05.03.2015 Views

suds modelling for surface water management - SUDSnet

suds modelling for surface water management - SUDSnet

suds modelling for surface water management - SUDSnet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SUDS MODELLING FOR SURFACE<br />

WATER MANAGEMENT<br />

J Bryan Ellis 1 , Christophe Viavattene 2 and Jennifer Laight 3<br />

1<br />

Urban Pollution Research Centre, 2 Flood Hazard Research<br />

Centre, Middlesex University, London. UK<br />

3<br />

Ove Arup & Partners, Solihull, UK<br />

SUDSNET International Conference 2012. Multiple<br />

Benefits from Surface Water Management.<br />

Coventry . 4 –6 September 2012


33% of urban flooding<br />

during extreme storm<br />

events due to pluvial<br />

overland <strong>surface</strong> flows<br />

Local Authorities now<br />

responsible <strong>for</strong> <strong>surface</strong> <strong>water</strong><br />

<strong>management</strong> and SWMPs<br />

Future climate<br />

change and new<br />

developments will<br />

exacerbate the<br />

pluvial flooding<br />

problem


TOOLS TO IDENTIFY<br />

CRITICAL DRAINAGE AREAS<br />

AND MANAGE THE FLOOD<br />

RISK<br />

• where flooding will occur;<br />

distribution and flow paths,<br />

depths. velocities etc<br />

• opportunities <strong>for</strong> mitigating<br />

SuDS measures<br />

• improved public/stakeholder<br />

engagement<br />

• assist <strong>for</strong>ward emergency<br />

planning


Identifying Critical Drainage Areas:<br />

• identify “hotspot “ flooding during extreme<br />

storm events<br />

• quantify depth and spatial distribution of<br />

flooding<br />

• identify flood flow paths<br />

• Identify appropriate temporary storage,<br />

attenuation and treatment facilities


1D/2D COUPLED MODELLING FOR<br />

SURFACE PLUVIAL FLOODING<br />

Flow Path<br />

2D Surface<br />

Flow<br />

Manhole<br />

Manhole<br />

1D<br />

Sewer<br />

Flow<br />

SEWER<br />

Identifies and quantifies flood depths<br />

and flow paths during extreme storm<br />

events


Exceedance<br />

Overland flow<br />

Surface<br />

surcharge<br />

Surface <strong>water</strong> sewer<br />

EXIT<br />

OVERFLOW<br />

S<br />

Surface<br />

depression<br />

“pond”<br />

Exit point from<br />

0.5m raster cell<br />

cascade<br />

Surface flooding depths and<br />

flowpath delineation<br />

algorithm follows the lowest<br />

exit point from each DTM<br />

cell i.e rolling ball technique


Shelton<br />

HEN LANE<br />

CATCHMENT<br />

COVENTRY<br />

90ha; 30%<br />

Impervious<br />

Bridge<br />

Hen


PREDICTED FLOW DISTRIBUTION AND EXCEEDANCE<br />

OVERFLOWS FOR AN EXTREME EVENT<br />

Based on 1D Hydraulic<br />

Modelling e.g STORM,<br />

InfoWorks CS etc


2D DATA INPUT TO CREATE DIGITAL<br />

TERRAIN/ELEVATION MODEL (DTM/DEM)<br />

Need topographic background <strong>for</strong> developing the 2D<br />

<strong>surface</strong> area with high vertical and spatial resolution<br />

e.g ± 2/3cm vertical and 0.5m raster cell<br />

• detailed large‐scale micro‐topographic map (with<br />

rein<strong>for</strong>cing “groundtruth” survey)<br />

• aerial/satellite images (including Google Earth and<br />

Street Views)<br />

• LiDAR survey (aerial or ground mobile)<br />

Need <strong>for</strong> the selected topographic survey to be georeferenced


Micro-topographic DEM<br />

HEN LANE CATCHMENT.<br />

COVENTRY Raster Cell 0.5m


ARUP mobile terrestrial LiDAR<br />

EA unfiltered aerial LiDAR<br />

EA filtered aerial LiDAR


COventryResults


MU2<br />

WHAT SUDS DRAINAGE<br />

CONTROLS AND WHERE TO<br />

LOCATE THEM????<br />

SUDSLOC model


Slide 17<br />

MU2<br />

To be changed with new results<br />

Middlesex University, 12/05/2011


GIS INTERFACE<br />

SUDSLOC<br />

USER‐FRIENDLY INTERFACE<br />

•Is a Geographic In<strong>for</strong>mation Decision System Support tool<br />

•Provides support <strong>for</strong> the identification and location of appropriate SUDS<br />

at urban scale<br />

•Supports the integration of data (quantitative and qualitative) from a<br />

variety of sources to enable the investigation of the potential benefits of<br />

SUDS<br />

•Is designed to communicate with storm runoff <strong>modelling</strong> approach


GIS sewer network GIS Landuse SUDS MCA Matrix<br />

SUDS<br />

‐ Storm event rainfall profiles<br />

‐ Landuse type and runoff coefficients<br />

Decision<br />

‐ Surface and soil type/character<br />

Support<br />

‐ Ground<strong>water</strong> profiles<br />

‐ 2D DEM micro‐topography SUDSLOC<br />

• 2D Surface flood maps<br />

• Flood damage costs<br />

• SUDS types and location<br />

• SUDS volume reduction<br />

• SUDS pollutant per<strong>for</strong>mance<br />

GIS DECISION<br />

SUPPORT<br />

FRAMEWORK<br />

MANAGER<br />

‐ SUDS characteristics<br />

‐ Site criteria<br />

‐ MCA Indicators and<br />

Benchmarking<br />

‐ Pollutant removal<br />

potentials (UoP)<br />

SUDS<br />

Catalogue ,<br />

Costings and<br />

Photographs<br />

External Inputs e.g<br />

STORM<br />

InfoWorksCS<br />

FloodArea 2D<br />

EcoSWM<br />

Depth‐damage<br />

curves


SUDS Assessment Components<br />

• Site Criteria<br />

Land use, soil type, slope, depth to ground<strong>water</strong>, drainage area, presence<br />

of ‘flat roofs’<br />

Scale unit : road, car park, building, pavement etc<br />

• SUDS pollutant removal potential (Ranking)<br />

Pollutant (TSS, BOD, COD, Nitrates, Phosphates, Cd , Cu,...)<br />

Unit Operating Processes (UoP); Removal Process considered (adsorption,<br />

settling, microbial degradation, filtration, plant uptake, volatilisation and<br />

photolysis)<br />

• Multi‐Criteria Comparator (Ranking)<br />

Technical, environmental, economic, operation and maintenance, social<br />

and legal criteria<br />

• Catalogue of in<strong>for</strong>mation<br />

SUDS types/photographs, design specifications, operational<br />

requirements, costings, case examples and reference listings


Interactive Map functionalities<br />

Potential Areas<br />

Site‐by‐site assessment<br />

Add a SUDS and export<br />

Flow destination


SUDSLOC: INSERTION OF<br />

INFILTRATION BASINS<br />

(Hen Lane, Coventry)


Roundabout Sewer Node<br />

FLOW<br />

OVERFLOW


COMPARISON BETWEEN PREDICTED FLOW<br />

DISTRIBUTIONS WITH AND WITHOUT SUDS INSTALLED<br />

A total decrease from 1726 m 3 to 1226 m 3 (30%)


CONCLUSIONS<br />

• GIS‐based 1D‐2D coupled <strong>modelling</strong> provides appropriate<br />

methodological approach <strong>for</strong> identifying <strong>surface</strong> <strong>water</strong> flood risk<br />

• requires appropriate LiDAR micro‐topographic input at detailed<br />

spatial and vertical resolution; 0.5m grid cell and ±2 ‐ 3cm vertical<br />

resolution needed <strong>for</strong> satisfactory definition of flood flow paths,<br />

depths and velocities<br />

• coupled SUDSLOC model selects and locates appropriate mitigating<br />

SUDS control devices and quantifies flow benefits<br />

• coupled <strong>modelling</strong> methodology offers flexible tool <strong>for</strong> mapping<br />

urban pluvial flooding, choosing mitigating control options together<br />

with flexible public communication capability and capability <strong>for</strong><br />

emergency planning

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!