02.03.2015 Views

Robert Coskey, Rose Exploration - Tight Oil From Shale Plays World ...

Robert Coskey, Rose Exploration - Tight Oil From Shale Plays World ...

Robert Coskey, Rose Exploration - Tight Oil From Shale Plays World ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Amerada Petroleum<br />

H. O. Bakken No 1<br />

12-157N-95W<br />

1951<br />

Bakken and Niobrara<br />

<strong>Plays</strong><br />

A Geologic Comparison<br />

<strong>Robert</strong> J. <strong>Coskey</strong><br />

<strong>Rose</strong> <strong>Exploration</strong>, Inc.<br />

<strong>Tight</strong> <strong>Oil</strong> from <strong>Shale</strong> <strong>Plays</strong><br />

<strong>World</strong> Congress 2011<br />

January- 31 st - February 1 st 2011


QEP Energy<br />

Borie 16-4H<br />

04-13N-68W<br />

2010<br />

Bakken & Niobrara<br />

Compared<br />

Discussion Topics<br />

‘Paleo’ <strong>Plays</strong><br />

‘Neo’ <strong>Plays</strong><br />

Geochemical Comparison<br />

Why is the Bakken Different?<br />

Stratigraphic Comparison<br />

Will These <strong>Plays</strong> Work?


The Paleo-Bakken Play<br />

Pre-1990<br />

Antelope<br />

Bicentennial<br />

Elkhorn Ranch<br />

Mondak<br />

McGregor<br />

Hay Draw<br />

Four Eyes<br />

Buckhorn<br />

Devil’s Pass<br />

Rough Rider<br />

Pierre Creek<br />

Lost Bridge<br />

Stoneview


The Paleo-Niobrara Play<br />

Pre-1990<br />

Tow Creek<br />

Buck Peak<br />

Berthold<br />

Loveland<br />

Boulder(?)<br />

Teapot Dome<br />

Silo<br />

Rangely<br />

Puerto Chiquito


The Paleo-Bakken Play<br />

153N<br />

Antelope Field<br />

Disc: 1953<br />

152N<br />

95W<br />

‘Good’<br />

Sanish well<br />

Top Bakken Structure<br />

Modified from Murray, 1968<br />

94W


The Paleo-Niobrara Play<br />

Buck Peak Field<br />

Disc: 1956<br />

89W<br />

6N<br />

Top Niobrara Structure<br />

Modified from Vincelette and Foster, 1992


The Paleo-Niobrara Play<br />

Rangely Field<br />

Niobrara Disc: 1901<br />

‘Niobrara’ Prod ~14 MM BO<br />

Top Niobrara Structure<br />

Modified from Vincelette and Foster, 1992


The Paleo-Niobrara Play<br />

Silo Field<br />

Disc: 1981<br />

Hybrid Development Process<br />

~1990<br />

New Horizontal<br />

Drilling 2010<br />

St Mary Land 1-19H (2010)<br />

IP: 1,075 BOEPD<br />

Aug 2010: 500 BOPD<br />

>50,000 BO in 9 months Stone Energy B-3 (1983)<br />

IP: 37 BOPD<br />

Total Prod: 2,370 BO<br />

Abandoned<br />

Vertical<br />

Drilling<br />

Horizontal<br />

Drilling<br />

Modified from Sonnenberg and Weimer, 1993


The Paleo-Niobrara Play<br />

Rangely (CO)<br />

Vincelette & Foster, 1992<br />

Buck Peak (CO)<br />

Production is Isolated<br />

to areas of<br />

Structural Deformation<br />

Silo (WY)<br />

Vincelette & Foster, 1992


The Paleo <strong>Plays</strong><br />

Structural Styles<br />

• Folded anticlines<br />

• Plunging structural noses<br />

• Faulted anticlines<br />

• Monoclinal dip changes<br />

• Cross-folded monoclines<br />

• Homoclinal dip<br />

Murray, 1968<br />

The game was to look for curvature anomalies


The ‘Neo’ <strong>Plays</strong><br />

Incomplete Petroleum Systems?<br />

• High quality source rocks<br />

• Appropriate thermal history<br />

• Adjacent porous & brittle lithologies<br />

• Minimal tectonic fractures and faults<br />

• Abundant generative fractures<br />

• Absence of effective carrier beds


Niobrara Formation TOC<br />

Measured Total Organic Carbon (TOC)<br />

Adjust to Original TOC<br />

~5%<br />

3%<br />

Cornford, 1994


Bakken <strong>Shale</strong> TOC<br />

Measured Total Organic Carbon (TOC)<br />

Present-Day<br />

Upper <strong>Shale</strong> Only<br />

Shift to higher<br />

Initial TOC<br />

Maturity Increasing<br />

Upper Bakken <strong>Shale</strong><br />

TOC vs Tmax<br />

Classed by HI<br />

Immature<br />

15-22 wt% TOC<br />

Mature<br />

8-12 wt% TOC


Niobrara & Bakken <strong>Shale</strong>s Compared<br />

Niobrara<br />

TOCs<br />

All Maturities<br />

Bakken<br />

TOCs


Niobrara<br />

Rock-Eval Parameters<br />

Comparison<br />

Bakken<br />

TOC<br />

S2<br />

Rock-Eval S1 TOC Cross-over<br />

indicates ‘migrated oil’<br />

S1/TOC<br />

S2<br />

S1/TOC<br />

TOC


Niobrara vs Bakken HI/OI<br />

Niobrara<br />

DJ Basin<br />

HI = Hydrogen Index<br />

OI = Oxygen Index<br />

Upper Bakken<br />

Williston Basin<br />

Beecher Island<br />

Biogenic gas<br />

Parshall Field<br />

<strong>Oil</strong><br />

Silo Field<br />

<strong>Oil</strong><br />

Maturation<br />

Paths<br />

Wattenberg Field<br />

Gas-condensate


Niobrara Burial History & <strong>Oil</strong> Generation<br />

Davis <strong>Oil</strong> 1 Berry<br />

nw sw 13-16N-66W<br />

Depth (ft)<br />

Burial History<br />

Plot<br />

Tertiary<br />

Pierre Sh<br />

Niobrara<br />

Generation Potential<br />

210 BO/Ac-ft<br />

150+/- ft shale<br />

~20 MMBO/Sq Mile<br />

Time (BpMa)<br />

Time (BpMa)<br />

Landon, et al, 2001


Bakken Burial History & <strong>Oil</strong> Generation<br />

California Co. Arthur L Thorp 1<br />

nw ne 13-148N-98W<br />

Depth (ft)<br />

Bakken<br />

<strong>Oil</strong> Generated<br />

Hydrogen Index<br />

Generated <strong>Oil</strong><br />

Hydrogen index<br />

Central Basin<br />

Thermally Mature<br />

Bakken<br />

Time (BpMa)<br />

Time (BpMa)<br />

Generation Potential<br />

1,458 BO/Ac-ft<br />

48+/- ft shale<br />

~44 MMBO/Sq Mile


TOC Weight % vs Organic Material by Volume %<br />

Initial TOC wt%<br />

vs<br />

Organic Material Vol%<br />

40% OM<br />

Bakken <strong>Shale</strong><br />

Original OM<br />

24-40% by Volume<br />

24% OM<br />

Niobrara<br />

Original OM<br />

7-13+% by Volume<br />

12% TOC<br />

Immature TOC<br />

(wt%)<br />

22% TOC<br />

OM wt% = TOC wt% / 0.844<br />

OM Vol% = ((OM wt% / Kero RHOB) / ((OM wt% / Kero RHOB) +<br />

((100-OM wt%) / Mineral RHOB))))*Solidity


Organic Richness Vertical Distribution<br />

What makes the Bakken Different?<br />

Total Organic Material<br />

Vertical Variation in Core Plugs<br />

Clarion Res 1-24 Slater<br />

24-161N-91W<br />

50% by<br />

volume<br />

Immature Bakken <strong>Shale</strong>s<br />

are partially kerogen supported<br />

~1-2 mm<br />

laminations<br />

Organic Mat.<br />

vol %<br />

Ave ~40%<br />

Mineral matrix<br />

Organic matrix<br />

Depth<br />

TOC<br />

wt %<br />

Ave ~20%<br />

<strong>From</strong> Palciauskas, 1991<br />

Critical temperature<br />

kerogen becomes plastic<br />

and rock yields/deforms<br />

Immature<br />

Upper Bakken<br />

Toc Weight %<br />

Organic Matter Vol %


<strong>Shale</strong> Organic Richness & Mechanics<br />

Immature<br />

Collapse Vector<br />

Mature<br />

~50 OM by Vol<br />

Low RHOB Matrix Vol %<br />

OM Vol %<br />

Maturity induced shale compaction<br />

increases bulk density (RHOB)<br />

Supporting Kerogenous Lamination<br />

• Before conversion to oil<br />

source Matrix rock is in partial<br />

kerogen Kerogen support<br />

Low RHOB<br />

…and oil is expelled from kerogenites<br />

Kerogenous Lamination Collapes<br />

• Kerogen deforms and laminates<br />

• Most of kerogen is converted to oil<br />

• Residual oil in laminations<br />

• Rock is now in dead kerogen and/or<br />

matrix grain support High RHOB


Niobrara Stratigraphy<br />

Silo Area<br />

‘Chalk/Marl Reservoir<br />

This Niobrara system<br />

has the potential<br />

to generate<br />

10~20 Million Barrels<br />

of <strong>Oil</strong> / Square Mile<br />

Depending on<br />

Richness and<br />

Level of<br />

Maturation!!!<br />

Organic rich shales<br />

Organic <strong>Shale</strong><br />

Primary Target<br />

Chalk/Marl Reservoir<br />

Organic <strong>Shale</strong><br />

Chalk/Marl Reservoir<br />

Secondary Target<br />

“The Big Mac Model”<br />

<strong>Oil</strong> Movement


Bakken Stratigraphy<br />

Parshall Area<br />

“The Big Mac Model”<br />

Lodgepole<br />

This Bakken system<br />

has the potential to<br />

generate<br />

30~40 Million Barrels<br />

of <strong>Oil</strong> / Square Mile<br />

Bakken<br />

Depending on<br />

Richness and<br />

Level of<br />

Maturation!!!<br />

Three Forks<br />

False Bakken<br />

Upper <strong>Shale</strong><br />

Middle Member<br />

‘Target’<br />

Lower <strong>Shale</strong><br />

Dolomite ‘Target’<br />

Limestone Reservoir<br />

Organic <strong>Shale</strong><br />

Silty Dolo Reservoir<br />

Organic <strong>Shale</strong><br />

‘Dolomite Reservoir<br />

<strong>Oil</strong> Movement


Will the Neo-<strong>Plays</strong> Work?<br />

• First, it depends on… Geology<br />

– Original source richness (% beef fat)<br />

– Thermal maturity (Rare, medium well done)<br />

– Reservoir – quality & quantity (The buns)<br />

– Big Cracks or Little Cracks (or both)<br />

Big Cracks<br />

200X<br />

Little Cracks<br />

Tectonic induced<br />

fractures<br />

Hydrocarbon generation<br />

Induced fractures<br />

Epi-fluorescence<br />

White Light<br />

Courtesy Rob Sterling


The Neo-Bakken & Niobrara <strong>Plays</strong><br />

Where can they go from here?<br />

• WHAT WE HAVE…<br />

• ~10-40 MMBO Generative Capacity / mile<br />

• Large generative areas<br />

• Large oil-in-place potential<br />

• Horizontal Drilling<br />

The Real Game Changers<br />

• Staged Fracs<br />

• Ever Improving Technology<br />

• WHAT WE MAY HAVE…<br />

• Billion+ Barrel <strong>Plays</strong>?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!