01.03.2015 Views

developments in the processing of refractory & complex gold ores

developments in the processing of refractory & complex gold ores

developments in the processing of refractory & complex gold ores

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DEVELOPMENTS IN THE PROCESSING OF<br />

REFRACTORY & COMPLEX GOLD ORES<br />

Presented by<br />

Alan Taylor<br />

ALTA Metallurgical Services, Melbourne<br />

alantaylor@altamet.com.au<br />

AusIMM Bendigo Technical Meet<strong>in</strong>g, August 2013


INTRODUCTION<br />

The <strong>in</strong>creas<strong>in</strong>g trend towards lower grade and more <strong>complex</strong> <strong>ores</strong><br />

and <strong>the</strong> need for lower cost processes especially for small deposits<br />

have resulted <strong>in</strong> <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> a variety <strong>of</strong> new processes<br />

which are at various stages <strong>of</strong> development.<br />

Additional <strong>in</strong>centives <strong>in</strong>clude <strong>in</strong>creas<strong>in</strong>g environmental pressure<br />

aga<strong>in</strong>st <strong>the</strong> use <strong>of</strong> cyanide, concern over <strong>the</strong> release <strong>of</strong> toxic<br />

elements and <strong>the</strong> need to conserve water resources.<br />

2


• Ores conta<strong>in</strong><strong>in</strong>g <strong>gold</strong> locked <strong>in</strong> solid solution or as f<strong>in</strong>e<br />

<strong>in</strong>clusions <strong>in</strong>clude:<br />

- iron/arsenic sulphide m<strong>in</strong>erals such as arsenopyrite, arsenian<br />

pyrite, and pyrite<br />

- copper sulphides such as chalcopyrite, tetrahedrite<br />

- none sulphide gangue m<strong>in</strong>erals such as silica m<strong>in</strong>erals, iron<br />

oxides<br />

• Ores with <strong>in</strong>soluble or slow leach<strong>in</strong>g <strong>gold</strong> m<strong>in</strong>erals <strong>in</strong>clud<strong>in</strong>g:<br />

– <strong>gold</strong> tellurides<br />

– aurostibnite – AuSb 2<br />

– Maldonite – Au 2 Bi<br />

ORE CATEGORIES<br />

– Fischesserite - Ag 3 AuSe 2<br />

• Ores conta<strong>in</strong><strong>in</strong>g preg-robb<strong>in</strong>g constituents such carbonaceous<br />

material or clays.<br />

3


ORE CATEGORIES (CONT.)<br />

• Ores conta<strong>in</strong><strong>in</strong>g cyanide and/or oxygen consumers <strong>in</strong>clud<strong>in</strong>g:<br />

- oxide/hydroxide copper m<strong>in</strong>erals, native copper, secondary<br />

copper sulphide m<strong>in</strong>erals<br />

- reactive iron sulphide m<strong>in</strong>erals, pyrrhotite, marcasite<br />

- reactive antimony and arsenic sulphide m<strong>in</strong>erals,<br />

stibnite Sb 2 S 3 , orpiment As 2 S 3 , realgar As 4 S 4<br />

Note:<br />

More than one category can apply to a particular ore deposit;<br />

e.g. double <strong>refractory</strong> <strong>ores</strong> <strong>in</strong> Nevada with <strong>gold</strong> locked <strong>in</strong> iron<br />

sulphides plus preg-robb<strong>in</strong>g carbonaceous material.<br />

4


Note: covellite solubility is similar to chalcocite.<br />

(Ref: “Cyanamid wants you to know”, May 1955)<br />

5


TREATMENT PROCESSES<br />

6


LOCKED GOLD<br />

Iron/Arsenic Sulphides - pretreatment processes <strong>in</strong>clude:<br />

• Roast<strong>in</strong>g <strong>of</strong> whole ore or flotation concentrate.<br />

• Low pressure <strong>in</strong>tensive oxidation.<br />

• Acid or alkal<strong>in</strong>e pressure oxidation <strong>of</strong> whole ore or flotation<br />

concentrate.<br />

• Bio-oxidation <strong>of</strong> flotation concentrate.<br />

• F<strong>in</strong>e or ultraf<strong>in</strong>e gr<strong>in</strong>d<strong>in</strong>g <strong>of</strong> flotation concentrate followed by<br />

direct cyanidation or one <strong>of</strong> <strong>the</strong> above pretreatment processes.<br />

• Heap bio-oxidation <strong>of</strong> whole ore or flotation concentrate.<br />

Copper Sulphides – flotation followed by smelt<strong>in</strong>g, roast<strong>in</strong>g or<br />

hydromet treatment <strong>of</strong> concentrate.<br />

Non-Sulphide Gangue M<strong>in</strong>erals – f<strong>in</strong>e gr<strong>in</strong>d<strong>in</strong>g <strong>of</strong> whole ore<br />

followed by direct cyanidation.<br />

7


INSOLUBLE OR SLOW LEACHING GOLD MINERALS<br />

• Roast<strong>in</strong>g <strong>of</strong> flotation concentrate followed by cyanidation.<br />

• Alkal<strong>in</strong>e chlor<strong>in</strong>ation leach<strong>in</strong>g <strong>of</strong> flotation concentrate followed<br />

by cyanidation.<br />

• Low pressure cyanidation <strong>of</strong> flotation concentrate.<br />

8


Oxidised or Low Sulphide Ores<br />

PREG-ROBBING ORES<br />

• Maximization <strong>of</strong> <strong>gold</strong> recovery by gravity plus <strong>in</strong>tensive<br />

cyanidation <strong>of</strong> concentrate.<br />

• Application <strong>of</strong> CIL with high carbon concentration.<br />

• Addition <strong>of</strong> kerosene or o<strong>the</strong>r substance to blanket <strong>the</strong> pregrobb<strong>in</strong>g<br />

material followed by CIL or RIL (not subject to foul<strong>in</strong>g).<br />

• Chlor<strong>in</strong>ation to deactivate <strong>the</strong> carbonaceous material.<br />

• Roast<strong>in</strong>g to burn <strong>of</strong>f <strong>the</strong> carbonaceous material.<br />

Ores with Gold Locked <strong>in</strong> Sulphides<br />

• Roast<strong>in</strong>g <strong>of</strong> whole ore or flotation concentrate to burn <strong>of</strong>f <strong>the</strong><br />

carbonaceous material and oxidize <strong>the</strong> <strong>gold</strong> bear<strong>in</strong>g sulphide .<br />

• Pressure oxidation to deactivate <strong>the</strong> carbonaceous material and<br />

oxidize <strong>the</strong> <strong>gold</strong> bear<strong>in</strong>g sulphide.<br />

• Rejection <strong>of</strong> carbonaceous material <strong>in</strong> flotation circuit if <strong>in</strong>cluded.<br />

9


CYANIDE AND OXYGEN CONSUMING ORES<br />

Cyanide Soluble Copper M<strong>in</strong>erals<br />

• Provision <strong>of</strong> an optimum safe level <strong>of</strong> free cyanide to maximize<br />

<strong>gold</strong> recovery and m<strong>in</strong>imize copper load<strong>in</strong>g on carbon <strong>in</strong> CIP.<br />

• Use <strong>of</strong> an ion exchange res<strong>in</strong> to selectively extract <strong>gold</strong> over<br />

copper.<br />

• Oxygen sparg<strong>in</strong>g to ma<strong>in</strong>ta<strong>in</strong> adequate oxygen <strong>in</strong> solution.<br />

• Precipitation <strong>of</strong> copper from solution with H 2 S or sodium<br />

hydrosulphide (e.g. SART Process) and recycle <strong>of</strong> cyanide.<br />

• Removal <strong>of</strong> soluble copper by leach<strong>in</strong>g with sulphuric acid for<br />

oxide/hydroxide copper m<strong>in</strong>erals or bio-oxidation for sulphide<br />

copper m<strong>in</strong>erals.<br />

• Removal <strong>of</strong> native copper by gravity.<br />

10


CYANIDE AND OXYGEN CONSUMING ORES<br />

Reactive Iron, Antimony and Arsenic Sulphide M<strong>in</strong>erals<br />

• Preaeration (air and/or oxygen) <strong>in</strong> alkal<strong>in</strong>e solution which forms<br />

a protective oxidation film on <strong>the</strong> iron sulphide surface and<br />

oxidizes any soluble ferrous salts present <strong>in</strong> <strong>the</strong> ore<br />

• Addition <strong>of</strong> a soluble lead salt such as nitrate which precipitates<br />

soluble sulphide and assists with <strong>the</strong> passivation <strong>of</strong> <strong>the</strong> iron<br />

sulphide surface.<br />

• Flotation and roast<strong>in</strong>g <strong>of</strong> concentrate for <strong>ores</strong> with high reactive<br />

sulphide levels.<br />

11


SELECTED PROCESS FLOWSHEETS<br />

12


ROASTING OF FLOTATION CONCENTRATES<br />

For Gold Locked In Iron/Arsenic Sulphides<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g &<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

Tail<strong>in</strong>gs<br />

Air/Oxygen<br />

Flotation<br />

Roast<strong>in</strong>g<br />

Gas Cool<strong>in</strong>g<br />

Lime<br />

Off-Gas<br />

Neutralization<br />

Calc<strong>in</strong>e<br />

Quench<strong>in</strong>g<br />

Electrostatic<br />

Precipitation<br />

Gas Clean<strong>in</strong>g<br />

NaCN<br />

Cyanidation/CIP<br />

Carbon Strip &<br />

Gold Room<br />

Detox<br />

Tail<strong>in</strong>gs<br />

BULLION


ACID PRESSURE-OX OF FLOTATION CONCENTRATE<br />

For Gold Locked In Iron/Arsenic Sulphides<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g &<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

Tail<strong>in</strong>gs<br />

Flotation<br />

Lime<br />

Acid Pretreatment<br />

Preheat<strong>in</strong>g<br />

Oxygen<br />

Neutralization<br />

CCD<br />

Pressure<br />

Let-Down<br />

Pressureox<br />

NaCN<br />

Cyanidation/CIP<br />

Carbon Strip &<br />

Gold Room<br />

Detox<br />

Tail<strong>in</strong>gs<br />

BULLION


BIO-OX OF FLOTATION CONCENTRATE<br />

For Gold Locked In Iron/Arsenic Sulphides<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g &<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

Tail<strong>in</strong>gs<br />

Air<br />

Cool<strong>in</strong>g Water<br />

Neutrients<br />

Flotation<br />

Lime<br />

Optional Ultra-<br />

F<strong>in</strong>e Gr<strong>in</strong>d<strong>in</strong>g<br />

Bioox Reactors<br />

Neutralization<br />

CCD<br />

NaCN<br />

Cyanidation/CIP<br />

Carbon Strip &<br />

Gold Room<br />

Detox<br />

Tail<strong>in</strong>gs<br />

BULLION


ROASTING OF FLOTATION CONCENTRATE<br />

For Gold Locked In Copper Sulphides<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g &<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

Tail<strong>in</strong>gs<br />

Air<br />

Flotation<br />

Roast<strong>in</strong>g<br />

Gas Cool<strong>in</strong>g<br />

Copper Leach<strong>in</strong>g<br />

Calc<strong>in</strong>e<br />

Quench<strong>in</strong>g<br />

Electrostatic<br />

Preceipitation<br />

CCD<br />

Copper SX/EW<br />

Lime<br />

COPPER CATHODE<br />

Neutralization<br />

NaCN<br />

Cyanidation/CIP<br />

Carbon Strip &<br />

Gold Room<br />

Detox<br />

Tail<strong>in</strong>gs<br />

BULLION


GRAVITY RECOVERY MAXIMIZATION, KEROSENE<br />

BLANKETING & CIL/RIL<br />

For Preg-robb<strong>in</strong>g Ores<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g &<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

NaCN<br />

Caustic<br />

Oxidant<br />

Gravity Recovery<br />

Intensive<br />

Cyanidation<br />

Kerosene<br />

Condition<strong>in</strong>g<br />

Direct EW<br />

NaCN<br />

Lime<br />

CIL or RIL<br />

Stripp<strong>in</strong>g &<br />

Gold Room<br />

Detox<br />

Tail<strong>in</strong>gs<br />

BULLION


HEAP LEACHING INCLUDING SART<br />

For Cyanide Soluble Copper M<strong>in</strong>erals<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g<br />

Optional<br />

Agglomeration<br />

NaCN<br />

Gold Heap<br />

Leach<strong>in</strong>g<br />

Lime or Caustic<br />

CIS or RIS<br />

Strip & Gold<br />

Room<br />

Cyanide Recycle<br />

SART<br />

Lime<br />

NaHS or H 2 S<br />

BULLION<br />

COPPER SULPHIDE<br />

BY-PRODUCT


SEQUENTIAL HEAP LEACHING<br />

For Cyanide Soluble Copper M<strong>in</strong>erals<br />

Applied at Mt. Leyshon M<strong>in</strong>es, Qld, Australia <strong>in</strong> <strong>the</strong> 1990s<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g<br />

Air<br />

Copper Heap<br />

Leach<strong>in</strong>g<br />

Neutralization<br />

NaCN<br />

Lime<br />

Wash<strong>in</strong>g<br />

Residue<br />

Rehandl<strong>in</strong>g<br />

Copper SX/EW or<br />

Cementation<br />

Copper Product<br />

Gold Heap<br />

Leach<strong>in</strong>g<br />

CIS<br />

Carbon Strip &<br />

Gold Room<br />

BULLION


PREAERATION AND LEAD NITRATE ADDITION<br />

For Reactive Sulphide M<strong>in</strong>erals<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g &<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

Air/Oxygen<br />

Preaeration<br />

NaCN<br />

Lime<br />

Lead<br />

Nitrate<br />

Cyanidation/CIP<br />

Stripp<strong>in</strong>g &<br />

Gold Room<br />

Detox<br />

Tail<strong>in</strong>gs<br />

BULLION


PROCESS DEVELOPMENT<br />

21


ALBION PROCESS<br />

• Developed by Xstrata, and marketed through Core Resources,<br />

Australia.<br />

• Potentially lower cost option for <strong>gold</strong> locked <strong>in</strong> <strong>refractory</strong><br />

iron/arsenic and base metal sulphide <strong>ores</strong>.<br />

• Consists <strong>of</strong> flotation, ultraf<strong>in</strong>e gr<strong>in</strong>d<strong>in</strong>g <strong>of</strong> concentrate us<strong>in</strong>g<br />

Isamill technology, and agitated oxidative atmospheric leach<strong>in</strong>g<br />

reactors with oxygen sparg<strong>in</strong>g operat<strong>in</strong>g auto<strong>the</strong>rmallly at<br />

93-98C.<br />

• Limestone dos<strong>in</strong>g to ma<strong>in</strong>ta<strong>in</strong> neutral pH <strong>of</strong> 5-7 used for pyrite,<br />

arsenopyrite, and tellurides.<br />

• Followed by thicken<strong>in</strong>g, cool<strong>in</strong>g and <strong>gold</strong> recovery by CIL.<br />

• Two commercial z<strong>in</strong>c plants commissioned <strong>in</strong> Spa<strong>in</strong> <strong>in</strong> 2010 and<br />

Germany <strong>in</strong> 2011.<br />

• First commercial <strong>refractory</strong> <strong>gold</strong> plant <strong>in</strong> Dom<strong>in</strong>ican Republic <strong>in</strong><br />

2012. Second under construction <strong>in</strong> Armenia.<br />

22


ALBION PROCESS FLOWSHEET<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Crush<strong>in</strong>g &<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

Tail<strong>in</strong>gs<br />

Limestone<br />

Oxygen<br />

Flotation<br />

Ultra-F<strong>in</strong>e<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

Neutral Albion<br />

Leach<br />

Slurry Cool<strong>in</strong>g<br />

Thicken<strong>in</strong>g<br />

NaCN<br />

Caustic<br />

CIL<br />

Carbon Strip &<br />

Gold Room<br />

Detox<br />

Tail<strong>in</strong>gs<br />

BULLION


LAS LAGUNAS ALBION LEACHING PLANT<br />

DOMINICAN REPUBLIC<br />

Ref: Xstrata/Core Paper, ALTA 2012


GEOCOAT PROCESS<br />

• Developed by GeoBiotics, USA.<br />

• Potentially lower cost option for <strong>gold</strong> locked <strong>in</strong> <strong>refractory</strong><br />

iron/arsenic and base metal sulphide <strong>ores</strong>.<br />

• Involves coat<strong>in</strong>g <strong>of</strong> flotation concentrate onto a suitable<br />

substrate, e.g. crushed barren rock or low grade ore, <strong>the</strong>n heap<br />

bioleach<strong>in</strong>g with <strong>in</strong>oculation <strong>of</strong> naturally occurr<strong>in</strong>g bacteria.<br />

• Nutrients added to <strong>the</strong> circulat<strong>in</strong>g solution and low pressure air<br />

for bioleach<strong>in</strong>g and cool<strong>in</strong>g <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> base <strong>of</strong> <strong>the</strong> heap.<br />

• The residue is unloaded and <strong>the</strong> oxidized concentrate removed<br />

by trommell<strong>in</strong>g or wet screen<strong>in</strong>g. The concentrate residue is<br />

neutralized <strong>the</strong>n subjected to conventional cyanidation.<br />

• The support<strong>in</strong>g substrate can be recycled or, <strong>in</strong> <strong>the</strong> case <strong>of</strong> low<br />

grade ore, replaced with fresh ore as needed.<br />

• Operated commercially <strong>in</strong> South Africa 2003-2006.<br />

25


GEOCOAT PROCESS FLOWSHEET<br />

Run <strong>of</strong> M<strong>in</strong>e Ore<br />

Barren Rock or<br />

Low Grade Ore<br />

Crush<strong>in</strong>g &<br />

Gr<strong>in</strong>d<strong>in</strong>g<br />

Tail<strong>in</strong>gs<br />

Crush<strong>in</strong>g & Siz<strong>in</strong>g<br />

Air<br />

Neutrients<br />

Flotation<br />

Coat<strong>in</strong>g &<br />

Stack<strong>in</strong>g<br />

Heap Bioleach<strong>in</strong>g<br />

Lime<br />

Substrate<br />

Recycle<br />

Neutralization<br />

Trommell<strong>in</strong>g or<br />

Wet Screen<strong>in</strong>g<br />

Unload<strong>in</strong>g<br />

NaCN<br />

Cyanidation/CIP<br />

Carbon Strip &<br />

Gold Room<br />

Detox<br />

Tail<strong>in</strong>gs<br />

BULLION


GEOCOAT FACILITY, AGNES GOLD, SOUTH AFRICA<br />

Ref: GeoCoat Presentation, ALTA 2005<br />

27


FOSTERVILLE HEATED LEACH PROCESS<br />

Ref: Trans. Inst. M<strong>in</strong>. Metall. C 2012 Vol 121 No 4<br />

• Developed by Fosterville Gold M<strong>in</strong>e, Victoria, Australia (now<br />

owned by Crocodile Gold Company, Canada).<br />

• To solve preg-robb<strong>in</strong>g problem <strong>in</strong> CIL circuit caused by<br />

carbonaceous material (bitum<strong>in</strong>ous coal).<br />

• After flotation, bio-oxidation, CCD wash<strong>in</strong>g, and conventional<br />

CIL, <strong>the</strong> slurry is passed countercurrently to activated carbon<br />

through a 6 stage heated leach circuit.<br />

• Gold is desorbed from <strong>the</strong> carbonaceous material <strong>in</strong> <strong>the</strong> first 3<br />

stages at up to 70C, <strong>the</strong>n is adsorbed by <strong>the</strong> activated carbon <strong>in</strong><br />

<strong>the</strong> f<strong>in</strong>al 3 stages after cool<strong>in</strong>g <strong>in</strong> a heat exchanger and by<br />

cool<strong>in</strong>g water addition.<br />

• Based on lab and pilot scale studies, a commercial circuit was<br />

<strong>in</strong>stalled and commissioned <strong>in</strong> 2009 - ga<strong>in</strong>s <strong>in</strong> <strong>gold</strong> recovery <strong>of</strong><br />

4-14% are reported.<br />

28


FOSTERVILLE CARBON MOVEMENT FLOWSHEET<br />

Ref: Trans. Inst. M<strong>in</strong>. Metall. C 2012 Vol 121 No 4


FOSTERVILLE HEATED LEACH CIRCUIT<br />

Ref: Trans. Inst. M<strong>in</strong>. Metall. C 2012 Vol 121 No 4


BARRICK THIOSULPHATE LEACHING PROCESS<br />

• Developed by Barrick Gold, Canada.<br />

• More environmentally favourable alternative to<br />

roast<strong>in</strong>g/cyanidation for highly preg-robb<strong>in</strong>g double <strong>refractory</strong><br />

sulphide <strong>ores</strong> with high content <strong>of</strong> carbonaceous material.<br />

• Consists <strong>of</strong> pressure oxidation <strong>of</strong> whole ore followed by res<strong>in</strong>-<strong>in</strong>leach<br />

us<strong>in</strong>g calcium thiosulphate, <strong>the</strong>n elution <strong>of</strong> <strong>the</strong> res<strong>in</strong>.<br />

• Includes an <strong>in</strong>novative approach to reduce reagent consumption<br />

compris<strong>in</strong>g RO and thiosulfate regeneration, with CaTS<br />

manufactur<strong>in</strong>g on site<br />

• Demonstration plant operated at Goldstrike, USA, 2010-2011.<br />

• Commercial plant under construction, due on stream 2014.<br />

31


BARRICK THIOSULPHATE PROCESS FLOWSHEET<br />

Ref: Barrick Presentation, ALTA 2013


THIOSULPHATE DEMONSTRATION PLANT LAYOUT<br />

Ref: Barrick Presentation, ALTA 2013


NEOMET PROCESS<br />

• Be<strong>in</strong>g developed by Neomet, Canada.<br />

• Potentially lower cost none-cyanide option for both <strong>refractory</strong><br />

and carbonaceous <strong>ores</strong>, concentrates or tail<strong>in</strong>gs.<br />

• Allows for <strong>the</strong> recovery <strong>of</strong> o<strong>the</strong>r value metals such as copper,<br />

nickel, cobalt, rare earths, m<strong>in</strong>or rare metals such scandium,<br />

gallium and <strong>in</strong>dium, and <strong>the</strong> plat<strong>in</strong>um group metals.<br />

• Comprises agitated atmospheric leach<strong>in</strong>g with hydrochloric acid<br />

at 105-110°C.<br />

• For feeds with significant pyrrhotite or o<strong>the</strong>r reactive sulphide<br />

component, <strong>the</strong> leach is divided <strong>in</strong>to two stages - a primary<br />

(reduc<strong>in</strong>g) leach to destroy all reactive sulphide, followed by a<br />

secondary (oxidis<strong>in</strong>g) leach to dissolve <strong>the</strong> <strong>gold</strong> with addition <strong>of</strong><br />

an oxidant such as peroxide or chlor<strong>in</strong>e.<br />

34


NEOMET PROCESS (CONT.)<br />

• Gold is recovered by IX followed by elution with very dilute<br />

hydrochloric acid from which pure <strong>gold</strong> is can be recovered by<br />

various methods.<br />

• Silver can be extracted with activated carbon.<br />

• The residual solution is <strong>in</strong>jected <strong>in</strong>to an <strong>in</strong>ert matrix bath at<br />

180-190°C (“atmospheric autoclave”) <strong>in</strong> which iron hydrolyzes<br />

to hematite, releas<strong>in</strong>g concentrated HCl gas to be condensed<br />

or recycled directly to <strong>the</strong> leach<strong>in</strong>g stage.<br />

• The process has been tested at a m<strong>in</strong>i-plant level.<br />

35


NEOMET PROCESS FLOWSHEET<br />

Ref: Neomet Paper, ALTA 2011


NEOMET MINPLANT<br />

Ref: Neomet Paper, ALTA 2011


PRO PROCESS<br />

• Be<strong>in</strong>g developed by Process Research Ortech, Canada.<br />

• Potentially lower cost none-cyanide option for <strong>refractory</strong>/double<br />

<strong>refractory</strong> <strong>gold</strong> <strong>ores</strong>.<br />

• Consists <strong>of</strong> crush<strong>in</strong>g, gr<strong>in</strong>d<strong>in</strong>g, gravity separation, flotation,<br />

roast<strong>in</strong>g <strong>of</strong> concentrate, leach<strong>in</strong>g <strong>of</strong> calc<strong>in</strong>e <strong>in</strong> PRO’s proprietary<br />

mixed chloride lixiviant (HCl+MgCl 2 ), solvent extraction for <strong>gold</strong><br />

recovery and recycle <strong>of</strong> reagents.<br />

38


PRO FLOWSHEET<br />

Ref: Process Research Oretech Paper, ALTA 2013


OTHER PROCESS DEVELOPMENTS<br />

• Heap bioleach<strong>in</strong>g <strong>of</strong> low grade <strong>refractory</strong> sulphide <strong>ores</strong> at<br />

elevated pH which reduces cost <strong>of</strong> neutralization ahead <strong>of</strong><br />

cyanidation (BioHeap/Western Areas, Australia, paper at ALTA<br />

2013 Gold).<br />

• Use for selective <strong>gold</strong> IX res<strong>in</strong>s for <strong>gold</strong>-copper <strong>ores</strong> –<br />

e.g. Gedabek Heap Leach<strong>in</strong>g Operation, Azerbaijan.<br />

• Hydrometallurgical processes for copper/<strong>gold</strong> sulphide <strong>ores</strong> –<br />

e.g. pressure oxidation, bio-oxidation, ferric leach<strong>in</strong>g, and<br />

chloride leach<strong>in</strong>g.<br />

40


GEDABEK RESIN-IN-SOLUTION PLANT<br />

Ref: M<strong>in</strong>tek Presentation, ALTA 2010<br />

41


INCENTIVES FOR NEW PROCESS DEVELOPMENT<br />

• Trend towards lower grade, more <strong>complex</strong>, <strong>ores</strong>.<br />

• Need for low capex and/or opex processes, especially for small<br />

deposits and low grade <strong>ores</strong>.<br />

• Treatment <strong>of</strong> high carbonate <strong>refractory</strong> <strong>ores</strong>.<br />

• Increas<strong>in</strong>g environmental opposition to cyanide.<br />

• Increas<strong>in</strong>g environmental concerns over long term disposal <strong>of</strong><br />

potentially toxic elements, <strong>in</strong>clud<strong>in</strong>g As, Hg, Se, Sb, and Te.<br />

• Increas<strong>in</strong>g concern over process water consumption.<br />

42


REFERENCES<br />

• Dunn, R., “Challenges and Opportunities In <strong>the</strong> Treatment <strong>of</strong><br />

Refractory Gold Ores”, Gold Proceed<strong>in</strong>gs ALTA 2012 Perth,<br />

1-15, 2012.<br />

• Zhou, J., Jago, B., & Mart<strong>in</strong>, C., “Establish<strong>in</strong>g <strong>the</strong> Process<br />

M<strong>in</strong>eralogy <strong>of</strong> Gold Ores”, SGS M<strong>in</strong>erals Technical Bullet<strong>in</strong><br />

2004-03, 2004.<br />

• Vaughan, J.P. “The Process M<strong>in</strong>eralogy <strong>of</strong> Gold: The<br />

Classification <strong>of</strong> Ore Types”, Journal <strong>of</strong> Metals July 2004, 46-48,<br />

2004.<br />

• Taylor, A., “Heap Leach<strong>in</strong>g and its Application to Copper, Gold,<br />

Uranium and Nickel Ores’ Short Course Manual, 2013.<br />

43


Upcom<strong>in</strong>g Short Courses<br />

Copper Hydromet November 2013, Melbourne, Australia<br />

Practically-oriented full-day courses – a valuable <strong>in</strong>troduction for newcomers and a useful refresher for old hands.<br />

A-Z <strong>of</strong> Copper Ore Leach<strong>in</strong>g<br />

Copper SX-EW Basic Pr<strong>in</strong>ciples and Detailed Plant Design<br />

Copper Oxide Ore Heap Leach<strong>in</strong>g Testwork and Scale-up<br />

20 November<br />

21 November<br />

22 November<br />

Upcom<strong>in</strong>g Conference<br />

ALTA 2014 Nickel-Cobalt-Copper, Uranium-REE and Gold-Precious<br />

Metals Conference & Exhibition May 2014, Perth Australia<br />

Now <strong>in</strong> its 18th year, this major event has become an annual ga<strong>the</strong>r<strong>in</strong>g <strong>of</strong> <strong>the</strong> global Nickel-Cobalt-Copper, Uranium and<br />

Gold <strong>in</strong>dustries. Uniquely <strong>in</strong>corporat<strong>in</strong>g three <strong>in</strong>ternational conferences <strong>in</strong> one week, <strong>the</strong> event is organised around highly<br />

focused technical programs, forums and discussion panels with key <strong>in</strong>ternational presenters. ALTA 2014 will provide an<br />

excellent opportunity for technical <strong>in</strong>terchange and network<strong>in</strong>g with senior <strong>in</strong>dustry pr<strong>of</strong>essionals from around <strong>the</strong> globe.<br />

Conference Sessions<br />

Nickel-Cobalt-Copper 26-28 May <strong>in</strong>clud<strong>in</strong>g Hydroprocess<strong>in</strong>g <strong>of</strong> Sulphides Forum<br />

Uranium-REE 29-30 May <strong>in</strong>clud<strong>in</strong>g Uranium SX Forum<br />

Parallel with Gold-PM sessions<br />

Gold-Precious Metals 29-30 May <strong>in</strong>clud<strong>in</strong>g Refractory Gold Ores Forum<br />

Parallel with Uranium-REE sessions<br />

Short Courses<br />

SX and its Application to Copper, Uranium and Nickel-Cobalt 24 May<br />

Uranium Ore Process<strong>in</strong>g 31 May<br />

Exhibition 26-30 May<br />

www.altamet.com.au<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!