11.03.2015 Views

Melissa A. Moss, Ph.D. – Protein Self-Assembly - SC EPSCoR/IDeA

Melissa A. Moss, Ph.D. – Protein Self-Assembly - SC EPSCoR/IDeA

Melissa A. Moss, Ph.D. – Protein Self-Assembly - SC EPSCoR/IDeA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Biological Engineering at U<strong>SC</strong><br />

Junior Faculty Presentations<br />

Esmaiel Jabbari Jay Blanchette<br />

<strong>Melissa</strong> <strong>Moss</strong> Xiaoming He<br />

Guiren Wang Arash Kheradvar<br />

October 23, 2007


Biomimetic Polymers & Tissue Engineering<br />

Esmaiel Jabbari, <strong>Ph</strong>D<br />

Associate Professor, U<strong>SC</strong> Department of Chemical Engineering<br />

Adjunct Professor of Orthopaedic Surgery, U<strong>SC</strong> School of Medicine


Growth Factor Delivery and Scaffold<br />

Fabrication<br />

Cell encapsulation<br />

for cartilage<br />

regeneration<br />

Injectable<br />

nanocomposite<br />

for bone repair<br />

Nanosphere for<br />

tumor delivery<br />

Microsphere for<br />

DNA delivery<br />

Nanofibers<br />

fabricated by<br />

template<br />

biopolymerization<br />

Preformed scaffold<br />

For guided bone<br />

regeneration


Multi-Functional Biomimetic Scaffolds<br />

Peptide Reinforced Nanocomposite<br />

Bone microstructure<br />

Scaffolds functionalized<br />

with cell-adhesive peptides<br />

Scaffolds that induce<br />

cell migration


Peptidomimetic Nanospheres<br />

Lack of selectivity<br />

has limited the<br />

use of anticancer<br />

drugs to more<br />

invasive and<br />

localized<br />

methods<br />

Peptidomimetic nanospheres for<br />

Targeted tumor delivery<br />

Targeted to intestinal tumor<br />

Targeted delivery to tumor cells


Nanofibers and Cell Differentiation<br />

Random fibers<br />

Cells align along the fiber direction<br />

Aligned fibers<br />

Osteogenesis<br />

Vasculogenesis<br />

Vasculogenic Osteogenesis


Publications<br />

1. Sarvestani AS, Jabbari E. Biomacromoelcules, 7: 1573-1580 (2006).<br />

2. He X, Jabbari E. <strong>Protein</strong> & Peptide Letters, 13: 715-718 (2006).<br />

3. Jabbari E, He X. J. Mater. Sci. Mater. Med., in Press (2006).<br />

4. Sarvestani AS, He X, Jabbari E. Biomacromolecules, 8-2: 406-415 (2007).<br />

5. Sarvestani AS, He X, Jabbari E. Biopolymers, 85-4: 370-378 (2007).<br />

5. He X, Jabbari E. Biomacromolecules, 8:780-792 (2007).<br />

6. Sarvestani AS, Jabbari E. Polymer Composites, in Press (2007).<br />

7. Sarvestani AS, Jabbari E. Macromol. Theory Simul., in Press (2007).<br />

8. Sarvestani AS, He X, Jabbari E. Materials Letters, in Press (2007).<br />

9. Xu W, He X, Sarvestani AS, Jabbari E. J. Biomat. Sci. Polym. Ed. in Press (2007).<br />

10. Sarvestani AS, He X, Jabbari E. Euro. Biophys. J. in Press (2007).<br />

11. Jabbari E, Tavakoli J, Sarvestani AS. Smart Mater. Struct. In Press (2007).<br />

12. Jabbari E, He X, Sarvestani AS, Xu W. J. Biomed. Mater. Res., in Press (2007).<br />

13. Sarvestani AS, Xu W, He X, Jabbari E, Polymer, in Press (2007).<br />

14. Henderson JA, He X, Jabbari E. Macromol Biosci. [Epub ahead of print] (2007).


<strong>Melissa</strong> A. <strong>Moss</strong>, <strong>Ph</strong>.D. <strong>–</strong> <strong>Protein</strong> <strong>Self</strong>-<strong>Assembly</strong><br />

• <strong>Ph</strong>D<br />

<strong>–</strong> Chemical Engineering<br />

<strong>–</strong> Thesis: Effect of TNF-α and shear stress stimuli on the<br />

adhesion of human breast cancer cells to endothelial<br />

monolayers<br />

<strong>–</strong> Supported by NSF Graduate Research Fellowship<br />

• Postdoctoral<br />

<strong>–</strong> Biochemistry/Neuroscience<br />

<strong>–</strong> <strong>Protein</strong> mis-folding in Alzheimer’s Disease<br />

<strong>–</strong> Supported by AHA Florida-Puerto Rico Affiliate<br />

Postdoctoral Fellowship<br />

College of Engineering and Computing<br />

University of South Carolina


<strong>Melissa</strong> A. <strong>Moss</strong>, <strong>Ph</strong>.D. <strong>–</strong> <strong>Protein</strong> <strong>Self</strong>-<strong>Assembly</strong><br />

Understand how<br />

monomeric protein<br />

self-assembles to<br />

form amyloid fibrils<br />

Alzheimer’s Brain<br />

Amyloid<br />

Plaques<br />

Nanotechnology<br />

applications<br />

Food and<br />

pharmaceutical<br />

industry<br />

Disease<br />

progression<br />

Courtesy of D. Dickson,<br />

Mayo Clinic, Jacksonville<br />

Pathology<br />

Nichols et al. (2002)<br />

Biochemistry, 41: 6115-27<br />

Aβ Fibrils<br />

College of Engineering and Computing<br />

University of South Carolina


<strong>Melissa</strong> A. <strong>Moss</strong>, <strong>Ph</strong>.D. <strong>–</strong> <strong>Protein</strong> <strong>Self</strong>-<strong>Assembly</strong><br />

Elongation<br />

Understand how Aβ self-assembles<br />

to form fibrils<br />

Aβ<br />

μM<br />

40<br />

20<br />

Protofibril<br />

Monomer<br />

30<br />

20<br />

10<br />

mAU<br />

(280nm)<br />

Isolate<br />

aggregation<br />

intermediates to<br />

study their growth<br />

Association<br />

0<br />

0<br />

4 8 12 16<br />

Volume, mL<br />

Determine the effect<br />

of various growth<br />

mechanisms on<br />

aggregate morphology<br />

Funding: NSF CAREER Award<br />

College of Engineering and Computing<br />

University of South Carolina


<strong>Melissa</strong> A. <strong>Moss</strong>, <strong>Ph</strong>.D. <strong>–</strong> <strong>Protein</strong> <strong>Self</strong>-<strong>Assembly</strong><br />

Elongation<br />

Utilize inhibitors to<br />

understand, control<br />

protein self-assembly<br />

Identify, characterize<br />

inhibitors that target<br />

specific growth<br />

mechanisms<br />

Association<br />

1000<br />

F<br />

500<br />

0<br />

Control<br />

O<br />

O N N<br />

N HN<br />

0 2 4 6<br />

Time, h<br />

Define inhibitor<br />

structure-function<br />

relationships<br />

Funding: NSF CAREER Award<br />

College of Engineering and Computing<br />

University of South Carolina


<strong>Melissa</strong> A. <strong>Moss</strong>, <strong>Ph</strong>.D. <strong>–</strong> <strong>Protein</strong> <strong>Self</strong>-<strong>Assembly</strong><br />

Au<br />

electrode<br />

surface<br />

biotin<br />

tag<br />

avidin<br />

unlabeled<br />

soluble<br />

aggregate<br />

biotinylated<br />

Ab 1-40<br />

monomer unlabeled Aβ 1-40<br />

monomer<br />

Δm, pmol/cm 2<br />

Employ novel techniques to quantify<br />

Aβ self-assembly<br />

300<br />

200<br />

100<br />

A<br />

0<br />

0 2 4 6 8<br />

time, min<br />

60<br />

40<br />

20<br />

0<br />

-Δf, Hz<br />

Mimic cell-surface growth<br />

Correlate growth with<br />

physiological activity<br />

Δm, pmol/cm 2<br />

60<br />

40<br />

20<br />

0<br />

100<br />

XTT<br />

%<br />

Control<br />

0 2 4 6 8 10<br />

time, min<br />

0<br />

A<br />

Quartz Crystal<br />

Microbalance<br />

Monomer<br />

5 μM Fibril + Monomer<br />

5 10 20 30<br />

[Aβ Monomer], μM<br />

Funding: NSF CAREER Award<br />

New Investigator Grant, Alzheimer’s Association<br />

Publication: Kotarek and <strong>Moss</strong>, “Implementation of a Quartz Crystal Microbalance to<br />

Detect Growth of Intermediates of the Amyloid-β <strong>Protein</strong>,” In Preparation,<br />

Analytical Biochemistry<br />

College of Engineering and Computing<br />

University of South Carolina


<strong>Melissa</strong> A. <strong>Moss</strong>, <strong>Ph</strong>.D. <strong>–</strong> <strong>Protein</strong> <strong>Self</strong>-<strong>Assembly</strong><br />

Alzheimer’s Brain<br />

Courtesy of D. Dickson,<br />

Mayo Clinic, Jacksonville<br />

Pathology<br />

Nichols et al. (2002)<br />

Biochemistry, 41: 6115-27<br />

Funding:<br />

Publication:<br />

Cerebral<br />

Amyloid<br />

Angiopathy<br />

Characterize physiological<br />

activity of Aβ aggregates<br />

Correlate activity<br />

with<br />

aggregate size<br />

Demonstrate<br />

specific effects of<br />

intermediates<br />

on endothelial cells<br />

Aβ Fibrils<br />

Beginning Grant-In-Aid, AHA Mid-Atlantic Affiliate<br />

Gonzalez-Velasquez and <strong>Moss</strong>, “Soluble Aggregates of the Amyloid-β<br />

<strong>Protein</strong> Activate Endothelial Monolayers for Adhesion and Subsequent<br />

Transmigration of Monocyte Cells,” In Press, Journal of Neurochemistry<br />

College of Engineering and Computing<br />

University of South Carolina


<strong>Melissa</strong> A. <strong>Moss</strong>, <strong>Ph</strong>.D. <strong>–</strong> <strong>Protein</strong> <strong>Self</strong>-<strong>Assembly</strong><br />

Lab Group:<br />

Postdoctoral Fellow<br />

Francisco Gonzalez<br />

Graduate Students<br />

Joseph Kotarek<br />

Adriana Reyes Barcelo<br />

Deborah Soto<br />

Chen Suo<br />

Undergraduate Students<br />

Charlotte Cooper<br />

Kathryn Johnson (Magellan)<br />

Fahmin Basher (Magellan)<br />

Tim Davis (Magellan)<br />

Sarah Holton (Magellan)<br />

Chris Butch (Magellan)<br />

Brandon Murphy (U<strong>SC</strong>-PH)<br />

Corelis Zayas Ortiz (NSF-REU)<br />

Elizabeth Schongar (NSF-REU)<br />

Meagan Stewart (NSF-REU)<br />

College of Engineering and Computing<br />

University of South Carolina


Nano Laser-Induced Fluorescence<br />

<strong>Ph</strong>otobleaching Anemometer (nLIFPA)<br />

Guiren Wang<br />

Department of Mechanical Engineering<br />

& Biomedical Engineering Program, U<strong>SC</strong>


Background<br />

Education<br />

• Postdoc, Microfluidics Lab, Stanford University 2002<br />

• <strong>Ph</strong>D, Technical University Berlin 1999<br />

Research interest: multidisciplinary fields in<br />

• Micro/Nanofluidics, sensor, Lab-on-a-Chip<br />

• Biomechanics, drug discovery/delivery<br />

• Fluid mechanics, turbulence and mixing<br />

• Optical measurement, laser-induced fluorescence<br />

• Bioreactor and tissue engineering<br />

As Principle investigator (PI) for:<br />

• DARPA/(SBIR): 11/06-07/07<br />

Novel Nanofluidics-Based Sensor System<br />

• NIH/SBIR: 09/04<strong>–</strong>09/05<br />

Novel Micro Thrombectomy Catheter for Ischemic Stroke<br />

• OSD(DoD)/SBIR: 12/05<strong>–</strong>01/06<br />

Novel Electrothermal microfluidic Drug Infusion Pump<br />

Lab-On-A-Chip<br />

GPCR<br />

G q PLC<br />

PIPDAG 2 + IP 3<br />

[Ca 2+ ] i<br />

Cell<br />

Signal transduction<br />

Optical diagnostics<br />

Biodefense<br />

• Professional service:<br />

NIH panel review<br />

Bioreactor in tissue eng.<br />

Tissue cutting


Highly demanded for novel flow velocimetry<br />

• When flow Reynolds number (Re) becomes small and many<br />

biological processes occur at low Re<br />

• Nanofluidics and microfluidics<br />

• Chemical binding kinetics near surface, particularly for weak<br />

binding, e.g. hydrogen bond<br />

• Endothelial surface layer: mechanism of flow resistance reduction<br />

• Mechanotransduction<br />

• Platelet-Endothelial Cell Adhesion<br />

• Tribology, where lubrication failure leads to wear in prostheses<br />

• Shear stress measurement<br />

• Particle-liquid suspension flows near solid surfaces for polish<br />

silicon wafers in chip manufacturing


The state-of-the-art on velocimetry<br />

• Flush time of a neutral marker<br />

• Sample weighing<br />

• Conductivity cell<br />

• Current monitoring<br />

• Streaming potential<br />

• Nuclear magnetic resonance<br />

• Hot Wire Anemometer<br />

• Laser Doppler Velocimetry<br />

• Nano/Micro Particle Image Velocimetry (n/µPIV)<br />

Molecular tracer method<br />

• <strong>Ph</strong>otobleaching based velocimetry<br />

Easy to use, but<br />

low temporal and<br />

spatial resolution<br />

Difficult to use<br />

Successful used<br />

but limited<br />

resolution<br />

<strong>–</strong> Flush time: Low temporal and spatial resolution<br />

<strong>–</strong> Recovery time: High spatial resolution, low temporal<br />

<strong>–</strong> Laser-Induced Fluorescence <strong>Ph</strong>otobleaching Anemometer (LIFPA)


Key issues and emerging techniques<br />

Key issues<br />

• Molecular tracer<br />

• Molecular tracer signal transducer<br />

• Overcoming the Abbe’s diffraction limit (> 150 nm)<br />

Emerging techniques<br />

• Velocimetry:<br />

<strong>–</strong> LIFPA: molecuar tracer, high spatial and temporal resolution<br />

• Breaking diffraction limit<br />

<strong>–</strong> Standing wave or evanescent wave total internal reflection<br />

• Resolution: ~ 100 nm, but cannot measure transverse distribution<br />

<strong>–</strong> Stimulated emission depletion (STED)<br />

• Resolution: ~ 16 nm (X), 20nm (XY) and 50nm (Z) (Heintzmann and Ficz, 2006)


Laser-Induced-Fluorescence <strong>Ph</strong>otobleaching<br />

Anemometer (LIFPA) in microfluidic system<br />

Motivation:<br />

1. Electrokinetics flow<br />

measuring and calibration<br />

2. Flow velocity measurement<br />

in BioMEMS<br />

Simplified model<br />

for LIFPA<br />

I f = I f0 * e <strong>–</strong>t / τ<br />

t = df / u<br />

I f = I f0 * e <strong>–</strong> df/ (uτ)<br />

I f : Fluorescence intensity<br />

τ: Bleaching constant<br />

t: Dye residence time


Preliminary data<br />

Signal transduction<br />

Fluorescence intensity ( Arbitrary unit)I f<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Different u<br />

5<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time (s)<br />

Time<br />

Calibration curve<br />

F lo w v e lo c ity (m m /s )<br />

4<br />

3.5<br />

u<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

Calibrated curve<br />

Measured velocity<br />

0.5<br />

0<br />

0 10 20 30 40<br />

Fluorescence intensity (arbitrary unit)<br />

I f<br />

Set-up<br />

Wang, GR, et al(2007) Electrophoresis. In press.<br />

Wang, G. R. (2005) Lab on a Chip, 5, 450 <strong>–</strong> 456.


Stimulated emission depletion (STED)<br />

Hell 2003, Nature Biotech


We propose: nanoLIFPA, i.e. LIFPA + STED and TIR<br />

• Generating ultra fine laser illuminated measuring spot<br />

<strong>–</strong> Total Reflection<br />

<strong>–</strong> Stimulated emission depletion<br />

• Measuring velocity with LIFPA<br />

LIFPA + STED<br />

•STED can possibly focus to only<br />

30 nm diameter<br />

Detector<br />

LIFPA + Evanescent wave (TIR)<br />

•Evanescent wave can illuminate in<br />

thickness of 100 nm near the wall<br />

STED<br />

Excitation<br />

Nanochannel


Rapid mixing applications in biorengineering<br />

Many cases fast mixing at low Re and shear force<br />

in continuous operation is desirable<br />

Mixing<br />

application<br />

• Combustion<br />

• All fast chemical reaction process<br />

• Bioreactor (Tissue engineering, Fermentation, cell<br />

culture, extraction and etc)<br />

• Producing pure plasmid DNA<br />

• <strong>Protein</strong> folding<br />

• Cell activation<br />

• Slow enzymatic reaction for drug discovery<br />

• Immunoassay<br />

• Crystallization and nanoparticle<br />

• Cell and protein protection from rupture


Bioreactor for tissue engineering and vaccine:<br />

Using novel flow and mixing control<br />

Current problem<br />

Tissue engineering<br />

• limited understanding of<br />

physicochemical culture<br />

parameters<br />

• high manufacturing costs Too<br />

high turbulent eddies and shear<br />

force Cell damage<br />

Large size plasmid DNA for gene<br />

vaccines<br />

• Lysis process requires rapid<br />

mixing<br />

• But shear force can damage to cell<br />

and chromosomal DNA<br />

Research plan<br />

• Flow control based on the new<br />

receptivity<br />

• In vitro models to study the<br />

pathophysiology<br />

• Enhanced transport at low Re and low<br />

shear force<br />

• Precisely controlled biological and<br />

chemical condition<br />

• Precisely controlled mechanical force<br />

• Cell seeding on 3D scaffolds<br />

• Increase of mass transport<br />

• Drug screening


Calibration curve and measured<br />

electroosmotic flow (EFO) velocity<br />

LIFPA can measure EOF rapidly and accurately<br />

I f<br />

Fluorescence intensity (arbitrary unit)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 1000 2000 3000<br />

Voltage (V)<br />

Voltage<br />

u<br />

EOF velocity (mm/s)<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

Voltage (V)<br />

calibrated result<br />

measured result<br />

Voltage


Chip quality test<br />

• Pressure driven flow is normal<br />

• But the Electroosmotic flow (EOF) is abnormal<br />

Pressure driven flow<br />

Electroosmotic flow


Chip quality test<br />

•Electroosmotic flow (EOF) is normal<br />

•But the Pressure driven flow is abnormal<br />

Pressure driven flow<br />

Electroosmotic flow


Presentation to NSF/EP<strong>SC</strong>oR Outreach<br />

Visit - October 23rd, 2007<br />

Jay Blanchette<br />

Background<br />

B.S.E. <strong>–</strong> Biomedical Engineering, Duke University<br />

Predoctoral <strong>–</strong> National Cancer Institute, Bethesda, MD<br />

<strong>Ph</strong>. D. <strong>–</strong> Biomedical Engineering, Purdue University / The<br />

University of Texas <strong>–</strong> Austin (NSF IGERT)<br />

Postdoctoral <strong>–</strong> Dept of Chemical and Biological<br />

Engineering, University of Colorado - Boulder


Designing Delivery Systems for<br />

Therapeutic Agents<br />

• Doctoral Work: Synthetic delivery systems<br />

(pH-responsive hydrogels) for oral<br />

administration of chemotherapeutics<br />

• Current Research: Bio-synthetic hybrids to<br />

achieve sustained and responsive delivery<br />

of therapeutics (current research focuses<br />

on treatment of diabetes)


Site and<br />

Mechanism of<br />

Delivery<br />

Intestinal epithelium<br />

Drug carrier<br />

Mucosal Layer<br />

Intestinal Lumen


Cell Encapsulation<br />

Shield the transplanted cells from the body’s<br />

immune system while still allowing passage of<br />

nutrients and waste products to maintain cell<br />

function<br />

Semi-permeable<br />

membrane to<br />

shield the Islets of<br />

Langerhans <strong>–</strong><br />

artificial pancreas


Stresses Related to Removal of<br />

Islets from the Pancreas<br />

Stresses are placed on the<br />

clusters of cells<br />

Foreign Environment <strong>–</strong> Cells<br />

know when they are in the<br />

wrong place and generally<br />

trigger their own death<br />

(Anoikis)<br />

Hypoxia <strong>–</strong> Without sufficient<br />

oxygen supply, the islets will<br />

not function properly


Signal Transduction Targets : ILK<br />

Target integrin-linked kinase (ILK) to try and keep cells<br />

functioning properly in foreign environment<br />

[Figure from N. Yoganathan et al <strong>Ph</strong>armacol Ther (2002)]


“Hotwiring” the Pro-survival<br />

Signaling Pathway<br />

- The islets are surrounded by<br />

a biologically inert capsule<br />

- Genetic modification of the<br />

islets can make them think that<br />

they are instead surrounded by<br />

appropriate matrix proteins<br />

which keeps them alive and<br />

releasing insulin


Insulin Release from<br />

Encapsulated, Whole Islets<br />

1.5<br />

Normalized<br />

Insulin<br />

Release<br />

1<br />

0.5<br />

Cre<br />

Bcl-2<br />

mILK<br />

0<br />

0 7 14 21 28<br />

Time (Day)<br />

Relative amount of insulin released compared to Day 1 of 4 week study


Role of Hypoxia in Loss of Islet Function<br />

-Develop a marker to identify islets in a<br />

hypoxic state<br />

-Creation of a recombinant adenovirus<br />

for use as a hypoxia reporter<br />

- Place red fluorescent protein under the<br />

control of the hypoxia response element<br />

(HRE)<br />

Hif-1<br />

HRE<br />

DsRed


Hypoxia Reporter System<br />

Normoxia<br />

24h at 1% O2


Bio-synthetic Hybrids<br />

• If you can keep tissue functional, then sustained<br />

and responsive delivery systems can be created<br />

• Research focused on development of artificial<br />

pancreas has applications in cell-material<br />

interactions and use of living tissue for delivery<br />

• The complexity of the cells opens up options that<br />

are not realistic with purely synthetic delivery<br />

systems (ability to respond to 1 or more stimuli<br />

and sustained release)


Xiaoming He, <strong>Ph</strong>.D.<br />

Education: PostDoc: Harvard Medical School, 2007<br />

<strong>Ph</strong>.D.: University of Minnesota, 2004<br />

M.S., B.S.: Xi’an JiaoTong University, 1998, 1995<br />

Positions: Assistant Professor: Biomedical and Mechanical Engineering, 2007-<br />

Research Associate: Massachusetts General Hospital (MGH), 2004-2007<br />

Research Associate: Shriner Hospital for Children, Boston, 2004-2007<br />

Development Engineer: American Medical Systems, Inc., MN, 2003-2004<br />

Assistant Professor/Lecturer: Beijing University of Technology, 1998-2000<br />

Publications: Journal 15 + 3 submitted; Conference 15; Patent 1 pending<br />

Activities: Co-Chair: Biotransport Session, ASME Summer Bioeng. Conf. 2005<br />

Reviewer: 7 Journals, 3 Conferences<br />

Societies: ASME, Society for Cryobiology, SPIE, Sigma XI<br />

Awards: Best Poster Award, European Association of Urology 2003<br />

Travel Award, Society for Cryobiology 2002


Heat and Mass Transfer in Biological Systems<br />

Minimally invasive surgery: Cancer and other diseases<br />

Cryosurgery<br />

Hyper-thermic surgery<br />

-196 o C -80<br />

-20 0 20 37 45<br />

100 o C<br />

Deep Cryo<br />

Cryo Hypo Normo-thermic<br />

Tardigrade<br />

(Water bear)<br />

Cryoprotectants: DMSO, glycerol<br />

Dehydrated<br />

Rehydrated<br />

Lyoprotectants: Trehalose, sucrose, glucose<br />

BioPreservation:<br />

Germplasm (sperm and eggs)<br />

Stem cells & primary cells<br />

Engineered and native tissues


Engineering and Sciences<br />

ThermoMechanical<br />

Biotransport, Biophysics, and Biomechanics<br />

Biological<br />

molecule, cell, tissue Injury, and function<br />

Inflammatory<br />

Necrosis<br />

Thermal Fixation<br />

Alive Peripheral<br />

Probe Site<br />

FEM thermal analysis<br />

Ice formation<br />

FTIR: Thermal protein<br />

denaturation in cells<br />

Histology: thermal<br />

injury in kidney tissue<br />

Control<br />

Thermally<br />

treated<br />

Intracellular delivery<br />

of bioprotectants<br />

FEM stress analysis<br />

in frozen tissue<br />

Live/dead assay: cell<br />

membrane integrity<br />

Functional analysis<br />

after biopreservation


Engineering and Scientific Challenges in Thermal Surgery:<br />

Molecular and Nanoscale Targeting<br />

EM Field<br />

Probe T(t)<br />

Diseased<br />

Tissue Diseased<br />

Tissue<br />

Normal<br />

Tissue<br />

∗ Sensitizing diseased tissue using<br />

chemical adjuvants (e.g. TNF-α)<br />

∗ Nanoencapsulation of chemical<br />

adjuvants for controlled delivery<br />

∗ Metallic nanoparticles for<br />

targeted heating


Engineering and Scientific Challenges in Biopreservation:<br />

A Look on the <strong>Ph</strong>ase Diagram<br />

T, o C<br />

T m,Sugar/CPA<br />

Liquid<br />

22<br />

0<br />

-5<br />

Liquidus<br />

Ice +<br />

Sub-cooled Liquid<br />

Extended Liquidus<br />

Solidus<br />

Sugar/CPA +<br />

Super-saturated Liquid<br />

Glass Transition<br />

T g,Sugar/CPA<br />

Dry or<br />

Desiccation<br />

-137<br />

-196<br />

Cryo<br />

Vitrified or Glassy State<br />

0%<br />

Sugar/CPA Concentration<br />

100%<br />

CPA: Cryoprotectant


Engineering and Scientific Challenges in Biopreservation:<br />

Ultra-Fast Vitrification and Desiccation at the Sub-Micron Scale<br />

T, o C<br />

T m,Sugar/CPA<br />

Liquid<br />

22<br />

0<br />

-5<br />

Ice Formation<br />

Freeze Concentration<br />

Toxic<br />

T g,Sugar/CPA<br />

IV<br />

-137<br />

Glass Transition<br />

I: Slow Freezing<br />

II: Vitrification<br />

-196<br />

III<br />

Vitrified or Glassy State<br />

II<br />

I<br />

III: Ultrafast Vitrification<br />

IV: Desiccation<br />

0%<br />

Sugar/CPA Concentration<br />

100%<br />

CPA: Cryoprotectant


Summary<br />

Future Research: Micro, Molecular, and Nanoscale<br />

Thermomechanical and Biological Responses in<br />

Biopreservation and Minimally Invasive Surgery<br />

Broader Impact:<br />

∗ Enhancement of the South Carolina Biological<br />

Engineering Research Infrastructure<br />

∗ Environmental Conservation of Endangered Species<br />

∗ Contribution to Food Industry<br />

∗ Contribution to the Nation’s Health Care


Targeting Support from NSF: CAREER …<br />

Thank you!


Arash Kheradvar, M.D., <strong>Ph</strong>.D.<br />

• Assistant Prof. of Mechanical Engineering<br />

• Clinical Adjunct Assistant Prof. of Medicine<br />

• M.D. from Tehran University of Medical<br />

Sciences<br />

• <strong>Ph</strong>.D. from California Institute of Technology<br />

• Member of Editorial Board, American Journal of<br />

Artificial Internal Organs<br />

• Invited grant proposal reviewer for National<br />

Medical Research Council, Ministry of Health,<br />

Singapore.


Research Interests<br />

• Cardiovascular Engineering:<br />

◦ Biofluid Mechanics<br />

◦ Heart Valve & Stent Engineering<br />

◦ Cardiac Macro & Micro Mechanics<br />

◦ Cardiovascular Imaging


Biofluid Mechanics: Vortex formation<br />

time in Left Ventricle<br />

Pressure Forces<br />

Thrust<br />

∑ F = ρ<br />

∫<br />

Ω<br />

D<br />

Dt<br />

U<br />

dV<br />

+<br />

∫<br />

( P − P ) ndS<br />

+ = 0<br />

J V A<br />

F R<br />

∂Ω<br />

Vortex ring<br />

Recoil<br />

⎛<br />

⎜<br />

T*<br />

⎝<br />

= ∫<br />

E -wave<br />

( t)<br />

⎞<br />

dt ⎟<br />

D(t)<br />

⎠<br />

u Jet


Assessment of Cardiac Viscoelastic<br />

Properties


Application of Fracture Mechanics<br />

in Ventricular Remodeling<br />

Normal Induction of a defect Defect propagation


Novel approaches toward developing:<br />

minimally-invasive invasive heart valves<br />

Kheradvar A, et al. Implantable small<br />

percutaneous valves and the method of<br />

delivery (US20060195180)<br />

Kheradvar A & Gharib M. Deployable forming<br />

heart valve system and its percutaneous method<br />

of delivery. patent pending<br />

Kheradvar A & Gharib M. Monolithically forming<br />

valve system and its percutaneous method of delivery.<br />

Patent pending


Helical to Circular Transformation


NSF-MRI: Acquisition of a high precision<br />

laser cutting system: for precise, clear<br />

cutting of special materials

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!