07.03.2015 Views

ARCMG Newsletter - 金属ガラス - 東北大学

ARCMG Newsletter - 金属ガラス - 東北大学

ARCMG Newsletter - 金属ガラス - 東北大学

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

金 属 ガラス 総 合 研 究 センターニュース Vol. 14<br />

Figure 5 The cycles to failure compared with the<br />

number of surface defects at various stress levels [1].<br />

Statistical<br />

fatigue-lifespf<br />

pan models are also<br />

developed to predict p the fatigue life off HEAs. The<br />

first model assumes a Weibull distribution to explain<br />

the fatigue-lifee span distribution in each<br />

fixed stress<br />

range. The probability density function (PDF) is<br />

shown by Eq. (1),(<br />

Fig. 3 S-N curve for the<br />

Al0.5CoCrCuFeNi HEAs<br />

showing scattering of the<br />

cycles to failure for the<br />

parallel and vertical type morphologies, respectively,<br />

in the sample [1].<br />

To determinee whether mircrostructrual morphologyy<br />

has an effect on the fatigue<br />

life, the microstructure of<br />

fatigue specimens are indentified by scanningg<br />

electron microscopy (SEM). Figure 3 shows thee<br />

fatigue behavior of the parallel and vertical types of<br />

samples. It appears thatt there is no correlationn<br />

between the scatter in the fatigue life and thee<br />

orientation of<br />

the loading direction resulted from thee<br />

different morphologies. The compositions of defectss<br />

in the sample<br />

are performed by EDS analyses, seenn<br />

in Figure 4. This feature shows the presence of aboutt<br />

50% oxygen, together with aluminum oxide particles,<br />

which provide<br />

nucleation sites for microcracks due too<br />

stress concentration at particles. The number of<br />

cycles to failure vs. the number of o defects iss<br />

presented in Figure 5. It can be found that a decreasee<br />

in the number<br />

of defects generally correlates with ann<br />

increase in the fatigue life at various stress levels.<br />

(1)<br />

where β is the Weibull shape parameter, and the<br />

Weibull scale parameter, α (S) , depends on the<br />

stress S according to,<br />

log( α ( S))<br />

= γ<br />

0<br />

+<br />

γ 1<br />

log( S)<br />

(2)<br />

The modeling values v of the three parameters are<br />

β = 0.492, γ00 = 70.869, andγ1= -8.327. Figure 6<br />

indicates the predicted p median, 0.025 quantile, and<br />

0. .975 quantile fatigue lives.<br />

Fig. 6 Predicted quantile lives using the Weibull<br />

predictive model [1].<br />

Fig. 4 SEM micrograph with EDS analyses of the<br />

aluminum-oxide particles. The compositions of the<br />

regions<br />

labeled A and B are given<br />

in the<br />

corresponding tables, indicating the presence of<br />

aluminum oxide particles [1].<br />

To characterize the excessive variability in the<br />

observed<br />

fatigue<br />

data, the Weibull<br />

mixture<br />

predictive model, which assumes a mixture of two<br />

Weibull distributions for the fatigue lives at each<br />

stress range value is used. The PDF is given in Eq.<br />

(3),<br />

f<br />

N(<br />

S)<br />

p,<br />

α ( S),<br />

, β , α ( S),<br />

β )<br />

= (3)<br />

(<br />

w<br />

βw<br />

N(<br />

S)<br />

p<br />

( )<br />

αw(<br />

S)<br />

α(<br />

S)<br />

W<br />

βw−1<br />

βs<br />

N<br />

( S)<br />

+<br />

(1 − p)<br />

( )<br />

αs(<br />

S)<br />

α<br />

s(<br />

S)<br />

s<br />

N(<br />

S)<br />

exp( −(<br />

)<br />

α ( S)<br />

βs−1<br />

w<br />

s<br />

βw<br />

N(<br />

S)<br />

βs<br />

exp( −(<br />

) )<br />

αs(<br />

S)<br />

)<br />

Again, the Weibull scale parameters,α<br />

, and,<br />

α<br />

s<br />

(S) , are assumed to be dependent on<br />

the stress S<br />

according to Eqs. (4) and (5))<br />

log(<br />

α<br />

w<br />

( S))<br />

= γ<br />

w, 0<br />

+ γ w<br />

log(<br />

S ) (4)<br />

log(<br />

α<br />

s<br />

( S))<br />

= γ s<br />

+ γ<br />

,1<br />

log(<br />

, 0 s<br />

S ) (5)<br />

, 1<br />

α<br />

ω<br />

(S)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!