28.02.2015 Views

An Experimental Study of Vertical Habitat Use and Habitat Shifts in ...

An Experimental Study of Vertical Habitat Use and Habitat Shifts in ...

An Experimental Study of Vertical Habitat Use and Habitat Shifts in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>Experimental</strong> <strong>Study</strong> <strong>of</strong> <strong>Vertical</strong> <strong>Habitat</strong> <strong>Use</strong> <strong>and</strong> <strong>Habitat</strong> <strong>Shifts</strong> <strong>in</strong> S<strong>in</strong>gle-species<br />

<strong>and</strong> Mixed-species Shoals <strong>of</strong> Native <strong>and</strong> Nonnative Congeneric Cypr<strong>in</strong>ids<br />

Br<strong>and</strong>on J. Kepl<strong>in</strong>ger<br />

Thesis Submitted to the<br />

Davis College <strong>of</strong> Agriculture, Forestry, <strong>and</strong> Consumer Sciences<br />

at West Virg<strong>in</strong>ia University<br />

<strong>in</strong> partial fulfillment <strong>of</strong> the requirements<br />

for the degree <strong>of</strong><br />

Master <strong>of</strong> Science<br />

<strong>in</strong><br />

Wildlife <strong>and</strong> Fisheries Resources<br />

Stuart A. Welsh, Ph. D., Chair<br />

Kyle J. Hartman, Ph. D.<br />

Daniel A. C<strong>in</strong>cotta, M. S.<br />

Division <strong>of</strong> Forestry<br />

Morgantown, WV<br />

2007<br />

Key Words: nonnative fish, aquaria study, congeneric species, Greenbrier River,<br />

mixed-species shoal, vertical habitat use <strong>and</strong> segregation, <strong>in</strong>terspecific <strong>in</strong>teractions


Abstract<br />

<strong>An</strong> <strong>Experimental</strong> <strong>Study</strong> <strong>of</strong> <strong>Vertical</strong> <strong>Habitat</strong> <strong>Use</strong> <strong>and</strong> <strong>Habitat</strong> <strong>Shifts</strong> <strong>in</strong> S<strong>in</strong>gle-species<br />

<strong>and</strong> Mixed-species Shoals <strong>of</strong> Native <strong>and</strong> Nonnative Congeneric Cypr<strong>in</strong>ids<br />

Br<strong>and</strong>on J. Kepl<strong>in</strong>ger<br />

This thesis <strong>in</strong>cludes two chapters. The first (Chapter 1) is a literature review<br />

focus<strong>in</strong>g on the ecological consequences <strong>of</strong> <strong>in</strong>troduced fishes on host communities, <strong>and</strong><br />

specifically on native fishes <strong>of</strong> similar morphology <strong>and</strong> phylogenetic orig<strong>in</strong>s. The second<br />

(Chapter 2) is a manuscript synthesiz<strong>in</strong>g the aquaria based study <strong>of</strong> the <strong>in</strong>terspecific<br />

relationships, with respect to habitat utilization, between two syntopically occurr<strong>in</strong>g<br />

congeneric species pairs <strong>in</strong> the Greenbrier River. Each pair consists <strong>of</strong> an <strong>in</strong>troduced <strong>and</strong><br />

a native cypr<strong>in</strong>id species. Several species native (<strong>of</strong>ten endemic) to the New River<br />

watershed are experienc<strong>in</strong>g reductions <strong>in</strong> abundance <strong>and</strong> distribution. Meanwhile, a<br />

concurrent <strong>in</strong>crease has occurred <strong>in</strong> the abundance <strong>and</strong> distribution <strong>of</strong> similar nonnative<br />

species. Chapter 2 focuses on the <strong>in</strong>terspecific <strong>in</strong>teractions that occur with respect to<br />

vertical water column position between a pair <strong>of</strong> native species, Notropis scabriceps<br />

(New River sh<strong>in</strong>er) <strong>and</strong> Cypr<strong>in</strong>ella spiloptera (spotf<strong>in</strong> sh<strong>in</strong>er), <strong>and</strong> a pair <strong>of</strong> nonnative<br />

species, Notropis telescopus (telescope sh<strong>in</strong>er) <strong>and</strong> Cypr<strong>in</strong>ella galactura (whitetail<br />

sh<strong>in</strong>er). These four species occur <strong>in</strong> the Greenbrier River (a tributary to the New).<br />

Observations were made us<strong>in</strong>g aquaria <strong>and</strong> vertical position categories. All four species<br />

were observed under allotopic <strong>and</strong> syntopic trials. Allotopic trials provided evidence for<br />

segregation <strong>in</strong> vertical water column preferences but syntopic trials revealed <strong>in</strong>tegration<br />

<strong>and</strong> mixed-species shoals. Laboratory-observed patterns <strong>of</strong> native/nonnative species<br />

<strong>in</strong>tegration likely occur <strong>in</strong> wild populations (<strong>in</strong> the New River dra<strong>in</strong>age). If laboratoryobserved<br />

patterns <strong>of</strong> species <strong>in</strong>tegration also occur <strong>in</strong> wild populations, then competitive<br />

<strong>in</strong>teractions will likely occur ow<strong>in</strong>g to the close association between native <strong>and</strong> nonnative<br />

species <strong>in</strong> the use <strong>of</strong> vertical habitat space. Additional studies, however, are<br />

needed to verify experimental f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> the natural environment <strong>of</strong> the Greenbrier River<br />

system.


Acknowledgements<br />

I would like to thank Dr. Stuart Welsh, the WVU Department <strong>of</strong> Forestry <strong>and</strong><br />

Natural Resources, <strong>and</strong> the WVU Cooperative Wildlife <strong>and</strong> Fisheries Research Unit for<br />

allow<strong>in</strong>g me the opportunity to attend graduate school <strong>and</strong> be a part <strong>of</strong> this very<br />

<strong>in</strong>terest<strong>in</strong>g study. Thanks also go to Dr. Kyle Hartman <strong>and</strong> Dan C<strong>in</strong>cotta for serv<strong>in</strong>g on<br />

my committee <strong>and</strong> their useful suggestions for improv<strong>in</strong>g my thesis. Additionally, I<br />

would like to thank the WVU Department <strong>of</strong> Biology for provid<strong>in</strong>g employment <strong>and</strong><br />

teach<strong>in</strong>g assistantships, <strong>and</strong> the US Forest Service for project fund<strong>in</strong>g.<br />

I would like to extend special thanks to those <strong>in</strong>dividuals that helped with the<br />

project: Dust<strong>in</strong> Smith, Dust<strong>in</strong> Wichterman, Jason Stolarsky, Holly Henderson, Roy<br />

Mart<strong>in</strong>, <strong>and</strong> last but not least, Samantha Warner, who provided hours <strong>of</strong> physical<br />

assistance without pay. Thanks also go to Dr. Seidel for statistical guidance.<br />

F<strong>in</strong>ally, I would like to thank my family for their support <strong>and</strong> encouragement <strong>and</strong><br />

my fiancée Samantha Warner for her love <strong>and</strong> devotion.<br />

iii


TABLE OF CONTENTS<br />

ABSTRACT........................................................................................................................ ii<br />

ACKNOWLEDGEMENTS............................................................................................... iii<br />

LIST OF FIGURES .............................................................................................................v<br />

LIST OF TABLES...............................................................................................................v<br />

CHAPTER 1: LITERATURE REVIEW.............................................................................1<br />

Literature Review...........................................................................................................1<br />

Review <strong>of</strong> <strong>Study</strong> Area/Related Studies .........................................................................16<br />

LITERATURE CITED ................................................................................................22<br />

CHAPTER 2: LABORATORY OBSERVED INTERSPECIFIC INTERACTIONS<br />

BETWEEN NATIVE AND NONNATIVE GREENBRIER RIVER CONGENERICS ..30<br />

ABSTRACT.................................................................................................................30<br />

INTRODUCTION .......................................................................................................32<br />

METHODS ..................................................................................................................34<br />

Specimen Collection <strong>and</strong> Transport.......................................................................34<br />

Aquaria Setup.........................................................................................................35<br />

Allotopic <strong>and</strong> Syntopic Experiments ......................................................................35<br />

RESULTS ....................................................................................................................37<br />

Notropis Congeners ...............................................................................................37<br />

Cypr<strong>in</strong>ella Congeners ............................................................................................38<br />

DISCUSSION..............................................................................................................39<br />

LITERATURE CITED ................................................................................................43<br />

APPENDIX........................................................................................................................46<br />

iv


LIST OF TABLES<br />

Table 1. Results <strong>of</strong> Chi square Tests for Independence for Notropis congeners..............46<br />

Table 2. Results <strong>of</strong> Chi square Tests for Independence for Cypr<strong>in</strong>ella congeners...........47<br />

LIST OF FIGURES<br />

Figure 1. Relationship between allotpic vertical positions <strong>of</strong> Notropis <strong>and</strong> Cypr<strong>in</strong>ella<br />

congeners .....................................................................................................................48<br />

Figure 2. Relationship between vertical placements <strong>of</strong> Notropis <strong>and</strong> Cypr<strong>in</strong>ella<br />

congeners dur<strong>in</strong>g all syntopic trials <strong>and</strong> tank replications...........................................49<br />

Figure 3. Relationship between allotpic <strong>and</strong> syntopic vertical positions<br />

<strong>of</strong> all Notropis <strong>and</strong> Cypr<strong>in</strong>ella congeners ....................................................................50<br />

v


Chapter 1: Literature Review<br />

Literature Review<br />

Extensive literature searches were performed on such topics as niche theory,<br />

speciation, competitive exclusion (<strong>and</strong> other outcomes <strong>of</strong> nonnative species<br />

<strong>in</strong>troductions), characteristics <strong>of</strong> host watersheds susceptible to <strong>in</strong>vasion, common<br />

characteristics <strong>of</strong> <strong>in</strong>vasive fish species, the risks <strong>of</strong> hybridization with native species, <strong>and</strong><br />

behavioral habitat segregation. To underst<strong>and</strong> the competitive relationships between<br />

closely related species <strong>and</strong> the harmful possibilities <strong>of</strong> mix<strong>in</strong>g similar vicariant species,<br />

one must first beg<strong>in</strong> to underst<strong>and</strong> the tenets <strong>of</strong> niche theory <strong>and</strong> competitive exclusion.<br />

Un<strong>in</strong>terrupted biological succession among similar species over time is necessary<br />

for <strong>in</strong>creas<strong>in</strong>gly close-knit associations <strong>and</strong> reciprocal adaptations (Odum 1969). Long<br />

periods <strong>of</strong> un<strong>in</strong>terrupted <strong>in</strong>teractions between biotic communities allow the possibility <strong>of</strong><br />

coexistence <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> the degree <strong>of</strong> species specialization (MacArthur <strong>and</strong><br />

Lev<strong>in</strong>s 1967, Odum 1969). This is especially true when consider<strong>in</strong>g areas possess<strong>in</strong>g<br />

migration barriers (Pianka 1966). Migratory pathways would be elim<strong>in</strong>ated, disallow<strong>in</strong>g<br />

the onslaught <strong>of</strong> congeners or similar species that could compete with species typify<strong>in</strong>g<br />

the current assemblage. Thus, symbiotically coevolved species assemblages are <strong>of</strong>ten<br />

formed with<strong>in</strong> areas <strong>in</strong> which natural isolat<strong>in</strong>g barriers occur (Pianka 1966). This<br />

assumes that factors allow<strong>in</strong>g divergence <strong>and</strong> co-evolution, such as time <strong>and</strong> ecological<br />

stability, are present <strong>and</strong> substantial enough to create ecologically stable communities<br />

(Pianka 1966, Odum 1969, Schoener et al. 1979). The net result <strong>of</strong> un<strong>in</strong>terrupted<br />

succession over time is stability; however, perturbations <strong>of</strong> the community’s <strong>in</strong>terspecific<br />

framework <strong>and</strong> anthropogenic stresses can deteriorate this stability (Odom 1969).<br />

1


In order for similar species to avoid competitive exclusion they must be capable<br />

<strong>of</strong> partition<strong>in</strong>g some aspect <strong>of</strong> the trophic, spatial, or temporal variables <strong>of</strong> habitat usage<br />

(MacArthur <strong>and</strong> Lev<strong>in</strong>s 1964, Pianka 1974). Effects <strong>of</strong> competition, such as decreased<br />

survivorship <strong>and</strong> fecundity, are reduced through natural selection <strong>in</strong> lieu <strong>of</strong> more<br />

favorable traits (Murray 1986). Differentiation <strong>of</strong> breed<strong>in</strong>g strategies, behavior,<br />

susceptibility to biochemical hazards, or resistance to the effects <strong>of</strong> environmental<br />

stochasticity is needed for <strong>in</strong>terspecific traits to rema<strong>in</strong> dist<strong>in</strong>ct (Harper et al. 1961). Such<br />

evolutionary specializations are more pronounced <strong>in</strong> complex, heterogeneous<br />

environments (Murray 1986). Increased niche dimensionality allows greater ecological<br />

pack<strong>in</strong>g, thus allow<strong>in</strong>g an environment to accommodate a greater number <strong>of</strong> species<br />

(MacArthur <strong>and</strong> Lev<strong>in</strong>s 1967). Similarly, it is believed that the number <strong>of</strong> related species<br />

coexist<strong>in</strong>g <strong>in</strong> a given ecosystem is strongly dependent on the width <strong>and</strong> overlap <strong>of</strong> those<br />

species’ niches (Pielou 1972). Complete, non-<strong>in</strong>terbreed<strong>in</strong>g competitors cannot coexist<br />

without evolutionary divergence, readjusted niche widths, or competitive elim<strong>in</strong>ation <strong>of</strong><br />

one <strong>of</strong> the species (Hard<strong>in</strong> 1960, Pianka 1966, Pianka 1974). Problems occur when<br />

ecological processes set <strong>in</strong>to place through disturbances disrupt stable evolutionary<br />

processes (Pianka 1966). The <strong>in</strong>troduction <strong>of</strong> a non-<strong>in</strong>digenous species that acquires<br />

already utilized niche space <strong>in</strong> a new region would be an example <strong>of</strong> such a disturbance.<br />

The chance exists for competitive exclusion to occur if two similar, geographically<br />

separated species are mixed (Hard<strong>in</strong> 1960). To make matters worse, established<br />

<strong>in</strong>troduced species <strong>of</strong>ten utilize a realized niche that more closely resembles its<br />

fundamental niche <strong>in</strong> the host community (Li <strong>and</strong> Moyle 1981). Thus, species<br />

2


transported from habitats that are more compartmentalized between species will likely<br />

exploit a broader niche <strong>in</strong> a more depauperate host community.<br />

Authors have long s<strong>in</strong>ce commented on the deleterious effects that <strong>in</strong>troduced <strong>and</strong><br />

<strong>in</strong>vasive species have on host ecosystems (Elton 1958, Lachner et al. 1970, Magnuson<br />

1976, Ross 1991). <strong>An</strong>y new biological addition to an aquatic ecosystem will result <strong>in</strong> a<br />

modification <strong>of</strong> that ecosystem (Courtenay <strong>and</strong> Hensley 1980). Introductions <strong>in</strong>to<br />

undisturbed habitats require the competition <strong>of</strong> space <strong>and</strong> food (Herbold <strong>and</strong> Moyle<br />

1986). Thus, native <strong>in</strong>dividuals cannot reach maximum probabilities <strong>of</strong> survival <strong>and</strong><br />

reproduction <strong>in</strong> the presence <strong>of</strong> <strong>in</strong>troduced competitors (Murray 1986). This implies that<br />

direct or <strong>in</strong>direct competition will occur with resident species <strong>in</strong> the host ecosystem<br />

(Courtenay <strong>and</strong> Hensley 1980). Reviews <strong>of</strong> most exotic fishes <strong>in</strong>dicate some undesirable<br />

effect on native fish assemblages (Ross 1991).<br />

Several outcomes can result from the <strong>in</strong>troduction <strong>of</strong> non-<strong>in</strong>digenous species.<br />

Introduced species may fail to become established, become established with vary<strong>in</strong>g<br />

<strong>in</strong>fluences on sympatric species, <strong>and</strong> full establishment caus<strong>in</strong>g the displacement <strong>of</strong> the<br />

native species (Courtenay <strong>and</strong> Hensley 1980, Ross 1986, Walser et al. 2000). Ecological<br />

<strong>in</strong>teractions among the native <strong>and</strong> nonnative species will dictate the outcome <strong>of</strong> an<br />

<strong>in</strong>troduction.<br />

The degree <strong>of</strong> success obta<strong>in</strong>ed by a nonnative <strong>in</strong> displac<strong>in</strong>g native species will<br />

play a large roll <strong>in</strong> how greatly the host system is affected. Nonnative species success<br />

can be directly or <strong>in</strong>directly affected by a variety <strong>of</strong> biotic <strong>and</strong> abiotic <strong>in</strong>teractions <strong>in</strong> the<br />

new environment (<strong>An</strong>germeier <strong>and</strong> W<strong>in</strong>ston 1998, Mooney <strong>and</strong> Clel<strong>and</strong> 2001). As<br />

environmental stability <strong>and</strong> food availability <strong>in</strong>crease, niche breadths should decrease <strong>and</strong><br />

3


species diversity should <strong>in</strong>crease (MacArthur <strong>and</strong> Lev<strong>in</strong>s 1967). Therefore, biotic<br />

factors, abiotic factors, or both could control a system’s species assemblage (Ross 1991).<br />

This depends ma<strong>in</strong>ly on the population stability <strong>of</strong> those species as controlled by<br />

environmental stochasticity <strong>and</strong> competition amongst species with<strong>in</strong> that assemblage<br />

(Ross 1991). More stable aquatic environments (communities at equilibrium) would<br />

more likely be controlled primarily by competitive factors between species. However,<br />

those that experience harsh environmental fluctuations (communities not at equilibrium)<br />

would likely be primarily <strong>in</strong>fluenced by abiotic factors such as high flows <strong>in</strong> aquatic<br />

systems (Ross 1986, Freeman et al. 1988, Ross 1991). It is reasonable to assume that<br />

highly <strong>in</strong>vadable aquatic systems will share many <strong>of</strong> these biotic/abiotic factors thought<br />

to <strong>in</strong>crease the chances <strong>of</strong> successful <strong>in</strong>vasions. Due to the fact that this thesis is solely<br />

directed towards <strong>in</strong>teractions between small, non-piscivorous fishes, we should be most<br />

concerned with factors regulat<strong>in</strong>g the ecological <strong>in</strong>teractions between those species.<br />

Many <strong>of</strong> these factors will be discussed <strong>in</strong> greater detail at this time.<br />

Abiotic factors <strong>in</strong>clude environmental conditions (water quality, climate, geology,<br />

gradient, flow, etc.), suitable habitat availability, watershed connectivity, <strong>and</strong><br />

geographical isolation. However, the biology <strong>of</strong> a given species will determ<strong>in</strong>e whether<br />

or not these abiotic factors will be beneficial or deleterious. In order for aquatic<br />

<strong>in</strong>vasions to occur the <strong>in</strong>troduced environment must be suitable for that species’ survival.<br />

The more suitable the <strong>in</strong>troduced environment is for nonnative <strong>in</strong>troductions, the more<br />

susceptible the native assemblage is to change after that species has become established.<br />

Fluctuat<strong>in</strong>g environmental conditions can alter the state <strong>of</strong> environments to<br />

benefit or <strong>in</strong>hibit the colonization <strong>of</strong> <strong>in</strong>troduced species. It has been stated that climate<br />

4


stability is an <strong>in</strong>dicator <strong>of</strong> the number <strong>of</strong> potential “coarse-gra<strong>in</strong>ed” - specialist - species<br />

<strong>in</strong> a given area (MacArthur <strong>and</strong> Lev<strong>in</strong>s 1964). Both temperature (Courtenay <strong>and</strong> Hensley<br />

1980) <strong>and</strong> flow (Cross et al. 1983) have been speculated to be <strong>in</strong>hibitors <strong>of</strong> <strong>in</strong>troduced<br />

species <strong>in</strong> coloniz<strong>in</strong>g a new area. Temperature has been postulated as a major factor<br />

govern<strong>in</strong>g the distribution <strong>of</strong> a sensitive sh<strong>in</strong>er species, Notropis scabriceps, <strong>in</strong> the<br />

Greenbrier River (Sh<strong>in</strong>gleton et al. 1981) <strong>and</strong> <strong>in</strong> many high gradient, high altitude<br />

streams (Burton <strong>and</strong> Odum 1945). Chang<strong>in</strong>g environmental conditions have been cited<br />

as factors that could potentially reduce the effects <strong>of</strong> <strong>in</strong>terspecific competition by<br />

alternat<strong>in</strong>g the level <strong>of</strong> favorability between two species (Murray 1986). A study <strong>of</strong> a<br />

cypr<strong>in</strong>id species <strong>in</strong> an environmentally unstable southwestern river suggested that habitat<br />

partition<strong>in</strong>g was <strong>of</strong> lesser importance to the perpetuity <strong>of</strong> community structure. Instead,<br />

adaptability to various temporal fluctuations <strong>in</strong> flow, pH, temperature, <strong>and</strong> dissolved<br />

oxygen were attributed to the species’ success (Matthews <strong>and</strong> Hill 1980). Alternatively,<br />

altered environmental conditions may also disrupt native assemblages by reduc<strong>in</strong>g the<br />

range <strong>of</strong> native populations <strong>and</strong> allow<strong>in</strong>g the establishment <strong>of</strong> less sensitive species. A<br />

study <strong>of</strong> sh<strong>in</strong>ers <strong>in</strong> the Arkansas River bas<strong>in</strong> suggests that flow is the ma<strong>in</strong> factor limit<strong>in</strong>g<br />

the <strong>in</strong>vasive congener Notropis bairdi from exp<strong>and</strong><strong>in</strong>g its range upstream where the<br />

native Notropis girardi has already been displaced (Cross et al. 1983). Similarly, Perc<strong>in</strong>a<br />

roanoka, <strong>in</strong>troduced to the Greenbrier River, has been shown to hold position <strong>in</strong> higher<br />

velocities than the native Etheostoma flaballare without actively swimm<strong>in</strong>g (Matthews et<br />

al. 1982, Matthews 1985). This suggests that the <strong>in</strong>troduced species <strong>in</strong> this case can<br />

occupy fast water areas that the native confamilial species cannot. <strong>An</strong>other study<br />

suggests that a species assemblage <strong>in</strong> a southern Appalachian stream is very dynamic,<br />

5


not<strong>in</strong>g that the abundance <strong>of</strong> some species is more susceptible to, <strong>and</strong> thus regulated by,<br />

environmental factors (Freeman et al. 1988). This is ma<strong>in</strong>ly due to morphological<br />

features <strong>and</strong> the ability <strong>of</strong> benthic fish to hold position more efficiently than water<br />

column species dur<strong>in</strong>g <strong>in</strong>creased flow. There is no doubt an abundance <strong>of</strong> <strong>in</strong>stances<br />

where environmental conditions have disallowed <strong>in</strong>troduced species to colonize new<br />

environments. However, it is very difficult to document an attempt at colonization by a<br />

species if that species fails to become established before its presence can be recorded<br />

(Williamson <strong>and</strong> Fitter 1996).<br />

Suitable habitat availability can determ<strong>in</strong>e whether or not a species becomes<br />

established <strong>and</strong> persists <strong>in</strong> a new environment (Courtenay <strong>and</strong> Hensley 1980).<br />

Competitors will eventually exclude one another from habitats that are homogeneous<br />

with respect to a limit<strong>in</strong>g resource (Dueser <strong>and</strong> Porter 1986, Murray 1986). The number<br />

<strong>of</strong> fish species an aquatic system can hold at equilibrium depends greatly on habitat size<br />

<strong>and</strong> complexity (Harper et al. 1961, Magnuson 1976). For example, <strong>in</strong>creased<br />

environmental variability has been correlated with a decrease <strong>in</strong> niche overlap <strong>in</strong><br />

sympatric desert lizard species (Pianka 1974). <strong>Habitat</strong> complexity is <strong>of</strong>ten lower <strong>in</strong> small<br />

aquatic environments than <strong>in</strong> large ones. Increased susceptibility to local ext<strong>in</strong>ctions is a<br />

common result <strong>of</strong> this phenomenon (Magnuson 1976). With respect to <strong>in</strong>troduced<br />

species, m<strong>and</strong>atory habitat characteristics may already be utilized or completely absent <strong>in</strong><br />

the host environment. Thus, if an <strong>in</strong>troduced species requires a particular habitat<br />

characteristic colonization may not be feasible <strong>in</strong> the new area.<br />

Low watershed connectivity or the degree <strong>of</strong> geographical isolation can limit the<br />

ease <strong>of</strong> which an <strong>in</strong>vasive species can reach a particular stream segment through natural<br />

6


arriers (Harper et al. 1961, Jenk<strong>in</strong>s et al. 1972, Magnuson 1976, Sheldon 1988). Natural<br />

barriers to migration <strong>in</strong>clude cataracts, <strong>in</strong>tense gradients, <strong>and</strong> <strong>in</strong>terior areas <strong>of</strong> remote<br />

tracts <strong>of</strong> l<strong>and</strong>. Isolated watersheds can be very susceptible to <strong>in</strong>vasion by non-<strong>in</strong>digenous<br />

species which can somehow migrate or are transported <strong>in</strong>to undisturbed areas (Magnuson<br />

1976, Herbold <strong>and</strong> Moyle 1986, Mack et al. 2000). Insularity is also positively l<strong>in</strong>ked<br />

with geographical specialization, which is suggested to be a characteristic <strong>of</strong> ext<strong>in</strong>ction<br />

prone species (<strong>An</strong>germeier 1995). The construction <strong>of</strong> impassable artificial barriers, such<br />

as dams <strong>and</strong> reservoirs, fits <strong>in</strong>to this category. Species richness above was reduced<br />

shortly after an artificial impoundment was erected <strong>in</strong> the Red River dra<strong>in</strong>age <strong>in</strong><br />

southwest Oklahoma. The presumably extirpated cypr<strong>in</strong>id species above the dam,<br />

Notropis bairdi <strong>and</strong> Hybognathus placitus, were likely replaced by two similar m<strong>in</strong>now<br />

species, Notropis ather<strong>in</strong>oides <strong>and</strong> Notropis stram<strong>in</strong>eus (W<strong>in</strong>ston et al. 1991).<br />

Furthermore, the ability to transport species across geographic regions is <strong>in</strong>creas<strong>in</strong>g due<br />

to technological advances (Elton 1958, Courtenay <strong>and</strong> Hensley 1980, Moyle 1986,<br />

Mooney <strong>and</strong> Clel<strong>and</strong> 2001). Therefore, the importance <strong>of</strong> watershed connectivity<br />

becomes less prom<strong>in</strong>ent <strong>in</strong> areas with a high degree <strong>of</strong> anthropogenic activity.<br />

Biotic factors are primarily dependent on the degree <strong>of</strong> biological <strong>in</strong>teractions<br />

with<strong>in</strong> a community. Thus, these factors become very important <strong>in</strong> the restructur<strong>in</strong>g <strong>of</strong><br />

biotic communities follow<strong>in</strong>g the <strong>in</strong>troduction <strong>of</strong> nonnative species. Biotic factors are<br />

either associated with the <strong>in</strong>troduced or the <strong>in</strong>vad<strong>in</strong>g species, their native assemblages, or<br />

biological characters that can be affected <strong>in</strong> either. These <strong>in</strong>clude the follow<strong>in</strong>g: the<br />

degree <strong>of</strong> species depauperacy <strong>and</strong> niche availability <strong>in</strong> the respected assemblages;<br />

degree <strong>of</strong> habitat specialization, competitive <strong>in</strong>teractions, <strong>and</strong> genetic variability<br />

7


exhibited by species <strong>in</strong>volved; the presence <strong>of</strong> congeneric or taxonomic relatives <strong>in</strong> the<br />

host assemblage; hybridization <strong>and</strong> <strong>in</strong>trogression; number <strong>of</strong> <strong>in</strong>vad<strong>in</strong>g <strong>in</strong>dividuals <strong>in</strong> the<br />

source population <strong>and</strong> the frequency <strong>of</strong> those <strong>in</strong>vasions; predator <strong>and</strong> parasite <strong>in</strong>teractions<br />

<strong>in</strong> the host environment; <strong>and</strong> anthropogenic disturbances.<br />

The effects <strong>of</strong> <strong>in</strong>troduced species on an ecosystem can be <strong>in</strong>tensified if the<br />

environment is under-saturated (Moyle 1986, <strong>An</strong>germeier 1995, <strong>An</strong>germeier <strong>and</strong><br />

W<strong>in</strong>ston 1998, Case 1991). In theory, the greater the number <strong>of</strong> species <strong>in</strong> an<br />

environment, the smaller the amount <strong>of</strong> exist<strong>in</strong>g niche space available to immigrants. As<br />

the number <strong>of</strong> fish species decreases <strong>in</strong> an aquatic environment, the ability <strong>of</strong> immigrants<br />

to become established <strong>in</strong>creases (Magnuson 1976, Perry et al. 2002). The New River is<br />

historically depauperate <strong>in</strong> native fish species (Jenk<strong>in</strong>s et al. 1972, Hocutt et al. 1978,<br />

C<strong>in</strong>cotta 1999, Wellman 2004). Isolated aquatic systems with natural barriers to<br />

migration <strong>of</strong>ten have low levels <strong>of</strong> species diversity (Jenk<strong>in</strong>s et al. 1972, Magnuson 1976,<br />

<strong>and</strong> Sheldon 1988, <strong>An</strong>germeier 1995). If niche partition<strong>in</strong>g is important <strong>in</strong> structur<strong>in</strong>g<br />

species assemblages then partition<strong>in</strong>g should <strong>in</strong>crease as species number <strong>in</strong>creases<br />

(Schoener 1974). Therefore, resistance to <strong>in</strong>vasion should also <strong>in</strong>creases as species<br />

richness <strong>in</strong>creases (Elton 1958, Magnuson 1976, <strong>An</strong>germeier <strong>and</strong> W<strong>in</strong>ston 1998, Walser<br />

et al. 2000). Similarly, disparity <strong>of</strong> freshwater habitat may limit resources <strong>and</strong> <strong>in</strong>crease<br />

the importance <strong>of</strong> resource partition<strong>in</strong>g, mak<strong>in</strong>g competitive <strong>in</strong>teractions much more<br />

important (Ross 1986).<br />

Released niche space <strong>and</strong> decreased diversity provides an opportunity for the<br />

colonization <strong>of</strong> <strong>in</strong>vasive species (Hocutt <strong>and</strong> Hambrick 1973). Simberl<strong>of</strong>f (1981) stated<br />

that areas possess<strong>in</strong>g vacant niches due to impoverished species numbers are susceptible<br />

8


to non<strong>in</strong>digenous species <strong>in</strong>vasions. However, it has been argued that <strong>in</strong>vad<strong>in</strong>g<br />

organisms rearrange communities <strong>and</strong> exist<strong>in</strong>g niches <strong>in</strong>stead <strong>of</strong> fill<strong>in</strong>g an empty niche<br />

(Herbold <strong>and</strong> Moyle 1986). For this reason, terms such as underutilized <strong>and</strong> available<br />

niche space will be used <strong>in</strong> the context <strong>of</strong> this paper (Mack 2000, Herbold <strong>and</strong> Moyle<br />

1986). This can only occur if there is exploitable niche space that can be utilized by the<br />

<strong>in</strong>vad<strong>in</strong>g species (Courtenay <strong>and</strong> Hensley 1980, Mack et al. 2000, Mooney <strong>and</strong> Clel<strong>and</strong><br />

2001). Alterations <strong>of</strong> fish communities can be very destructive to natural systems as<br />

<strong>in</strong>troduced species can <strong>in</strong>terrupt the partition<strong>in</strong>g <strong>of</strong> niches evolved over time (Mooney<br />

<strong>and</strong> Clel<strong>and</strong> 2001). The importance <strong>of</strong> niche partition<strong>in</strong>g <strong>in</strong> natural fish assemblages<br />

possess<strong>in</strong>g small, non-game congeneric species has been discussed extensively <strong>in</strong> past<br />

literature (Gilbert 1969a, Hocutt <strong>and</strong> Hambrick 1973, Adamson <strong>and</strong> Wiss<strong>in</strong>g 1977, Page<br />

<strong>and</strong> Schemske 1978, Baker <strong>and</strong> Ross 1981, F<strong>in</strong>ger 1982, Matthews et al. 1982, Pa<strong>in</strong>e et<br />

al. 1982, Surat et al. 1982, Hlohowskyj <strong>and</strong> White 1983, Vadas 1992, Chipps et al. 1993,<br />

Eisenhour 1995, Strange 1998). In assemblages that are regulated by density dependent<br />

<strong>in</strong>teractions, competition plays a large role <strong>in</strong> partition<strong>in</strong>g those species’ niches (Freeman<br />

et al. 1988, Ross 1991).<br />

The degree <strong>of</strong> ecological specialization is strongly l<strong>in</strong>ked to habitat availability,<br />

an abiotic factor mentioned above. A variety <strong>of</strong> different habitat <strong>and</strong> microhabitat types<br />

can be used by fish species. This depends greatly on the complexity <strong>of</strong> life history<br />

characteristics. It has been suggested that species with narrow niche-breadths are “ideal<br />

c<strong>and</strong>idates” for <strong>in</strong>troduction due to the low likelihood <strong>of</strong> substantial competition with<br />

native species (Li <strong>and</strong> Moyle 1981). The range <strong>of</strong> microhabitats used is positively<br />

correlated with species abundance <strong>and</strong> the likelihood <strong>of</strong> successful <strong>in</strong>troduction <strong>in</strong>to a<br />

9


new environment (Dueser <strong>and</strong> Porter 1986, <strong>An</strong>germeier 1995). The majority <strong>of</strong><br />

<strong>in</strong>troduced species that have become established are opportunists, some are generalists,<br />

but none are truly specialists (Courtenay <strong>and</strong> Hensley 1980, Walser et al. 2000). In fact,<br />

geographic <strong>and</strong> habitat specialists have been found to be more prone to ext<strong>in</strong>ction as<br />

natural habitats cont<strong>in</strong>ue to change (<strong>An</strong>germeier 1995). Large geometrical <strong>and</strong> ecological<br />

distances between habitat patches <strong>in</strong>creases mortality <strong>of</strong> specialist fish species. This is<br />

largely due to <strong>in</strong>creased energy dem<strong>and</strong>s, predation, <strong>and</strong> exposure to unfavorable<br />

conditions associated with excessive migratory efforts (Kolasa 1989). <strong>An</strong>thropogenic<br />

alterations exacerbate this effect by reduc<strong>in</strong>g the availability <strong>and</strong> proximity <strong>of</strong> suitable<br />

habitat patches (Kolasa 1989).<br />

Competitive <strong>in</strong>teractions are very important, especially when consider<strong>in</strong>g<br />

saturated watersheds with little underutilized niche space (<strong>An</strong>germeier <strong>and</strong> W<strong>in</strong>ston<br />

1998). Competition can also occur over a variety <strong>of</strong> different habitat axes. Ross (1991)<br />

<strong>in</strong>cluded three primary axes: spatial (horizontal or vertical), temporal (seasonal <strong>and</strong><br />

diurnal periodicity <strong>of</strong> feed<strong>in</strong>g <strong>and</strong> reproduction), <strong>and</strong> trophic (size <strong>and</strong> type <strong>of</strong> food <strong>and</strong><br />

substrate). Competition is the dom<strong>in</strong>ant force <strong>in</strong>volved <strong>in</strong> the segregation <strong>of</strong><br />

microhabitats (Dueser <strong>and</strong> Porter 1986). A study assess<strong>in</strong>g the microhabitats <strong>of</strong><br />

congeneric rodents showed that the distribution <strong>of</strong> only one species was determ<strong>in</strong>ed more<br />

by competition than by habitat structure (Dueser <strong>and</strong> Porter 1986). However, that species<br />

was a recent entrant <strong>in</strong>to the isl<strong>and</strong>’s fauna, hav<strong>in</strong>g a relatively short period <strong>of</strong> time to<br />

experience “competitive co-evolution” with the other species. A study <strong>of</strong> a cypr<strong>in</strong>id fish<br />

community <strong>in</strong> an environmentally unstable southwestern stream suggested that<br />

competition played a huge role <strong>in</strong> those species’ seasonal abundance. Dw<strong>in</strong>dl<strong>in</strong>g food<br />

10


esources <strong>and</strong> physico-chemical stressors <strong>in</strong>creased niche overlap by concentrat<strong>in</strong>g<br />

<strong>in</strong>dividuals <strong>in</strong> more pr<strong>of</strong>itable, stable habitats (Matthews <strong>and</strong> Hill 1980). There is<br />

evidence <strong>of</strong> reproductive niche partition<strong>in</strong>g <strong>in</strong> many fish species. For example, darters<br />

have evolved several different types <strong>of</strong> reproductive strategies utilized over a variety <strong>of</strong><br />

substrates, which reduces congeneric <strong>and</strong> confamilial spawn<strong>in</strong>g site competition (Page<br />

<strong>and</strong> Sw<strong>of</strong>ford 1984). Prolonged spawn<strong>in</strong>g seasons, a temporal issue, results <strong>in</strong> a greater<br />

reproductive potential. If an <strong>in</strong>vasive species could reproduce more <strong>of</strong>ten over a longer<br />

period <strong>of</strong> time, it may allow the competitive exclusion <strong>of</strong> native species (Courtenay <strong>and</strong><br />

Hensley 1980). Interference <strong>and</strong> exploitation competition for spatial position was<br />

demonstrated when three Cottus species were found sympatrically <strong>in</strong> an Oregon stream<br />

(F<strong>in</strong>ger 1982). A study observ<strong>in</strong>g the variation <strong>in</strong> habitat use <strong>of</strong> eight southeastern<br />

cypr<strong>in</strong>ids demonstrated an overlap <strong>in</strong> the spatial <strong>and</strong> seasonal dimensions <strong>of</strong> two<br />

confamilial species (Baker <strong>and</strong> Ross 1981). The authors attributed the coexistence <strong>of</strong> the<br />

two similar species to diel feed<strong>in</strong>g patterns. Notropis longirostris fed diurnally while<br />

Ericymba buccata fed nocturnally (Baker <strong>and</strong> Ross 1981). Competition over food <strong>and</strong><br />

habitat has been suspected as the mechanism responsible for the establishment <strong>of</strong> an<br />

<strong>in</strong>troduced sh<strong>in</strong>er species <strong>in</strong>to the resident fish community (Walser et al. 2000).<br />

However, <strong>in</strong>troduced <strong>and</strong> native species can thrive sympatrically if resources such as<br />

food <strong>in</strong> the host ecosystem are non-limit<strong>in</strong>g (Moyle 1986, Walser et al. 2000).<br />

Interspecific competition is highly connected to the acquisition <strong>and</strong> ma<strong>in</strong>tenance <strong>of</strong> niche<br />

space. The structure <strong>of</strong> exist<strong>in</strong>g fish assemblages are the result <strong>of</strong> a legacy <strong>of</strong> competition<br />

between similar species <strong>and</strong> the subsequent partition<strong>in</strong>g <strong>of</strong> niche hypervolume. It has<br />

been suggested that co-evolved species are “ideal c<strong>and</strong>idates” for <strong>in</strong>troductions <strong>in</strong>to a<br />

11


host environment, propos<strong>in</strong>g that a lesser chance <strong>of</strong> substantial niche overlap exists under<br />

these circumstances (Li <strong>and</strong> Moyle 1981). Infr<strong>in</strong>gement <strong>of</strong> non-<strong>in</strong>digenous species upon<br />

niche space already allocated to native members <strong>of</strong> a native assemblage can disrupt the<br />

structured evolution <strong>of</strong> that community. The effects <strong>of</strong> <strong>in</strong>troduced sh<strong>in</strong>er species on<br />

native congenerics have been well documented: Mathur (1977), Cross et al. (1983), <strong>and</strong><br />

Walser et al. (2000).<br />

The genetic capability <strong>of</strong> a species to adapt to a new area may determ<strong>in</strong>e whether<br />

an <strong>in</strong>troduced species will become established. Differences between coexist<strong>in</strong>g species<br />

today are primarily due to past competitive <strong>in</strong>teractions (Harper et al. 1961, Surat et al.<br />

1982). The genetic makeup <strong>of</strong> a newly <strong>in</strong>troduced species population depends on the<br />

genetic variability <strong>of</strong> those found<strong>in</strong>g <strong>in</strong>dividuals. In a study <strong>of</strong> sympatric sh<strong>in</strong>er species,<br />

the genetic differences between populations <strong>in</strong> different dra<strong>in</strong>ages were hypothesized to<br />

be due to founder populations from different genetic refugia (Dowl<strong>in</strong>g et al. 1989).<br />

Genetic change, occurr<strong>in</strong>g with<strong>in</strong> the founder populations <strong>in</strong>troduced to new ecosystems,<br />

is one mechanism <strong>in</strong>volved <strong>in</strong> the common “lag phase” observed after an <strong>in</strong>troduction<br />

(Mooney <strong>and</strong> Clel<strong>and</strong> 2001). If the species is genetically capable <strong>of</strong> evolv<strong>in</strong>g<br />

characteristics beneficial to the new environment, a subsequent population boom may<br />

occur. This may lead to the competitive exclusion <strong>of</strong> a similar native species. Species <strong>in</strong><br />

the native assemblage may also evolve <strong>in</strong> response to an established <strong>in</strong>troduced species<br />

(Mooney <strong>and</strong> Clel<strong>and</strong> 2001). If this doesn’t occur, the native species may experience<br />

dramatic population decl<strong>in</strong>es or extirpations due to the <strong>in</strong>ability to withst<strong>and</strong> competitive<br />

forces (Elton 1958, Mack et al. 2000). Geographically isolated species will be exposed to<br />

different forces <strong>of</strong> selection, which <strong>of</strong>ten leads to differential adaptations (Harper et al.<br />

12


1961). Similar species from watersheds devoid <strong>of</strong> major migration barriers may exploit a<br />

greater degree <strong>of</strong> stream connectivity <strong>and</strong> <strong>in</strong>creased gene flow between species members.<br />

Thus, species located below major migration barriers are known to have a higher<br />

frequency <strong>of</strong> genetic heterogeneity than the same species located above the barrier<br />

(Echelle et al. 1976). This suggests that the displacement <strong>of</strong> native species by congeneric<br />

endemics could occur due to greater genetic diversity-or plasticity- (Hocutt <strong>and</strong><br />

Hambrick 1973) when transported across migratory barriers.<br />

The <strong>in</strong>troduction <strong>of</strong> species <strong>in</strong>to areas where congeneric natives are present can be<br />

especially deteriorative to the native species (Hocutt <strong>and</strong> Hambrick 1973, Hlohowskyj<br />

<strong>and</strong> White 1983, Ross 1986, W<strong>in</strong>ston et al. 1991, Mack et al. 2000, Walser et al. 2000,<br />

Perry et al. 2002). Niche partition<strong>in</strong>g <strong>and</strong> competitive <strong>in</strong>teractions have been shown to be<br />

rather complex with<strong>in</strong> assemblages possess<strong>in</strong>g multiple congeneric species (Pa<strong>in</strong>e et al.<br />

1982). It is safe to assume that <strong>in</strong>troductions to such environments would further<br />

complicate, <strong>and</strong> possibly <strong>in</strong>terrupt, ecological processes already <strong>in</strong> place. The<br />

replacement <strong>of</strong> two cypr<strong>in</strong>id species above a Red River impoundment depicts a common<br />

pattern. The supersed<strong>in</strong>g species were morphologically, chromatically, <strong>and</strong> ecologically<br />

similar (W<strong>in</strong>ston et al. 1991). Strong evidence l<strong>in</strong>ks decreased ecological separation<br />

between species with <strong>in</strong>creased taxonomic distance (Ross 1986). Competition between<br />

closely related species is probable due to the lack <strong>of</strong> evolutionary divergence <strong>and</strong> similar<br />

habitat specialization (Hlohowskyj <strong>and</strong> White 1983). Congeneric species tend to be very<br />

cross compatible, which raises concerns relat<strong>in</strong>g to the effects <strong>of</strong> heterospecific<br />

reproductive <strong>in</strong>teractions (Mooney <strong>and</strong> Clel<strong>and</strong> 2001).<br />

13


Hybridization with <strong>in</strong>troduced species is <strong>of</strong>ten given little attention but can be<br />

very detrimental to cross compatible species <strong>in</strong> the host watershed (Harper et al. 1961,<br />

Courtenay <strong>and</strong> Hensley 1980, Perry et al. 2002). Native species can experience reduced<br />

fitness <strong>and</strong> a high chance <strong>of</strong> ext<strong>in</strong>ction due to the effects <strong>of</strong> hybridization with nonnative<br />

species (Dowl<strong>in</strong>g et al. 1989). Genetic <strong>in</strong>trogression can lead to functional ext<strong>in</strong>ctions,<br />

reduc<strong>in</strong>g population numbers <strong>and</strong> genetic <strong>in</strong>tegrity to the po<strong>in</strong>t where a species plays no<br />

practical role <strong>in</strong> ecosystem processes (Harper et al. 1961, Mooney <strong>and</strong> Clel<strong>and</strong> 2001,<br />

Perry et al. 2002). Similar species with similar habitat preferences <strong>and</strong> spawn<strong>in</strong>g habitats<br />

will have a high probability <strong>of</strong> hybridization (Mayden <strong>and</strong> Burr 1980). Nest associated<br />

broadcast spawn<strong>in</strong>g is a reproductive characteristic <strong>of</strong> many sh<strong>in</strong>er species (Schwartz<br />

1972). Close proximity reproduction <strong>and</strong> temporal overlap <strong>in</strong> reproductive trials suggest<br />

a high likelihood <strong>of</strong> hybridization (Mayhew 1983, Menzel 1978). Studies have revealed<br />

that the effects <strong>of</strong> <strong>in</strong>trogression may be greater <strong>in</strong> one species than the other (Dowl<strong>in</strong>g et<br />

al. 1989, Eisenhour 1995). This seems to be especially true with rare species. The<br />

potential for hybridization <strong>and</strong> <strong>in</strong>trogression may be <strong>in</strong>creased due to the difficulty a<br />

species encounters <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g mates <strong>of</strong> their own species (Mayhew 1983, Dowl<strong>in</strong>g et al.<br />

1989). Literature cit<strong>in</strong>g evidence <strong>of</strong> hybridization <strong>in</strong> sh<strong>in</strong>er species <strong>in</strong>clude: Menzel<br />

(1978), Burkhead (1983), Mayhew (1983), Dowl<strong>in</strong>g <strong>and</strong> Moore (1985), <strong>and</strong> Dowl<strong>in</strong>g et<br />

al. (1989). In fact, the hybridiz<strong>in</strong>g capacity <strong>of</strong> sh<strong>in</strong>er species has been documented as<br />

be<strong>in</strong>g truly extensive (Schwartz 1972).<br />

Invasive species populations can beg<strong>in</strong> with a small number <strong>of</strong> <strong>in</strong>dividuals<br />

(Simberl<strong>of</strong>f 1986). However, a larger founder population will <strong>in</strong>crease the probability <strong>of</strong><br />

establishment (Williamson <strong>and</strong> Fitter 1996). If small, <strong>in</strong>troduced populations are to<br />

14


persist, severity <strong>of</strong> environmental forces become very important (Mack et al. 2000). This<br />

suggests that the probability <strong>of</strong> a species establish<strong>in</strong>g <strong>in</strong> a new environment would<br />

<strong>in</strong>crease as the number <strong>of</strong> attempts <strong>in</strong>creases (Williamson <strong>and</strong> Fitter 1996). This becomes<br />

especially important when deal<strong>in</strong>g with bait bucket <strong>in</strong>troductions, as the numbers <strong>of</strong><br />

species escap<strong>in</strong>g is <strong>of</strong>ten quite small.<br />

Predators <strong>and</strong> pathogens can limit the ability <strong>of</strong> a susceptible <strong>in</strong>vasive species to<br />

<strong>in</strong>habit an area (Kotler <strong>and</strong> Holt 1989, Mathur <strong>and</strong> Ste<strong>in</strong> 1993, Humphries et al. 1999).<br />

Selective predation was cited as one <strong>of</strong> the factors alter<strong>in</strong>g the abundance <strong>of</strong> two native<br />

Notropis species <strong>in</strong> a lentic environment (Hartman et al. 1992). Pathogens can be co<strong>in</strong>troduced<br />

with the non-<strong>in</strong>digenous species (Elton 1958, Li <strong>and</strong> Moyle 1981).<br />

Documentation also exists l<strong>in</strong>k<strong>in</strong>g <strong>in</strong>troduced fish with the transfer <strong>of</strong> pathogens to<br />

resident amphibians (Kiesecker et al. 2001). Environmental stressors derived from<br />

ecological alterations can even impact the effects <strong>of</strong> parasites with<strong>in</strong> the host community<br />

(Lafferty <strong>and</strong> Kuris 1999).<br />

The potential for an <strong>in</strong>troduced species to colonize an area <strong>in</strong>creases with the<br />

amount <strong>of</strong> anthropogenic disturbance (Moyle 1986, Karr 1991, W<strong>in</strong>ston et al. 1991,<br />

<strong>An</strong>germeier 1995, Mack et al. 2000, Perry et al. 2002). Artificial barriers, such as dams<br />

<strong>and</strong> reservoirs, can alter biotic communities by provid<strong>in</strong>g a source <strong>of</strong> non<strong>in</strong>digenous<br />

species through stock<strong>in</strong>g <strong>and</strong> bait-bucket <strong>in</strong>troductions (W<strong>in</strong>ston et al. 1991).<br />

Alternatively, the deterioration <strong>of</strong> natural migratory barriers <strong>and</strong> the sophistication <strong>of</strong><br />

transportation will allow <strong>in</strong>creased mix<strong>in</strong>g <strong>of</strong> species over time (Elton 1958).<br />

Consequently, the rate <strong>of</strong> <strong>in</strong>troductions has <strong>in</strong>creased sharply s<strong>in</strong>ce the 1960’s (Courtenay<br />

<strong>and</strong> Hensley 1980, Ross 1991, Mooney <strong>and</strong> Clel<strong>and</strong> 2001). The effects <strong>of</strong> ecosystem<br />

15


alteration may reduce the habitat suitability essential for native species (Moyle 1986),<br />

especially those sensitive to factors such as turbidity (Gilbert 1969a, Eisenhour 1995).<br />

Rapid eutrophication was cited as a factor reduc<strong>in</strong>g the abundance <strong>of</strong> two native Notropis<br />

species <strong>in</strong> a lotic environment (Hartman et al. 1992). Introduced species could capitalize<br />

on released niche availability if they can survive <strong>in</strong> the host environment. Stream<br />

turbidity has even been hypothesized to pose problems <strong>in</strong> mate recognition that may lead<br />

to hybridization with congeneric species (Eisenhour 1995).<br />

Review <strong>of</strong> <strong>Study</strong> Area/Related Studies<br />

Available <strong>in</strong>formation is summarized concern<strong>in</strong>g the species, watersheds, <strong>and</strong><br />

similar studies for that which this review was conducted. Although the study discussed<br />

<strong>in</strong> Chapter 2 was designed to observe potential <strong>in</strong>teractions which can occur between<br />

native <strong>and</strong> nonnative species, the focal species were selected from the New River<br />

dra<strong>in</strong>age (specifically from the upper Greenbrier Watershed).<br />

The New River system conta<strong>in</strong>s a relatively large number <strong>of</strong> endemic <strong>and</strong><br />

<strong>in</strong>troduced species (Hocutt <strong>and</strong> Hambrick 1973, C<strong>in</strong>cotta et al. 1999, Wellman 2004,<br />

Hocutt et al. 1978). Dra<strong>in</strong><strong>in</strong>g approximately 17,918 km 2 the New River flows through<br />

the states <strong>of</strong> Virg<strong>in</strong>ia, North Carol<strong>in</strong>a, <strong>and</strong> West Virg<strong>in</strong>ia (Stauffer et al. 1995). Parts <strong>of</strong><br />

the Blue Ridge, Ridge <strong>and</strong> Valley, <strong>and</strong> Appalachian Plateau geographical prov<strong>in</strong>ces are<br />

transected. Several species are endemic to the upper New River system (Hubbs <strong>and</strong><br />

Trautman 1932, Hocutt et al. 1978, Jenk<strong>in</strong>s <strong>and</strong> Burkhead 1994). These <strong>in</strong>clude the New<br />

River sh<strong>in</strong>er (Notropis scabriceps), the Kanawha darter (Etheostoma kanawhae), the<br />

Kanawha m<strong>in</strong>now (Phenacobius teretulus), the Appalachia darter (Perc<strong>in</strong>a<br />

16


gymnocephala), the bigmouth chub (Nocomis platyrhynchus) Bluestone sculp<strong>in</strong> Cottus<br />

sp., alb<strong>in</strong>o cave sculp<strong>in</strong> Cottus sp., <strong>and</strong> the c<strong>and</strong>y darter (Etheostoma osburni). Kanawha<br />

Falls separates the upper Kanawha (New River) <strong>and</strong> lower Kanawha dra<strong>in</strong>ages. This<br />

major fish migration barrier is a likely contributor to the large number <strong>of</strong> endemic species<br />

<strong>in</strong> the New (McKeown et al. 1984). Fish species isolated above <strong>and</strong> below migratory<br />

barriers at the time <strong>of</strong> formation could undergo speciation <strong>and</strong> genetically divergence<br />

from ancestral species. Other authors document<strong>in</strong>g fish distributions throughout the New<br />

River (<strong>and</strong> associated tributaries) with<strong>in</strong> the borders <strong>of</strong> West Virg<strong>in</strong>ia <strong>in</strong>clude<br />

Goldsborough <strong>and</strong> Clarke (1908), Hubbs <strong>and</strong> Trautman (1932),Jenk<strong>in</strong>s et al. (1972),<br />

Hocutt <strong>and</strong> Hambrick 1973, Hocutt et al. (1978 <strong>and</strong> 1979), Beckham (1980), Hess (1983),<br />

Neves (1983), Lobb (1986), Easton et al. (1993), Jenk<strong>in</strong>s <strong>and</strong> Burkhead (1993), Addair<br />

(1994), Easton <strong>and</strong> Orth (1994), Stauffer et al. (1995), C<strong>in</strong>cotta et al. 1999, Mess<strong>in</strong>ger<br />

<strong>and</strong> Hughes (2000), Payb<strong>in</strong>s et al. (2000), Mess<strong>in</strong>ger <strong>and</strong> Chambers (2001), <strong>and</strong> Wellman<br />

(2002).<br />

The Greenbrier River, dra<strong>in</strong><strong>in</strong>g approximately 4000 km 2 , flows through the<br />

Monongahela National Forest <strong>in</strong> the counties <strong>of</strong> Pocahontas <strong>and</strong> Greenbrier <strong>in</strong> West<br />

Virg<strong>in</strong>ia (Hocutt et al. 1978). It ends its course as a tributary to the New River upstream<br />

<strong>of</strong> Kanawha Falls after flow<strong>in</strong>g southward along the eastern border <strong>of</strong> the state. The<br />

Greenbrier River flows with<strong>in</strong> the New River watershed <strong>and</strong> shares with it several<br />

endemic species: Notropis scabriceps, Etheostoma osburni, Perc<strong>in</strong>a gymnocephala,<br />

Phenacobius teretulus, <strong>and</strong> Nocomis platyrhynchus. However, it is also associated with<br />

problems concern<strong>in</strong>g that system. Approximately 50% <strong>of</strong> the New River fish species are<br />

not native to the watershed (Wellman 2004). Many <strong>of</strong> these fishes are now established<br />

17


<strong>in</strong> the upper Greenbrier River <strong>and</strong> occur sympatrically with native species <strong>of</strong> the same<br />

family (Hocutt et al. 1978, C<strong>in</strong>cotta et al. 1999). Included <strong>in</strong> this group are non-game<br />

species such as the telescope sh<strong>in</strong>er (Notropis telescopus), silverjaw m<strong>in</strong>now (Ericymba<br />

buccata), Roanoke darter (Perc<strong>in</strong>a roanoka), variegate darter (Etheostoma variatum),<br />

whitetail sh<strong>in</strong>er (Cypr<strong>in</strong>ella galactura), fathead m<strong>in</strong>now (Pimephales promelas), <strong>and</strong><br />

spottail sh<strong>in</strong>er (Notropis hudsonius).<br />

The most prevalent theories concern<strong>in</strong>g the mode <strong>of</strong> congeneric nonnative species<br />

<strong>in</strong>troductions <strong>in</strong>to the Greenbrier River <strong>in</strong>volve human facilitation. The arrivals <strong>of</strong> many<br />

fishes were most likely due to bait-bucket <strong>in</strong>troductions (Hocutt <strong>and</strong> Hambrick 1973,<br />

C<strong>in</strong>cotta et al. 1999, Wellman 2004). Bait-buckets conta<strong>in</strong><strong>in</strong>g baitfish orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong><br />

other watersheds could be <strong>in</strong>advertently or purposefully dumped <strong>in</strong>to the New River<br />

dra<strong>in</strong>age. Other authors have discussed the effects <strong>of</strong> bait-bucket <strong>in</strong>troductions (Gilbert<br />

1969b, Magnuson 1676, Moyle 1986, Sheldon 1988, W<strong>in</strong>ston et al. 1991, Walser 2000).<br />

A sequence <strong>of</strong> re<strong>in</strong>troductions <strong>and</strong> extirpations <strong>of</strong> two cypr<strong>in</strong>id species <strong>in</strong> the Red River<br />

dra<strong>in</strong>age <strong>in</strong> Oklahoma is likely the result <strong>of</strong> such events. Bait-bucket <strong>in</strong>troductions,<br />

provid<strong>in</strong>g a source for new <strong>in</strong>dividuals, are the likely causes <strong>of</strong> the sporadic appearances<br />

<strong>of</strong> Notropis bairdi <strong>and</strong> Hybognathus placitus above the artificial Red River impoundment<br />

(W<strong>in</strong>ston et al. 1991). Add<strong>in</strong>g to these <strong>in</strong>advertent <strong>in</strong>troductions, early management<br />

strategies <strong>of</strong>ten <strong>in</strong>cluded the stock<strong>in</strong>g <strong>of</strong> game fish <strong>and</strong> baitfish <strong>in</strong>to depauperate<br />

watersheds (Magnuson 1976, Li <strong>and</strong> Moyle 1981, Sheldon 1988, C<strong>in</strong>cotta et al. 1999).<br />

Congeneric species pairs are two species from the same genus <strong>and</strong> are therefore<br />

similar with regards to both genetics <strong>and</strong> physical appearance. The follow<strong>in</strong>g studies<br />

discussed <strong>in</strong> this thesis will <strong>in</strong>volve two congeneric pairs. The current status <strong>of</strong> the native<br />

18


species <strong>and</strong> the fact that the nonnative species have been collected with<strong>in</strong> the upper<br />

Greenbrier River exemplifies the importance <strong>of</strong> these studies. Each <strong>of</strong> the follow<strong>in</strong>g<br />

nonnative congeners are, or are hypothesized to be, exp<strong>and</strong><strong>in</strong>g their range <strong>in</strong> the upper<br />

New River system.<br />

The spotf<strong>in</strong> sh<strong>in</strong>er, Cypr<strong>in</strong>ella spiloptera, is native to the Greenbrier River<br />

system, is a slow water generalist, <strong>and</strong> varies little <strong>in</strong> spatial <strong>and</strong> temporal habitat use<br />

(Vadas 1992). Cypr<strong>in</strong>ella spiloptera is <strong>of</strong>ten found <strong>in</strong> small to moderately large streams<br />

over a variety <strong>of</strong> different substrates <strong>and</strong> tends to gather <strong>in</strong> pools along the banks <strong>of</strong><br />

streams (Gibbs 1957). The whitetail sh<strong>in</strong>er, Cypr<strong>in</strong>ella galactura, is native to the<br />

Tennessee River dra<strong>in</strong>age. This species is <strong>of</strong>ten found <strong>in</strong> rocky runs <strong>of</strong> small streams <strong>and</strong><br />

less frequently found <strong>in</strong> pools or riffles (Gibbs 1961). Cypr<strong>in</strong>ella galactura has, at some<br />

po<strong>in</strong>t, been <strong>in</strong>troduced to the upper Greenbrier watershed, becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly<br />

abundant after exhibit<strong>in</strong>g m<strong>in</strong>or <strong>in</strong>itial populations (Wellman 2004). There is also<br />

evidence <strong>of</strong> <strong>in</strong>tergeneric hybridization <strong>of</strong> Cypr<strong>in</strong>ella galactura with a threatened<br />

confamiliar species (Burkhead 1983) <strong>and</strong> with Cypr<strong>in</strong>ella spiloptera (Gibbs 1961).<br />

The New River sh<strong>in</strong>er, Notropis scabriceps, is endemic to the New River (Hocutt<br />

et al. 1978). It is <strong>of</strong>ten found <strong>in</strong> s<strong>and</strong>y/rocky runs <strong>and</strong> flow<strong>in</strong>g pools <strong>of</strong> small streams<br />

(Jenk<strong>in</strong>s <strong>and</strong> Burkhead 1994). The telescope sh<strong>in</strong>er, Notropis telescopus, is native to the<br />

Cumberl<strong>and</strong> <strong>and</strong> Tennessee Rivers on the east side <strong>and</strong> the White, St. Francis, <strong>and</strong> Little<br />

River dra<strong>in</strong>ages on the west side <strong>of</strong> the Mississippi River dra<strong>in</strong>age (Gilbert 1969a). It<br />

prefers clear, flow<strong>in</strong>g waters <strong>of</strong> medium sized upl<strong>and</strong> creeks <strong>and</strong> has been <strong>in</strong>troduced <strong>and</strong><br />

established <strong>in</strong> the New River (Gilbert 1969a). S<strong>in</strong>ce be<strong>in</strong>g <strong>in</strong>troduced to the New River<br />

the telescope sh<strong>in</strong>er has experienced widespread population <strong>in</strong>creases <strong>and</strong> has become<br />

19


ubiquitous, appear<strong>in</strong>g <strong>in</strong> all channel units (personal observation). Similar preferred<br />

temperatures <strong>of</strong> Notropis sabriceps <strong>and</strong> Notropis telescopus have been measured to be<br />

19.3°C <strong>and</strong> 20°C respectively (Cherry et al. 1977, Sh<strong>in</strong>gleton et al. 1981).<br />

Effort must be applied to ga<strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the <strong>in</strong>teractions that are occurr<strong>in</strong>g<br />

between native <strong>and</strong> <strong>in</strong>troduced species currently found <strong>in</strong> the upper Greenbrier watershed.<br />

Field sampl<strong>in</strong>g <strong>and</strong> population analyses are not enough to quantify competitive<br />

<strong>in</strong>teractions <strong>and</strong> <strong>in</strong>dicators <strong>of</strong> competitive exclusion among congenerics (Herbold <strong>and</strong><br />

Moyle 1986). Several studies have demonstrated the importance <strong>of</strong> <strong>in</strong>terspecific<br />

<strong>in</strong>teractions on fish distributions through both horizontal <strong>and</strong> vertical spatial scales.<br />

Natural <strong>and</strong> artificial environments were used to show that exploitation <strong>and</strong> <strong>in</strong>terference<br />

competition were important factors <strong>in</strong>volved <strong>in</strong> regulat<strong>in</strong>g the distribution <strong>of</strong> three Cottus<br />

species (F<strong>in</strong>ger 1982). Space was determ<strong>in</strong>ed to be the competitive dimension allow<strong>in</strong>g<br />

the coexistence <strong>of</strong> the three species. Field observations have been used to document the<br />

spatial variation <strong>of</strong> eight cypr<strong>in</strong>id fishes <strong>and</strong> to make <strong>in</strong>ferences on the role <strong>of</strong> habitat<br />

segregation <strong>in</strong> structur<strong>in</strong>g the community (Baker <strong>and</strong> Ross 1981). However, it has been<br />

suggested that aquarium studies should be utilized to detect <strong>in</strong>terspecific <strong>in</strong>teractions<br />

between potentially compet<strong>in</strong>g species (Simberl<strong>of</strong>f 1981, Ross 1991). Observations <strong>of</strong><br />

six Ozark m<strong>in</strong>now populations <strong>in</strong>dicated vertical stratification when <strong>in</strong>dividuals were<br />

placed among congeneric or confamilial sympatric species (Gorman 1988). Overlaps <strong>of</strong><br />

water column positions suggest an overlap <strong>in</strong> the spatial aspect <strong>of</strong> pelagic m<strong>in</strong>now<br />

species’ ecological niches (Baker <strong>and</strong> Ross 1981, Gorman 1988). Similarly, aquarium<br />

studies can be used to detect shifted habitat usage as a consequence <strong>of</strong> <strong>in</strong>troduc<strong>in</strong>g similar<br />

nonnative species (Marchetti 1999). However, shifts <strong>in</strong> vertical distribution behavior <strong>of</strong><br />

20


cypr<strong>in</strong>id fishes due to <strong>in</strong>troductions <strong>of</strong> nonnative congeners have been largely<br />

overlooked.<br />

The follow<strong>in</strong>g laboratory study was designed to focus on the specific behavioral<br />

<strong>in</strong>teractions between the aforementioned species pairs to supplement current field studies.<br />

Significant water column segregation suggests that congeners are partition<strong>in</strong>g niche<br />

space, an effective behavior adapted to reduce competition <strong>and</strong> adverse <strong>in</strong>terspecific<br />

<strong>in</strong>teractions <strong>in</strong> natural cypr<strong>in</strong>id guilds. Four 246 L aquaria <strong>and</strong> vertical water column<br />

categories were used to quantify the vertical placement <strong>of</strong> these congener species under<br />

two different trial conditions. Allotopic trials were conducted to quantify the “preferred”<br />

water column position <strong>of</strong> each species before syntopic trials were conducted. Thus, the<br />

allotopic positions were used for comparison aga<strong>in</strong>st syntopic trials, where the congener<br />

species were <strong>in</strong>troduced <strong>in</strong>to the same aquaria. The ma<strong>in</strong> objectives for this study were to<br />

quantify differences <strong>in</strong> vertical habitat use <strong>of</strong> these species pairs under allotopic <strong>and</strong><br />

syntopic conditions <strong>and</strong> to quantify shifts <strong>in</strong> vertical habitat use that occur from syntopic<br />

to allotopic conditions.<br />

21


Literature Cited<br />

Addair, J. 1944. The fishes <strong>of</strong> the Kanawha River system <strong>in</strong> West Virg<strong>in</strong>ia <strong>and</strong> some<br />

factors which <strong>in</strong>fluence their distribution. Ph.D. dissertation. The Ohio State<br />

University, Columbus, Ohio.<br />

Adamson, S. W. <strong>and</strong> T. E. Wiss<strong>in</strong>g. 1977. Food habits <strong>and</strong> feed<strong>in</strong>g periodicity <strong>of</strong> the<br />

ra<strong>in</strong>bow, fantail, <strong>and</strong> b<strong>and</strong>ed darters <strong>in</strong> Four Mile Creek. Ohio Journal <strong>of</strong> Science<br />

77:164-169.<br />

<strong>An</strong>germeier, P. L. 1995. Ecological attributes <strong>of</strong> ext<strong>in</strong>ction-prone species: loss <strong>of</strong><br />

freshwater fishes <strong>of</strong> Virg<strong>in</strong>ia. Conservation Biology 9:143-158.<br />

<strong>An</strong>germeier, P. L. <strong>and</strong> M. R. W<strong>in</strong>ston. 1998. Local vs. regional <strong>in</strong>fluences on local<br />

diversity <strong>in</strong> stream fish communities <strong>of</strong> Virg<strong>in</strong>ia. Ecology 79:911-927.<br />

Baker, J. A. <strong>and</strong> S. T. Ross. 1981. Spatial <strong>and</strong> temporal resource utilization by<br />

southeastern cypr<strong>in</strong>ids. Copeia 1981:178-189.<br />

Beckham, E. C. 1980. Perc<strong>in</strong>a gymnocephala, a new percid fish <strong>of</strong> the subgenus<br />

Alvordius, from the New River <strong>in</strong> North Carol<strong>in</strong>a, Virg<strong>in</strong>ia, <strong>and</strong> West Virg<strong>in</strong>ia.<br />

Occasional Papers <strong>of</strong> the Museum <strong>of</strong> Zoology 57:1-11.<br />

Burkhead, N. M. 1983. <strong>An</strong> <strong>in</strong>tergeneric cypr<strong>in</strong>id hybrid, Hybopsis monacha x Notropis<br />

galacturus, from the Tennessee River dra<strong>in</strong>age. Copeia 1983: 1074-1077.<br />

Burton, G. W. <strong>and</strong> E. P. Odum. 1945. The distribution <strong>of</strong> stream fish <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong><br />

Mounta<strong>in</strong> Lake, Virg<strong>in</strong>ia. Ecology 6:182-194.<br />

Case, T. J. 1991. Invasion resistance, species build-up <strong>and</strong> community collapse <strong>in</strong><br />

metapopulation models with <strong>in</strong>ter-species competition. Biological Journal <strong>of</strong> the<br />

L<strong>in</strong>nean Society 42:239-266.<br />

Cherry, D. S., K. L. Dickson, J. Cairns, <strong>and</strong> J. R. Stauffer. 1977. Preferred, avoided, <strong>and</strong><br />

lethal temperatures <strong>of</strong> fish dur<strong>in</strong>g ris<strong>in</strong>g temperature conditions. Journal <strong>of</strong> the<br />

Fisheries Research Board <strong>of</strong> Canada 34:239-246.<br />

Chipps, S. R., S. A. Perry, <strong>and</strong> W. B. Perry. 1993. Patterns <strong>of</strong> microhabitat use among<br />

four species <strong>of</strong> darters <strong>in</strong> three Appalachian streams. American Midl<strong>and</strong><br />

Naturalist 131:175-180.<br />

C<strong>in</strong>cotta, D. A., D. A. Chambers, <strong>and</strong> T. Mess<strong>in</strong>ger. 1999. Recent changes <strong>in</strong> the<br />

distribution <strong>of</strong> fish species <strong>in</strong> the New River Bas<strong>in</strong> <strong>in</strong> West Virg<strong>in</strong>ia <strong>and</strong> Virg<strong>in</strong>ia.<br />

Proceed<strong>in</strong>gs from the New River Symposium p. 98-106.<br />

22


Courtenay, W. R., Jr. <strong>and</strong> D. A. Hensley. 1980. Special problems associated with<br />

monitor<strong>in</strong>g exotic species. Pages 281-307. In: C. H. Hocutt <strong>and</strong> J. R. Stauffer,<br />

Jr., editors. Biological Monitor<strong>in</strong>g <strong>of</strong> Fish, Lex<strong>in</strong>gton Books, Lex<strong>in</strong>gton.<br />

Cross, F. B., O. T. Gorman, <strong>and</strong> S. G. Haslouer. 1983. The Red River sh<strong>in</strong>er, Notropis<br />

bairdi, <strong>in</strong> Kansas with notes on the depletion <strong>of</strong> its Arkansas River cognate,<br />

Notropos girardi. Transactions <strong>of</strong> the Kansas Academy <strong>of</strong> Science 86:93-98.<br />

Dowl<strong>in</strong>g, T. E. <strong>and</strong> W. S. Moore. 1985. Evidence for selection aga<strong>in</strong>st hybrids <strong>in</strong> the<br />

family Cypr<strong>in</strong>idae (genus Notropis). Evolution 39:153-158.<br />

Dowl<strong>in</strong>g, T. E., G. R. Smith, <strong>and</strong> W. M. Brown. 1989. Reproductive isolation <strong>and</strong><br />

<strong>in</strong>trogression between Notropis cornutus <strong>and</strong> Notropis chrysocephalus (Family:<br />

Cypr<strong>in</strong>idae): comparison <strong>of</strong> morphology, allozymes, <strong>and</strong> mitochondrial DNA.<br />

Evolution 43:620-634.<br />

Dueser, R. D., <strong>and</strong> J. R. Porter. 1986. <strong>Habitat</strong> use by <strong>in</strong>sular small mammals: relative<br />

effects <strong>of</strong> competition <strong>and</strong> habitat structure. Ecology 67:195-201.<br />

Easton, R. S., D. J. Orth, <strong>and</strong> N. M. Burkhead. 1993. The first collection <strong>of</strong> Rudd,<br />

Scard<strong>in</strong>ius erythrophthalmus (Cypr<strong>in</strong>idae), <strong>in</strong> the New River, West Virg<strong>in</strong>ia.<br />

Journal <strong>of</strong> Freshwater Ecology 8:263-264.<br />

Easton, R. S. <strong>and</strong> D. J. Orth. 1994. Fishes <strong>of</strong> the ma<strong>in</strong> channel New River, West<br />

Virg<strong>in</strong>ia. Virg<strong>in</strong>ia Journal <strong>of</strong> Science 45:265-277.<br />

Echelle, A. A., A. F. Echelle, <strong>and</strong> B. A. Taber. 1976. Biochemical evidence for<br />

congeneric competition as a factor restrict<strong>in</strong>g gene flow between populations <strong>of</strong> a<br />

darter. Systematic Zoogeology 25:228-235.<br />

Eisenhour, D. J. 1995. Systematics <strong>of</strong> Etheostoma camurum <strong>and</strong> E. chlorobranchium<br />

(Osteichthyes: Percidae) <strong>in</strong> the Tennessee <strong>and</strong> Cumberl<strong>and</strong> River dra<strong>in</strong>ages with<br />

analysis <strong>of</strong> hybridization <strong>in</strong> the Nolichucky River system. Copeia 1995:368-379.<br />

Elton, C. S. 1958. The ecology <strong>of</strong> <strong>in</strong>vasions by animals <strong>and</strong> plants. London: Chapman<br />

<strong>and</strong> Hall.<br />

F<strong>in</strong>ger, T. R. 1982. Interactive segregation among three species <strong>of</strong> sculp<strong>in</strong> (Cottus).<br />

Copeia 1982:680-694.<br />

Freeman, M. C., M. K. Crawford, J. C. Barrett, D. E. Facey, M. G. Flood, J. Hill, D. J.<br />

Stouder, <strong>and</strong> G. D. Grossman. 1988. Fish assemblage stability <strong>in</strong> a southern<br />

Appalachian stream. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aquatic Sciences<br />

45:1949-1958.<br />

23


Gibbs, R. H. 1957. Cypr<strong>in</strong>id fishes <strong>of</strong> the subgenus Cypr<strong>in</strong>ella <strong>of</strong> Notropis. Distribution<br />

<strong>and</strong> variation <strong>of</strong> Notropis spilopterus, with the description <strong>of</strong> a new subspecies.<br />

Lloydia 20:186-211.<br />

Gibbs, R. H. 1961. Cypr<strong>in</strong>id fishes <strong>of</strong> the subgenus Cypr<strong>in</strong>ella <strong>of</strong> Notropis. IV The<br />

Notropis galacturus-camurus complex. American Midl<strong>and</strong> Naturalist 66:337-<br />

354.<br />

Gilbert, C. R. 1969a. Systematics <strong>and</strong> distribution <strong>of</strong> the American cypr<strong>in</strong>id fishes<br />

Notropis ariommus <strong>and</strong> Notropis telescopus. Copeia 1969:474-492.<br />

Gilbert, R. J. 1969b. The distribution <strong>of</strong> fishes <strong>in</strong> the central Chattahoochee River<br />

dra<strong>in</strong>age. M. S. Thesis, Auburn University, Auburn, Alabama.<br />

Goldsborough, E. L. <strong>and</strong> H. W. Clark. 1908. Fishes <strong>of</strong> West Virg<strong>in</strong>ia. Bullet<strong>in</strong> <strong>of</strong> the<br />

Bureau <strong>of</strong> Fisheries. 27:31-39.<br />

Gorman, O. T. 1988. <strong>An</strong> experimental study <strong>of</strong> habitat use <strong>in</strong> an assemblage <strong>of</strong> Ozark<br />

m<strong>in</strong>nows. Ecology 69:1239-1250.<br />

Hard<strong>in</strong>, G. 1960. The competitive exclusion pr<strong>in</strong>ciple. Science 131:1292-1297.<br />

Harper, J. L., J. N. Clatworthy, I. H. McNaughton, <strong>and</strong> J. R. Sagar. 1961. The evolution<br />

<strong>and</strong> ecology <strong>of</strong> closely related species liv<strong>in</strong>g <strong>in</strong> the same area. Evolution 15:209-<br />

227.<br />

Hartman, K. J., B. Vondracek, D. L. Parrish, <strong>and</strong> K. M. Muth. 1992. Diets <strong>of</strong> emerald<br />

<strong>and</strong> spottail sh<strong>in</strong>ers <strong>and</strong> potential <strong>in</strong>teractions with other western Lake Erie<br />

planktivorous fishes. Journal <strong>of</strong> Great Lakes Research 18:43-50.<br />

Herbold, B. <strong>and</strong> P. B. Moyle. 1986. Introduced species <strong>and</strong> vacant niches. American<br />

Naturalist 128:751-760.<br />

Hess, L. 1983. Prelim<strong>in</strong>ary analysis <strong>of</strong> the food habits <strong>of</strong> some New River fishes with<br />

emphasis on black fly utilization. Pages 15-21. In W. E. Cox <strong>and</strong> M. Kegley,<br />

editors. Proceed<strong>in</strong>gs <strong>of</strong> The New River Symposium. Glen Jean, WV p. 15-21.<br />

Hlohowskyj, I. <strong>and</strong> A. M. White. 1983. Food resource partition<strong>in</strong>g <strong>and</strong> selectivity by the<br />

greenside, ra<strong>in</strong>bow, <strong>and</strong> fantail darters (Pisces: Percidae). Ohio Acadamy <strong>of</strong><br />

Science 83:201-208.<br />

Hocutt, C. H. <strong>and</strong> P. S. Hambrick. 1973. Hybridization between the darters Perc<strong>in</strong>a<br />

crassa roanoka <strong>and</strong> Perc<strong>in</strong>a oxyrhyncha (Percidae, Etheostamat<strong>in</strong>i), with<br />

comments on the distribution <strong>of</strong> Percnia crassa roanaoka <strong>in</strong> the New River. The<br />

American Midl<strong>and</strong> Naturalist 90:397-405.<br />

24


Hocutt, C. H., R. F. Denoncourt, <strong>and</strong> J. R. Stauffer. 1978. Fishes <strong>of</strong> the Greenbrier River,<br />

West Virg<strong>in</strong>ia, with dra<strong>in</strong>age history <strong>of</strong> the Central Appalachians. Journal <strong>of</strong><br />

Biogeography 5:59-80.<br />

Hocutt, C. H., R. F. Denoncourt, <strong>and</strong> J. R. Stauffer. 1979. Fishes <strong>of</strong> the Gauley River,<br />

West Virg<strong>in</strong>ia. Brimleyana 1:47-80.<br />

Hubbs, C. L. <strong>and</strong> M. B. Trautman. 1932. Poecilichthys osburni, a new darter from the<br />

Upper Kanawha River system <strong>in</strong> Virg<strong>in</strong>ia <strong>and</strong> West Virg<strong>in</strong>ia. Ohio Journal <strong>of</strong><br />

Science 32:31-38.<br />

Humphries, S., N. B. Metcalfe, <strong>and</strong> G. D. Ruxton. 1999. The effect <strong>of</strong> group size on<br />

relative competitive ability. Oikos 85:481-486.<br />

Jenk<strong>in</strong>s, R. E., E. A. Lachner, <strong>and</strong> F. J. Schwartz. 1972. Fishes <strong>of</strong> the central<br />

Appalachian dra<strong>in</strong>ages: their distribution <strong>and</strong> dispersal. Pages 43-117. In P. C.<br />

Holt, editor. The distributional history <strong>of</strong> the biota <strong>of</strong> the southern Appalachians.<br />

Part:III: Vertebrates. Res. Div. Monograph 4, Va. Poly. Inst. <strong>and</strong> State Univ.,<br />

Blacksburg, Virg<strong>in</strong>ia.<br />

Jenk<strong>in</strong>s, R. E. <strong>and</strong> N. M. Burkhead. 1994. Freshwater fishes <strong>of</strong> Virg<strong>in</strong>ia. American<br />

Fisheries Society. Bethesda, Maryl<strong>and</strong>.<br />

Karr, J. R. 1991. Biological <strong>in</strong>tegrity: a long neglected aspect <strong>of</strong> water resource<br />

management. Ecological Applications 1:66-84.<br />

Kiesecker, J. M., A. R. Blauste<strong>in</strong>, <strong>and</strong> C. L. Miller. 2001. Transfer <strong>of</strong> a pathogen from<br />

fish to amphibians. Conservation Biology 15:1064-1070.<br />

Kolasa, J. 1989. Ecological systems <strong>in</strong> hierarchical perspective: breaks <strong>in</strong> community<br />

structure <strong>and</strong> other consequences. Ecology 70:36-47.<br />

Kotler, B. P. <strong>and</strong> R. D. Holt. 1989. Predation <strong>and</strong> competition: the <strong>in</strong>teraction <strong>of</strong> two<br />

types <strong>of</strong> species <strong>in</strong>teractions. Oikos 54:256-260.<br />

Lafferty, K. D. <strong>and</strong> A. M. Kuris. 1999. How environmental stress affects the impacts <strong>of</strong><br />

parasites. American Society <strong>of</strong> Limnology <strong>and</strong> Oceanography 44:925-931.<br />

Lachner, E. A., C. R. Rob<strong>in</strong>s, <strong>and</strong> W. R. Courtenay. 1970. Exotic fishes <strong>and</strong> other<br />

aquatic organisms <strong>in</strong>troduced <strong>in</strong>to North America. Smithsonian Contributions to<br />

Zoology 59:1-29.<br />

Li, H. M. <strong>and</strong> P. B. Moyle. 1981. Ecological analysis <strong>of</strong> species <strong>in</strong>troductions <strong>in</strong>to<br />

aquatic systems. Transactions <strong>of</strong> the American Fisheries Society 110:772-782.<br />

25


Lobb, M. D., III. 1986. <strong>Habitat</strong> use by fisheries <strong>of</strong> the New River, West Virg<strong>in</strong>ia. M. S.<br />

thesis. Virg<strong>in</strong>ia Polytechnic Institute State University, Blacksburg, Virg<strong>in</strong>ia.<br />

MacArthur, R. <strong>and</strong> R. Lev<strong>in</strong>s. 1964. Competition, habitat selection, <strong>and</strong> character<br />

displacement <strong>in</strong> a patchy environment. Zoology 51:1207-1210.<br />

MacArthur, R. <strong>and</strong> R. Lev<strong>in</strong>s. 1967. The limit<strong>in</strong>g similarity, convergence, <strong>and</strong><br />

divergence <strong>of</strong> coexist<strong>in</strong>g species. The American Naturalist 101:377-385.<br />

Mack, R. N., D. Simberl<strong>of</strong>f, W. M. Lonsdale, H. Evans, M. Clout, <strong>and</strong> F. A. Bazzaz.<br />

2000. Biotic <strong>in</strong>vasions: causes, epidemiology, global consequences, <strong>and</strong> control.<br />

Ecological Applications 10:689-710.<br />

Magnuson, J. J. 1976. Manag<strong>in</strong>g with exotics-a game <strong>of</strong> chance. Transactions <strong>of</strong> the<br />

American Fisheries Society 105:1-9.<br />

Marchetti, M. P. 1999. <strong>An</strong> experimental study <strong>of</strong> competition between the native<br />

Sacremanto perch (Archoplites <strong>in</strong>teruptus) <strong>and</strong> <strong>in</strong>troduced bluegill (Lepomis<br />

macrohirus). Biological Invasions 1:55-65.<br />

Mather, M. E., <strong>and</strong> R. A. Ste<strong>in</strong>. 1993. Direct <strong>and</strong> <strong>in</strong>direct effects <strong>of</strong> fish predation on the<br />

replacement <strong>of</strong> a native crayfish by an <strong>in</strong>vad<strong>in</strong>g congener. Canadian Journal <strong>of</strong><br />

Fisheries <strong>and</strong> Aquatic Sciences 50:1279-1288.<br />

Mathur, D. 1977. Food habits <strong>and</strong> competitive relationships <strong>of</strong> the b<strong>and</strong>f<strong>in</strong> sh<strong>in</strong>er <strong>in</strong><br />

Halawakee Creek, Alabama. American Midl<strong>and</strong> Naturalist 97:89-100.<br />

Matthews, W. J. <strong>and</strong> L. G. Hill. 1980. <strong>Habitat</strong> partition<strong>in</strong>g <strong>in</strong> the fish community <strong>of</strong> a<br />

southeastern river. The Southwestern Naturalist 25:51-66.<br />

Matthews, W. J., J. R. Bek, <strong>and</strong> E. Surat. 1982. Comparative ecology <strong>of</strong> the darters<br />

Etheostoma podostemone, E. flabellare, <strong>and</strong> Perc<strong>in</strong>a roanoka <strong>in</strong> the upper<br />

Roanoke River dra<strong>in</strong>age, Virg<strong>in</strong>ia. Copeia 1982:805-814.<br />

Matthews, W. J. 1985. Critical current speed <strong>and</strong> microhabitats <strong>of</strong> the benthic fishes<br />

Perc<strong>in</strong>a roanoka <strong>and</strong> Etheostoma flabellare. Environmental Biology <strong>of</strong> Fishes<br />

12:303-308.<br />

Mayden, R. L. <strong>and</strong> B. M. Burr. 1980. Two natural darter hybrids <strong>in</strong>volv<strong>in</strong>g members <strong>of</strong><br />

the genus Etheostoma (Pisces: Percidae). American Midl<strong>and</strong> Naturalist 104:390-<br />

393.<br />

Mayhew, A. M. 1983. A new hybrid cross, Notropis ather<strong>in</strong>oides x Notropis volucellus<br />

(Pisces: Cypr<strong>in</strong>idae), from the lower Monongahela River, western Pennsylvania.<br />

Copeia 1983:1077-1082.<br />

26


Mckeown, P. E., C. H. Hocutt, R. P. Morgan, <strong>and</strong> J. H. Howard. 1984. <strong>An</strong><br />

electrophoretic analysis <strong>of</strong> the Etheostoma variatum complex (Percidae,<br />

Etheostomat<strong>in</strong>i), with associated zoogeographic considerations. Environmental<br />

Biology <strong>of</strong> Fishes 2:85-95.<br />

Menzel, B. W. 1978. Three hybrid comb<strong>in</strong>ations <strong>of</strong> m<strong>in</strong>nows (Cypr<strong>in</strong>idae) <strong>in</strong>volv<strong>in</strong>g<br />

members <strong>of</strong> the common sh<strong>in</strong>er species complex (genus Notropis, subgenus<br />

Luxilus). American Midl<strong>and</strong> Naturalist 99:249-256.<br />

Mess<strong>in</strong>ger, T. <strong>and</strong> C. A. Hughes. 2000. Environmental Sett<strong>in</strong>g <strong>and</strong> its relations to water<br />

quality <strong>in</strong> the Kanawha River Bas<strong>in</strong>. U. S. Geological Water-Resources<br />

Investigations Report 00-4020.<br />

Mess<strong>in</strong>ger, T. <strong>and</strong> D. B. Chambers. 2001. Fish communities <strong>and</strong> their relation to<br />

environmental factors <strong>in</strong> the Kanawha River Bas<strong>in</strong>, West Virg<strong>in</strong>ia, Virg<strong>in</strong>ia, <strong>and</strong><br />

North Carol<strong>in</strong>a, 1977-98. U. S. Geological Water-Resource Investigations Report<br />

01-4048.<br />

Mooney, H. A. <strong>and</strong> E. E. Clel<strong>and</strong>. 2001. The evolutionary impact <strong>of</strong> <strong>in</strong>vasive species.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong><br />

America. Vol. 98, No. 10, 5446-5451.<br />

Moyle, P. B. 1986. Fish <strong>in</strong>troductions <strong>in</strong>to North America: patterns <strong>and</strong> ecological<br />

impact. Pages 27-43 <strong>in</strong> H. Mooney <strong>and</strong> J. Drake, editors. Ecology <strong>of</strong> biological<br />

<strong>in</strong>vasions <strong>of</strong> North America <strong>and</strong> Hawaii. Spr<strong>in</strong>ger-Verlag, New York.<br />

Murray, B. G. 1986. The structure <strong>of</strong> theory, <strong>and</strong> the role <strong>of</strong> competition <strong>in</strong> community<br />

dynamics. Oikos 46:145-158.<br />

Neves, R. J. 1983. Distributional history <strong>of</strong> the fish <strong>and</strong> mussel fauna <strong>in</strong> the Kanawha<br />

River dra<strong>in</strong>age. Proceed<strong>in</strong>gs <strong>of</strong> the New River Symposium 47-67.<br />

Odum, E. P. 1969. The strategy <strong>of</strong> ecosystem development. Science 164:262-270.<br />

Page, L. M. <strong>and</strong> D. W. Schemske. 1978. The effect <strong>of</strong> <strong>in</strong>terspecific competition on the<br />

distribution <strong>and</strong> size <strong>of</strong> darters <strong>of</strong> the subgenus Catonoyus (Percidae:<br />

Etheostoma). Copeia 1978:406-412.<br />

Page, L. M. <strong>and</strong> D. L. Sw<strong>of</strong>ford. 1984. Morphological correlates <strong>of</strong> ecological<br />

specialization <strong>in</strong> darters. Environmental Biology <strong>of</strong> Fishes 11:139-159.<br />

Pa<strong>in</strong>e, M. D., J. J. Dodson, <strong>and</strong> G. Power. 1982. <strong>Habitat</strong> <strong>and</strong> food partition<strong>in</strong>g among<br />

four species <strong>of</strong> darters (Percidae: Etheostoma) <strong>in</strong> a southern Ontario stream.<br />

Canadian Journal <strong>of</strong> Zoology 60:1635-1641.<br />

27


Payb<strong>in</strong>s, K. S., T. Mess<strong>in</strong>ger, J. H. Eychaner, D. B. Chambers, <strong>and</strong> M. D. Kozar. 2000.<br />

Water quality <strong>in</strong> the Kanawha-New River Bas<strong>in</strong>, West Virg<strong>in</strong>ia, Virg<strong>in</strong>ia, <strong>and</strong><br />

North Carol<strong>in</strong>a, 1996-98. U. S. Geological Survey Circular 1204.<br />

Perry, W. L., D. M. Lodge, <strong>and</strong> J. L. Fedder. 2002. Importance <strong>of</strong> hybridization between<br />

<strong>in</strong>digenous <strong>and</strong> non<strong>in</strong>digenous freshwater species: an overlooked threat to North<br />

American biodiversity. Systematic Biology 51:255-275.<br />

Pianka, E. R. 1966. Latitud<strong>in</strong>al gradients <strong>in</strong> species diversity: a review <strong>of</strong> concepts.<br />

American Naturalist 100:33-46.<br />

Pianka, E. R. 1974. Niche overlap <strong>and</strong> diffuse competition. Proceed<strong>in</strong>gs <strong>of</strong> the Natural<br />

Academy <strong>of</strong> Science 71:2141-2145.<br />

Pielou, E. C. 1972. Niche width <strong>and</strong> niche overlap: a method for measur<strong>in</strong>g them.<br />

Ecology 53:687-692.<br />

Ross, S. T. 1986. Resource partition<strong>in</strong>g <strong>in</strong> fish assemblages: a review <strong>of</strong> field studies.<br />

Copeia 1986:352-388.<br />

Ross, S. T. 1991. Mechanisms structur<strong>in</strong>g stream fish assemblages: are there lessons<br />

from <strong>in</strong>troduced species? Environmental Biology <strong>of</strong> Fishes 30:359-368.<br />

Schoener, T. W. 1974. Resource partition<strong>in</strong>g <strong>in</strong> ecological communities. Science<br />

185:27-39.<br />

Schoener, T. W., R. B. Huey, <strong>and</strong> E. R. Pianka. 1979. A biogeographic extension <strong>of</strong> the<br />

compression hypothesis: competitors <strong>in</strong> narrow sympatry. American Naturalist<br />

113:295:298.<br />

Schwartz, F. J. 1972. World literature to fish hybrids with an analysis by family,<br />

species, <strong>and</strong> hybrid. Publ. Gulf Coast Res. Lab. Mus. 3.<br />

Sheldon, A. L. 1988. Conservation <strong>of</strong> stream fishes: patterns <strong>of</strong> diversity, rarity <strong>and</strong> risk.<br />

Conservation Biology 2:149-156.<br />

Sh<strong>in</strong>gleton, M. V, C., H. Hocutt, <strong>and</strong> J. R. Stauffer. 1981. Temperature preference <strong>of</strong> the<br />

New River sh<strong>in</strong>er. Transactions <strong>of</strong> the National Fisheries Society 110:160-161.<br />

Simberl<strong>of</strong>f, D. 1981. Community effects <strong>of</strong> <strong>in</strong>troduced species. Pages 53-81 <strong>in</strong> T. H.<br />

Nitecki, editors. Biotic crises <strong>in</strong> ecological <strong>and</strong> evolutionary time. Academic<br />

Press, New York.<br />

Simberl<strong>of</strong>f, D. 1986. Introduced <strong>in</strong>sects: a biogeographic <strong>and</strong> systematic perspective.<br />

Pages 3-26 <strong>in</strong> H. A. Mooney <strong>and</strong> J. A. Drake, editors. Ecology <strong>of</strong> biological<br />

<strong>in</strong>vasions <strong>of</strong> North America <strong>and</strong> Hawaii. Wiley, New York, New York.<br />

28


Stauffer, J. R., J. M. Boltz, <strong>and</strong> L. R. White. 1995. The fishes <strong>of</strong> West Virg<strong>in</strong>ia.<br />

Academy <strong>of</strong> Natural Sciences. Philadelphia, Pennsylvania.<br />

Strange, R. M. 1998. Mitochondrial DNA variation <strong>in</strong> johnny darters (Pisces: Percidae)<br />

from eastern Kentucky supports stream capture for the orig<strong>in</strong> <strong>of</strong> upper<br />

Cumberl<strong>and</strong> River fishes. American Midl<strong>and</strong> Naturalist 140:96-102.<br />

Surat, E. M., W. J. Matthews, <strong>and</strong> J. R. Bek. 1982. Comparative ecology <strong>of</strong> Notropis<br />

albeolus, N. ardens, <strong>and</strong> N. ceras<strong>in</strong>us (Cypr<strong>in</strong>idae) <strong>in</strong> the upper Roanoke River<br />

dra<strong>in</strong>age, Virg<strong>in</strong>ia. American Midl<strong>and</strong> Naturalist 107:13-24.<br />

Vadas, R. L. 1992. Seasonal habitat use, species associations, <strong>and</strong> assemblage structure<br />

for forage fish <strong>in</strong> Goose Creek, northern Virg<strong>in</strong>ia. Journal <strong>of</strong> Freshwater Ecology<br />

7:149-164.<br />

Walser, C. A., B. Falterman, <strong>and</strong> H. L. Bart Jr. 2000. Impact <strong>of</strong> <strong>in</strong>troduced rough sh<strong>in</strong>er<br />

(Notropis baileyi) on the native fish community <strong>in</strong> the Chatahoochee River<br />

system. American Midl<strong>and</strong> Naturalist 144:393-405.<br />

Wellman, D. 2004. Post-flood recovery <strong>and</strong> distributions <strong>of</strong> fishes <strong>in</strong> the New River<br />

Gorge National River, West Virg<strong>in</strong>a. M. S. thesis. West Virg<strong>in</strong>ia University,<br />

Morgantown, West Virg<strong>in</strong>ia.<br />

Williamson, M. <strong>and</strong> A. Fitter. 1996. The vary<strong>in</strong>g success <strong>of</strong> <strong>in</strong>vaders. Ecology 77:1661-<br />

1666.<br />

W<strong>in</strong>ston, M. R., C. M. Taylor, <strong>and</strong> J. Pigg. 1991. Upstream extirpation <strong>of</strong> four m<strong>in</strong>now<br />

species due to damm<strong>in</strong>g <strong>of</strong> a prairie stream. Transactions <strong>of</strong> the American<br />

Fisheries Society 120:98-105.<br />

29


Chapter 2: <strong>An</strong> <strong>Experimental</strong> <strong>Study</strong> <strong>of</strong> <strong>Vertical</strong> <strong>Habitat</strong> <strong>Use</strong> <strong>and</strong> <strong>Habitat</strong> <strong>Shifts</strong> <strong>in</strong><br />

S<strong>in</strong>gle-species <strong>and</strong> Mixed-species Shoals <strong>of</strong> Native <strong>and</strong> Nonnative Congeneric<br />

Cypr<strong>in</strong>ids<br />

Abstract<br />

Non-native fishes have multiple impacts on native fish communities, <strong>in</strong>clud<strong>in</strong>g<br />

impacts associated with competition for space. Watersheds that are historically<br />

depauperate <strong>of</strong> fish fauna, such as the New River <strong>in</strong> North Carol<strong>in</strong>a, Virg<strong>in</strong>ia, <strong>and</strong> West<br />

Virg<strong>in</strong>ia, are especially susceptible to <strong>in</strong>vasions <strong>of</strong> non-native fishes. Over 50% <strong>of</strong> the<br />

fish species currently found <strong>in</strong> the New River dra<strong>in</strong>age are <strong>in</strong>troduced, <strong>in</strong>clud<strong>in</strong>g Notropis<br />

telescopus (telescope sh<strong>in</strong>er) <strong>and</strong> Cypr<strong>in</strong>ella galactura (whitetail sh<strong>in</strong>er). Several studies<br />

have documented vertical water column position<strong>in</strong>g as the primary mode <strong>of</strong> habitat<br />

segregation <strong>of</strong> syntopic cypr<strong>in</strong>id species. Few studies, however, have exam<strong>in</strong>ed the<br />

effects <strong>of</strong> non-natives on vertical habitat use <strong>of</strong> native cypr<strong>in</strong>ids. The primary objective<br />

<strong>of</strong> this study was to quantify habitat shifts <strong>of</strong> two native species <strong>of</strong> the New River<br />

dra<strong>in</strong>age (Notropis scabriceps <strong>and</strong> Cypr<strong>in</strong>ella spiloptera) <strong>in</strong> the presence <strong>of</strong> non-native<br />

congeners (N. telescopus <strong>and</strong> C. galactura). Four 246 L aquaria <strong>and</strong> six vertical position<br />

categories were utilized to experimentally exam<strong>in</strong>e shifts <strong>in</strong> water column positions.<br />

Allotopic trials were conducted to quantify “preferred” positions <strong>of</strong> <strong>in</strong>dividual congener<br />

species <strong>and</strong> used as controls for comparison with syntopic trials. Tests identified<br />

differences <strong>in</strong> vertical distributions between allotopic comb<strong>in</strong>ations <strong>of</strong> congeneric pairs,<br />

syntopic comb<strong>in</strong>ations <strong>of</strong> congeneric pairs, <strong>and</strong> s<strong>in</strong>gle species allotopic versus syntopic<br />

comb<strong>in</strong>ations. Congeneric species <strong>of</strong> each pair differed significantly <strong>in</strong> vertical habitat<br />

use. Significant differences also occurred between allotopic <strong>and</strong> syntopic positions <strong>of</strong> all<br />

species. Additionally, species <strong>of</strong> both pairs concomitantly shifted toward mid-water<br />

30


categories. This f<strong>in</strong>d<strong>in</strong>g suggests that when found syntopically, the two species<br />

demonstrate some degree <strong>of</strong> <strong>in</strong>tegration similar to that <strong>of</strong> multi-species shoals. If<br />

laboratory-observed patterns <strong>of</strong> species <strong>in</strong>tegration also occur <strong>in</strong> wild populations, then<br />

competitive <strong>in</strong>teractions will likely occur ow<strong>in</strong>g to the close association between native<br />

<strong>and</strong> non-native species <strong>in</strong> the use <strong>of</strong> vertical habitat space. Additional studies are needed<br />

to verify experimental f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> the natural environment <strong>of</strong> the Greenbrier River<br />

system.<br />

31


Introduction<br />

Non-native fishes negatively impact native populations through multiple<br />

pathways (Meffe 1985, Ross 1991, Mooney <strong>and</strong> Clel<strong>and</strong> 2001), <strong>in</strong>clud<strong>in</strong>g competition for<br />

food or space (Hocutt <strong>and</strong> Hambrick 1973, Mathur 1975, Walser et al. 2000). Follow<strong>in</strong>g<br />

ecological theories <strong>of</strong> competitive exclusion (Hard<strong>in</strong> 1960), limit<strong>in</strong>g similarity<br />

(MacArthur <strong>and</strong> Lev<strong>in</strong>s 1967) <strong>and</strong> niche (Pielou 1972, Pianka 1974), competitive<br />

<strong>in</strong>teractions are expected between non-native species <strong>and</strong> closely-related native species.<br />

Aquarium-based studies <strong>of</strong> vertical segregation <strong>in</strong> m<strong>in</strong>nows have emphasized expected<br />

similarities with<strong>in</strong> behaviors <strong>and</strong> habitat use <strong>of</strong> closely-related species (i.e., an historical<br />

ecology emphasis on phylogenetic constra<strong>in</strong>ts on habitat use, Gorman 1988, 1992). Also,<br />

researchers have emphasized morphological correlates on use <strong>and</strong> segregation <strong>of</strong> habitats<br />

among closely-related species, such as mouth position <strong>and</strong> its determ<strong>in</strong>istic <strong>in</strong>fluence on<br />

benthic, pelagic, or surface forag<strong>in</strong>g (Mendelson 1975, Surat et al. 1982, Page <strong>and</strong><br />

Sw<strong>of</strong>ford 1984). Alternatively, some closely-related species <strong>in</strong>tegrate as mixed-species<br />

shoals, such as m<strong>in</strong>nows (Cypr<strong>in</strong>idae), <strong>and</strong> this strategy may improve forag<strong>in</strong>g success or<br />

predator avoidance (Mendelson 1975, Magurran <strong>and</strong> Pitcher 1983, 1987). Multispecific<br />

aggregations suggest a historic legacy <strong>of</strong> strong behavioral relationships amongst<br />

cypr<strong>in</strong>id guilds. Both mutual responsiveness <strong>and</strong> selective forces, required to reduce<br />

competition <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong> species identity, are required for mixed-species shoals to<br />

function (Mendelson 1975). However, little is known <strong>of</strong> the occurrence <strong>and</strong><br />

consequences <strong>of</strong> mixed-species shoals <strong>of</strong> native <strong>and</strong> non-native m<strong>in</strong>nows. Given recent<br />

conservation concerns <strong>of</strong> fish <strong>in</strong>troductions <strong>and</strong> impacts <strong>of</strong> non-natives (Rahel 2000),<br />

additional research needs focused on native/non-native species <strong>in</strong>teractions.<br />

32


Introductions <strong>of</strong> non-native fishes have <strong>in</strong>creased dramatically with<strong>in</strong> the past<br />

century (Courtenay <strong>and</strong> Hensley 1980). Dra<strong>in</strong>ages with naturally low species diversity,<br />

such as the New River dra<strong>in</strong>age <strong>of</strong> North Carol<strong>in</strong>a, Virg<strong>in</strong>ia, <strong>and</strong> West Virg<strong>in</strong>ia, have<br />

typically <strong>in</strong>curred the largest numbers <strong>of</strong> <strong>in</strong>troduced species (Jenk<strong>in</strong>s <strong>and</strong> Burkhead<br />

1994). The New River dra<strong>in</strong>age not only has a high proportion <strong>of</strong> non-native fishes (over<br />

50% nonnative, Wellman 2004), but also <strong>in</strong>cludes a diverse endemic fish fauna<br />

(bigmouth chub Nocomis platyrhynchus, New River sh<strong>in</strong>er Notropis scabriceps,<br />

Kanawha m<strong>in</strong>now Phenacobius teretulus, Kanawha sculp<strong>in</strong> Cottus kanawhae, Bluestone<br />

sculp<strong>in</strong> Cottus sp., alb<strong>in</strong>o cave sculp<strong>in</strong> Cottus sp., Appalachia darter Perc<strong>in</strong>a<br />

gymnocephala, Kanawha darter Etheostoma kanawhae, <strong>and</strong> c<strong>and</strong>y darter Etheostoma<br />

osburni). With<strong>in</strong> the last half century, range distributions have decreased for many <strong>of</strong><br />

these New River endemics (Chipps 1993b, C<strong>in</strong>cotta et al. 1999, Burns 2007), but few<br />

research efforts have focused on the relationship or non-relationship between a<br />

concurrent <strong>in</strong>crease <strong>in</strong> nonnative diversity (number <strong>of</strong> species <strong>and</strong> population sizes) <strong>and</strong> a<br />

decrease <strong>in</strong> population sizes <strong>and</strong> range distributions <strong>of</strong> native species.<br />

Many non-native fishes have recently exp<strong>and</strong>ed their distributional ranges with<strong>in</strong><br />

the lower New River dra<strong>in</strong>age <strong>and</strong> tributaries, such as the 4000 km 2 Greenbrier River<br />

watershed <strong>of</strong> West Virg<strong>in</strong>ia, <strong>in</strong>clud<strong>in</strong>g whitetail sh<strong>in</strong>er Cypr<strong>in</strong>ella galactura, telescope<br />

sh<strong>in</strong>er Notropis telescopus, Roanoke darter Perc<strong>in</strong>a roanoka, ra<strong>in</strong>bow darter Etheostoma<br />

caeruleum, <strong>and</strong> variegate darter Etheostoma variatum (Wellman 2004). The fish fauna <strong>of</strong><br />

the Greenbrier River dra<strong>in</strong>age <strong>in</strong>cludes seven <strong>of</strong> the n<strong>in</strong>e New River endemics (exclud<strong>in</strong>g<br />

Kanawha darter <strong>and</strong> Bluestone sculp<strong>in</strong>) <strong>and</strong> has relative high population sizes <strong>of</strong> two nonnative<br />

m<strong>in</strong>nows, telescope <strong>and</strong> whitetail sh<strong>in</strong>er. The ecological <strong>in</strong>fluences <strong>of</strong> these non-<br />

33


native cypr<strong>in</strong>ids on their native congeners, New River sh<strong>in</strong>er <strong>and</strong> spotf<strong>in</strong> sh<strong>in</strong>er<br />

Cypr<strong>in</strong>ella spiloptera, are undocumented, but Burns (2007) estimated population sizes <strong>of</strong><br />

both <strong>in</strong>troduced species to be greater than the native congeners <strong>in</strong> most Greenbrier River<br />

sampl<strong>in</strong>g sites.<br />

The objective <strong>of</strong> this aquaria-based experimental study was to quantify<br />

<strong>in</strong>teractions between two congeneric pairs <strong>of</strong> native (N. scabriceps <strong>and</strong> C. spiloptera) <strong>and</strong><br />

non-native (N. telescopus <strong>and</strong> C. galactura) cypr<strong>in</strong>ids <strong>of</strong> the New River dra<strong>in</strong>age. The<br />

study was designed <strong>and</strong> conducted follow<strong>in</strong>g discovery <strong>of</strong> population decl<strong>in</strong>es <strong>of</strong> N.<br />

scabriceps <strong>and</strong> C. spiloptera <strong>in</strong> the presence <strong>of</strong> range expansions <strong>and</strong> population size<br />

<strong>in</strong>creases <strong>of</strong> the <strong>in</strong>troduced N. telescopus <strong>and</strong> C. galactura.<br />

Methods<br />

Specimen collection <strong>and</strong> transport<br />

I collected two species <strong>of</strong> native m<strong>in</strong>nows (N. scabriceps <strong>and</strong> C. spiloptera) <strong>and</strong><br />

two species <strong>of</strong> their non-native congeners (N. telescopus <strong>and</strong> C. galactura) with a 1.5m x<br />

3m x 0.3cm mesh se<strong>in</strong>e from the East Fork Greenbrier River, North Fork Deer Creek,<br />

Deer Creek, <strong>and</strong> Meadow Creek. Approximately 100 –130 adults <strong>of</strong> each species were<br />

collected for transport to the laboratory with the follow<strong>in</strong>g size ranges: N. scabriceps (55<br />

– 82mm SL), N. telescopus (57 – 82mm SL), C. spiloptera (68 – 84mm SL), <strong>and</strong> C.<br />

galactura (68 – 86mm SL). Fishes were transported from stream to laboratory <strong>in</strong> 189.3L<br />

(50 gal) <strong>in</strong>sulated coolers. Water dur<strong>in</strong>g transport was aerated, salted (


Aquaria setup<br />

In the laboratory, fishes were separated by species <strong>and</strong> transferred to aquaria <strong>and</strong><br />

hold<strong>in</strong>g tanks (with bottom substrates <strong>of</strong> < 6.4 mm diameter from the East Fork<br />

Greenbrier River). Four 246 L (65 gal) glass aquaria (91.5 mm x 45.8 mm x 53 cm) <strong>and</strong><br />

two 379 L (100 gal) reservoirs were used as observation <strong>and</strong> hold<strong>in</strong>g tanks, <strong>and</strong> were all<br />

connected <strong>in</strong> a recirculation system with a 379 L sump. The sump was connected to a<br />

sequence pump that recirculated water to all aquaria <strong>and</strong> hold<strong>in</strong>g tanks at a rate <strong>of</strong><br />

approximately 2.6 L/m<strong>in</strong>. Carbon filters, bio balls, substrate vacuum, fresh water<br />

substitutions, <strong>and</strong> frequent monitor<strong>in</strong>g were employed to ma<strong>in</strong>ta<strong>in</strong> appropriate water<br />

quality. Sal<strong>in</strong>ity levels were kept at 2-3 ppt <strong>and</strong> water temperature varied between 18.4 -<br />

24°C throughout all trials. Fishes were fed daily with frozen bloodworms (genus<br />

Glycera) <strong>and</strong> frozen br<strong>in</strong>e shrimp (genus Artemia). Photoperiod was ma<strong>in</strong>ta<strong>in</strong>ed with<br />

florescent lights (plant bulbs) <strong>and</strong> an electric timer (14 hr light, 10 hr dark). Fishes were<br />

given a m<strong>in</strong>imum <strong>of</strong> one week acclimation time before data collection (but all <strong>in</strong>dividuals<br />

were actively feed<strong>in</strong>g with<strong>in</strong> aquaria on the same day as transport).<br />

Allotopic <strong>and</strong> syntopic experiments<br />

Aquaria-based experiments were designed to exam<strong>in</strong>e vertical distribution shifts<br />

<strong>of</strong> two native m<strong>in</strong>nows (C. spiloptera <strong>and</strong> N. scabriceps) <strong>in</strong> response to the presence <strong>of</strong><br />

non-native congeners (C. galactura <strong>and</strong> N. telescopus). Water column positions <strong>of</strong> each<br />

species with<strong>in</strong> aquaria were observed separately (allotopic trials) <strong>and</strong> concomitantly for<br />

each congeneric native/non-native species pair (syntopic trials). Six vertical categories<br />

described positions <strong>of</strong> <strong>in</strong>dividual fishes with<strong>in</strong> the water column <strong>of</strong> aquaria (similar to<br />

that <strong>of</strong> Gorman 1988). <strong>Vertical</strong> position categories (each 8.5 cm high) were def<strong>in</strong>ed as<br />

35


enthic, near-benthic, lower-pelagic, mid-pelagic, upper-pelagic, <strong>and</strong> surface pelagic<br />

(Gorman 1988). Position locations <strong>of</strong> <strong>in</strong>dividual fishes were determ<strong>in</strong>ed by horizontal<br />

l<strong>in</strong>es (8.5 cm <strong>in</strong>tervals on white poster board) located on the backside <strong>of</strong> each aquaria.<br />

For both Cypr<strong>in</strong>ella <strong>and</strong> Notropis pairs, species were segregated <strong>in</strong>to three groups<br />

(20 <strong>in</strong>dividuals <strong>of</strong> each species <strong>in</strong> three separate tanks). Then, I conducted a total <strong>of</strong> n<strong>in</strong>e<br />

trials with a crossover-based design where each native species group <strong>of</strong> 20 <strong>in</strong>dividuals<br />

was rotated with each congener group <strong>of</strong> 20 <strong>in</strong>dividuals <strong>and</strong> with each aquarium<br />

(syntopic trials). As a control, the positions <strong>of</strong> 40 <strong>in</strong>dividuals were observed for each<br />

species without the presence <strong>of</strong> its congener (allotropic trials). For allotopic trials, I used<br />

one group (40 <strong>in</strong>dividuals total) <strong>of</strong> each Notropis species (total <strong>of</strong> two tanks) <strong>and</strong> two<br />

groups (80 <strong>in</strong>dividuals total) <strong>of</strong> each Cypr<strong>in</strong>ella species (total <strong>of</strong> four tanks). Fewer<br />

Notropis groups <strong>in</strong> allotopic trials resulted from a lower number <strong>of</strong> available <strong>in</strong>dividuals<br />

<strong>of</strong> N. scabriceps. The use <strong>of</strong> equal numbers <strong>of</strong> <strong>in</strong>dividuals <strong>of</strong> each species (n=20) with<strong>in</strong><br />

tanks <strong>and</strong> equal numbers <strong>of</strong> <strong>in</strong>dividuals among tanks (n=40) controlled for effects <strong>of</strong><br />

disproportionate abundances.<br />

Video cameras recorded <strong>in</strong>dividual positions dur<strong>in</strong>g allotopic trials. Before data<br />

collection, 45 m<strong>in</strong>utes <strong>of</strong> tape elapsed to allow <strong>in</strong>dividuals to adjust to the video camera<br />

<strong>and</strong> tripod. It was later realized, however, that camera record<strong>in</strong>gs would not allow<br />

adequate resolution <strong>of</strong> two species dur<strong>in</strong>g syntopic trials. Therefore, a tarpaul<strong>in</strong> was<br />

draped from the lab ceil<strong>in</strong>g <strong>in</strong> front <strong>of</strong> aquaria to reduce observer effects, <strong>and</strong> <strong>in</strong>dividual<br />

fish positions were viewed through rectangular slits <strong>in</strong> the tarpaul<strong>in</strong>. For camera<br />

record<strong>in</strong>gs <strong>and</strong> direct observations, <strong>in</strong>dividual fish positions were collected at least 30<br />

seconds apart until 160 (allotopic) or 100 (syntopic) positions were recorded per trial.<br />

36


Data were collected dur<strong>in</strong>g periods <strong>of</strong> stationary positions <strong>of</strong> all <strong>in</strong>dividuals, <strong>and</strong> excluded<br />

when <strong>in</strong>dividuals behaved abnormally or transitioned between vertical categories.<br />

Separate chi-square tests exam<strong>in</strong>ed difference <strong>in</strong> vertical distributions between the<br />

syntopic pairs, allotopic trials, <strong>and</strong> syntopic-allotopic trials (alpha = 0.05). Modal peaks<br />

(those categories <strong>in</strong> which species most frequently occurred) <strong>and</strong> modal counts (the<br />

number <strong>of</strong> modal peaks <strong>of</strong> a category for a s<strong>in</strong>gle species dur<strong>in</strong>g 9 syntopic trials) were<br />

determ<strong>in</strong>ed by histograms for all trials.<br />

Results<br />

Notropis Congeners<br />

Allotopic <strong>and</strong> syntopic trials supported a difference <strong>in</strong> vertical distributions<br />

between N. scabriceps <strong>and</strong> N. telescopus. For allotopic trials, vertical distributions <strong>of</strong><br />

Notropis scabriceps were found <strong>in</strong> significantly lower (P < 0.05) categories than those <strong>of</strong><br />

Notropis telescopus (Table 1, Figure 1). The highest numbers <strong>of</strong> N. scabriceps occurred<br />

<strong>in</strong> the 0 to 8.5 cm benthic zone (n=136) with the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>dividuals <strong>in</strong> the 8.5 to 17<br />

cm near-benthic zone (n=24, Figure 1). For N. telescopus, the number <strong>of</strong> <strong>in</strong>dividuals was<br />

distributed normally with<strong>in</strong> the first 5 categories with the modal peak <strong>in</strong> the 17 to 25.5 cm<br />

lower pelagic area (n=43, Figure 1). In 7 <strong>of</strong> the 9 syntopic trials, vertical distributions <strong>of</strong><br />

Notropis scabriceps were significantly lower (P < 0.05) than those <strong>of</strong> Notropis telescopus<br />

(Table 1, Figure 2). Out <strong>of</strong> the n<strong>in</strong>e trials, six modal counts <strong>of</strong> N. scabriceps <strong>in</strong> the<br />

benthic zone occurred concomitantly with 6 modal counts <strong>of</strong> N. telescopus <strong>in</strong> the nearbenthic<br />

zone. Notropis scabriceps had two modal counts <strong>in</strong> the near-benthic zone when<br />

37


N. telescopus had modes <strong>in</strong> the lower-pelagic zone, <strong>and</strong> both species shared modal<br />

numbers <strong>in</strong> the lower pelagic zone dur<strong>in</strong>g a s<strong>in</strong>gle trial.<br />

For both Notropis species, vertical distributions differed significantly (P < 0.05)<br />

between allotopic <strong>and</strong> syntopic trials (Table 1, Figure 3). The magnitude <strong>of</strong> difference<br />

between allotopic <strong>and</strong> syntopic trials was largest for N. scabriceps. Specifically, N.<br />

scabriceps was primarily benthically-positioned dur<strong>in</strong>g allotopic trials (with<strong>in</strong> benthic<br />

<strong>and</strong> near benthic zones), but exp<strong>and</strong>ed its vertical position <strong>in</strong> the presence <strong>of</strong> N.<br />

telescopus to <strong>in</strong>clude 17 <strong>and</strong> 5 percent <strong>of</strong> its occupancy with<strong>in</strong> the lower pelagic <strong>and</strong><br />

pelagic zones, respectively. <strong>Vertical</strong> distribution exp<strong>and</strong>ed for N. scabriceps <strong>and</strong><br />

contracted <strong>in</strong> groups <strong>of</strong> N. telescopus. Hence, the two species shifted habitat <strong>and</strong><br />

<strong>in</strong>tegrated dur<strong>in</strong>g syntopic trials. Despite <strong>in</strong>tegration dur<strong>in</strong>g syntopy, the high power <strong>of</strong><br />

Chi-square tests supported significant separation <strong>of</strong> the two Notropis species.<br />

Cypr<strong>in</strong>ella Congeners<br />

Cypr<strong>in</strong>ella spiloptera <strong>and</strong> C. galactura differed <strong>in</strong> vertical distributions dur<strong>in</strong>g<br />

allotopic trials <strong>and</strong> segregated <strong>in</strong> 7 <strong>of</strong> 9 syntopic trials. For allotopic trials, vertical<br />

distributions <strong>of</strong> C. spiloptera were found <strong>in</strong> significantly lower (P < 0.05) categories than<br />

those <strong>of</strong> C. galactura (Table 2, Figure 1). Dur<strong>in</strong>g allotopic trials, C. spiloptera polarized<br />

vertical distributions with the mode <strong>in</strong> the benthic zone (53% <strong>of</strong> <strong>in</strong>dividuals) <strong>and</strong> the<br />

rema<strong>in</strong><strong>in</strong>g majority (27%) <strong>in</strong> the surface-pelagic area (Figure 1). Cypr<strong>in</strong>ella galactura<br />

also had a modal peak <strong>in</strong> the benthic zone (60% <strong>of</strong> <strong>in</strong>dividuals) dur<strong>in</strong>g the allotopic trials,<br />

but had the next highest percent occurrences <strong>in</strong> the near benthic (21%) <strong>and</strong> pelagic (12%)<br />

zones. In 7 <strong>of</strong> the 9 syntopic trials, vertical positions <strong>of</strong> C. spiloptera were significantly<br />

38


higher (P < 0.05) than those <strong>of</strong> C. galactura (Table 2, Figure 2). Out <strong>of</strong> the n<strong>in</strong>e trials, C.<br />

spiloptera had modal counts <strong>in</strong> the benthic zone (n=3), the near-benthic zone (n=5) <strong>and</strong><br />

the middle pelagic zone (n=1), whereas counts <strong>of</strong> C. galactura peaked modally <strong>in</strong> the<br />

benthic zone (n=6) <strong>and</strong> the near-benthic zone (n=2). Both species shared modal counts <strong>in</strong><br />

the benthic zone dur<strong>in</strong>g 3 trials <strong>and</strong> <strong>in</strong> the near-benthic zone dur<strong>in</strong>g one trial.<br />

For both Cypr<strong>in</strong>ella species, vertical distributions differed significantly (P < 0.05)<br />

between allotopic <strong>and</strong> syntopic trials (Table 2). For C. spiloptera, the syntopic trials<br />

revealed a shift toward mid-water column categories relative to the polarized use <strong>of</strong><br />

benthic <strong>and</strong> surface-pelagic zones dur<strong>in</strong>g allotopic trials (Figure 3). Specifically, C.<br />

spiloptera exp<strong>and</strong>ed its vertical distribution <strong>in</strong> the presence <strong>of</strong> C. galactura to <strong>in</strong>clude 27,<br />

15, 10, <strong>and</strong> 5 percent <strong>of</strong> <strong>in</strong>dividuals with<strong>in</strong> the near-benthic, lower-pelagic, pelagic, <strong>and</strong><br />

upper-pelagic zones, where the rema<strong>in</strong>der occurred with<strong>in</strong> benthic <strong>and</strong> surface pelagic<br />

areas (32%). The allotopic <strong>and</strong> syntopic distributions <strong>of</strong> C. galactura differed<br />

significantly (p < 0.05), <strong>and</strong> C. galactura shifted slightly toward pelagic positions <strong>in</strong> the<br />

presence <strong>of</strong> C. spiloptera dur<strong>in</strong>g syntopic trials. Hence, the two species shifted habitat<br />

<strong>and</strong> <strong>in</strong>tegrated dur<strong>in</strong>g syntopic trials.<br />

Discussion<br />

In this aquaria study, both congeneric pairs <strong>of</strong> Notropis species <strong>and</strong> Cypr<strong>in</strong>ella<br />

species significantly differed <strong>in</strong> vertical distributions with<strong>in</strong> the water column, but the<br />

magnitude <strong>of</strong> this difference was greatest between allotopic trials relative to that <strong>of</strong><br />

syntopic trials. Although allotopic trials supported <strong>in</strong>terspecific segregation, syntopic<br />

trials supported <strong>in</strong>creased <strong>in</strong>tegration <strong>of</strong> vertical distributions. Although native <strong>and</strong> non-<br />

39


native species pairs were partially segregated, species <strong>in</strong> syntopy <strong>in</strong>teracted as a mixedgroup<br />

without <strong>in</strong>terspecific antagonistic behavior. Based on the concept <strong>of</strong> competitive<br />

displacement <strong>and</strong> depend<strong>in</strong>g on a species’ generality <strong>of</strong> habitat use, one would expect a<br />

reduced range <strong>of</strong> water-column distribution <strong>of</strong> a native species follow<strong>in</strong>g the <strong>in</strong>troduction<br />

<strong>of</strong> a closely-related species (Pielou 1972). However, competitive displacement is not a<br />

general rule <strong>in</strong> the ecology <strong>of</strong> fishes, <strong>and</strong> many studies have demonstrated coexistence <strong>of</strong><br />

closely-related species, as well as benefits <strong>of</strong> mixed-species shoals (Magurran <strong>and</strong> Pitcher<br />

1983, 1987).<br />

Water depths dur<strong>in</strong>g normal flows with<strong>in</strong> the upper Greenbrier River system are<br />

greater than those available with<strong>in</strong> the study aquaria, <strong>and</strong> therefore allow additional space<br />

for segregation between the study species. Species <strong>in</strong>tegration, however, likely results<br />

dur<strong>in</strong>g periods <strong>of</strong> reduced water column depths dur<strong>in</strong>g dry summers (Gorman 1988).<br />

Thus, vertical position patterns may change dur<strong>in</strong>g the low flows <strong>of</strong> summer, dur<strong>in</strong>g a<br />

time <strong>of</strong> competitive crunch (Wiens 1977). Our results suggest that with<strong>in</strong> a water column<br />

space <strong>of</strong> 51cm, N. scabriceps <strong>and</strong> N. telescopus rarely used space with<strong>in</strong> 17 cm <strong>of</strong> the<br />

surface. Therefore, these two species may be <strong>in</strong> close association dur<strong>in</strong>g low <strong>and</strong> high<br />

flows, although direct observational studies (such as snorkel<strong>in</strong>g) are needed to quantify<br />

<strong>in</strong>teractions between the study species with<strong>in</strong> the Greenbrier River dra<strong>in</strong>age. Both C.<br />

spiloptera <strong>and</strong> C. galactura used the upper water column position <strong>in</strong> the study aquaria,<br />

<strong>and</strong> separation between these two species may <strong>in</strong>crease with<strong>in</strong> deeper habitats <strong>of</strong> the<br />

Greenbrier River.<br />

<strong>Vertical</strong> segregation between species <strong>in</strong> this experiment, consistent with a large<br />

body <strong>of</strong> literature (Baker <strong>and</strong> Ross 1981, Gorman 1988, Chipps et al. 1993a), supports a<br />

40


elationship between mouth position <strong>and</strong> habitat use <strong>in</strong> fishes. Benthic-oriented fishes<br />

typically have <strong>in</strong>ferior <strong>of</strong> subterm<strong>in</strong>al mouths <strong>and</strong> pelagic fishes have term<strong>in</strong>al or<br />

supraterm<strong>in</strong>al mouth positions (Mendelson 1975). Notropis telescopus <strong>and</strong> C. spiloptera<br />

were more pelagically-oriented, each hav<strong>in</strong>g mouths that are more term<strong>in</strong>ally-positioned<br />

than their congeneric counterparts. Mouth position is generally viewed as a phylogenetic<br />

or historical constra<strong>in</strong>t, with a strong proximate <strong>in</strong>fluence on habitat use. Increased<br />

<strong>in</strong>tegration dur<strong>in</strong>g syntopy as reported <strong>in</strong> this study provides evidence <strong>of</strong> a strong species<br />

<strong>in</strong>teraction <strong>in</strong>fluence over morphologically-correlated use <strong>of</strong> habitat <strong>in</strong> cypr<strong>in</strong>ids.<br />

In contrast to segregation by competitive displacement, studies have documented<br />

<strong>in</strong>tegration through mixed-species shoals (Magurran <strong>and</strong> Pitcher 1983, 1987, similar to<br />

mixed-species flocks <strong>of</strong> birds, Morse 1970). Previous <strong>in</strong>terspecific contact may not be<br />

required for two species, such as a native/non-native species pair, to closely-associate <strong>and</strong><br />

benefit symbiotically from <strong>in</strong>teractions, such as by improved forag<strong>in</strong>g success (Magurran<br />

<strong>and</strong> Pitcher 1983) or by predator avoidance (i.e., safety <strong>in</strong> numbers, Allan <strong>and</strong> Pitcher<br />

1986, Mathis <strong>and</strong> Chivers 2003). Based on general observations dur<strong>in</strong>g my experiments,<br />

the more pelagically-oriented species <strong>of</strong> each pair fed more aggressively dur<strong>in</strong>g syntopic<br />

trials, hence, there was no qualitative evidence for a mixed-shoal advantage <strong>of</strong> forag<strong>in</strong>g<br />

for both species. The number <strong>of</strong> <strong>in</strong>dividuals per tank <strong>in</strong> allotopic trials (n = 40) was equal<br />

to that <strong>of</strong> syntopic trials, so the data do not support evidence for an <strong>in</strong>fluence <strong>of</strong> density<br />

on syntopic <strong>in</strong>tegration, as one would expect from a “safety <strong>in</strong> numbers” explanation <strong>of</strong><br />

predator avoidance.<br />

In conclusion, the laboratory-based experimental study demonstrates a difference<br />

<strong>in</strong> vertical use <strong>of</strong> habitat between two native/non-native congeneric pairs. The<br />

41


<strong>in</strong>terspecific separation <strong>of</strong> vertical habitat use (as found <strong>in</strong> allotopic trials) decreased<br />

dur<strong>in</strong>g syntopic trials ow<strong>in</strong>g to an <strong>in</strong>crease <strong>in</strong> <strong>in</strong>terspecific <strong>in</strong>tegration. Based on concepts<br />

<strong>of</strong> competition, I expected segregation dur<strong>in</strong>g syntopy as a mechanism to reduce<br />

competitive <strong>in</strong>teractions. Integration <strong>of</strong> species dur<strong>in</strong>g syntopic trials, however, may be<br />

<strong>in</strong>terpreted as a predator avoidance behavior associated with mixed-species shoals. It is<br />

unknown if the native/non-native species <strong>of</strong> this study <strong>in</strong>tegrate <strong>and</strong> co-occur <strong>in</strong> mixedspecies<br />

shoals with<strong>in</strong> the Greenbrier River system. Recent population assessments<br />

<strong>in</strong>dicate disproportionate population sizes <strong>of</strong> these native <strong>and</strong> non-native m<strong>in</strong>nows<br />

(Chipps et al. 1993b, Burns 2007), <strong>and</strong> additional research is needed to compare<br />

experimental results with native/non-native <strong>in</strong>teractions occurr<strong>in</strong>g with<strong>in</strong> the Greenbrier<br />

River dra<strong>in</strong>age.<br />

42


Literature Cited<br />

Allan, J. R. <strong>and</strong> T. J. Pitcher. 1986. Species segregation dur<strong>in</strong>g predator evasion <strong>in</strong><br />

cypr<strong>in</strong>id fish shoals. Journal <strong>of</strong> Fisheries Biology 16:653-659.<br />

Baker, J. A. <strong>and</strong> S. T. Ross. 1981. Spatial <strong>and</strong> temporal resource utilization by<br />

southeastern cypr<strong>in</strong>ids. Copeia 1981:178-189.<br />

Burns, A. D. 2007. Comparison <strong>of</strong> two electr<strong>of</strong>ish<strong>in</strong>g gears (backpack <strong>and</strong> parallel<br />

wires) <strong>and</strong> abundances <strong>of</strong> fishes <strong>of</strong> the upper Greenbrier River dra<strong>in</strong>age. M. S.<br />

Thesis. West Virg<strong>in</strong>ia University, Morgantown, West Virg<strong>in</strong>ia.<br />

Chipps, S. R., S. A. Perry, <strong>and</strong> W. B. Perry. 1993a. Patterns <strong>of</strong> microhabitat use among<br />

four species <strong>of</strong> darters <strong>in</strong> three Appalachian streams. American Midl<strong>and</strong><br />

Naturalist 131:175-180.<br />

Chipps, S.R., W.B. Perry <strong>and</strong> S.A. Perry. 1993b. Status <strong>and</strong> distribution<br />

<strong>of</strong> Phenacobius teretulus, Etheostoma osburni, <strong>and</strong> “Rh<strong>in</strong>chthys bowersi”<br />

<strong>in</strong> the Monongahela National Forest, West Virg<strong>in</strong>ia. Virg<strong>in</strong>ia Journal <strong>of</strong><br />

Science 44:47-58.<br />

C<strong>in</strong>cotta, D. A., D. A. Chambers, <strong>and</strong> T. Mess<strong>in</strong>ger. 1999. Recent changes <strong>in</strong> the<br />

distribution <strong>of</strong> fish species <strong>in</strong> the New River Bas<strong>in</strong> <strong>in</strong> West Virg<strong>in</strong>ia <strong>and</strong> Virg<strong>in</strong>ia.<br />

Proceed<strong>in</strong>gs from the New River Symposium p. 98-106.<br />

Courtenay, W. R., Jr. <strong>and</strong> D. A. Hensley. 1980. Special problems associated with<br />

monitor<strong>in</strong>g exotic species. Pp.281-307. In: C. H. Hocutt <strong>and</strong> J. R. Stauffer, Jr.<br />

(ed.) Biological Monitor<strong>in</strong>g <strong>of</strong> Fish, Lex<strong>in</strong>gton Books, Lex<strong>in</strong>gton.<br />

Gorman, O.T. 1992. Evolutionary ecology <strong>and</strong> historical ecology: assembly,<br />

structure, <strong>and</strong> organization <strong>of</strong> stream fish communities. Pages 659-688 In<br />

R.L. Mayden, ed., Systematics, historical ecology, <strong>and</strong> North America<br />

freshwater fishes, Stanford University Press, Stanford, California. Pgs 969.<br />

Gorman, O. T. 1988. <strong>An</strong> experimental study <strong>of</strong> habitat use <strong>in</strong> an assemblage <strong>of</strong> Ozark<br />

m<strong>in</strong>nows. Ecology 69:1239-1250.<br />

Hard<strong>in</strong>, G. 1960. The competitive exclusion pr<strong>in</strong>ciple. Science 131:1292-1297.<br />

Hocutt, C. H. <strong>and</strong> P. S. Hambrick. 1973. Hybridization between the darters Perc<strong>in</strong>a<br />

crassa roanoka <strong>and</strong> Perc<strong>in</strong>a oxyrhyncha (Percidae, Etheostamat<strong>in</strong>i), with<br />

comments on the distribution <strong>of</strong> Percian crassa roanaoka <strong>in</strong> the New River. The<br />

American Midl<strong>and</strong> Naturalist 90:397-405.<br />

Jenk<strong>in</strong>s, R. E. <strong>and</strong> N. M. Burkhead. 1993. Freshwater fishes <strong>of</strong> Virg<strong>in</strong>ia. American<br />

Fisheries Society. Bethesda, Maryl<strong>and</strong>.<br />

43


MacArthur, R. <strong>and</strong> R. Lev<strong>in</strong>s. 1967. The limit<strong>in</strong>g similarity, convergence, <strong>and</strong><br />

divergence <strong>of</strong> coexist<strong>in</strong>g species. The American Naturalist 101:377-385.<br />

Magurran, A. E. <strong>and</strong> T. J. Pitcher. 1983. Forag<strong>in</strong>g, timidity <strong>and</strong> shoal size <strong>in</strong> m<strong>in</strong>nows<br />

<strong>and</strong> goldfish. Behavioral Ecology <strong>and</strong> Sociobiology 12:142-152.<br />

Magurran, A. E. <strong>and</strong> T. J. Pitcher. 1987. Provenance, shoal size <strong>and</strong> the sociobiology <strong>of</strong><br />

predator-evasion behavior <strong>in</strong> m<strong>in</strong>now shoals. Proceed<strong>in</strong>gs <strong>of</strong> the Royal Society <strong>of</strong><br />

London B 229:439-465.<br />

Mathis, A. <strong>and</strong> D. P. Chivers. 2003. Overrid<strong>in</strong>g the oddity effect <strong>in</strong> mixed-species<br />

aggregations: group choice by armored <strong>and</strong> non-armored prey. Behavioral<br />

Ecology 14:334-339.<br />

Mathur, D. 1975. Food habits <strong>and</strong> competitive relationships <strong>of</strong> the B<strong>and</strong>f<strong>in</strong> Sh<strong>in</strong>er <strong>in</strong><br />

Halawakee Creek, Alabama. American Midl<strong>and</strong> Naturalist 97:89-100.<br />

Meffe, G. K. 1985. Predation <strong>and</strong> species replacements <strong>in</strong> American southwestern<br />

fishes: a case study. The Southwestern Naturalist 30:173-187.<br />

Mendelson, J. 1975. Feed<strong>in</strong>g relationships among species <strong>of</strong> Notropis (Pisces:<br />

Cypr<strong>in</strong>idae) <strong>in</strong> a Wiscons<strong>in</strong> Stream. Ecological Monographs 45:199-230.<br />

Mooney, H. A. <strong>and</strong> E. E. Clel<strong>and</strong>. 2001. The evolutionary impact <strong>of</strong> <strong>in</strong>vasive species.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong><br />

America. Vol. 98, No. 10, 5446-5451.<br />

Morse, D. H. 1970. Ecological aspects <strong>of</strong> some mixed-species forag<strong>in</strong>g flocks <strong>of</strong> birds.<br />

Ecological Monographs 40:119-168.<br />

Page, L. M. <strong>and</strong> D. L. Sw<strong>of</strong>ford. 1984. Morphological correlates <strong>of</strong> ecological<br />

specialization <strong>in</strong> darters. Environmental Biology <strong>of</strong> Fishes 11:139-159.<br />

Pianka, E. R. 1974. Niche overlap <strong>and</strong> diffuse competition. Proceed<strong>in</strong>gs <strong>of</strong> the Natural<br />

Academy <strong>of</strong> Science 71:2141-2145.<br />

Pielou, E. C. 1972. Niche width <strong>and</strong> niche overlap: a method for measur<strong>in</strong>g them.<br />

Ecology 53:687-692.<br />

Rahel, F. J. 2000. Homogenization <strong>of</strong> fish faunas across the United States. Science<br />

288:854-856.<br />

Ross, S. T. 1991. Mechanisms structur<strong>in</strong>g stream fish assemblages: are there lessons<br />

from <strong>in</strong>troduced species? Environmental Biology <strong>of</strong> Fishes 30:359-368.<br />

44


Surat, E. M., W. J. Matthews, <strong>and</strong> J. R. Bek. 1982. Comparative ecology <strong>of</strong> Notropis<br />

albeolus, N. ardens, <strong>and</strong> N. ceras<strong>in</strong>us (Cypr<strong>in</strong>idae) <strong>in</strong> the upper Roanoke River<br />

dra<strong>in</strong>age, Virg<strong>in</strong>ia. American Midl<strong>and</strong> Naturalist 107:13-24.<br />

Walser, C. A., B. Falterman, <strong>and</strong> H. L. Bart Jr. 2000. Impact <strong>of</strong> <strong>in</strong>troduced rough sh<strong>in</strong>er<br />

(Notropis baileyi) on the native fish community <strong>in</strong> the Chatahoochee River<br />

system. American Midl<strong>and</strong> Naturalist 144:393-405.<br />

Wellman, D. 2004. Post-flood recovery <strong>and</strong> distributions <strong>of</strong> fishes <strong>in</strong> the New River<br />

Gorge National River, West Virg<strong>in</strong>a. M. S. thesis. West Virg<strong>in</strong>ia University,<br />

Morgantown, West Virg<strong>in</strong>ia.<br />

Wiens, J. A. 1977. On competition <strong>in</strong> variable environments. American Scientist 65:590-<br />

597.<br />

45


Table 1. Results <strong>of</strong> Chi square Tests for Independence for Notropis congeners, N. scabriceps (Ns) <strong>and</strong> N.<br />

telescopus (Nt). P values < 0.05 <strong>in</strong>dicated significant vertical differences between species.<br />

Group with<br />

Tank Ns Group Nt Group P value higher vertical N<br />

tank position<br />

Allotopic trials<br />

1 & 2 A A P < .0001 Nt 320<br />

Syntopic trials<br />

1 A A P < .0001 Nt 200<br />

2 B B P < .0005 Nt 200<br />

3 C C P < .0001 Nt 200<br />

1 C B P < .0001 Nt 200<br />

2 A C P < .0166 Nt 200<br />

3 B A P < .6997 — 200<br />

1 B C P < .0001 Nt 200<br />

2 C A P < .0031 Nt 200<br />

3 A B P < .3900 — 200<br />

Allotopic <strong>and</strong> syntopic trials comb<strong>in</strong>ed<br />

1–3<br />

Allotopic A vs.<br />

Syntopic A - C<br />

— P < .0001 Syntopic 320<br />

1–3 —<br />

Allotopic A vs.<br />

Syntopic A - C<br />

P < .0001 Allotopic 320<br />

46


Table 2. Results <strong>of</strong> Chi square Tests for Independence for Cypr<strong>in</strong>ella congeners, C. spiloptera (Cs) <strong>and</strong> C.<br />

galactura (Cg). P values < 0.05 <strong>in</strong>dicate significant vertical differences between species.<br />

Group with<br />

Tank Cs Group Cg Group P value higher vertical N<br />

tank position<br />

Allotopic trials<br />

1, 2, 3 &<br />

4 A & B A & B P < .0001 Cs 320<br />

Syntopic trials<br />

1 A A P < .3400 — 200<br />

2 B B P < .0028 Cs 200<br />

3 C C P < .6301 — 200<br />

1 C B P < .0001 Cs 200<br />

2 A C P < .0024 Cs 200<br />

3 B A P < .0111 Cs 200<br />

1 B C P < .0003 Cs 200<br />

2 C A P < .0059 Cs 200<br />

3 A B P < .0107 Cs 200<br />

Allotopic <strong>and</strong> syntopic trials comb<strong>in</strong>ed<br />

1–4<br />

Allotopic A &<br />

B vs. Syntopic<br />

A - C<br />

— P < .0001 Syntopic 320<br />

1–4 —<br />

Allotopic A &<br />

B vs. Syntopic<br />

A - C<br />

P < .0355 Syntopic 320<br />

47


Total Number <strong>of</strong> Occurrences<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Allotopic Notropis 120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1 2 3 4 5 6<br />

Allotopic Cypr<strong>in</strong>ella<br />

1 2 3 4 5 6<br />

<strong>Vertical</strong> Position Categories<br />

Figure 1. Relationship between allotopic vertical positions <strong>of</strong> Notropis <strong>and</strong> Cypr<strong>in</strong>ella<br />

congeners. Gray bars represent native species while hollow bars represent non-native species. P<br />

values <strong>of</strong> all allotopic trials are displayed <strong>in</strong> Tables 1 <strong>and</strong> 2.<br />

48


Notropis<br />

Cypr<strong>in</strong>ella<br />

60<br />

Tank 1 (Rep 1)<br />

60<br />

Tank 1 (Rep 1)<br />

40<br />

40<br />

20<br />

20<br />

0<br />

0<br />

60<br />

40<br />

20<br />

Tank 2 (Rep 1)<br />

80<br />

60<br />

40<br />

20<br />

Tank 2 (Rep 1)<br />

0<br />

0<br />

60<br />

Tank 3 (Rep 1)<br />

40<br />

Tank 3 (Rep 1)<br />

40<br />

20<br />

20<br />

0<br />

0<br />

Total Number <strong>of</strong> Occurrences<br />

80<br />

60<br />

40<br />

20<br />

0<br />

60<br />

40<br />

20<br />

0<br />

60<br />

40<br />

20<br />

0<br />

Tank 1 (Rep 2)<br />

Tank 2 (Rep 2)<br />

Tank 3 (Rep 2)<br />

60<br />

40<br />

20<br />

0<br />

40<br />

20<br />

0<br />

40<br />

20<br />

0<br />

Tank 1 (Rep 2)<br />

Tank 2 (Rep 2)<br />

Tank 3 (Rep 2)<br />

60<br />

Tank 1 (Rep 3)<br />

40<br />

Tank 1 (Rep 3)<br />

40<br />

20<br />

20<br />

0<br />

0<br />

60<br />

40<br />

20<br />

0<br />

60<br />

40<br />

20<br />

Tank 2 (Rep 3)<br />

Tank 3 (Rep 3)<br />

60 Tank 2 (Rep 3)<br />

40<br />

20<br />

0<br />

40 Tank 3 (Rep 3)<br />

20<br />

0<br />

1 2 3 4 5 6 1 2 3 4 5 6<br />

0<br />

<strong>Vertical</strong> Position Categories<br />

Figure 2. Relationship between vertical placements <strong>of</strong> Notropis <strong>and</strong> Cypr<strong>in</strong>ella congeners<br />

dur<strong>in</strong>g all syntopic trials <strong>and</strong> tank replications. Gray bars represent native species while<br />

hollow bars represent non-native species. P values <strong>of</strong> all trials are displayed <strong>in</strong> Tables 1 <strong>and</strong> 2.<br />

49


Total Number <strong>of</strong> Occurrences<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

80<br />

60<br />

40<br />

N. scabriceps<br />

N. telescopus<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

120<br />

100<br />

80<br />

60<br />

C. spiloptera<br />

C. galactura<br />

20<br />

40<br />

20<br />

0<br />

0<br />

1 2 3 4 5 6 1 2 3 4 5 6<br />

<strong>Vertical</strong> Position Categories<br />

Figure 3. Relationship between allotopic <strong>and</strong> syntopic vertical positions <strong>of</strong> all Notropis <strong>and</strong><br />

Cypr<strong>in</strong>ella congeners. Syntopic data were scaled down to fit the number <strong>of</strong> observations<br />

accumulated <strong>in</strong> allotopic trials. Gray bars represent allotopic trends while hollow bars represent<br />

syntopic trends. P values <strong>of</strong> all allotopic <strong>and</strong> syntopic trials are displayed <strong>in</strong> Tables 1 <strong>and</strong> 2.<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!