05.03.2015 Views

Gauss-Jordan Elimination Method - The Ohio State University

Gauss-Jordan Elimination Method - The Ohio State University

Gauss-Jordan Elimination Method - The Ohio State University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TA: In Kwon Park CRP 762<br />

park.793@osu.edu<br />

Prof. Jean-Michel Guldmann<br />

April 13, 2009<br />

Handout<br />

<strong>Gauss</strong>-<strong>Jordan</strong> <strong>Elimination</strong> <strong>Method</strong><br />

1 Three Elementary Row Operations<br />

<strong>Gauss</strong>-<strong>Jordan</strong> elimination method for calculating the inverse matrix uses the three elementary row<br />

operations. <strong>The</strong>y are as follows:<br />

(1) Row switching: R i → R j<br />

(2) Row multiplication: kR i → R j , where k ≠ 0<br />

(3) Row addition: R i + kR j → R i<br />

2 <strong>Gauss</strong>-<strong>Jordan</strong> <strong>Elimination</strong><br />

<strong>The</strong> strategy is to make the augmented matrix, which is constructed by appending the identity<br />

matrix of the same dimension of the given matrix, the identity matrix using the three elementary<br />

row operations.<br />

1. Step 1: Augment the given matrix by the identity.<br />

2. Step 2: Perform the three elementary row operations.<br />

⋆ Tip: Start from the outer boundaries.<br />

3 Example<br />

Calculate the iverse of the matrix A:<br />

⎡<br />

A = ⎣<br />

1 2 3<br />

2 1 0<br />

1 2 1<br />

⎤<br />

⎦<br />

Step 1<br />

Step 2<br />

Augment matrix A by the identity matrix.<br />

⎡<br />

1 2 3 1 0<br />

⎤<br />

0<br />

[A|I] = ⎣ 2 1 0 0 1 0 ⎦<br />

1 2 1 0 0 1<br />

Perform the three elementary row operations.<br />

(1) R 3 + (−1)R 1 → R 3<br />

1


Multiply Row 1 by −1, add it to Row 3, and substitute the result for Row 3.<br />

⎡<br />

1 2 3 1 0<br />

⎤<br />

0<br />

⎣ 2 1 0 0 1 0 ⎦<br />

0 0 −2 −1 0 1<br />

(2) − 1 2 R 3 → R 3<br />

Multiply Row 3 by − 1 2<br />

and substitute the result for Row 3.<br />

⎡<br />

⎤<br />

1 2 3 1 0 0<br />

⎣ 2 1 0 0 1 0 ⎦<br />

1<br />

0 0 1<br />

2<br />

0 − 1 2<br />

(3) R 1 + (−3)R 3 → R 1<br />

Multiply Row 3 by −3, add it to Row 1, and substitute the result for Row 1.<br />

⎡<br />

1 2 0 − 1 ⎤<br />

3<br />

2<br />

0<br />

2<br />

⎣ 2 1 0 0 1 0 ⎦<br />

1<br />

0 0 1<br />

2<br />

0 − 1 2<br />

(4) R 2 + (−2)R 1 → R 2<br />

Multiply Row 1 by −1, add it to Row 2, and substitute the result for Row 2.<br />

⎡<br />

1 2 0 − 1 ⎤<br />

3<br />

2<br />

0<br />

2<br />

⎣ 0 −3 0 1 1 −3 ⎦<br />

1<br />

0 0 1<br />

2<br />

0 − 1 2<br />

(5) − 1 3 R 2 → R 2<br />

Multiply Row 2 by − 1 3<br />

, and substitute the result for Row 2.<br />

⎡<br />

1 2 0 − 1 3<br />

2<br />

0<br />

2<br />

⎣ 0 1 0 − 1 3<br />

− 1 3<br />

1<br />

1<br />

0 0 1<br />

2<br />

0 − 1 2<br />

(6) R 1 + (−2)R 2 → R 1<br />

Multiply Row 2 by −2, add it to Row 1, and substitute the result for Row 1.<br />

⎡<br />

⎤<br />

1 2 1<br />

1 0 0<br />

6 3 2<br />

⎣ 0 1 0 − 1 3<br />

− 1 3<br />

1 ⎦<br />

1<br />

0 0 1<br />

2<br />

0 − 1 2<br />

<strong>The</strong> above matrix is equal to [ I|A −1] , and hence the inverse matrix of A is the right part of the<br />

matrix. That is,<br />

⎡<br />

A −1 = ⎣<br />

1<br />

6<br />

2<br />

3<br />

− 1 2<br />

− 1 3<br />

− 1 3<br />

1<br />

1<br />

2<br />

0 − 1 2<br />

⎤<br />

⎦<br />

⎤<br />

⎦<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!