09.03.2015 Views

Nuclear Astrophysics - Nuclear Physics

Nuclear Astrophysics - Nuclear Physics

Nuclear Astrophysics - Nuclear Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nuclear</strong> <strong>Astrophysics</strong><br />

• energy generation in stars<br />

• nucleosynthesis (primordial + stellar)<br />

www.cyc.ucl.ac.be/CARINA<br />

a mengoni for CARINA


Why are radioactive ion beams<br />

needed in astrophysics?<br />

average interaction time:<br />

(half-life of X by interaction with Y )<br />

τ ( X ) =<br />

y<br />

N<br />

y<br />

1<br />

σ v<br />

• Hydrostatic equilibrium: quiescent burning stages in stellar evolution<br />

example p+p: T ~ 15x10 6 K, ρ=100 g/cm 3 ⇒ average interaction time τ ~ 10 9 y<br />

additional example >><br />

• Explosive scenarios<br />

T > 10 8 K, ρ>10 3 g/cm 3 (ex: WD surface) ⇒ average interaction time τ ~ sec<br />

www.cyc.ucl.ac.be/CARINA<br />

a mengoni for CARINA


Explosive burning - astrophysical sites<br />

<br />

In explosive astrophysical sites such as the binary systems novae and X-ray bursters,<br />

nucleosynthesis [ up to A ~ 60 (nova) and A ~ 80 – 100 (X-ray burst) ] is thought to be provided<br />

by hydrogen and helium burning at high temperatures and densities. [J José et al. (1999), H Schatz et<br />

al., (1998) ]<br />

snapshots of a classical Nova outburst (courtesy of J José)<br />

<br />

<br />

<br />

Hydrogen and helium rich material from a companion aging main sequence star piles up onto<br />

the surface of a white dwarf (WD in nova) or neutron star (NS in X-ray burst) forming an<br />

accretion disk.<br />

The temperature and density increase in the surface of the WD (T>10 8 K, ρ>10 3 g/cm 3 ) or NS<br />

(T>10 9 K, ρ>10 6 g/cm 3 ) generating a sudden increase of the star luminosity.<br />

Critical T and ρ values: reactions involving H and He on nuclei ranging from C to Ca releasing<br />

energy in a runaway thermonuclear explosion.<br />

www.cyc.ucl.ac.be/CARINA<br />

Source: Carmen Angulo (CARINA)


Novae & HCNO breakouts<br />

(exact path depends on given stellar conditions)<br />

26 Si<br />

27 Si 28 Si<br />

30<br />

P(p,γ) 31 S<br />

heavy nuclei<br />

beyond S<br />

25<br />

Al(p,γ) 26 Si<br />

24 Al<br />

25 Al<br />

26 Al<br />

27 Al<br />

rp-process<br />

onset<br />

21 Mg 22 Mg<br />

23 Mg<br />

24 Mg 25 Mg<br />

26 Mg<br />

18<br />

F(p,α) 15 O<br />

17<br />

O(p,α) 14 N<br />

breakout<br />

from HCNO<br />

20 Na<br />

18 Ne 19 Ne<br />

20 Ne<br />

21 Na 22 Na<br />

23 Na<br />

21 Ne 22 Ne<br />

NeNa<br />

cycle<br />

17<br />

O(p,γ) 18 F<br />

17<br />

F 18 F<br />

19 F<br />

14<br />

O<br />

15<br />

O<br />

16 O 17 O 18 O<br />

(α,p)<br />

(p,γ)<br />

(α,γ)<br />

HCNO<br />

13 N 14 N<br />

15<br />

N<br />

(p,α)<br />

(β + )<br />

stable<br />

12 C<br />

13<br />

C<br />

unstable<br />

www.cyc.ucl.ac.be/CARINA<br />

a mengoni for CARINA


Novae nucleosynthesis<br />

18<br />

F(p,α) 15 O<br />

25<br />

Al(p,γ) 26 Si<br />

30<br />

P(p,γ) 31 S<br />

17<br />

O(p,γ) 18 F<br />

17<br />

O(p,α) 14 N …etc.<br />

18 F: 10m 25 Al: 7.2s 30 P: 2.5m<br />

Beams<br />

Beam intensity<br />

Energy range<br />

Targets<br />

Instrumentation<br />

requesters<br />

: 18 F, 25 Al, 30 P, 17 O<br />

: more than 10 9 pps<br />

: below 500 keV (CM)<br />

: foils (problem of stability for high beam currents?);<br />

gas targets needed?<br />

: detectors, recoil separator<br />

: Jordi José, Alain Coc<br />

Examples of CARINA list of key-reactions<br />

www.cyc.ucl.ac.be/CARINA<br />

a mengoni for CARINA


ack to explosions<br />

www.cyc.ucl.ac.be/CARINA<br />

a mengoni for CARINA


Nucleosynthesis<br />

Mixing<br />

(abundance distribution)<br />

Big-Bang & H-burning<br />

interstellar<br />

gas & dust<br />

He burning<br />

C-O burning<br />

Si burning<br />

ejection, explosion<br />

condensation<br />

x-process<br />

N=50<br />

r s<br />

NEUTRONS<br />

N=82 N=126<br />

r<br />

s<br />

s<br />

r<br />

p-process<br />

<strong>Nuclear</strong> reactions:<br />

• energy generation<br />

• nucleosynthesis<br />

alberto.mengoni@cern.ch


Nucleosynthesis beyond Fe<br />

process<br />

conditions<br />

timescale<br />

site<br />

s-process<br />

(n,γ)<br />

β-decay<br />

...<br />

T~ 0.1 GK<br />

τ n ~ 1-1000 yr, n n ~10 7-8 /cm 3<br />

10 2 yr<br />

10 5-6 yrs<br />

Massive stars (weak)<br />

Low-mass AGB stars (main)<br />

r-process<br />

(n,γ)<br />

β-decay<br />

β-delayed n-emission<br />

fission<br />

...<br />

T~1-2 GK<br />

τ n ~ μs, n n ~10 24 /cm 3<br />

< 1s<br />

Type II Supernovae ?<br />

Neutron Star Mergers ?<br />

www.cyc.ucl.ac.be/CARINA<br />

a mengoni for CARINA


The r-process r<br />

path<br />

www.cyc.ucl.ac.be/CARINA<br />

a mengoni for CARINA


The canonical r-process<br />

(n,γ) ↔ (γ,n) time-reversal invariance (detailed balance) leads to:<br />

log<br />

λ<br />

λ<br />

n,<br />

γ<br />

γ , n<br />

≈<br />

log<br />

N n<br />

−<br />

34.07<br />

−<br />

3<br />

2<br />

log<br />

A<br />

T<br />

A + 1<br />

9<br />

+<br />

5.04<br />

T<br />

9<br />

Q(<br />

Z,<br />

A<br />

+ 1)<br />

for example:<br />

λ γ,n ~ λ n,γ for Q n ~ 2 MeV (usual definition of “r-process path”)<br />

under the condition: N n = 10 24 cm -3 and T = T 9<br />

needs masses & β-decay rates of neutron-rich rich nuclei<br />

along the r-process r<br />

path<br />

D D Clayton, “Principle of stellar evolutions and nucleosynthesis”, U of Chicago Press, 1968, pag. 584 (Problem 7-30).


Endpoint of the r-processr<br />

r-process ended<br />

by n-induced n<br />

fission<br />

or spontaneous<br />

fission<br />

(different paths for<br />

different conditions)<br />

Goriely & Clerbaux A&A 348 (1999), 798<br />

Source: H Schatz (MSU)<br />

Consequences:<br />

- modification of the A~130 r-process r<br />

abundance peak<br />

- fission products can be seed for additional r-processing r<br />

up to A~250<br />

fission again<br />

fission recycling


Role of β-delayed n-emissionn<br />

Neutron rich nuclei can emit one or more neutrons during β-decay if S n<br />


Effects:<br />

during r-processr<br />

process: none as neutrons get recaptured quickly<br />

during freezeout: modification of final abundance<br />

late time neutron production (those get recaptured)<br />

Calculated r-process production of elements (Kratz et al. ApJ 403 (1993) 216):<br />

before β-decay<br />

after β-decay<br />

smoothing effect from β-delayed n emission !<br />

Source: H Schatz (MSU)


Example: impact of P n for<br />

for<br />

137 Sb<br />

Cs (55)<br />

Xe (54)<br />

I (53)<br />

Te (52)<br />

Sb (51)<br />

Sn (50)<br />

In (49)<br />

Cd (48)<br />

Ag (47)<br />

Cs131<br />

> 99<br />

Cs132<br />

> 99<br />

Cs133 Cs134<br />

> 99<br />

Cs135 Cs136<br />

19.00<br />

Cs137<br />

> 99<br />

Cs138<br />

> 99<br />

Cs139<br />

> 99<br />

Cs140<br />

63.70<br />

Cs141<br />

24.94<br />

Cs142<br />

1.70<br />

Cs143<br />

1.78<br />

Cs144<br />

1.01<br />

Cs145<br />

0.59<br />

Cs146<br />

0.32<br />

Cs147<br />

0.23<br />

Xe130 Xe131 Xe132 Xe133 Xe134 Xe135 Xe136 Xe137 Xe138 Xe139 Xe140 Xe141 Xe142 Xe143 Xe144 Xe145 Xe146<br />

> 99 > 99 > 99 > 99P n 39.68 =0% 13.60 1.73 1.24 0.30 1.15 0.90<br />

I129 I130<br />

> 99<br />

I131<br />

> 99<br />

I132<br />

> 99<br />

I133<br />

> 99<br />

I134<br />

> 99<br />

I135<br />

> 99<br />

I136<br />

83.40<br />

I137<br />

24.50<br />

I138<br />

6.49<br />

I139<br />

2.28<br />

I140<br />

0.86<br />

I141<br />

0.43<br />

I142 I143 I144 I145<br />

Te128 Te129 Te130 Te131 Te132 Te133 Te134 Te135 Te136 Te137 Te138 Te139 Te140 Te141 Te142 Te143 Te144<br />

> 99 > 99 > 99 > 99 > 99 19.00 17.50 2.49 1.40<br />

Sb127 Sb128 Sb129 Sb130 Sb131 Sb132<br />

PSb133<br />

n =99.9%<br />

Sb134 Sb135 Sb136 Sb137 Sb138 Sb139 Sb140 Sb141 Sb142 Sb143<br />

> 99 > 99 > 99 > 99 > 99 > 99 > 99 1.66 0.82<br />

Sn126<br />

> 99<br />

Sn127<br />

> 99<br />

Sn128<br />

> 99<br />

Sn129<br />

> 99<br />

Sn130<br />

> 99<br />

Sn131<br />

56.00<br />

Sn132<br />

39.70<br />

Sn133<br />

1.20<br />

Sn134<br />

1.12<br />

Sn135 Sn136 Sn137 Sn138 Sn139 Sn140 Sn141 Sn142<br />

In125<br />

2.36<br />

In126<br />

1.60<br />

In127<br />

1.09<br />

In128<br />

0.84<br />

In129<br />

0.61<br />

In130<br />

0.26<br />

In131<br />

0.28<br />

In132<br />

0.20<br />

In133<br />

0.18<br />

In134 In135 In136 In137 In138 In139 In140 In141<br />

Cd124 Cd125 Cd126 Cd127 Cd128 Cd129 Cd130 Cd131 Cd132 Cd133 Cd134 Cd135 Cd136 Cd138 Cd139 Cd140<br />

10 1<br />

1.24 0.65 0.51 0.43 0.34 0.27 0.20<br />

A=136<br />

Ag123 Ag124 Ag125 Ag126 Ag127 Ag128 Ag129 Ag130 Ag131 Ag132 Ag133 Ag135 Ag136 Ag137 Ag138 Ag139<br />

0.29 0.17 0.16 0.10 0.11 0.06 0.05<br />

( 99%)<br />

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92<br />

Source: H Schatz (MSU)<br />

abundance (per 10 6 Si)<br />

10 0<br />

10 -1<br />

10 -2<br />

r-process<br />

r-process<br />

waiting<br />

waiting<br />

point<br />

point<br />

Pn=0%<br />

solar<br />

Pn=99%<br />

A=137<br />

( 0%)<br />

r-process<br />

waiting point<br />

125 130 135 140 145<br />

mass number A


Summary: nuclear physics for the r-processr<br />

S n<br />

, M<br />

T 1/2<br />

P n<br />

fission<br />

G<br />

N A<br />

<br />

quantity<br />

neutron separation energy, mass<br />

β-decay half-lives<br />

β-delayed n-emission branchings<br />

branchings and products<br />

partition functions<br />

neutron capture rates<br />

effect<br />

path<br />

abundance pattern<br />

timescale<br />

final abundance pattern<br />

endpoint<br />

abundance pattern?<br />

degree of fission cycling<br />

path (very weakly)<br />

final abundance pattern during freezeout?<br />

conditions for waiting point approximation<br />

a mengoni for CARINA


Experimental quests & tools<br />

• Ground-state properties & spectroscopy<br />

masses, β-decay rates, spectra<br />

• Resonance properties<br />

elastic, inelastic scattering<br />

transfer reactions<br />

• Capture reactions<br />

resonant & direct capture<br />

Coulomb dissociation<br />

indirect methods (ANC, THM, etc.)<br />

www.cyc.ucl.ac.be/CARINA<br />

a mengoni for CARINA


Main goals of the CARINA (*) network<br />

‣ To carry out mapping studies of the European situation in terms of projects, facilities and<br />

teams in order to identify the available instrumentation and human potential.<br />

‣ To develop the research capabilities of existing Large Scale Facilities (LSF) and of smaller<br />

laboratories and enhance involvement in the future RIB facilities.<br />

‣ To record the needs for new instrumentation and techniques; look for existing “solutions” in<br />

other fields.<br />

‣ To coordinate research efforts by defining and proposing common research goals and by<br />

encouraging new collaborations and new R&D projects.<br />

(*)<br />

CARINA: Challenges and Advanced Research in <strong>Nuclear</strong> <strong>Astrophysics</strong><br />

Date of beginning: 1 January 2005<br />

Date of end: 31 December 2008<br />

Budget: 35 k€<br />

Co-ordinator: Carmen Angulo (CRC, Louvain-la-Neuve)


CARINA Tasks<br />

Task 1: Setup activity<br />

Four working groups have been established (January 2005):<br />

1. "Theory" - nuclear and astrophysical models<br />

Conveners: Alain Coc (CSNSM) / Jordi José (Barcelona)<br />

2. "Instrumentation"<br />

Conveners : Tom Davinson (Edinburgh) / Giacomo de Angelis (INFN LNL)<br />

3. “Link to the EURONS_LSF”<br />

Conveners : Alberto Mengoni (CERN) / Klaus Sümmerer (GSI)<br />

4. “Link to non-EURONS_LSF labs working on nuclear astrophysics”<br />

Conveners : Michael Heil (KFZ Karlsruhe) / Endre Somorjai (ATOMKI)<br />

Task 2: link to EURONS, organization of workshops, website, reports, etc.<br />

www.cyc.ucl.ac.be/CARINA<br />

Source: Carmen Angulo (CARINA)


N-02 CARINA activities in 2006<br />

• Mapping studies of laboratories and experimental groups<br />

(done, see annex to annual report 2005)<br />

– Working group 3 (Klaus Suemmerer / Alberto Mengoni)<br />

– Working group 4 (Michael Heil / Endre Somorjai)<br />

• Mapping studies of theoretical groups<br />

– Working group 1 (Alain Coc / Jordi José)<br />

– Contact of groups working on:<br />

• Astrophysical models (and observations)<br />

• <strong>Nuclear</strong> theory for astrophysical applications<br />

– Extended list, more than 25 additional groups<br />

• Already positive (and enthusiastic) answers received<br />

www.cyc.ucl.ac.be/CARINA<br />

Source: Carmen Angulo (CARINA)


N-02 CARINA activities in 2006<br />

• Survey of key reactions and instrumentation<br />

– Identification of astrophysical sites<br />

• Explosive burning – 80% done<br />

• AGB’s stars – 50 % done<br />

• s-, p-, and r-process – just started<br />

• Work mainly done by e-mail<br />

• Discussions to take place during “Nuclei in the Cosmos IX”<br />

at CERN, Geneva, June 25-30, 2006<br />

Additional SC meeting by the end of 2006<br />

www.cyc.ucl.ac.be/CARINA<br />

Source: Carmen Angulo (CARINA)


N-02 CARINA activities in 2006<br />

• Workshop on data compilations in Basel (June 23-25)<br />

– Goal:<br />

• Basic need in all astrophysical modeling to have access to the best<br />

available and most consistent input data.<br />

• Bring together (experimental and theoretical) data providers,<br />

experienced experts on an unbiased analysis, and the modelers who are<br />

in urgent need of utilizing the best available data input<br />

– Scientific contribution from CARINA (advisory committee)<br />

– No financial contribution (thanks to JINA!)<br />

Need of involvement on international scientific activities:<br />

collaborative work<br />

www.cyc.ucl.ac.be/CARINA<br />

Source: Carmen Angulo (CARINA)


N-02 CARINA activities in 2006<br />

• EURISOL: subtask « astrophysics »<br />

– Invited talk at the EURISOL meeting in Trento, January 2006.<br />

– Request from EURISOL task 10 leader to coordinate the subtask<br />

“astrophysics”<br />

• Acceptance as this involves the CARINA community: similar interests,<br />

work effectively.<br />

• Meeting at Pisa, April 10-12<br />

All documents produced by CARINA<br />

are available on the website:<br />

www.cyc.ucl.ac.be/CARINA<br />

Source: Carmen Angulo (CARINA)


Instrumentation for nuclear astrophysics<br />

A survey of instrumentation available in present-day laboratories active in<br />

experimental nuclear astrophysics suggests the following required devices:<br />

‣ Gas targets (recirculation for rare gases; continuous luminosity monitoring)<br />

‣ A multi-stage fusion-product recoil separator (high leak-beam suppression, high rate<br />

focal plane detectors)<br />

‣ A high-resolution magnetic forward spectrometer (high rate focal plane detectors)<br />

‣ Large-area, fine-granularity solid-state detectors or telescopes (on sharing basis;<br />

standard electronics and DAQ systems)<br />

‣ A dedicated high-resolution, high-efficiency gamma-ray detection system<br />

The “flagship” ISOL type facility must have these tools<br />

available for the nuclear astrophysics community<br />

www.cyc.ucl.ac.be/CARINA<br />

Source: Carmen Angulo (CARINA)


Some additional key reactions<br />

18<br />

F(p,α) 15 O<br />

<br />

The competition between the 18 F(p,α) 15 O and the 18 F β-decay has consequences regarding a<br />

possible observation of the 511 keV γ-ray from novae (ex. INTEGRAL): γ-rays from novae<br />

have not been detected yet.<br />

‣ Several experiments already performed…<br />

17<br />

O(p,γ) 18 F , 17 O(p,α) 14 N<br />

<br />

<br />

17 O (and perhaps 19 F): galactic chemical evolution; it is believed that 17 O on earth or in our<br />

bodies was made in novae<br />

C, N, O elemental abundances are observed in emission spectra of nova ejecta; isotopic<br />

ratios 12 C/ 13 C and 14 N/ 15 N are observed in pre-solar grains that originated from nova<br />

explosions<br />

‣ Recent experiments at LENA @ NC (Iliadis, Champagne et al.); CSNSM @ Orsay<br />

(Tatischeff et al.)<br />

Source: Carmen Angulo (CARINA)


Some additional key reactions<br />

14<br />

O(α,p) 17 F<br />

<br />

The reaction is thought to play an important role in advanced stages of hydrogen burning,<br />

either as: a way of bypassing the slow positron decay of 14 O (t 1/2 = 70.6 s) in the hot CNO cycle<br />

or as a starting point to break out the cycle through the subsequent 17 F(p,γ) 18 Ne(α,p) 21 Na<br />

reactions.<br />

‣ Recent experiment at RIKEN; project at LLN<br />

15<br />

O(α,γ) 19 Ne<br />

<br />

<br />

One of the main breakout reaction from the hot CNO cycle.<br />

No direct measurement ever performed:<br />

‣ Very low cross section: very intense 15 O beam needed (< 10 12 pps)<br />

‣ Presently, 15 O beam intensity is ~ 10 7 pps.<br />

Source: Carmen Angulo (CARINA)


Some additional key reactions<br />

22<br />

Na(p,γ) 23 Mg<br />

<br />

Peak fluxes for the 1275 keV γ-ray line ( 22 Na decay) might be detectable by near future γ-ray<br />

satellites (i.e. INTEGRAL) if an ONe nova explodes within a distance of less than ~ 0.5 kpc.<br />

30<br />

P(p,γ) 31 Si<br />

<br />

<strong>Nuclear</strong> activity in the Si-Ca region is powered by a leakage from the NeNa-MgAl region,<br />

where the activity is confined during the early stages of the outburst. This is the main<br />

reaction that drives nuclear activity towards heavier species beyond S.<br />

‣ Uncertainties affecting 30 P(p,γ) 31 S influence Si yields (relevant for the identification of<br />

presolar nova candidate grains) and the nuclear activity beyond S (J. José, 2004)<br />

Source: Carmen Angulo (CARINA)


The end


Example:<br />

3 He + 3 He → 4 He + 2p<br />

T ~ 15x10 6 K (e.g. our Sun) ⇒ kT ~ 1 keV<br />

E 0 ~ 20 KeV<br />

σ ( E)<br />

=<br />

1<br />

E<br />

e<br />

−2πη<br />

S(<br />

E)<br />


Example:<br />

3 He + 3 He → 4 He + 2p<br />

T ~ 15x10 6 K (e.g. our Sun) ⇒ kT ~ 1 keV<br />

E 0 ~ 20 KeV<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!