />

of y 1 2 cos x is a vertical shrink of the graph of y cos x and the graph of y 3 cos x<br />

is a vertical stretch of the graph of y cos x.<br />

Now try Exercise 41.<br />

3<br />

2 , 0 ,


322 Chapter 4 Trigonometry<br />

y<br />

y = 3 cos x y = −3 cos x<br />

3<br />

1<br />

You know from Section 1.7 that the graph of y f x is a reflection in the<br />

x-axis of the graph of y f x. For instance, the graph of y 3 cos x is a reflection<br />

of the graph of y 3 cos x, as shown in Figure 4.52.<br />

Because y a sin x completes one cycle from x 0 to x 2, it follows that<br />

y a sin bx completes one cycle from x 0 to x 2b.<br />

−π<br />

π<br />

2π<br />

x<br />

Period of Sine and Cosine Functions<br />

Let b be a positive real number. The period of y a sin bx and y a cos bx is<br />

given by<br />

FIGURE 4.52<br />

−3<br />

Period 2<br />

b .<br />

Note that if 0 < b < 1, the period of y a sin bx is greater than and<br />

represents a horizontal stretching of the graph of y a sin x. Similarly, if b > 1, the<br />

period of y a sin bx is less than and represents a horizontal shrinking of the graph<br />

of y a sin x. If b is negative, the identities sinx sin x and cosx cos x<br />

are used to rewrite the function.<br />

2<br />

2<br />

Example 3<br />

Scaling: Horizontal Stretching<br />

Sketch the graph of y sin x 2 .<br />

In general, to divide a<br />

period-interval into four equal<br />

parts, successively add<br />

“period4,”<br />

starting with the<br />

left endpoint of the interval. For<br />

instance, for the period-interval<br />

6, 2 of length 23,<br />

you would successively add<br />

23<br />

4<br />

<br />

<br />

6<br />

to get 6, 0, 6, 3, and<br />

2 as the x-values for the key<br />

points on the graph.<br />

Solution<br />

The amplitude is 1. Moreover, because b 1 2 , the period is<br />

Substitute for b.<br />

Now, divide the period-interval 0, 4 into four equal parts with the values , 2, and<br />

to obtain the key points on the graph.<br />

3<br />

2<br />

b 2<br />

1<br />

4.<br />

2<br />

Intercept Maximum Intercept Minimum Intercept<br />

0, 0, , 1, 2, 0, 3, 1, and 4, 0<br />

The graph is shown in Figure 4.53.<br />

y<br />

y = sin x<br />

1<br />

y = sin x 2<br />

x<br />

−π<br />

π<br />

−1<br />

FIGURE 4.53<br />

Now try Exercise 43.<br />

Period: 4π


Section 4.5 Graphs of Sine and Cosine Functions 323<br />

You can review the techniques<br />

for shifting, reflecting, and<br />

stretching graphs in Section 1.7.<br />

Translations of Sine and Cosine Curves<br />

The constant c in the general equations<br />

y a sinbx c<br />

and<br />

creates a horizontal translation (shift) of the basic sine and cosine curves. Comparing<br />

y a sin bx with y a sinbx c, you find that the graph of y a sinbx c<br />

completes one cycle from bx c 0 to bx c 2. By solving for you can find<br />

the interval for one cycle to be<br />

Left endpoint Right endpoint<br />

c<br />

b x c b 2<br />

y a cosbx c<br />

b . x,<br />

Period<br />

This implies that the period of y a sinbx c is 2b, and the graph of y a sin bx<br />

is shifted by an amount cb. The number cb is the phase shift.<br />

Graphs of Sine and Cosine Functions<br />

The graphs of y a sinbx c and y a cosbx c have the following<br />

characteristics. (Assume b > 0. )<br />

Amplitude<br />

a <br />

Period<br />

2<br />

b<br />

The left and right endpoints of a one-cycle interval can be determined by solving<br />

the equations bx c 0 and bx c 2.<br />

Example 4<br />

Horizontal Translation<br />

Analyze the graph of y 1 2 sin x <br />

Algebraic Solution<br />

<br />

3 .<br />

The amplitude is 2 and the period is 2. By solving the equations<br />

x <br />

x <br />

3 0 3<br />

and<br />

x <br />

3 2<br />

you see that the interval 3, 73 corresponds to one cycle of the<br />

graph. Dividing <strong>this</strong> interval into four equal parts produces the key<br />

points<br />

Intercept Maximum Intercept Minimum Intercept<br />

5<br />

4<br />

11 and 7<br />

6 , 1 3 , 0 , 2 , 3 , 0 , 6 , 1 2 , 3 , 0 .<br />

<br />

<br />

<br />

1<br />

<br />

x 7<br />

3<br />

Now try Exercise 49.<br />

Graphical Solution<br />

Use a graphing utility set in radian mode to graph<br />

y 12 sinx 3, as shown in Figure 4.54.<br />

Use the minimum, maximum, and zero or root<br />

features of the graphing utility to approximate the<br />

key points 1.05, 0, 2.62, 0.5, 4.19, 0,<br />

5.76, 0.5, and 7.33, 0.<br />

−<br />

2<br />

1<br />

−1<br />

FIGURE 4.54<br />

1 π<br />

y = sin<br />

2 ( x −<br />

3<br />

5<br />

2<br />

(


324 Chapter 4 Trigonometry<br />

y = −3 cos(2πx + 4 π)<br />

y<br />

−2<br />

3<br />

2<br />

1<br />

x<br />

Example 5 Horizontal Translation<br />

Sketch the graph of<br />

y 3 cos2x 4.<br />

Solution<br />

The amplitude is 3 and the period is<br />

2x 4 0<br />

22 1.<br />

By solving the equations<br />

2x 4<br />

−3<br />

x 2<br />

Period 1<br />

FIGURE 4.55<br />

and<br />

2x 4 2<br />

2x 2<br />

x 1<br />

you see that the interval 1 corresponds to one cycle of the graph. Dividing <strong>this</strong><br />

interval into four equal parts produces the key points<br />

Minimum Intercept Maximum Intercept Minimum<br />

2,<br />

2, 3,<br />

7 4 , 0 ,<br />

3 2 , 3 ,<br />

5 4 , 0 ,<br />

and<br />

1, 3.<br />

The graph is shown in Figure 4.55.<br />

Now try Exercise 51.<br />

d<br />

The final type of transformation is the vertical translation caused by the constant<br />

in the equations<br />

y d a sinbx c<br />

and<br />

y d a cosbx c.<br />

The shift is d units upward for d > 0 and d units downward for d < 0. In other words,<br />

the graph oscillates about the horizontal line y d instead of about the x-axis.<br />

y<br />

5<br />

y = 2 + 3 cos 2x<br />

Example 6 Vertical Translation<br />

Sketch the graph of<br />

y 2 3 cos 2x.<br />

−π<br />

FIGURE 4.56<br />

1<br />

−1<br />

π<br />

Period π<br />

x<br />

Solution<br />

The amplitude is 3 and the period is . The key points over the interval 0, are<br />

0, 5, 3 and , 5.<br />

4 , 2 , 2 , 1 , 4 , 2 ,<br />

<br />

<br />

The graph is shown in Figure 4.56. Compared with the graph of f x 3 cos 2x, the<br />

graph of y 2 3 cos 2x is shifted upward two units.<br />

Now try Exercise 57.


Section 4.5 Graphs of Sine and Cosine Functions 325<br />

Time, t<br />

Midnight<br />

2 A.M.<br />

4 A.M.<br />

6 A.M.<br />

8 A.M.<br />

10 A.M.<br />

Noon<br />

Depth, y<br />

3.4<br />

8.7<br />

11.3<br />

9.1<br />

3.8<br />

0.1<br />

1.2<br />

Mathematical Modeling<br />

Sine and cosine functions can be used to model many real-life situations, including<br />

electric currents, musical tones, radio waves, tides, and weather patterns.<br />

Example 7<br />

Finding a Trigonometric Model<br />

Throughout the day, the depth of water at the end of a dock in Bar Harbor, Maine varies<br />

with the tides. The table shows the depths (in feet) at various times during the<br />

morning. (Source: Nautical Software, Inc.)<br />

a. Use a trigonometric function to model the data.<br />

b. Find the depths at 9 A.M. and 3 P.M.<br />

c. A boat needs at least 10 feet of water to moor at the dock. During what times in the<br />

afternoon can it safely dock?<br />

Depth (in feet)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

y<br />

FIGURE 4.57<br />

12<br />

Changing Tides<br />

4 A.M. 8 A.M. Noon<br />

Time<br />

0 24<br />

0<br />

y = 5.6 cos(0.524t − 2.094) + 5.7<br />

FIGURE 4.58<br />

(14.7, 10) (17.3, 10)<br />

y = 10<br />

t<br />

Solution<br />

a. Begin by graphing the data, as shown in Figure 4.57. You can use either a sine or a<br />

cosine model. Suppose you use a cosine model of the form<br />

y a cosbt c d.<br />

The difference between the maximum height and the minimum height of the graph<br />

is twice the amplitude of the function. So, the amplitude is<br />

a 1 maximum depth minimum depth<br />

2<br />

The cosine function completes one half of a cycle between the times at which the<br />

maximum and minimum depths occur. So, the period is<br />

p 2time of min. depth time of max. depth 210 4 12<br />

which implies that b 2p 0.524. Because high tide occurs 4 hours after<br />

midnight, consider the left endpoint to be cb 4, so c 2.094. Moreover,<br />

1<br />

because the average depth is 2 11.3 0.1 5.7, it follows that d 5.7. So, you<br />

can model the depth with the function given by<br />

y 5.6 cos0.524t 2.094 5.7.<br />

b. The depths at 9 A.M. and 3 P.M. are as follows.<br />

y 5.6 cos0.524 9 2.094 5.7<br />

0.84 foot<br />

y 5.6 cos0.524 15 2.094 5.7<br />

10.57 feet<br />

9 A.M.<br />

3 P.M.<br />

c. To find out when the depth y is at least 10 feet, you can graph the model with the<br />

line y 10 using a graphing utility, as shown in Figure 4.58. Using the intersect<br />

feature, you can determine that the depth is at least 10 feet between 2:42 P.M.<br />

t 14.7 and 5:18 P.M. t 17.3.<br />

Now try Exercise 91.<br />

1 11.3 0.1<br />

2<br />

5.6.


326 Chapter 4 Trigonometry<br />

4.5 EXERCISES<br />

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.<br />

VOCABULARY: Fill in the blanks.<br />

1. One period of a sine or cosine function is called one ________ of the sine or cosine curve.<br />

2. The ________ of a sine or cosine curve represents half the distance between the maximum and minimum values<br />

of the function.<br />

c<br />

3. For the function given by y a sinbx c, represents the ________ ________ of the graph of the function.<br />

b<br />

4. For the function given by y d a cosbx c, d represents a ________ ________ of the graph of the function.<br />

SKILLS AND APPLICATIONS<br />

In Exercises 5–18, find the period and amplitude.<br />

5. y 2 sin 5x<br />

6. y 3 cos 2x<br />

3<br />

2<br />

1<br />

−3<br />

1<br />

−1<br />

1<br />

−1<br />

y<br />

y<br />

y<br />

π<br />

10<br />

π 2π<br />

9. y 1 10. y 3 2 sin x<br />

3<br />

2 cos<br />

π<br />

2<br />

11. y 4 sin x 12.<br />

y<br />

13. y 3 sin 10x 14. y 1 5 sin 6x<br />

15. y 5 4x<br />

cos<br />

3 5<br />

16. y 5 2 cos x 4<br />

17. 18. y 2 3 cos x<br />

y 1 sin 2x<br />

4 10<br />

x<br />

x<br />

x<br />

−π<br />

−2<br />

−3<br />

7. y 3 8. y 3 sin x 4 cos x 2<br />

3<br />

4<br />

−π<br />

−2<br />

−4<br />

2<br />

−2<br />

y<br />

y<br />

y<br />

π<br />

cos 2x<br />

3<br />

π<br />

2<br />

x<br />

2<br />

π<br />

x<br />

x<br />

x<br />

In Exercises 19–26, describe the relationship between the<br />

graphs of f and g. Consider amplitude, period, and shifts.<br />

19. f x sin x<br />

20. f x cos x<br />

gx sinx gx cosx <br />

21. f x cos 2x 22. f x sin 3x<br />

gx cos 2x<br />

gx sin3x<br />

23. f x cos x<br />

24. f x sin x<br />

gx cos 2x<br />

gx sin 3x<br />

25. f x sin 2x 26. f x cos 4x<br />

gx 3 sin 2x gx 2 cos 4x<br />

In Exercises 27–30, describe the relationship between the<br />

graphs of f and g. Consider amplitude, period, and shifts.<br />

27. 28.<br />

29. 30.<br />

−2π<br />

3<br />

−2<br />

−3<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

y<br />

y<br />

2π<br />

In Exercises 31–38, graph f and g on the same set of<br />

coordinate axes. (Include two full periods.)<br />

31. f x 2 sin x 32. f x sin x<br />

gx 4 sin x<br />

f<br />

f<br />

π<br />

g<br />

g<br />

x<br />

x<br />

−2π<br />

gx sin x 3<br />

2π<br />

33. f x cos x<br />

34. f x 2 cos 2x<br />

gx 2 cos x gx cos 4x<br />

g<br />

3<br />

2<br />

−2<br />

−3<br />

4<br />

3<br />

2<br />

−2<br />

y<br />

y<br />

g<br />

f<br />

f<br />

π<br />

x<br />

x


Section 4.5 Graphs of Sine and Cosine Functions 327<br />

35. f x 1 36. f x 4 sin x<br />

2 sin x 2<br />

In Exercises 61–66, g is related to a parent function<br />

fx sinx or fx cosx. (a) Describe the sequence of<br />

transformations from f to g. (b) Sketch the graph of g. (c) Use<br />

function notation to write g in terms of f.<br />

In Exercises 67–72, use a graphing utility to graph the<br />

function. Include two full periods. Be sure to choose an<br />

appropriate viewing window.<br />

67. y 2 sin4x 68.<br />

69.<br />

gx 3 1 2 sin x 2<br />

45. y cos 2x<br />

46. y sin<br />

10<br />

<br />

2<br />

y cos 2x <br />

<br />

4<br />

<br />

70. y 3 cos <br />

x<br />

2 2 2<br />

x<br />

71. y 0.1 sin 72.<br />

10 <br />

<br />

gx 4 sin x 3<br />

<br />

37. f x 2 cos x 38. f x cos x<br />

gx 2 cosx gx cosx<br />

39. y 5 sin x 40. y 1 4 sin x<br />

In Exercises 39– 60, sketch the graph of the function. (Include<br />

two full periods.)<br />

41. y 1 3 cos x<br />

42. y 4 cos x<br />

43. y cos x 44. y sin 4x<br />

2<br />

57. y 3 cosx 3 58. y 4 cos x <br />

4 4<br />

61. gx sin4x 62. gx sin2x <br />

63. gx cosx 2 64. gx 1 cosx <br />

65. gx 2 sin4x 3 66. gx 4 sin2x <br />

x<br />

4<br />

47. y sin 2x 48. y 10 cos<br />

3<br />

51. y 3 cosx 52. y 4 cos x <br />

2 1 y 4 sin <br />

2<br />

x<br />

6<br />

49. y sin x <br />

50. y sinx 2<br />

t<br />

53. y 2 sin 2x 54. y 3 5 cos<br />

3<br />

12<br />

55. y 2 1 cos 60x 56. y 2 cos x 3<br />

59. y 2 60. y 3 cos6x <br />

3 cos x 2 <br />

<br />

4<br />

<br />

3 x <br />

y 1 sin 120t<br />

100<br />

<br />

3<br />

GRAPHICAL REASONING In Exercises 73–76, find a and<br />

d for the function f x a cos x d such that the graph of<br />

f matches the figure.<br />

73. 74.<br />

75. 76.<br />

10<br />

8<br />

6<br />

4<br />

−π −2<br />

GRAPHICAL REASONING In Exercises 77–80, find a, b,<br />

and c for the function f x a sinbx c such that the<br />

graph of f matches the figure.<br />

77. 78.<br />

79. 80.<br />

f<br />

f<br />

4<br />

1<br />

−1<br />

−2<br />

1<br />

−3<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

In Exercises 81 and 82, use a graphing utility to graph y 1 and<br />

y 2 in the interval [2, 2]. Use the graphs to find real<br />

numbers x such that y 1 y 2 .<br />

81. y 1 sin x<br />

82. y 1 cos x<br />

y 2 1 2<br />

y<br />

y<br />

y<br />

y<br />

π<br />

2<br />

π<br />

π<br />

π<br />

f<br />

f<br />

x<br />

x<br />

x<br />

x<br />

−π<br />

−π<br />

−π<br />

−3<br />

−4<br />

y 2 1<br />

In Exercises 83–86, write an equation for the function that is<br />

described by the given characteristics.<br />

83. A sine curve with a period of , an amplitude of 2,<br />

a right phase shift of 2, and a vertical translation up<br />

1 unit<br />

2<br />

1<br />

−1<br />

−2<br />

−5<br />

3<br />

2<br />

1<br />

−3<br />

3<br />

2<br />

−2<br />

−3<br />

y<br />

y<br />

y<br />

y<br />

π<br />

π<br />

f<br />

π<br />

f<br />

f<br />

f<br />

2 4<br />

x<br />

x<br />

x<br />

x


328 Chapter 4 Trigonometry<br />

84. A sine curve with a period of 4, an amplitude of 3,<br />

a left phase shift of 4, and a vertical translation down<br />

1 unit<br />

85. A cosine curve with a period of , an amplitude of 1,<br />

a left phase shift of , and a vertical translation down<br />

units<br />

3<br />

2<br />

86. A cosine curve with a period of 4, an amplitude of 3,<br />

a right phase shift of 2, and a vertical translation up<br />

2 units<br />

87. RESPIRATORY CYCLE For a person at rest, the velocity<br />

v (in liters per second) of airflow during a respiratory<br />

cycle (the time from the beginning of one breath<br />

to the beginning of the next) is given by<br />

t<br />

v 0.85 sin where t is the time (in seconds). (Inhalation<br />

3 ,<br />

occurs when v > 0, and exhalation occurs when v < 0. )<br />

(a) Find the time for one full respiratory cycle.<br />

(b) Find the number of cycles per minute.<br />

(c) Sketch the graph of the velocity function.<br />

88. RESPIRATORY CYCLE After exercising for a<br />

few minutes, a person has a respiratory cycle for<br />

which the velocity of airflow is approximated<br />

t<br />

by v 1.75 sin where t is the time (in seconds).<br />

2 ,<br />

(Inhalation occurs when v > 0, and exhalation occurs<br />

when v < 0. )<br />

(a) Find the time for one full respiratory cycle.<br />

(b) Find the number of cycles per minute.<br />

(c) Sketch the graph of the velocity function.<br />

89. DATA ANALYSIS: METEOROLOGY The table shows<br />

the maximum daily high temperatures in Las Vegas L<br />

and International Falls I (in degrees Fahrenheit) for<br />

month t, with t 1 corresponding to January. (Source:<br />

National Climatic Data Center)<br />

Month, t Las Vegas, L International Falls, I<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

57.1<br />

63.0<br />

69.5<br />

78.1<br />

87.8<br />

98.9<br />

104.1<br />

101.8<br />

93.8<br />

80.8<br />

66.0<br />

57.3<br />

13.8<br />

22.4<br />

34.9<br />

51.5<br />

66.6<br />

74.2<br />

78.6<br />

76.3<br />

64.7<br />

51.7<br />

32.5<br />

18.1<br />

(a) A model for the temperature in Las Vegas is given<br />

by<br />

t<br />

Lt 80.60 23.50 cos <br />

6 3.67 .<br />

Find a trigonometric model for International Falls.<br />

(b) Use a graphing utility to graph the data points and<br />

the model for the temperatures in Las Vegas. How<br />

well does the model fit the data?<br />

(c) Use a graphing utility to graph the data points and<br />

the model for the temperatures in International<br />

Falls. How well does the model fit the data?<br />

(d) Use the models to estimate the average maximum<br />

temperature in each city. Which term of the models<br />

did you use? Explain.<br />

(e) What is the period of each model? Are the periods<br />

what you expected? Explain.<br />

(f) Which city has the greater variability in<br />

temperature throughout the year? Which factor<br />

of the models determines <strong>this</strong> variability? Explain.<br />

90. HEALTH The function given by<br />

P 100 20 cos 5t<br />

3<br />

approximates the blood pressure P (in millimeters of<br />

mercury) at time t (in seconds) for a person at rest.<br />

(a) Find the period of the function.<br />

(b) Find the number of heartbeats per minute.<br />

91. PIANO TUNING When tuning a piano, a technician<br />

strikes a tuning fork for the A above middle C and sets<br />

up a wave motion that can be approximated by<br />

y 0.001 sin 880t, where t is the time (in seconds).<br />

(a) What is the period of the function?<br />

(b) The frequency f is given by f 1p. What is the<br />

frequency of the note?<br />

92. DATA ANALYSIS: ASTRONOMY The percents y (in<br />

decimal form) of the moon’s face that was illuminated<br />

on day x in the year 2009, where x 1 represents<br />

January 1, are shown in the table. (Source: U.S. Naval<br />

Observatory)x<br />

x<br />

4<br />

11<br />

18<br />

26<br />

33<br />

40<br />

y<br />

0.5<br />

1.0<br />

0.5<br />

0.0<br />

0.5<br />

1.0


Section 4.5 Graphs of Sine and Cosine Functions 329<br />

(a) Create a scatter plot of the data.<br />

(b) Find a trigonometric model that fits the data.<br />

(c) Add the graph of your model in part (b) to the<br />

scatter plot. How well does the model fit the data?<br />

(d) What is the period of the model?<br />

(e) Estimate the moon’s percent illumination for<br />

March 12, 2009.<br />

93. FUEL CONSUMPTION The daily consumption C (in<br />

gallons) of diesel fuel on a farm is modeled by<br />

C 30.3 21.6 sin <br />

2t<br />

365 10.9 <br />

where t is the time (in days), with t 1 corresponding<br />

to January 1.<br />

(a) What is the period of the model? Is it what you<br />

expected? Explain.<br />

(b) What is the average daily fuel consumption? Which<br />

term of the model did you use? Explain.<br />

(c) Use a graphing utility to graph the model. Use the<br />

graph to approximate the time of the year when<br />

consumption exceeds 40 gallons per day.<br />

94. FERRIS WHEEL A Ferris wheel is built such that the<br />

height h (in feet) above ground of a seat on the wheel at<br />

time t (in seconds) can be modeled by<br />

(a) Find the period of the model. What does the period<br />

tell you about the ride?<br />

(b) Find the amplitude of the model. What does the<br />

amplitude tell you about the ride?<br />

(c) Use a graphing utility to graph one cycle of the<br />

model.<br />

EXPLORATION<br />

<br />

ht 53 50 sin 10 t <br />

TRUE OR FALSE? In Exercises 95–97, determine whether<br />

the statement is true or false. Justify your answer.<br />

95. The graph of the function given by f x sinx 2<br />

translates the graph of f x sin x exactly one period<br />

to the right so that the two graphs look identical.<br />

96. The function given by y 1 2 cos 2x has an amplitude<br />

that is twice that of the function given by y cos x.<br />

97. The graph of y cos x is a reflection of the graph of<br />

y sinx 2 in the x-axis.<br />

98. WRITING Sketch the graph of y cos bx for b 1 2,<br />

2, and 3. How does the value of b affect the graph? How<br />

many complete cycles occur between 0 and for each<br />

value of b?<br />

<br />

2 .<br />

2<br />

99. WRITING Sketch the graph of y sinx c for<br />

c 4, 0, and 4. How does the value of c affect<br />

the graph?<br />

100. CAPSTONE Use a graphing utility to graph the<br />

function given by y d a sinbx c, for several<br />

different values of a, b, c, and d. Write a paragraph<br />

describing the changes in the graph corresponding to<br />

changes in each constant.<br />

CONJECTURE In Exercises 101 and 102, graph f and g on<br />

the same set of coordinate axes. Include two full periods.<br />

Make a conjecture about the functions.<br />

101.<br />

102.<br />

f x sin x, gx cos x <br />

f x sin x, gx cos x <br />

103. Using calculus, it can be shown that the sine and cosine<br />

functions can be approximated by the polynomials<br />

sin x x x3<br />

3! x5<br />

5!<br />

where x is in radians.<br />

and<br />

cos x 1 x 2<br />

(a) Use a graphing utility to graph the sine function<br />

and its polynomial approximation in the same<br />

viewing window. How do the graphs compare?<br />

(b) Use a graphing utility to graph the cosine function<br />

and its polynomial approximation in the same<br />

viewing window. How do the graphs compare?<br />

(c) Study the patterns in the polynomial approximations<br />

of the sine and cosine functions and predict<br />

the next term in each. Then repeat parts (a) and (b).<br />

How did the accuracy of the approximations<br />

change when an additional term was added?<br />

104. Use the polynomial approximations of the sine and<br />

cosine functions in Exercise 103 to approximate<br />

the following function values. Compare the results<br />

with those given by a calculator. Is the error in the<br />

approximation the same in each case? Explain.<br />

(a) sin 1 (b) sin 1 (c) sin<br />

2<br />

6<br />

(d) cos0.5 (e) cos 1 (f) cos<br />

4<br />

<strong>PRO</strong>JECT: METEOROLOGY To work an extended<br />

application analyzing the mean monthly temperature and<br />

mean monthly precipitation in Honolulu, Hawaii, visit <strong>this</strong><br />

text’s website at academic.cengage.com. (Data Source:<br />

National Climatic Data Center)<br />

<br />

2<br />

<br />

2<br />

<br />

<br />

2! x4<br />

4!


330 Chapter 4 Trigonometry<br />

4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS<br />

What you should learn<br />

• Sketch the graphs of tangent<br />

functions.<br />

• Sketch the graphs of cotangent<br />

functions.<br />

• Sketch the graphs of secant and<br />

cosecant functions.<br />

• Sketch the graphs of damped<br />

trigonometric functions.<br />

Why you should learn it<br />

Graphs of trigonometric functions can<br />

be used to model real-life situations<br />

such as the distance from a television<br />

camera to a unit in a parade, as in<br />

Exercise 92 on page 339.<br />

Graph of the Tangent Function<br />

Recall that the tangent function is odd. That is, tanx tan x. Consequently, the<br />

graph of y tan x is symmetric with respect to the origin. You also know from the<br />

identity tan x sin xcos x that the tangent is undefined for values at which cos x 0.<br />

Two such values are x ±2 ±1.5708.<br />

x<br />

<br />

<br />

2<br />

tan x Undef. 1255.8 14.1 1 0 1 14.1 1255.8 Undef.<br />

As indicated in the table, tan x increases without bound as x approaches 2 from the<br />

left, and decreases without bound as x approaches 2 from the right. So, the graph<br />

of y tan x has vertical asymptotes at x 2 and x 2, as shown in<br />

Figure 4.59. Moreover, because the period of the tangent function is , vertical<br />

asymptotes also occur when x 2 n, where n is an integer. The domain of the<br />

tangent function is the set of all real numbers other than x 2 n, and the range<br />

is the set of all real numbers.<br />

<br />

1.57 1.5 <br />

4<br />

0<br />

<br />

4<br />

1.5 1.57<br />

<br />

2<br />

Alan Pappe/Photodisc/Getty Images<br />

π<br />

−<br />

3<br />

2<br />

−<br />

π<br />

2<br />

y<br />

3<br />

2<br />

1<br />

π<br />

2<br />

y = tan x<br />

π<br />

3π<br />

2<br />

x<br />

<br />

PERIOD:<br />

DOMAIN: ALL<br />

x 2 n<br />

RANGE: ( , )<br />

x 2 n<br />

<br />

VERTICAL ASYMPTOTES:<br />

SYMMETRY: ORIGIN<br />

<br />

−3<br />

• You can review odd and even<br />

functions in Section 1.5.<br />

• You can review symmetry of<br />

a graph in Section 1.2.<br />

• You can review trigonometric<br />

identities in Section 4.3.<br />

• You can review asymptotes in<br />

Section 2.6.<br />

• You can review domain and<br />

range of a function in Section<br />

1.4.<br />

• You can review intercepts of<br />

a graph in Section 1.2.<br />

FIGURE 4.59<br />

Sketching the graph of y a tanbx c is similar to sketching the graph of<br />

y a sinbx c in that you locate key points that identify the intercepts and asymptotes.<br />

Two consecutive vertical asymptotes can be found by solving the equations<br />

<br />

bx c 2<br />

and<br />

bx c <br />

2 .<br />

The midpoint between two consecutive vertical asymptotes is an x-intercept of the<br />

graph. The period of the function y a tanbx c is the distance between two<br />

consecutive vertical asymptotes. The amplitude of a tangent function is not defined.<br />

After plotting the asymptotes and the x-intercept, plot a few additional points between<br />

the two asymptotes and sketch one cycle. Finally, sketch one or two additional cycles<br />

to the left and right.


Section 4.6 Graphs of Other Trigonometric Functions 331<br />

y<br />

y = tan x 2<br />

Example 1<br />

Sketching the Graph of a Tangent Function<br />

3<br />

Sketch the graph of y tanx2.<br />

−π<br />

2<br />

1<br />

π<br />

3π<br />

x<br />

Solution<br />

By solving the equations<br />

<br />

x<br />

2 2<br />

and<br />

x<br />

2 <br />

<br />

2<br />

x <br />

x <br />

FIGURE 4.60<br />

−3<br />

you can see that two consecutive vertical asymptotes occur at x and x .<br />

Between these two asymptotes, plot a few points, including the x-intercept, as shown in<br />

the table. Three cycles of the graph are shown in Figure 4.60.<br />

x <br />

<br />

<br />

2<br />

0<br />

<br />

2<br />

<br />

tan x 2<br />

Undef. 1 0 1 Undef.<br />

Now try Exercise 15.<br />

Example 2<br />

Sketching the Graph of a Tangent Function<br />

Sketch the graph of y 3 tan 2x.<br />

6<br />

y<br />

y = −3 tan 2x<br />

Solution<br />

By solving the equations<br />

<br />

2x <br />

2<br />

and<br />

<br />

2x <br />

2<br />

−<br />

3π<br />

4<br />

−<br />

π<br />

2<br />

−<br />

π<br />

4<br />

−2<br />

−4<br />

π π 3π<br />

4 2 4<br />

x<br />

<br />

x <br />

4<br />

<br />

x <br />

4<br />

you can see that two consecutive vertical asymptotes occur at x 4 and x 4.<br />

Between these two asymptotes, plot a few points, including the x-intercept, as shown in<br />

the table. Three cycles of the graph are shown in Figure 4.61.<br />

−6<br />

FIGURE 4.61 x <br />

4<br />

<br />

<br />

<br />

8<br />

0<br />

<br />

<br />

8 4<br />

3 tan 2x Undef. 3 0 3 Undef.<br />

By comparing the graphs in Examples 1 and 2, you can see that the graph of<br />

y a tanbx c increases between consecutive vertical asymptotes when a > 0, and<br />

decreases between consecutive vertical asymptotes when a < 0. In other words, the graph<br />

for a < 0 is a reflection in the x-axis of the graph for a > 0.<br />

Now try Exercise 17.


332 Chapter 4 Trigonometry<br />

TECHNOLOGY<br />

Some graphing utilities have<br />

difficulty graphing trigonometric<br />

functions that have vertical<br />

asymptotes. Your graphing utility<br />

may connect parts of the graphs<br />

of tangent, cotangent, secant,<br />

and cosecant functions that are<br />

not supposed to be connected.<br />

To eliminate <strong>this</strong> problem,<br />

change the mode of the graphing<br />

utility to dot mode.<br />

Graph of the Cotangent Function<br />

The graph of the cotangent function is similar to the graph of the tangent function. It<br />

also has a period of . However, from the identity<br />

y cot x cos x<br />

sin x<br />

you can see that the cotangent function has vertical asymptotes when sin x is zero,<br />

which occurs at x n, where n is an integer. The graph of the cotangent function is<br />

shown in Figure 4.62. Note that two consecutive vertical asymptotes of the graph of<br />

y a cotbx c can be found by solving the equations bx c 0 and bx c .<br />

−π<br />

−<br />

π<br />

2<br />

3<br />

2<br />

1<br />

y<br />

y = cot x<br />

π<br />

2<br />

π<br />

3π<br />

2<br />

2π<br />

x<br />

<br />

PERIOD:<br />

DOMAIN: ALL<br />

x n<br />

RANGE: ( , )<br />

x n<br />

VERTICAL ASYMPTOTES:<br />

SYMMETRY: ORIGIN<br />

FIGURE 4.62<br />

y<br />

y = 2 cot<br />

x<br />

3<br />

Example 3<br />

Sketching the Graph of a Cotangent Function<br />

3<br />

2<br />

1<br />

−2π π 3π 4π<br />

6π<br />

FIGURE 4.63<br />

x<br />

Sketch the graph of<br />

Solution<br />

By solving the equations<br />

y 2 cot x 3 .<br />

x<br />

x<br />

and<br />

3 0 3 3<br />

x 0<br />

x 3<br />

you can see that two consecutive vertical asymptotes occur at x 0 and x 3.<br />

Between these two asymptotes, plot a few points, including the x-intercept, as shown in<br />

the table. Three cycles of the graph are shown in Figure 4.63. Note that the period is<br />

3, the distance between consecutive asymptotes.<br />

x 0<br />

3<br />

4<br />

3<br />

2<br />

9<br />

4<br />

3<br />

2 cot x 3<br />

Undef. 2 0 2 Undef.<br />

Now try Exercise 27.


Section 4.6 Graphs of Other Trigonometric Functions 333<br />

Graphs of the Reciprocal Functions<br />

The graphs of the two remaining trigonometric functions can be obtained from the<br />

graphs of the sine and cosine functions using the reciprocal identities<br />

csc x 1<br />

sin x<br />

and<br />

For instance, at a given value of x, the y-coordinate of sec x is the reciprocal of the<br />

y-coordinate of cos x. Of course, when cos x 0, the reciprocal does not exist. Near<br />

such values of x, the behavior of the secant function is similar to that of the tangent<br />

function. In other words, the graphs of<br />

tan x sin x<br />

cos x<br />

and<br />

have vertical asymptotes at x 2 n, where n is an integer, and the cosine is zero<br />

at these x-values. Similarly,<br />

cot x cos x<br />

sin x<br />

and<br />

sec x 1<br />

cos x .<br />

sec x 1<br />

cos x<br />

csc x 1<br />

sin x<br />

have vertical asymptotes where sin x 0—that is, at x n.<br />

To sketch the graph of a secant or cosecant function, you should first make a sketch<br />

of its reciprocal function. For instance, to sketch the graph of y csc x, first sketch the<br />

graph of y sin x. Then take reciprocals of the y-coordinates to obtain points on the<br />

graph of y csc x. This procedure is used to obtain the graphs shown in Figure 4.64.<br />

y<br />

y<br />

3<br />

y = csc x<br />

3<br />

y = sec x<br />

y = sin x<br />

2<br />

−π<br />

−1<br />

π<br />

2<br />

π<br />

x<br />

−π<br />

−1<br />

−2<br />

π<br />

2<br />

π<br />

x<br />

2π<br />

y = cos x<br />

−3<br />

4<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

−3<br />

−4<br />

y<br />

Sine: π<br />

maximum<br />

Cosecant:<br />

relative<br />

maximum<br />

FIGURE 4.65<br />

Cosecant:<br />

relative<br />

minimum<br />

Sine:<br />

minimum<br />

2π<br />

x<br />

2<br />

PERIOD:<br />

DOMAIN: ALL<br />

x n<br />

RANGE: ( , 1 1, )<br />

x n<br />

VERTICAL ASYMPTOTES:<br />

SYMMETRY: ORIGIN<br />

FIGURE 4.64<br />

PERIOD:<br />

DOMAIN: ALL<br />

x 2 n<br />

RANGE: ( , 1 1, )<br />

VERTICAL ASYMPTOTES: x 2 n<br />

SYMMETRY: y-AXIS<br />

In comparing the graphs of the cosecant and secant functions with those of the sine<br />

and cosine functions, note that the “hills” and “valleys” are interchanged. For example,<br />

a hill (or maximum point) on the sine curve corresponds to a valley (a relative<br />

minimum) on the cosecant curve, and a valley (or minimum point) on the sine curve<br />

corresponds to a hill (a relative maximum) on the cosecant curve, as shown in<br />

Figure 4.65. Additionally, x-intercepts of the sine and cosine functions become vertical<br />

asymptotes of the cosecant and secant functions, respectively (see Figure 4.65).<br />

2


334 Chapter 4 Trigonometry<br />

y = 2 csc x +<br />

π<br />

4<br />

FIGURE 4.66<br />

( )<br />

y<br />

y = 2 sin x +<br />

π<br />

( 4 )<br />

4<br />

3<br />

1<br />

π<br />

2π<br />

x<br />

Example 4<br />

Sketching the Graph of a Cosecant Function<br />

Sketch the graph of y 2 csc x <br />

Solution<br />

Begin by sketching the graph of<br />

y 2 sin x <br />

For <strong>this</strong> function, the amplitude is 2 and the period is 2. By solving the equations<br />

x <br />

and x <br />

4 0 4 2<br />

<br />

<br />

x <br />

4<br />

you can see that one cycle of the sine function corresponds to the interval from<br />

x 4 to x 74. The graph of <strong>this</strong> sine function is represented by the gray<br />

curve in Figure 4.66. Because the sine function is zero at the midpoint and endpoints of<br />

<strong>this</strong> interval, the corresponding cosecant function<br />

y 2 csc x <br />

<br />

4 .<br />

<br />

4<br />

2 <br />

1<br />

sinx 4<br />

has vertical asymptotes at x 4, x 34, x 74, etc. The graph of the<br />

cosecant function is represented by the black curve in Figure 4.66.<br />

Now try Exercise 33.<br />

<br />

4 .<br />

<br />

x 7<br />

4<br />

Example 5<br />

Sketching the Graph of a Secant Function<br />

Sketch the graph of y sec 2x.<br />

y = sec 2x<br />

−π<br />

−<br />

π<br />

2<br />

y<br />

3<br />

−1<br />

−2<br />

−3<br />

y = cos 2x<br />

π<br />

2<br />

π<br />

x<br />

Solution<br />

Begin by sketching the graph of y cos 2x, as indicated by the gray curve in Figure<br />

4.67. Then, form the graph of y sec 2x as the black curve in the figure. Note that the<br />

x-intercepts of y cos 2x<br />

3<br />

4 , 0 , 4 , 0 , 4 , 0 , . . .<br />

correspond to the vertical asymptotes<br />

x x x 3<br />

4 , 4 , 4 , . . .<br />

<br />

<br />

<br />

<br />

of the graph of y sec 2x. Moreover, notice that the period of y cos 2x and<br />

y sec 2x is .<br />

FIGURE 4.67<br />

Now try Exercise 35.


Section 4.6 Graphs of Other Trigonometric Functions 335<br />

y<br />

y = −x 3π<br />

2π<br />

π<br />

y = x<br />

π<br />

−π<br />

−2π<br />

−3π<br />

f(x) = x sin x<br />

FIGURE 4.68<br />

x<br />

Damped Trigonometric Graphs<br />

A product of two functions can be graphed using properties of the individual functions.<br />

For instance, consider the function<br />

as the product of the functions y x and y sin x. Using properties of absolute value<br />

and the fact that sin x 1, you have 0 xsin x x. Consequently,<br />

which means that the graph of f x x sin x lies between the lines y x and y x.<br />

Furthermore, because<br />

and<br />

f x x sin x<br />

x x sin x x <br />

f x x sin x ±x<br />

f x x sin x 0<br />

at<br />

at<br />

<br />

x <br />

2 n<br />

x n<br />

the graph of f touches the line y x or the line y x at x 2 n and has<br />

x-intercepts at x n. A sketch of f is shown in Figure 4.68. In the function<br />

f x x sin x, the factor x is called the damping factor.<br />

Example 6<br />

Damped Sine Wave<br />

Do you see why the graph of<br />

f x x sin x touches the lines<br />

y ±x at x 2 n and<br />

why the graph has x-intercepts<br />

at x n? Recall that the sine<br />

function is equal to 1 at 2,<br />

32, 52, . . . odd multiples<br />

of 2 and is equal to 0 at ,<br />

2, 3, . . . multiples of .<br />

f(x) = e −x sin 3x y<br />

6<br />

4<br />

y = e −x<br />

x<br />

π 2π<br />

π<br />

3 3<br />

y = −e −x<br />

−4<br />

−6<br />

Sketch the graph of f x e x sin 3x.<br />

Solution<br />

Consider f x as the product of the two functions<br />

and<br />

each of which has the set of real numbers as its domain. For any real number x, you<br />

know that e x 0 and So, e x sin 3x e x , which means that<br />

Furthermore, because<br />

and<br />

y e x<br />

e x e x sin 3x e x .<br />

f x e x sin 3x ±e x<br />

f x e x sin 3x 0<br />

y sin 3x<br />

sin 3x 1.<br />

at<br />

at<br />

the graph of f touches the curves y e x and y e x at x 6 n3 and has<br />

intercepts at x n3. A sketch is shown in Figure 4.69.<br />

Now try Exercise 65.<br />

x <br />

6 n<br />

3<br />

x n<br />

3<br />

<br />

FIGURE 4.69


336 Chapter 4 Trigonometry<br />

Figure 4.70 summarizes the characteristics of the six basic trigonometric functions.<br />

y<br />

y<br />

y<br />

y = tan x<br />

−π<br />

−<br />

π<br />

2<br />

2<br />

1<br />

y = sin x<br />

π π 3π<br />

2 2<br />

x<br />

2<br />

y = cos x<br />

−π<br />

π 2π<br />

−1<br />

x<br />

−<br />

π<br />

2<br />

3<br />

2<br />

1<br />

π<br />

2<br />

π<br />

3π<br />

2<br />

5π<br />

2<br />

x<br />

−2<br />

−2<br />

DOMAIN: ( , )<br />

1, 1<br />

RANGE:<br />

PERIOD: 2<br />

DOMAIN: ( , )<br />

1, 1<br />

RANGE:<br />

PERIOD: 2<br />

DOMAIN: ALL x 2 n<br />

RANGE: ( , )<br />

PERIOD:<br />

<br />

<br />

3<br />

y<br />

y = csc x =<br />

1<br />

sin x<br />

y<br />

3<br />

y = sec x =<br />

1<br />

cos x<br />

y<br />

3<br />

y = cot x =<br />

1<br />

tan x<br />

2<br />

2<br />

1<br />

1<br />

−π π π 2π<br />

2<br />

x<br />

−π<br />

− π 2<br />

π<br />

2<br />

π<br />

3π<br />

2<br />

2π<br />

x<br />

π<br />

2π<br />

x<br />

−2<br />

−3<br />

DOMAIN: ALL x n<br />

RANGE: ( , 1 1, )<br />

PERIOD:<br />

2<br />

FIGURE 4.70<br />

DOMAIN: ALL x 2 n<br />

RANGE: ( , 1 1, )<br />

PERIOD: 2<br />

<br />

DOMAIN: ALL x n<br />

RANGE: ( , )<br />

PERIOD:<br />

<br />

CLASSROOM DISCUSSION<br />

Combining Trigonometric Functions Recall from Section 1.8 that functions can<br />

be combined arithmetically. This also applies to trigonometric functions. For each of<br />

the functions<br />

hx x sin x<br />

and<br />

(a) identify two simpler functions f and g that comprise the combination, (b) use a<br />

table to show how to obtain the numerical values of hx from the numerical values<br />

of fx and gx, and (c) use graphs of f and g to show how the graph of h may be<br />

formed.<br />

Can you find functions<br />

fx d a sinbx c<br />

such that fx gx 0 for all x?<br />

hx cos x sin 3x<br />

and<br />

gx d a cosbx c


Section 4.6 Graphs of Other Trigonometric Functions 337<br />

4.6<br />

EXERCISES<br />

VOCABULARY: Fill in the blanks.<br />

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.<br />

1. The tangent, cotangent, and cosecant functions are ________ , so the graphs of these functions have symmetry<br />

with respect to the ________.<br />

2. The graphs of the tangent, cotangent, secant, and cosecant functions all have ________ asymptotes.<br />

3. To sketch the graph of a secant or cosecant function, first make a sketch of its corresponding ________ function.<br />

4. For the functions given by f x gx sin x, gx is called the ________ factor of the function f x.<br />

5. The period of y tan x is ________.<br />

6. The domain of y cot x is all real numbers such that ________.<br />

7. The range of y sec x is ________.<br />

8. The period of y csc x is ________.<br />

SKILLS AND APPLICATIONS<br />

In Exercises 9–14, match the function with its graph. State<br />

the period of the function. [The graphs are labeled (a), (b),<br />

(c), (d), (e), and (f).]<br />

(a)<br />

2<br />

1<br />

y<br />

1<br />

x<br />

(b)<br />

1<br />

y<br />

2<br />

x<br />

In Exercises 15–38, sketch the graph of the function. Include<br />

two full periods.<br />

15. y 1 16. y tan 4x<br />

3 tan x<br />

17. y 2 tan 3x 18. y 3 tan x<br />

19. 2 sec x 20. y 1 4 sec x<br />

21. y csc x<br />

22. y 3 csc 4x<br />

23. y 1 2 sec x<br />

24. y 2 sec 4x 2<br />

(c)<br />

(e)<br />

−<br />

3π<br />

2<br />

4<br />

3<br />

2<br />

1<br />

−3<br />

−4<br />

4<br />

y<br />

y<br />

π<br />

2<br />

π<br />

2<br />

x<br />

x<br />

(d)<br />

(f)<br />

y<br />

3<br />

2<br />

π 3π<br />

−<br />

2 2<br />

−3<br />

y<br />

3<br />

1<br />

x<br />

x<br />

25. y csc x 26. y csc x 2<br />

3<br />

27. y 3 cot 2x<br />

28.<br />

y<br />

29. y 2 sec 3x<br />

30. y 1 2 tan x<br />

x<br />

31. y tan<br />

4<br />

32. y tanx <br />

33. y 2 cscx 34. y csc2x <br />

35. y 2 secx 36. y sec x 1<br />

<br />

4<br />

x<br />

3 cot<br />

2<br />

37. y 1 38. y 2 cot x <br />

4 csc x <br />

In Exercises 39–48, use a graphing utility to graph the<br />

function. Include two full periods.<br />

<br />

2<br />

9. y sec 2x<br />

10.<br />

11. y 1 2 cot x<br />

12.<br />

13. y 1 14.<br />

2 sec x<br />

2<br />

y tan x 2<br />

y csc x<br />

y 2 sec<br />

x<br />

2<br />

39. y tan x 40. y tan 2x<br />

3<br />

41. y 2 sec 4x 42. y sec x<br />

<br />

4<br />

43. y tan x <br />

44. y 1 4 cot x <br />

45. y csc4x 46. y 2 sec2x <br />

47. 48. y 1 3 sec x<br />

y 0.1 tan <br />

x<br />

4 <br />

2 <br />

<br />

4<br />

<br />

2<br />

<br />

2


338 Chapter 4 Trigonometry<br />

In Exercises 49–56, use a graph to solve the equation on the<br />

interval [2, 2].<br />

49. tan x 1<br />

50. tan x 3<br />

51. cot x 3 52. cot x 1<br />

3<br />

53. sec x 2<br />

54. sec x 2<br />

55. csc x 2<br />

56.<br />

In Exercises 57–64, use the graph of the function to<br />

determine whether the function is even, odd, or neither.<br />

Verify your answer algebraically.<br />

65. GRAPHICAL REASONING Consider the functions<br />

given by<br />

and<br />

on the interval 0, .<br />

(a) Graph f and g in the same coordinate plane.<br />

(b) Approximate the interval in which f > g.<br />

(c) Describe the behavior of each of the functions as x<br />

approaches . How is the behavior of g related to<br />

the behavior of f as x approaches ?<br />

66. GRAPHICAL REASONING Consider the functions<br />

given by<br />

and<br />

on the interval 1, 1.<br />

(a) Use a graphing utility to graph f and g in the same<br />

viewing window.<br />

(b) Approximate the interval in which f < g.<br />

(c) Approximate the interval in which 2f < 2g. How<br />

does the result compare with that of part (b)?<br />

Explain.<br />

In Exercises 67–72, use a graphing utility to graph the two<br />

equations in the same viewing window. Use the graphs to<br />

determine whether the expressions are equivalent. Verify the<br />

results algebraically.<br />

67.<br />

68.<br />

69.<br />

gx<br />

f x 2 sin x<br />

f x tan<br />

y 1 cos x<br />

sin x ,<br />

x<br />

2<br />

y 1 sin x csc x,<br />

y 1 sin x sec x,<br />

y 2 cot x<br />

gx 1 2 csc x<br />

gx 1 2 sec<br />

y 2 1<br />

y 2 tan x<br />

csc x 23<br />

3<br />

57. f x sec x<br />

58. f x tan x<br />

59. gx cot x<br />

60. gx csc x<br />

61. f x x tan x 62. f x x 2 sec x<br />

63. gx x csc x 64. x 2 cot x<br />

x<br />

2<br />

70.<br />

71.<br />

72.<br />

In Exercises 73–76, match the function with its graph.<br />

Describe the behavior of the function as x approaches zero.<br />

[The graphs are labeled (a), (b), (c), and (d).]<br />

(a)<br />

(c)<br />

(b)<br />

(d)<br />

73. 74.<br />

75. 76.<br />

CONJECTURE In Exercises 77– 80, graph the functions f<br />

and g. Use the graphs to make a conjecture about the<br />

relationship between the functions.<br />

77.<br />

78.<br />

79.<br />

80.<br />

y 1 tan x cot 2 x,<br />

y 1 1 cot 2 x,<br />

y 1 sec 2 x 1,<br />

2<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

4<br />

2<br />

−π<br />

−2<br />

−4<br />

f x x cos x <br />

gx x sin x<br />

y<br />

y<br />

π<br />

2<br />

f x sin x cos x gx 0<br />

2 ,<br />

2 ,<br />

f x sin x cos x <br />

π<br />

y 2 cot x<br />

y 2 csc 2 x<br />

y 2 tan 2 x<br />

x<br />

x<br />

gx 2 sin x<br />

f x sin 2 x, gx 1 21 cos 2x<br />

x<br />

f x cos gx 1 2 2 1 cos x<br />

2 ,<br />

In Exercises 81–84, use a graphing utility to graph the<br />

function and the damping factor of the function in the same<br />

viewing window. Describe the behavior of the function as x<br />

increases without bound.<br />

81. gx e x2 2<br />

sin x 82. f x e x cos x<br />

83. f x 2 x4 cos x 84. hx 2 x2 4<br />

sin x<br />

<br />

<br />

4<br />

3<br />

2<br />

1<br />

−π −1<br />

f x x sin x<br />

gx x cos x<br />

In Exercises 85–90, use a graphing utility to graph the<br />

function. Describe the behavior of the function as<br />

approaches zero.<br />

x<br />

85. y 6 cos x, x > 0 86. y 4 sin 2x, x > 0<br />

x x<br />

4<br />

2<br />

−4<br />

−2<br />

y<br />

y<br />

π 3π<br />

2 2<br />

π<br />

x<br />

x


Section 4.6 Graphs of Other Trigonometric Functions 339<br />

87. gx sin x<br />

88.<br />

x<br />

91. DISTANCE A plane flying at an altitude of 7 miles<br />

above a radar antenna will pass directly over the radar<br />

antenna (see figure). Let d be the ground distance from<br />

the antenna to the point directly under the plane and<br />

let x be the angle of elevation to the plane from the<br />

antenna. ( d is positive as the plane approaches the<br />

antenna.) Write d as a function of x and graph the<br />

function over the interval 0 < x < .<br />

x<br />

d<br />

f x 1 cos x<br />

x<br />

89. f x sin 1 90. hx x sin 1 x<br />

x<br />

Not drawn to scale<br />

7 mi<br />

92. TELEVISION COVERAGE A television camera is on a<br />

reviewing platform 27 meters from the street on which a<br />

parade will be passing from left to right (see figure).<br />

Write the distance d from the camera to a particular unit<br />

in the parade as a function of the angle x, and graph the<br />

function over the interval 2 < x < 2. (Consider<br />

x as negative when a unit in the parade approaches from<br />

the left.)<br />

Temperature<br />

(in degrees Fahrenheit)<br />

80<br />

60<br />

40<br />

20<br />

H(t)<br />

L(t)<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Month of year<br />

(a) What is the period of each function?<br />

(b) During what part of the year is the difference<br />

between the normal high and normal low<br />

temperatures greatest? When is it smallest?<br />

(c) The sun is northernmost in the sky around June 21,<br />

but the graph shows the warmest temperatures at a<br />

later date. Approximate the lag time of the<br />

temperatures relative to the position of the sun.<br />

94. SALES The projected monthly sales S (in thousands of<br />

units) of lawn mowers (a seasonal product) are modeled<br />

by S 74 3t 40 cost6, where t is the time (in<br />

months), with t 1 corresponding to January. Graph<br />

the sales function over 1 year.<br />

95. HARMONIC MOTION An object weighing W pounds<br />

is suspended from the ceiling by a steel spring (see<br />

figure). The weight is pulled downward (positive<br />

direction) from its equilibrium position and released.<br />

The resulting motion of the weight is described by the<br />

function y 1 2 et4 cos 4t, t > 0, where y is the distance<br />

(in feet) and t is the time (in seconds).<br />

t<br />

Not drawn to scale<br />

27 m<br />

x<br />

d<br />

Equilibrium<br />

y<br />

Camera<br />

93. METEOROLOGY The normal monthly high temperatures<br />

H (in degrees Fahrenheit) in Erie, Pennsylvania<br />

are approximated by<br />

Ht 56.94 20.86 cost6 11.58 sint6<br />

and the normal monthly low temperatures L are<br />

approximated by<br />

Lt 41.80 17.13 cost6 13.39 sint6<br />

where t is the time (in months), with t 1 corresponding<br />

to January (see figure). (Source: National Climatic<br />

Data Center)<br />

(a) Use a graphing utility to graph the function.<br />

(b) Describe the behavior of the displacement function<br />

for increasing values of time t.<br />

EXPLORATION<br />

TRUE OR FALSE? In Exercises 96 and 97, determine<br />

whether the statement is true or false. Justify your answer.<br />

96. The graph of y csc x can be obtained on a calculator<br />

by graphing the reciprocal of y sin x.<br />

97. The graph of y sec x can be obtained on a<br />

calculator by graphing a translation of the reciprocal of<br />

y sin x.


340 Chapter 4 Trigonometry<br />

98. CAPSTONE Determine which function is represented<br />

by the graph. Do not use a calculator. Explain<br />

your reasoning.<br />

In Exercises 99 and 100, use a graphing utility to graph the<br />

function. Use the graph to determine the behavior of the<br />

function as x → c.<br />

(a)<br />

(b)<br />

(a)<br />

(i)<br />

(ii)<br />

π<br />

−<br />

4<br />

3<br />

2<br />

1<br />

y<br />

π<br />

4<br />

π<br />

2<br />

f x tan 2x<br />

f x tanx2<br />

<br />

x →<br />

2 as x approaches<br />

<br />

x →<br />

2 as x approaches<br />

<br />

(c) x → <br />

2 as x approaches <br />

2 from the right <br />

<br />

(d) x → <br />

2 as x approaches <br />

2 from the left <br />

99. f x tan x 100. f x sec x<br />

In Exercises 101 and 102, use a graphing utility to graph the<br />

function. Use the graph to determine the behavior of the<br />

function as x → c.<br />

(a) As x → 0 , the value of f x →.<br />

(b) As x → 0 , the value of f x →.<br />

(c) As x → <br />

, the value of f x →.<br />

(d) As x → <br />

, the value of f x →.<br />

101. f x cot x 102. f x csc x<br />

x<br />

<br />

2 from the right <br />

103. THINK ABOUT IT Consider the function given by<br />

f x x cos x.<br />

<br />

(b)<br />

π<br />

−<br />

2<br />

2 from the left <br />

(a) Use a graphing utility to graph the function and<br />

verify that there exists a zero between 0 and 1. Use<br />

the graph to approximate the zero.<br />

(i)<br />

(ii)<br />

<br />

π<br />

−<br />

4<br />

(iii) f x 2 tan x (iii) f x cscx4<br />

(iv) f x tan 2x (iv) f x secx4<br />

(v) f x tanx2 (v) f x csc4x <br />

<br />

y<br />

π<br />

4<br />

π<br />

2<br />

f x sec 4x<br />

f x csc 4x<br />

x<br />

(b) Starting with x 0 1, generate a sequence x 1 , x 2 ,<br />

x 3 , . . . , where x n cosx n1 . For example,<br />

x 0 1<br />

x 1 cosx 0 <br />

x 2 cosx 1 <br />

x 3 cosx 2 <br />

<br />

What value does the sequence approach?<br />

104. AP<strong>PRO</strong>XIMATION Using calculus, it can be shown<br />

that the tangent function can be approximated by the<br />

polynomial<br />

tan x x 2x3<br />

3! 16x 5<br />

5!<br />

where x is in radians. Use a graphing utility to graph<br />

the tangent function and its polynomial approximation<br />

in the same viewing window. How do the graphs<br />

compare?<br />

105. AP<strong>PRO</strong>XIMATION Using calculus, it can be shown<br />

that the secant function can be approximated by the<br />

polynomial<br />

sec x 1 x 2<br />

2! 5x4<br />

4!<br />

where x is in radians. Use a graphing utility to graph<br />

the secant function and its polynomial approximation<br />

in the same viewing window. How do the graphs<br />

compare?<br />

106. PATTERN RECOGNITION<br />

(a) Use a graphing utility to graph each function.<br />

y 1 4<br />

sin x 1 3 sin 3x <br />

y 2 4<br />

sin x 1 3 sin 3x 1 5 sin 5x <br />

(b) Identify the pattern started in part (a) and find a<br />

function y 3 that continues the pattern one more<br />

term. Use a graphing utility to graph y 3 .<br />

(c) The graphs in parts (a) and (b) approximate the<br />

periodic function in the figure. Find a function y 4<br />

that is a better approximation.<br />

1<br />

y<br />

3<br />

x


Section 4.7 Inverse Trigonometric Functions 341<br />

4.7 INVERSE TRIGONOMETRIC FUNCTIONS<br />

NASA<br />

What you should learn<br />

• Evaluate and graph the inverse<br />

sine function.<br />

• Evaluate and graph the other<br />

inverse trigonometric functions.<br />

• Evaluate and graph the<br />

compositions of trigonometric<br />

functions.<br />

Why you should learn it<br />

You can use inverse trigonometric<br />

functions to model and solve<br />

real-life problems. For instance,<br />

in Exercise 106 on page 349, an<br />

inverse trigonometric function can be<br />

used to model the angle of elevation<br />

from a television camera to a space<br />

shuttle launch.<br />

When evaluating the inverse sine<br />

function, it helps to remember<br />

the phrase “the arcsine of x is<br />

the angle (or number) whose<br />

sine is x.”<br />

Inverse Sine Function<br />

Recall from Section 1.9 that, for a function to have an inverse function, it must be<br />

one-to-one—that is, it must pass the Horizontal Line Test. From Figure 4.71, you can<br />

see that y sin x does not pass the test because different values of x yield the same<br />

y-value.<br />

FIGURE 4.71<br />

However, if you restrict the domain to the interval 2 x 2<br />

(corresponding to the black portion of the graph in Figure 4.71), the following properties<br />

hold.<br />

1. On the interval 2, 2, the function y sin x is increasing.<br />

2. On the interval 2, 2, y sin x takes on its full range of values,<br />

1 sin x 1.<br />

3. On the interval 2, 2, y sin x is one-to-one.<br />

So, on the restricted domain 2 x 2, y sin x has a unique inverse<br />

function called the inverse sine function. It is denoted by<br />

y arcsin x<br />

or<br />

−π<br />

1<br />

−1<br />

sin x has an inverse function<br />

on <strong>this</strong> interval.<br />

y sin 1 x.<br />

y<br />

y = sin x<br />

The notation sin 1 x is consistent with the inverse function notation f 1 x. The arcsin x<br />

notation (read as “the arcsine of x”) comes from the association of a central angle with<br />

its intercepted arc length on a unit circle. So, arcsin x means the angle (or arc) whose<br />

sine is x. Both notations, arcsin x and sin 1 x, are commonly used in mathematics, so<br />

remember that sin 1 x denotes the inverse sine function rather than 1sin x. The values<br />

of arcsin x lie in the interval 2 arcsin x 2. The graph of y arcsin x is<br />

shown in Example 2.<br />

Definition of Inverse Sine Function<br />

The inverse sine function is defined by<br />

y arcsin x<br />

if and only if<br />

where 1 x 1 and 2 y 2. The domain of y arcsin x is<br />

1, 1, and the range is 2, 2.<br />

π<br />

sin y x<br />

x


342 Chapter 4 Trigonometry<br />

Example 1<br />

Evaluating the Inverse Sine Function<br />

As with the trigonometric<br />

functions, much of the work<br />

with the inverse trigonometric<br />

functions can be done by exact<br />

calculations rather than by<br />

calculator approximations.<br />

Exact calculations help to<br />

increase your understanding of<br />

the inverse functions by relating<br />

them to the right triangle<br />

definitions of the trigonometric<br />

functions.<br />

If possible, find the exact value.<br />

a. b. sin c. sin 1 2<br />

2<br />

arcsin 1 2<br />

Solution<br />

a. Because sin for <br />

it follows that<br />

6 1 2 2 y 2 ,<br />

arcsin 1 Angle whose sine is 1 2<br />

2 6 .<br />

<br />

<br />

b. Because sin for <br />

it follows that<br />

3 3<br />

2 2 y 2 ,<br />

sin 13<br />

Angle whose sine is 32<br />

2 3 .<br />

<br />

<br />

1<br />

3<br />

<br />

c. It is not possible to evaluate y sin 1 x when x 2 because there is no angle whose<br />

sine is 2. Remember that the domain of the inverse sine function is 1, 1.<br />

Now try Exercise 5.<br />

<br />

<br />

<br />

Example 2<br />

Graphing the Arcsine Function<br />

( )<br />

2<br />

,<br />

2<br />

( )<br />

−<br />

1<br />

, −<br />

π<br />

2 6<br />

( )<br />

−1, −<br />

π<br />

2<br />

FIGURE 4.72<br />

π<br />

4<br />

π<br />

2<br />

(0, 0)<br />

y<br />

( 1, )<br />

( )<br />

1<br />

,<br />

2<br />

π<br />

2<br />

π<br />

6<br />

1<br />

y = arcsin x<br />

2<br />

( − , −<br />

π<br />

π 2 4 )<br />

−<br />

2<br />

x<br />

Sketch a graph of<br />

y arcsin x.<br />

Solution<br />

By definition, the equations y arcsin x and sin y x are equivalent for<br />

2 y 2. So, their graphs are the same. From the interval 2, 2, you<br />

can assign values to y in the second equation to make a table of values. Then plot the<br />

points and draw a smooth curve through the points.<br />

y<br />

<br />

<br />

2<br />

The resulting graph for y arcsin x is shown in Figure 4.72. Note that it is the<br />

reflection (in the line y x) of the black portion of the graph in Figure 4.71. Be sure<br />

you see that Figure 4.72 shows the entire graph of the inverse sine function. Remember<br />

that the domain of y arcsin x is the closed interval 1, 1 and the range is the closed<br />

interval 2, 2.<br />

Now try Exercise 21.<br />

<br />

<br />

4<br />

x sin y 1 2<br />

2<br />

<br />

<br />

6<br />

1 2<br />

0<br />

0<br />

<br />

6<br />

1<br />

2<br />

<br />

4<br />

2<br />

2<br />

<br />

2<br />

1


Section 4.7 Inverse Trigonometric Functions 343<br />

Other Inverse Trigonometric Functions<br />

The cosine function is decreasing and one-to-one on the interval 0 x , as shown<br />

in Figure 4.73.<br />

y<br />

y = cos x<br />

−π<br />

π π 2π<br />

−1 2<br />

x<br />

cos x has an inverse function<br />

on <strong>this</strong> interval.<br />

FIGURE 4.73<br />

Consequently, on <strong>this</strong> interval the cosine function has an inverse function—the inverse<br />

cosine function—denoted by<br />

y arccos x<br />

or<br />

y cos 1 x.<br />

Similarly, you can define an inverse tangent function by restricting the domain of<br />

y tan x to the interval 2, 2. The following list summarizes the definitions of<br />

the three most common inverse trigonometric functions. The remaining three are<br />

defined in Exercises 115–117.<br />

Definitions of the Inverse Trigonometric Functions<br />

Function Domain Range<br />

y arcsin x if and only if sin y x 1 x 1<br />

y arccos x if and only if cos y x 1 x 1 0 y <br />

y arctan x if and only if tan y x < x < <br />

<br />

<br />

<br />

<br />

<br />

2 y 2<br />

<br />

<br />

2 < y < 2<br />

The graphs of these three inverse trigonometric functions are shown in Figure 4.74.<br />

y<br />

y<br />

y<br />

π<br />

2<br />

π<br />

π<br />

2<br />

−1<br />

y = arcsin x<br />

x<br />

1<br />

π<br />

2<br />

y = arccos x<br />

−2<br />

−1<br />

y = arctan x<br />

x<br />

1 2<br />

π<br />

−<br />

2<br />

−1<br />

1<br />

x<br />

π<br />

−<br />

2<br />

DOMAIN:<br />

RANGE: <br />

FIGURE 4.74<br />

1, 1<br />

2,<br />

2<br />

<br />

DOMAIN: 1, 1<br />

RANGE: 0, <br />

DOMAIN:<br />

RANGE: <br />

, <br />

2,<br />

2


344 Chapter 4 Trigonometry<br />

Example 3<br />

Evaluating Inverse Trigonometric Functions<br />

Find the exact value.<br />

a. arccos 2 b.<br />

2<br />

c. arctan 0<br />

d.<br />

cos 1 1<br />

tan 1 1<br />

Solution<br />

a. Because cos4 22, and 4 lies in 0, , it follows that<br />

arccos 2<br />

Angle whose cosine is 22<br />

2 4 .<br />

b. Because cos 1, and lies in 0, , it follows that<br />

cos 1 1 .<br />

Angle whose cosine is 1<br />

c. Because tan 0 0, and 0 lies in 2, 2, it follows that<br />

arctan 0 0.<br />

<br />

Angle whose tangent is 0<br />

d. Because tan4 1, and 4 lies in 2, 2, it follows that<br />

tan 1 1 <br />

Angle whose tangent is 1<br />

4 .<br />

<br />

<br />

Now try Exercise 15.<br />

Example 4<br />

Calculators and Inverse Trigonometric Functions<br />

Use a calculator to approximate the value (if possible).<br />

a. arctan8.45<br />

b. sin 1 0.2447<br />

c. arccos 2<br />

WARNING / CAUTION<br />

Remember that the domain of the<br />

inverse sine function and the<br />

inverse cosine function is 1, 1,<br />

as indicated in Example 4(c).<br />

Solution<br />

Function Mode Calculator Keystrokes<br />

a. arctan8.45 Radian 8.45<br />

From the display, it follows that arctan8.45 1.453001.<br />

b. sin 1 0.2447 Radian SIN 1 0.2447<br />

From the display, it follows that sin 1 0.2447 0.2472103.<br />

c. arccos 2<br />

Radian COS 1 2<br />

TAN 1 ENTER<br />

ENTER<br />

ENTER<br />

In real number mode, the calculator should display an error message because the<br />

domain of the inverse cosine function is 1, 1.<br />

Now try Exercise 29.<br />

In Example 4, if you had set the calculator to degree mode, the displays would have<br />

been in degrees rather than radians. This convention is peculiar to calculators. By<br />

definition, the values of inverse trigonometric functions are always in radians.


Section 4.7 Inverse Trigonometric Functions 345<br />

You can review the composition<br />

of functions in Section 1.8.<br />

Compositions of Functions<br />

Recall from Section 1.9 that for all x in the domains of f and f 1 , inverse functions have<br />

the properties<br />

f f 1 x x and f 1 f x x.<br />

Inverse Properties of Trigonometric Functions<br />

If 1 x 1 and 2 y 2, then<br />

sinarcsin x x and arcsinsin y y.<br />

If 1 x 1 and 0 y , then<br />

cosarccos x x and arccoscos y y.<br />

If x is a real number and 2 < y < 2, then<br />

tanarctan x x and arctantan y y.<br />

Keep in mind that these inverse properties do not apply for arbitrary values of x and<br />

y. For instance,<br />

arcsin sin 3<br />

2 arcsin1 2 3<br />

2 .<br />

In other words, the property<br />

arcsinsin y y<br />

is not valid for values of y outside the interval 2, 2.<br />

<br />

Example 5<br />

Using Inverse Properties<br />

If possible, find the exact value.<br />

a. tanarctan5 b. arcsin sin 5 c.<br />

3<br />

<br />

coscos 1 <br />

Solution<br />

a. Because 5 lies in the domain of the arctan function, the inverse property applies,<br />

and you have<br />

tanarctan5 5.<br />

b. In <strong>this</strong> case, 53 does not lie within the range of the arcsine function,<br />

2 y 2. However, 53 is coterminal with<br />

5<br />

3 2 <br />

3<br />

which does lie in the range of the arcsine function, and you have<br />

arcsin sin 5<br />

<br />

<br />

3<br />

arcsin sin 3 <br />

c. The expression coscos 1 is not defined because cos 1 is not defined.<br />

Remember that the domain of the inverse cosine function is 1, 1.<br />

Now try Exercise 49.<br />

<br />

3 .


346 Chapter 4 Trigonometry<br />

y<br />

Example 6 shows how to use right triangles to find exact values of<br />

compositions of inverse functions. Then, Example 7 shows how to use right triangles to<br />

convert a trigonometric expression into an algebraic expression. This conversion<br />

technique is used frequently in calculus.<br />

3 2 2<br />

3 − 2 = 5<br />

u = arccos<br />

2<br />

2<br />

3<br />

2<br />

Angle whose cosine is 3<br />

FIGURE 4.75<br />

y<br />

5 2 − (−3) 2 = 4<br />

u = arcsin − 3 5<br />

5<br />

Angle whose sine is 3 5<br />

FIGURE 4.76<br />

(<br />

(<br />

−3<br />

x<br />

x<br />

Example 6<br />

Find the exact value.<br />

tan arccos 2 3<br />

a. b.<br />

Solution<br />

Evaluating Compositions of Functions<br />

a. If you let u arccos 2 then cos u 2 3 ,<br />

3 . Because cos u is positive, u is a first-quadrant<br />

angle. You can sketch and label angle u as shown in Figure 4.75. Consequently,<br />

tan arccos 2 3<br />

b. If you let u arcsin3 5, then sin u 3 5 . Because sin u is negative, u is a fourthquadrant<br />

angle. You can sketch and label angle u as shown in Figure 4.76.<br />

Consequently,<br />

cos arcsin 3 5<br />

cos arcsin 3 5<br />

tan u <br />

opp<br />

adj 5<br />

2 .<br />

Now try Exercise 57.<br />

cos u <br />

adj<br />

hyp 4 5 .<br />

Example 7<br />

Some Problems from Calculus<br />

Write each of the following as an algebraic expression in x.<br />

a. sinarccos 3x, 0 x 1 b.<br />

3<br />

cotarccos 3x,<br />

0 x < 1 3<br />

1<br />

u = arccos 3x<br />

3x<br />

Angle whose cosine is 3x<br />

FIGURE 4.77<br />

1 − (3x) 2<br />

Solution<br />

If you let u arccos 3x, then cos u 3x, where 1 3x 1. Because<br />

you can sketch a right triangle with acute angle u, as shown in Figure 4.77. From <strong>this</strong><br />

triangle, you can easily convert each expression to algebraic form.<br />

a.<br />

b.<br />

cos u adj<br />

hyp 3x<br />

1<br />

sinarccos 3x sin u opp<br />

hyp 1 9x 2 ,<br />

cotarccos 3x cot u adj<br />

opp <br />

Now try Exercise 67.<br />

0 x 1 3<br />

3x<br />

0 x < 1 1 9x 2, 3<br />

In Example 7, similar arguments can be made for x-values lying in the interval<br />

1 3, 0.


Section 4.7 Inverse Trigonometric Functions 347<br />

4.7 EXERCISES<br />

VOCABULARY: Fill in the blanks.<br />

Function Alternative Notation Domain Range<br />

1. y arcsin x __________ __________<br />

2. __________ y cos 1 x 1 x 1 __________<br />

3. y arctan x __________ __________ __________<br />

4. Without restrictions, no trigonometric function has a(n) __________ function.<br />

SKILLS AND APPLICATIONS<br />

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.<br />

<br />

<br />

<br />

2 y 2<br />

In Exercises 5–20, evaluate the expression without using a<br />

calculator.<br />

5. arcsin 1 2<br />

6. arcsin 0<br />

7. arccos 1 2<br />

8. arccos 0<br />

9. arctan 3<br />

3<br />

10. arctan1<br />

11. cos<br />

1 3 2 <br />

12.<br />

13. arctan3 14.<br />

15. 16.<br />

17. sin<br />

1 3<br />

18.<br />

2 <br />

In Exercises 21 and 22, use a graphing utility to graph f, g, and<br />

y x in the same viewing window to verify geometrically that<br />

g is the inverse function of f. (Be sure to restrict the domain<br />

of f properly.)<br />

21.<br />

22.<br />

arccos 1 2<br />

f x sin x,<br />

f x tan x,<br />

gx arcsin x<br />

gx arctan x<br />

sin 1 2 2 <br />

arctan3<br />

arcsin 2<br />

2<br />

tan 1 3 3 <br />

19. tan 1 0<br />

20. cos 1 1<br />

In Exercises 23–40, use a calculator to evaluate the<br />

expression. Round your result to two decimal places.<br />

23. arccos 0.37 24. arcsin 0.65<br />

25. arcsin0.75 26. arccos0.7<br />

27. arctan3<br />

28. arctan 25<br />

29. sin 1 0.31<br />

30. cos 1 0.26<br />

31. arccos0.41 32. arcsin0.125<br />

33. arctan 0.92<br />

34. arctan 2.8<br />

35. arcsin 7 36. arccos 1 8<br />

3<br />

37. tan1 19<br />

38. tan 1 95<br />

4<br />

7 <br />

39. tan 1 372 40. tan 1 2165<br />

In Exercises 41 and 42, determine the missing coordinates of<br />

the points on the graph of the function.<br />

41. 42.<br />

y = arctan x<br />

−3 −2<br />

In Exercises 43– 48, use an inverse trigonometric function to<br />

write as a function of x.<br />

<br />

43. 44.<br />

θ<br />

45. 46.<br />

θ<br />

5<br />

4<br />

π<br />

π 2 4<br />

( − 3, )<br />

47. 48.<br />

2x<br />

y<br />

θ<br />

x + 3<br />

( )<br />

π<br />

, 4<br />

1 2 3<br />

π<br />

, − 6<br />

( )<br />

x<br />

x + 2<br />

π<br />

(−1, )<br />

1<br />

( −<br />

2 , ) π<br />

( , )<br />

θ<br />

x 2 − 1<br />

In Exercises 49–54, use the properties of inverse trigonometric<br />

functions to evaluate the expression.<br />

49. sinarcsin 0.3 50. tanarctan 45<br />

51. cosarccos0.1 52. sinarcsin0.2<br />

53. arcsinsin 3 54. arccos cos 7<br />

2<br />

<br />

x<br />

−2<br />

θ<br />

θ<br />

−1<br />

x<br />

π<br />

4<br />

4<br />

10<br />

y<br />

y = arccos x<br />

6<br />

1 2<br />

x + 1<br />

x − 1<br />

x


348 Chapter 4 Trigonometry<br />

In Exercises 55–66, find the exact value of the expression.<br />

(Hint: Sketch a right triangle.)<br />

55. sinarctan 3 4<br />

56. secarcsin 4 5<br />

57. costan 1 2<br />

58. sin cos 15<br />

5 <br />

59. cosarcsin 13<br />

5 60. cscarctan12<br />

5<br />

61. secarctan 3 5 62. tanarcsin 3 4<br />

63. sinarccos 2 3 64. cotarctan 5 8<br />

65. 66.<br />

In Exercises 67–76, write an algebraic expression that is<br />

equivalent to the expression. (Hint: Sketch a right triangle, as<br />

demonstrated in Example 7.)<br />

67.<br />

68.<br />

69.<br />

70.<br />

71.<br />

72.<br />

73.<br />

74.<br />

75.<br />

76.<br />

In Exercises 77 and 78, use a graphing utility to graph f<br />

and g in the same viewing window to verify that the two<br />

functions are equal. Explain why they are equal. Identify any<br />

asymptotes of the graphs.<br />

77.<br />

78.<br />

In Exercises 79–82, fill in the blank.<br />

79.<br />

80.<br />

81.<br />

csc cos 3 1 2 <br />

cotarctan x<br />

sinarctan x<br />

cosarcsin 2x<br />

secarctan 3x<br />

sinarccos x<br />

secarcsinx 1<br />

tan arccos<br />

3<br />

x<br />

cot arctan 1 x<br />

csc arctan<br />

arccos<br />

2<br />

x<br />

cos arcsin x h<br />

r<br />

arctan 9 x arcsin ,<br />

arcsin 36 x 2<br />

6<br />

<br />

fx sinarctan 2x,<br />

f x tan arccos x 2 ,<br />

gx <br />

arccos,<br />

sec sin 1 2 2 <br />

x 0<br />

2x<br />

1 4x 2<br />

gx 4 x 2<br />

x<br />

3<br />

x 2 2x 10 arcsin <br />

0 x 6<br />

82.<br />

In Exercises 83 and 84, sketch a graph of the function and<br />

compare the graph of g with the graph of f x arcsin x.<br />

83.<br />

84.<br />

In Exercises 85–90, sketch a graph of the function.<br />

85.<br />

86.<br />

87.<br />

88.<br />

89.<br />

90.<br />

In Exercises 91–96, use a graphing utility to graph the<br />

function.<br />

91.<br />

92.<br />

93.<br />

94.<br />

95.<br />

96.<br />

In Exercises 97 and 98, write the function in terms of the sine<br />

function by using the identity<br />

A cos t 1 B sin t A 2 1 B 2 sin t 1 arctan A B .<br />

Use a graphing utility to graph both forms of the function.<br />

What does the graph imply?<br />

97.<br />

98.<br />

arccos x 2<br />

2<br />

gx arcsinx 1<br />

gx arcsin x 2<br />

y 2 arccos x<br />

gt arccost 2<br />

f x) arctan 2x<br />

<br />

f x <br />

2 arctan x<br />

hv tanarccos v<br />

f x arccos x 4<br />

f x 2 arccos2x<br />

f x arcsin4x<br />

f x arctan2x 3<br />

f x 3 arctanx<br />

f x sin 2 3<br />

1<br />

<br />

<br />

f x <br />

2 1 cos1<br />

arctan,<br />

f t 3 cos 2t 3 sin 2t<br />

f t 4 cos t 3 sin t<br />

x 2 2<br />

In Exercises 99–104, fill in the blank. If not possible,<br />

state the reason. (Note: The notation x → c indicates that<br />

x approaches c from the right and x → c indicates that x<br />

approaches c from the left.)<br />

99. As x → 1 , the value of arcsin x →.<br />

100. As x → 1 , the value of arccos x →.


Section 4.7 Inverse Trigonometric Functions 349<br />

101. As x →, the value of arctan x →.<br />

102. As x → 1 , the value of arcsin x →.<br />

103. As x → 1 , the value of arccos x →.<br />

104. As x → , the value of arctan x →.<br />

105. DOCKING A BOAT A boat is pulled in by means of<br />

a winch located on a dock 5 feet above the deck of the<br />

boat (see figure). Let be the angle of elevation from<br />

the boat to the winch and let s be the length of the rope<br />

from the winch to the boat.<br />

5 ft<br />

(a) Write<br />

as a function of s.<br />

(b) Find when s 40 feet and s 20 feet.<br />

106. PHOTOGRAPHY A television camera at ground<br />

level is filming the lift-off of a space shuttle at a point<br />

750 meters from the launch pad (see figure). Let be<br />

the angle of elevation to the shuttle and let s be the<br />

height of the shuttle.<br />

(a) Write<br />

<br />

<br />

θ<br />

<br />

<br />

as a function of s.<br />

107. PHOTOGRAPHY A photographer is taking a picture<br />

of a three-foot-tall painting hung in an art gallery.<br />

The camera lens is 1 foot below the lower edge of the<br />

painting (see figure). The angle subtended by the<br />

camera lens x feet from the painting is<br />

arctan<br />

3x<br />

x 2 4 ,<br />

<br />

s<br />

θ<br />

750 m<br />

(b) Find when s 300 meters and s 1200<br />

meters.<br />

x > 0.<br />

<br />

<br />

s<br />

Not drawn to scale<br />

3 ft<br />

1 ft<br />

(a) Use a graphing utility to graph<br />

as a function of x.<br />

(b) Move the cursor along the graph to approximate<br />

the distance from the picture when is maximum.<br />

(c) Identify the asymptote of the graph and discuss its<br />

meaning in the context of the problem.<br />

108. GRANULAR ANGLE OF REPOSE Different types of<br />

granular substances naturally settle at different angles<br />

when stored in cone-shaped piles. This angle is<br />

called the angle of repose (see figure). When rock<br />

salt is stored in a cone-shaped pile 11 feet high, the<br />

diameter of the pile’s base is about 34 feet. (Source:<br />

Bulk-Store Structures, Inc.)<br />

(a) Find the angle of repose for rock salt.<br />

(b) How tall is a pile of rock salt that has a base<br />

diameter of 40 feet?<br />

109. GRANULAR ANGLE OF REPOSE When whole<br />

corn is stored in a cone-shaped pile 20 feet high, the<br />

diameter of the pile’s base is about 82 feet.<br />

(a) Find the angle of repose for whole corn.<br />

(b) How tall is a pile of corn that has a base diameter<br />

of 100 feet?<br />

110. ANGLE OF ELEVATION An airplane flies at an<br />

altitude of 6 miles toward a point directly over an<br />

observer. Consider and x as shown in the figure.<br />

θ<br />

θ<br />

17 ft<br />

<br />

x<br />

α<br />

x<br />

β<br />

11 ft<br />

θ<br />

Not drawn to scale<br />

<br />

<br />

6 mi<br />

<br />

Not drawn to scale<br />

(a) Write<br />

<br />

<br />

as a function of x.<br />

(b) Find when x 7 miles and x 1 mile.


350 Chapter 4 Trigonometry<br />

111. SECURITY PATROL A security car with its spotlight<br />

on is parked 20 meters from a warehouse. Consider<br />

and as shown in the figure.<br />

(a) Write<br />

as a function of x.<br />

(b) Find when x 5 meters and x 12 meters.<br />

EXPLORATION<br />

TRUE OR FALSE? In Exercises 112–114, determine<br />

whether the statement is true or false. Justify your answer.<br />

112.<br />

113.<br />

114.<br />

<br />

<br />

arctan x arcsin x<br />

arccos x<br />

115. Define the inverse cotangent function by restricting the<br />

domain of the cotangent function to the interval 0, ,<br />

and sketch its graph.<br />

116. Define the inverse secant function by restricting the<br />

domain of the secant function to the intervals 0, 2<br />

and 2, , and sketch its graph.<br />

117. Define the inverse cosecant function by restricting the<br />

domain of the cosecant function to the intervals<br />

2, 0 and 0, 2, and sketch its graph.<br />

In Exercises 119–126, use the results of Exercises 115–117 to<br />

evaluate each expression without using a calculator.<br />

119. arcsec2<br />

120. arcsec 1<br />

121. arccot1<br />

122. arccot3<br />

123. arccsc 2<br />

124. arccsc1<br />

125. arccsc <br />

23<br />

126. arcsec 23<br />

3 <br />

3 <br />

x<br />

sin 5<br />

arcsin 1 2 5<br />

6 1 2<br />

6<br />

tan 5<br />

arctan 1 5<br />

4 1 4<br />

In Exercises 127–134, use the results of Exercises 115–117<br />

and a calculator to approximate the value of the expression.<br />

Round your result to two decimal places.<br />

127. arcsec 2.54 128. arcsec1.52<br />

129. arccot 5.25 130. arccot10<br />

131. arccot 5 3<br />

132. arccot 16<br />

7 <br />

133. arccsc 25 3 134. arccsc12<br />

135. AREA In calculus, it is shown that the area of<br />

the region bounded by the graphs of y 0,<br />

y 1x 2 1, x a, and x b is given by<br />

Area arctan b arctan a<br />

(see figure). Find the area for the following values of a<br />

and b.<br />

(a)<br />

(c)<br />

(b)<br />

(d)<br />

136. THINK ABOUT IT Use a graphing utility to graph<br />

the functions<br />

f x x<br />

and<br />

For x > 0, it appears that g > f. Explain why you<br />

know that there exists a positive real number a such<br />

that g < f for x > a. Approximate the number a.<br />

137. THINK ABOUT IT Consider the functions given by<br />

f x sin x and f 1 x arcsin x.<br />

(a) Use a graphing utility to graph the composite<br />

functions f f 1 and f 1 f.<br />

(b) Explain why the graphs in part (a) are not the<br />

graph of the line y x. Why do the graphs of<br />

f f 1 and f 1 f differ?<br />

138. <strong>PRO</strong>OF Prove each identity.<br />

(a) arcsinx arcsin x<br />

(b) arctanx arctan x<br />

(c)<br />

a 0, b 1<br />

a 0, b 3<br />

−2 a b 2<br />

gx 6 arctan x.<br />

<br />

arctan x arctan 1 x 2 ,<br />

<br />

(d) arcsin x arccos x <br />

2<br />

x<br />

(e) arcsin x arctan<br />

1 x 2<br />

1<br />

y<br />

a 1, b 1<br />

a 1, b 3<br />

y =<br />

1<br />

x 2 + 1<br />

x<br />

x > 0


ERROR: rangecheck<br />

OFFENDING COMMAND: .buildshading2<br />

STACK:<br />

-dictionary-<br />

-dictionary-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!