15.03.2015 Views

Breeding Barley in the New Millenium:Proceedings of an ...

Breeding Barley in the New Millenium:Proceedings of an ...

Breeding Barley in the New Millenium:Proceedings of an ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proceed<strong>in</strong>gs <strong>of</strong> <strong>an</strong> International Symposium<br />

H.E. Vivar <strong>an</strong>d A. McNab, Editors<br />

INTERNATIONAL MAIZE AND WHEAT IMPROVEMENT CENTER


83<br />

<strong>Breed<strong>in</strong>g</strong> <strong>Barley</strong><br />

<strong>in</strong> <strong>the</strong> <strong>New</strong> <strong>Millenium</strong>:<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>an</strong> International<br />

Symposium<br />

held on<br />

13-14 March 2000<br />

<strong>in</strong><br />

Ciudad Obregon, Sonora, Mexico<br />

H.E. Vivar <strong>an</strong>d A. McNab, Editors<br />

NTERNATIONAL CENTER FOR AGRICULTURAL RESEARCH IN THE DRY AREAS<br />

INTERNATIONAL MAIZE AND WHEAT IMPROVEMENT CENTER


CIMMYT® (www.cimmyt.org) is <strong>an</strong> <strong>in</strong>ternationally funded, nonpr<strong>of</strong>it, scientific research <strong>an</strong>d<br />

tra<strong>in</strong><strong>in</strong>g org<strong>an</strong>ization. Headquartered <strong>in</strong> Mexico, CIMMYT works with agricultural research<br />

<strong>in</strong>stitutions worldwide to improve <strong>the</strong> productivity, pr<strong>of</strong>itability, <strong>an</strong>d susta<strong>in</strong>ability <strong>of</strong> maize<br />

<strong>an</strong>d wheat systems for poor farmers <strong>in</strong> develop<strong>in</strong>g countries. It is one <strong>of</strong> 16 food <strong>an</strong>d<br />

environmental org<strong>an</strong>izations known as <strong>the</strong> Future Harvest Centers. Located around <strong>the</strong> world,<br />

<strong>the</strong> Future Harvest Centers conduct research <strong>in</strong> partnership with farmers, scientists, <strong>an</strong>d<br />

policymakers to help alleviate poverty <strong>an</strong>d <strong>in</strong>crease food security while protect<strong>in</strong>g natural<br />

resources. The centers are supported by <strong>the</strong> Consultative Group on International Agricultural<br />

Research (CGIAR) (www.cgiar.org), whose members <strong>in</strong>clude nearly 60 countries, private<br />

foundations, <strong>an</strong>d regional <strong>an</strong>d <strong>in</strong>ternational org<strong>an</strong>izations. F<strong>in</strong><strong>an</strong>cial support for CIMMYT’s<br />

research agenda also comes from m<strong>an</strong>y o<strong>the</strong>r sources, <strong>in</strong>clud<strong>in</strong>g foundations, development<br />

b<strong>an</strong>ks, <strong>an</strong>d public <strong>an</strong>d private agencies.<br />

Future Harvest® builds awareness <strong>an</strong>d support for food <strong>an</strong>d environmental research for a<br />

world with less poverty, a healthier hum<strong>an</strong> family, well-nourished children, <strong>an</strong>d a better<br />

environment. It supports research, promotes partnerships, <strong>an</strong>d sponsors projects that br<strong>in</strong>g <strong>the</strong><br />

results <strong>of</strong> research to rural communities, farmers, <strong>an</strong>d families <strong>in</strong> Africa, Asia, <strong>an</strong>d Lat<strong>in</strong><br />

America (www.futureharvest.org).<br />

© International Maize <strong>an</strong>d Wheat Improvement Center (CIMMYT) 2001. All rights reserved.<br />

The op<strong>in</strong>ions expressed <strong>in</strong> this publication are <strong>the</strong> sole responsibility <strong>of</strong> <strong>the</strong> authors. The<br />

designations employed <strong>in</strong> <strong>the</strong> presentation <strong>of</strong> materials <strong>in</strong> this publication do not imply <strong>the</strong><br />

expression <strong>of</strong> <strong>an</strong>y op<strong>in</strong>ion whatsoever on <strong>the</strong> part <strong>of</strong> CIMMYT or its contributory org<strong>an</strong>izations<br />

concern<strong>in</strong>g <strong>the</strong> legal status <strong>of</strong> <strong>an</strong>y country, territory, city, or area, or <strong>of</strong> its authorities, or<br />

concern<strong>in</strong>g <strong>the</strong> delimitation <strong>of</strong> its frontiers or boundaries. CIMMYT encourages fair use <strong>of</strong> this<br />

material. Proper citation is requested.<br />

Correct citation: Vivar, H.E., <strong>an</strong>d A. McNab (eds.). 2001. <strong>Breed<strong>in</strong>g</strong> <strong>Barley</strong> <strong>in</strong> <strong>the</strong> <strong>New</strong> <strong>Millenium</strong>:<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>an</strong> International Symposium. Mexico, D.F.: CIMMYT.<br />

AGROVOC Descriptors: Pl<strong>an</strong>t breed<strong>in</strong>g; <strong>Breed<strong>in</strong>g</strong> methods; <strong>Barley</strong>; Germplasm; Pl<strong>an</strong>t<br />

diseases; Disease resist<strong>an</strong>ce; Environmental factors; Research projects<br />

Additional Keywords: CIMMYT<br />

AGRIS Category Codes: F30 Pl<strong>an</strong>t Genetics <strong>an</strong>d <strong>Breed<strong>in</strong>g</strong><br />

A50 Agricultural Research<br />

Dewey Decimal Classif.: 633.16<br />

ISBN: 970-648-078-1<br />

Pr<strong>in</strong>ted <strong>in</strong> Mexico.<br />

Design <strong>an</strong>d layout: Miguel Mellado E.<br />

Front <strong>an</strong>d back cover photos: H.E. Vivar.


iii<br />

Table <strong>of</strong> Contents<br />

iv<br />

Preface<br />

1 Learn<strong>in</strong>g about <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong>—D.C. Rasmusson<br />

7 Hull-less <strong>Barley</strong>: An Overview—J.H. Helm<br />

10 Contributions <strong>of</strong> <strong>Breed<strong>in</strong>g</strong> <strong>an</strong>d Crop M<strong>an</strong>agement to Increas<strong>in</strong>g <strong>Barley</strong><br />

Yield <strong>an</strong>d Gra<strong>in</strong> Quality <strong>in</strong> Chile—E. Beratto M.<br />

18 Import<strong>an</strong>ce <strong>of</strong> Identify<strong>in</strong>g Stripe Rust Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong>—W.M.<br />

Brown, J.P. Hill, <strong>an</strong>d V.R. Velasco<br />

25 Impact <strong>of</strong> ICARDA/CIMMYT <strong>Barley</strong> Germplasm on <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong> <strong>in</strong><br />

Ecuador—O. Chicaiza<br />

28 Malt<strong>in</strong>g <strong>Barley</strong> for <strong>the</strong> <strong>New</strong> <strong>Millenium</strong>—L. Wright<br />

34 <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong> <strong>in</strong> Peru—M. Romero Loli <strong>an</strong>d L. Gomez P<strong>an</strong>do<br />

39 Accumulat<strong>in</strong>g Genes for Disease Resist<strong>an</strong>ce <strong>in</strong> Two-Rowed <strong>Barley</strong> for<br />

North Dakota—J.D. Fr<strong>an</strong>ckowiak<br />

47 Collaborative Stripe Rust Resist<strong>an</strong>ce Gene Mapp<strong>in</strong>g <strong>an</strong>d Deployment<br />

Efforts—P.M. Hayes, A. Castro, A.E. Corey, T. Filuchk<strong>in</strong>, C. Rossi, J.S.<br />

S<strong>an</strong>doval, I. Vales, H.E. Vivar, <strong>an</strong>d J. Von Zitzewitz<br />

61 Perspectives on Fusarium Head Blight Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong>—L.<br />

Gilchrist<br />

72 Resist<strong>an</strong>ce <strong>an</strong>d/or Toler<strong>an</strong>ce to BYDV: Recent Adv<strong>an</strong>ces <strong>in</strong> <strong>Barley</strong> at<br />

CIMMYT—M. Henry <strong>an</strong>d H.E. Vivar<br />

77 Two Decades <strong>of</strong> <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong>—H.E. Vivar


iv<br />

Foreword<br />

One aspect <strong>of</strong> CIMMYT’s m<strong>an</strong>date is to<br />

develop improved barley varieties for Lat<strong>in</strong><br />

America, a task we carry out <strong>in</strong><br />

collaboration with one <strong>of</strong> our CGIAR sister<br />

centers, <strong>the</strong> International Center for<br />

Agricultural Research <strong>in</strong> <strong>the</strong> Dry Areas<br />

(ICARDA). Our collaborative efforts are<br />

embodied <strong>in</strong> <strong>the</strong> ICARDA/CIMMYT<br />

<strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong> Program for Lat<strong>in</strong><br />

America, <strong>an</strong> excellent example <strong>of</strong><br />

partnership with<strong>in</strong> <strong>the</strong> CGIAR that has<br />

operated successfully s<strong>in</strong>ce <strong>the</strong> early 1980s.<br />

<strong>Barley</strong> c<strong>an</strong> grow <strong>in</strong> extremely <strong>in</strong>hospitable<br />

environments where o<strong>the</strong>r crops would<br />

have a difficult time surviv<strong>in</strong>g—for<br />

example <strong>in</strong> <strong>the</strong> high valleys (2,700-3,500<br />

meters above sea level) <strong>of</strong> <strong>the</strong> Ande<strong>an</strong><br />

Region <strong>in</strong> South America, where it is very<br />

cold <strong>an</strong>d soils are rocky <strong>an</strong>d <strong>in</strong>fertile. In this<br />

region, which <strong>in</strong>cludes Bolivia, Ecuador,<br />

Peru, <strong>an</strong>d sou<strong>the</strong>rn Colombia, barley does<br />

well, though farmers’ circumst<strong>an</strong>ces do not<br />

allow <strong>the</strong>m to <strong>in</strong>vest much <strong>in</strong> it: <strong>the</strong>y do<br />

very little l<strong>an</strong>d preparation <strong>an</strong>d do not<br />

control diseases or <strong>in</strong>sect pests, despite <strong>the</strong><br />

fact that barley provides both <strong>an</strong>imal feed<br />

<strong>an</strong>d food for farm families.<br />

Regional farmers traditionally pl<strong>an</strong>ted local<br />

barleys that were low yield<strong>in</strong>g <strong>an</strong>d<br />

susceptible to diseases; as a result <strong>the</strong>y<br />

<strong>of</strong>ten suffered disastrous yield losses that<br />

seriously threatened household food<br />

supplies. <strong>Breed<strong>in</strong>g</strong> to <strong>in</strong>corporate durable<br />

resist<strong>an</strong>ce to multiple diseases<br />

consequently became one <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

goals—<strong>an</strong>d outst<strong>an</strong>d<strong>in</strong>g achievements—<strong>of</strong><br />

<strong>the</strong> ICARDA/CIMMYT <strong>Breed<strong>in</strong>g</strong> Program.<br />

The approach utilized dur<strong>in</strong>g <strong>the</strong> 20-year<br />

breed<strong>in</strong>g process was to create templates<br />

for <strong>in</strong>corporat<strong>in</strong>g resist<strong>an</strong>ce to diseases<br />

endemic <strong>in</strong> <strong>the</strong> region, such as stripe <strong>an</strong>d<br />

leaf rusts, scald, fusarium head blight, <strong>an</strong>d<br />

barley yellow dwarf (BYD), <strong>in</strong>to a high<br />

yield<strong>in</strong>g background. Resist<strong>an</strong>ce to scald<br />

<strong>an</strong>d leaf rust was <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> early<br />

stages, followed by stripe rust <strong>an</strong>d o<strong>the</strong>r<br />

diseases. Genes conferr<strong>in</strong>g resist<strong>an</strong>ce to net<br />

blotch, spot blotch, <strong>an</strong>d stem rust were<br />

added later. By apply<strong>in</strong>g this method, <strong>the</strong><br />

Program succeeded <strong>in</strong> develop<strong>in</strong>g high<br />

yield<strong>in</strong>g barleys with resist<strong>an</strong>ce to multiple<br />

diseases that effectively safeguard<br />

smallholder food security <strong>in</strong> <strong>the</strong> Ande<strong>an</strong><br />

Region. In essence, <strong>the</strong> Program provided<br />

farmers with <strong>an</strong> exceptional resource—<br />

greatly improved seed—that enabled <strong>the</strong>m<br />

to move beyond <strong>the</strong> limitations imposed by<br />

<strong>the</strong>ir harsh farm<strong>in</strong>g environment.<br />

The success <strong>of</strong> <strong>the</strong> Program has been such<br />

that it has produced signific<strong>an</strong>t spillover<br />

benefits <strong>in</strong> regions beyond Lat<strong>in</strong> America. A<br />

case <strong>in</strong> po<strong>in</strong>t is its very impressive impact<br />

<strong>in</strong> Ch<strong>in</strong>a, where barleys developed by <strong>the</strong><br />

Program cover 40% <strong>of</strong> <strong>the</strong> one million<br />

hectares pl<strong>an</strong>ted to <strong>the</strong> crop. This impact is<br />

due ma<strong>in</strong>ly to <strong>the</strong> high yield potential <strong>of</strong><br />

ICARDA/CIMMYT barley germplasm <strong>an</strong>d<br />

its resist<strong>an</strong>ce to fusarium head blight <strong>an</strong>d<br />

barley yellow mosaic virus.<br />

Perhaps <strong>the</strong> most noteworthy impact <strong>of</strong> <strong>the</strong><br />

Program is that th<strong>an</strong>ks to its efforts, <strong>the</strong>re is<br />

now a large pool <strong>of</strong> barley germplasm<br />

possess<strong>in</strong>g good agronomic traits, high<br />

yield potential, <strong>an</strong>d resist<strong>an</strong>ce to numerous<br />

diseases that is freely available to breed<strong>in</strong>g<br />

programs all over <strong>the</strong> world. It is our hope<br />

that <strong>the</strong> achievements <strong>of</strong> this collaborative<br />

Program will be multiplied a hundred-fold<br />

by <strong>the</strong> use barley breeders—particularly <strong>in</strong><br />

<strong>the</strong> develop<strong>in</strong>g world—will make <strong>of</strong> <strong>the</strong>se<br />

resources.<br />

Timothy G. Reeves<br />

Director General, CIMMYT


v<br />

Preface<br />

These are <strong>the</strong> proceed<strong>in</strong>gs <strong>of</strong> <strong>an</strong><br />

<strong>in</strong>ternational barley symposium held on<br />

13-14 March 2000 <strong>in</strong> Ciudad Obregon,<br />

Sonora, Mexico. The primary reason for<br />

hold<strong>in</strong>g this special sem<strong>in</strong>ar was to<br />

honor Dr. Hugo E. Vivar, who retired <strong>in</strong><br />

February 2000 after a long <strong>an</strong>d<br />

extraord<strong>in</strong>arily fruitful career. <strong>Barley</strong><br />

researchers from Lat<strong>in</strong> America, <strong>the</strong><br />

USA, <strong>an</strong>d Syria who were closely<br />

associated with Dr. Vivar were <strong>in</strong>vited to<br />

make presentations at <strong>the</strong> symposium.<br />

Dr. Vivar became <strong>the</strong> head <strong>of</strong> <strong>the</strong><br />

ICARDA/CIMMYT <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong><br />

Program for Lat<strong>in</strong> America <strong>in</strong> 1984, after<br />

work<strong>in</strong>g for CIMMYT for n<strong>in</strong>e years. In<br />

<strong>the</strong> course <strong>of</strong> his long career, Hugo<br />

worked on different types <strong>of</strong> barley for<br />

diverse environments <strong>an</strong>d uses, but<br />

made a special effort to develop barleys<br />

for marg<strong>in</strong>al environments, such as<br />

those <strong>in</strong> <strong>the</strong> Ande<strong>an</strong> Region <strong>of</strong> his native<br />

South America, where subsistence<br />

farmers use barley for food. The higher<br />

yields produced by new, disease<br />

resist<strong>an</strong>t barleys have signific<strong>an</strong>tly<br />

improved farm families’ food security all<br />

year round.<br />

The ma<strong>in</strong> focus <strong>of</strong> <strong>the</strong> ICARDA/<br />

CIMMYT barley breed<strong>in</strong>g program,<br />

under CIMMYT leadership, is on Lat<strong>in</strong><br />

America, but <strong>the</strong> barleys it has<br />

developed are also sown <strong>in</strong> o<strong>the</strong>r parts<br />

<strong>of</strong> <strong>the</strong> world, such as Ch<strong>in</strong>a, Pakist<strong>an</strong>,<br />

<strong>an</strong>d Kenya. One <strong>of</strong> <strong>the</strong> reasons <strong>the</strong>y are<br />

so widely used is that <strong>the</strong>y possess<br />

resist<strong>an</strong>ce to multiple diseases such as<br />

<strong>the</strong> three rusts, BYDV, fusarium head<br />

blight (FHB), scald, <strong>an</strong>d net blotch. It<br />

should be noted that CIMMYT took <strong>the</strong><br />

lead <strong>in</strong> <strong>in</strong>troduc<strong>in</strong>g FHB resist<strong>an</strong>t<br />

varieties <strong>in</strong>to Ch<strong>in</strong>a through <strong>the</strong> variety<br />

Gobernadora.<br />

There is no doubt great progress has<br />

been achieved <strong>in</strong> improv<strong>in</strong>g barley for<br />

food, feed, <strong>an</strong>d forage. The crop has<br />

been endowed with traits such as high<br />

yield potential, multiple disease<br />

resist<strong>an</strong>ce, <strong>an</strong>d good gra<strong>in</strong> quality.<br />

However, <strong>in</strong> <strong>the</strong> future research will also<br />

have to focus on improv<strong>in</strong>g <strong>the</strong> quality<br />

<strong>of</strong> malt<strong>in</strong>g barley, a cash crop that would<br />

provide barley producers <strong>in</strong> develop<strong>in</strong>g<br />

countries with a promis<strong>in</strong>g option for<br />

earn<strong>in</strong>g <strong>the</strong>ir liv<strong>in</strong>g.<br />

In breed<strong>in</strong>g one always builds on o<strong>the</strong>r<br />

people’s work, <strong>an</strong>d <strong>the</strong> exch<strong>an</strong>ge <strong>of</strong><br />

germplasm <strong>an</strong>d <strong>in</strong>formation is crucial to<br />

develop<strong>in</strong>g new varieties. We take this<br />

opportunity to acknowledge <strong>the</strong><br />

openness <strong>an</strong>d cooperation <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>ternational community <strong>of</strong> barley<br />

breeders, especially North Americ<strong>an</strong><br />

barley breed<strong>in</strong>g programs, whose<br />

collaboration over m<strong>an</strong>y years has been<br />

<strong>in</strong>valuable to ICARDA/CIMMYT barley<br />

improvement efforts. We hope <strong>the</strong>se<br />

proceed<strong>in</strong>gs will st<strong>an</strong>d as a small<br />

memorial to <strong>the</strong> accomplishments not<br />

only <strong>of</strong> Dr. Vivar, a dedicated breeder,<br />

but also <strong>of</strong> a generous group <strong>of</strong> barley<br />

scientists all over <strong>the</strong> world.<br />

S<strong>an</strong>jaya Rajaram<br />

Director, CIMMYT Wheat Program


1<br />

Learn<strong>in</strong>g about <strong>Barley</strong><br />

<strong>Breed<strong>in</strong>g</strong><br />

D.C. RASMUSSON 1<br />

Pl<strong>an</strong>t breed<strong>in</strong>g programs are dynamic<br />

<strong>an</strong>d always require ch<strong>an</strong>ge because<br />

pests, target area, markets, <strong>the</strong> pl<strong>an</strong>t<br />

breeder’s toolbox (e.g., plot equipment,<br />

computers, <strong>an</strong>d molecular-based<br />

methods), <strong>an</strong>d available resources are<br />

const<strong>an</strong>tly ch<strong>an</strong>g<strong>in</strong>g. Thus <strong>the</strong>re is need<br />

for learn<strong>in</strong>g on a cont<strong>in</strong>u<strong>in</strong>g basis. It is<br />

<strong>in</strong>terest<strong>in</strong>g to speculate about learn<strong>in</strong>g<br />

<strong>an</strong>d to ponder how closely breed<strong>in</strong>g<br />

success is related to learn<strong>in</strong>g <strong>an</strong>d<br />

adopt<strong>in</strong>g new philosophies <strong>an</strong>d new<br />

strategies. In this context I would like to<br />

share some <strong>of</strong> my memorable learn<strong>in</strong>g<br />

experiences with you.<br />

In th<strong>in</strong>k<strong>in</strong>g about this presentation <strong>an</strong>d<br />

my title “Learn<strong>in</strong>g about <strong>Barley</strong><br />

<strong>Breed<strong>in</strong>g</strong>,” it occurred to me that m<strong>an</strong>y<br />

<strong>of</strong> you have had experiences similar to<br />

those I will describe. Pl<strong>an</strong>t breeders tend<br />

to move forward collectively <strong>in</strong> how we<br />

th<strong>in</strong>k about <strong>an</strong>d how we do pl<strong>an</strong>t<br />

breed<strong>in</strong>g. So those <strong>of</strong> you that are older<br />

will likely conclude that you have had a<br />

learn<strong>in</strong>g experience similar to my own.<br />

I have divided <strong>the</strong> presentation <strong>in</strong>to<br />

three parts:<br />

• The formative years, when my<br />

th<strong>in</strong>k<strong>in</strong>g about barley breed<strong>in</strong>g was<br />

shaped by advisors <strong>an</strong>d more<br />

experienced mentors.<br />

• The challeng<strong>in</strong>g <strong>an</strong>d <strong>in</strong>novative years,<br />

when we adopted new strategies <strong>an</strong>d<br />

our breed<strong>in</strong>g program became<br />

productive.<br />

• The still challeng<strong>in</strong>g years, i.e., ensur<strong>in</strong>g<br />

ga<strong>in</strong>s <strong>in</strong> a mature program.<br />

The Formative Years<br />

Early <strong>in</strong> my career, I had <strong>the</strong> good fortune<br />

<strong>of</strong> associat<strong>in</strong>g with a large number <strong>of</strong><br />

<strong>in</strong>terest<strong>in</strong>g <strong>an</strong>d <strong>in</strong>novative pl<strong>an</strong>t breeders.<br />

There are too m<strong>an</strong>y to mention, but I<br />

would like to comment on a few. Among<br />

<strong>the</strong>m were barley breeders Rollo<br />

Woodward, at Log<strong>an</strong>, Utah, <strong>an</strong>d Charles<br />

Schaller, at Davis, California. I learned<br />

pedigree breed<strong>in</strong>g from Rollo Woodward,<br />

my master’s degree adviser. It was a<br />

small but productive barley program<br />

where h<strong>an</strong>d cycl<strong>in</strong>g <strong>of</strong> plots was <strong>the</strong><br />

norm. Charles Schaller, my Ph.D. adviser,<br />

did ma<strong>in</strong>ly backcross breed<strong>in</strong>g. Toge<strong>the</strong>r<br />

we found <strong>the</strong> YD2 gene that provides<br />

resist<strong>an</strong>ce to <strong>the</strong> barley yellow dwarf<br />

virus. He said that YD2 would be <strong>the</strong><br />

largest contribution we would make <strong>in</strong><br />

our lifetime. Coit Suneson, also a barley<br />

breeder at Davis, was a proponent <strong>of</strong><br />

utiliz<strong>in</strong>g mixtures <strong>an</strong>d allow<strong>in</strong>g natural<br />

selection to improve populations. His<br />

hallmark paper was “An Evolutionary<br />

Pl<strong>an</strong>t <strong>Breed<strong>in</strong>g</strong> Method.” For <strong>an</strong> aspir<strong>in</strong>g<br />

barley breeder, Davis, California, <strong>in</strong> <strong>the</strong><br />

1<br />

Agronomy <strong>an</strong>d Pl<strong>an</strong>t Genetics, University <strong>of</strong> M<strong>in</strong>nesota, 411 Borlaug Hall, 1991 Buford Circle,<br />

St. Paul, MN 55108, USA.


2 D.C. Rasmusson<br />

1950s provided a first rate learn<strong>in</strong>g<br />

experience. Hardly a week passed<br />

without a thought-provok<strong>in</strong>g discussion<br />

about breed<strong>in</strong>g methods.<br />

The most enrich<strong>in</strong>g experience <strong>of</strong> my<br />

career, <strong>in</strong> terms <strong>of</strong> learn<strong>in</strong>g pl<strong>an</strong>t<br />

breed<strong>in</strong>g, occurred <strong>in</strong> Ciudad Obregon,<br />

Mexico. For more th<strong>an</strong> 20 years I had <strong>the</strong><br />

good fortune <strong>of</strong> hav<strong>in</strong>g <strong>an</strong> <strong>an</strong>nual<br />

learn<strong>in</strong>g experience with CIMMYT staff.<br />

When I came to Ciudad Obregon for <strong>the</strong><br />

barley harvest each year, I had <strong>the</strong><br />

opportunity to tour <strong>the</strong> plots, view <strong>the</strong><br />

large impressive program <strong>an</strong>d, more<br />

import<strong>an</strong>tly, to explore breed<strong>in</strong>g<br />

philosophies <strong>an</strong>d breed<strong>in</strong>g methods. We<br />

tried to resolve how m<strong>an</strong>y crosses to<br />

make, which types <strong>of</strong> parents to use,<br />

whe<strong>the</strong>r or not to select on <strong>the</strong><br />

<strong>in</strong>dividual pl<strong>an</strong>t basis <strong>an</strong>d how best to<br />

breed for various mega-environments.<br />

Because it was recognized worldwide as<br />

a lead<strong>in</strong>g center for small gra<strong>in</strong>s<br />

improvement, Obregon was a ga<strong>the</strong>r<strong>in</strong>g<br />

place for small gra<strong>in</strong> researchers from all<br />

over <strong>the</strong> world. In addition to ga<strong>in</strong><strong>in</strong>g<br />

valuable <strong>in</strong>sights about pl<strong>an</strong>t breed<strong>in</strong>g, I<br />

learned <strong>the</strong> import<strong>an</strong>ce <strong>of</strong> teamwork <strong>an</strong>d<br />

<strong>of</strong> shar<strong>in</strong>g ideas <strong>an</strong>d germplasm.<br />

In reflect<strong>in</strong>g on my career <strong>an</strong>d about<br />

learn<strong>in</strong>g how to do barley breed<strong>in</strong>g, I<br />

always come back to colleagues whose<br />

ideas, research methods, <strong>an</strong>d germplasm<br />

were available for <strong>the</strong> ask<strong>in</strong>g. One such<br />

colleague was Hugo Vivar. I followed his<br />

barley program with special <strong>in</strong>terest.<br />

When I came to Obregon, I would visit<br />

<strong>the</strong> barley breed<strong>in</strong>g plots with Hugo,<br />

<strong>an</strong>d every year I obta<strong>in</strong>ed useful<br />

<strong>in</strong>formation <strong>an</strong>d a valuable gift <strong>of</strong><br />

germplasm from one sub-program or<br />

<strong>an</strong>o<strong>the</strong>r. I was favorably impressed by<br />

<strong>the</strong> m<strong>an</strong>y breed<strong>in</strong>g objectives <strong>an</strong>d<br />

overall quality <strong>of</strong> his nurseries.<br />

Adopt<strong>in</strong>g <strong>New</strong> Strategies<br />

When I reflect on my early years <strong>in</strong><br />

barley breed<strong>in</strong>g, a few items come to<br />

m<strong>in</strong>d that have contributed <strong>in</strong> a major<br />

way to our breed<strong>in</strong>g effort. I am referr<strong>in</strong>g<br />

to four practices or <strong>in</strong>novations that we<br />

adopted between 1960 <strong>an</strong>d 1970:<br />

germplasm shar<strong>in</strong>g, arriv<strong>in</strong>g at<br />

appropriate breed<strong>in</strong>g objectives, reduc<strong>in</strong>g<br />

development time, <strong>an</strong>d <strong>the</strong> paramount<br />

role <strong>of</strong> parental germplasm.<br />

Shar<strong>in</strong>g germplasm<br />

I learned about <strong>the</strong> value <strong>of</strong> shared<br />

germplasm when we benefited<br />

immensely from parent germplasm given<br />

to us by colleagues located at North<br />

Dakota, USA, <strong>an</strong>d Br<strong>an</strong>don, M<strong>an</strong>itoba,<br />

C<strong>an</strong>ada. Their germplasm was ideal s<strong>in</strong>ce<br />

<strong>the</strong>y are neighbors <strong>an</strong>d <strong>the</strong>y were leaders<br />

<strong>in</strong> barley improvement <strong>in</strong> <strong>the</strong> USA <strong>an</strong>d<br />

C<strong>an</strong>ada. Their germplasm contributed<br />

improved agronomic perform<strong>an</strong>ce,<br />

disease resist<strong>an</strong>ce, <strong>an</strong>d malt<strong>in</strong>g quality.<br />

Subsequently, we were able to return <strong>the</strong><br />

favor when <strong>the</strong>y used our varieties<br />

Morex <strong>an</strong>d Robust, <strong>an</strong>d <strong>the</strong>ir progeny, as<br />

parents <strong>in</strong> <strong>the</strong>ir programs. Morex was a<br />

hallmark variety quality-wise.<br />

Arriv<strong>in</strong>g at appropriate<br />

breed<strong>in</strong>g objectives<br />

Upon arriv<strong>in</strong>g <strong>in</strong> M<strong>in</strong>nesota, I found<br />

m<strong>an</strong>y opportunities <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> need<br />

for a sizeable breed<strong>in</strong>g effort for<br />

resist<strong>an</strong>ce to diseases. Our germplasm<br />

was relatively low yield<strong>in</strong>g, tended to<br />

lodge, <strong>an</strong>d kernel plumpness was not<br />

adequate. So I concluded that it was<br />

appropriate to adopt a broad set <strong>of</strong><br />

objectives focus<strong>in</strong>g on field perform<strong>an</strong>ce.<br />

But, after some time, I observed that<br />

successful varieties <strong>in</strong> <strong>the</strong> Midwest sixrow<br />

malt<strong>in</strong>g barley area had one feature


Learn<strong>in</strong>g about <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong><br />

3<br />

<strong>in</strong> common. They had <strong>the</strong> malt<strong>in</strong>g <strong>an</strong>d<br />

brew<strong>in</strong>g <strong>in</strong>dustry stamp <strong>of</strong> approval <strong>an</strong>d<br />

brought a premium at <strong>the</strong> local elevator.<br />

Subsequently, our breed<strong>in</strong>g efforts came<br />

to revolve around malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g<br />

quality. A part <strong>of</strong> this learn<strong>in</strong>g experience<br />

was recogniz<strong>in</strong>g that malt<strong>in</strong>g <strong>an</strong>d<br />

brew<strong>in</strong>g quality is determ<strong>in</strong>ed by a<br />

complex set <strong>of</strong> approximately 35 traits<br />

that are evaluated <strong>in</strong> three major<br />

group<strong>in</strong>gs: 1) barley <strong>an</strong>d malt<br />

perform<strong>an</strong>ce (N ~ 14), 2) brewhouse<br />

wort/fermentation characteristics (N ~<br />

12), <strong>an</strong>d 3) beer characteristics (N ~ 9).<br />

S<strong>in</strong>ce mid-generation <strong>an</strong>d even lategeneration<br />

selection c<strong>an</strong>not be practiced<br />

for some <strong>of</strong> <strong>the</strong>se 30+ traits, it was<br />

essential to limit parent choices to elite<br />

quality germplasm on both sides <strong>of</strong> <strong>the</strong><br />

pedigree. Hence, parent build<strong>in</strong>g has<br />

played <strong>an</strong> <strong>in</strong>creas<strong>in</strong>gly import<strong>an</strong>t role as<br />

we attempted to <strong>in</strong>corporate desired traits<br />

<strong>in</strong>to a malt<strong>in</strong>g barley genetic background.<br />

Reduc<strong>in</strong>g development time<br />

In most breed<strong>in</strong>g programs, a barley<br />

breeder is challenged by evolv<strong>in</strong>g pest<br />

populations, vary<strong>in</strong>g environments <strong>an</strong>d<br />

<strong>in</strong> some cases ch<strong>an</strong>g<strong>in</strong>g markets. These<br />

factors may m<strong>an</strong>date a rapid response by<br />

<strong>the</strong> breed<strong>in</strong>g program. Ano<strong>the</strong>r reason for<br />

shorten<strong>in</strong>g development time is<br />

competition among breed<strong>in</strong>g programs.<br />

Accept<strong>an</strong>ce <strong>of</strong> a new variety may depend<br />

on whe<strong>the</strong>r it is <strong>the</strong> first variety to<br />

provide new resist<strong>an</strong>ce or a trait <strong>of</strong> special<br />

<strong>in</strong>terest to a grower or <strong>an</strong> end-po<strong>in</strong>t user.<br />

Yet <strong>an</strong>o<strong>the</strong>r reason for reduc<strong>in</strong>g<br />

development time is <strong>the</strong> grow<strong>in</strong>g need for<br />

parent build<strong>in</strong>g, which frequently<br />

requires two to three cycles <strong>of</strong> cross<strong>in</strong>g<br />

<strong>an</strong>d selection. In this situation, reduc<strong>in</strong>g<br />

<strong>the</strong> time per cycle becomes critical.<br />

Germplasm is paramount<br />

I learned about value <strong>of</strong> parent<br />

germplasm slowly, <strong>an</strong>d only after m<strong>an</strong>y<br />

years did I come to realize that parental<br />

germplasm is paramount, especially<br />

when malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g quality are<br />

high priority breed<strong>in</strong>g goals. Two factors<br />

were <strong>of</strong> primary import<strong>an</strong>ce <strong>in</strong> arriv<strong>in</strong>g<br />

at this conclusion. The first was<br />

recogniz<strong>in</strong>g that M<strong>in</strong>nesota barley<br />

variety c<strong>an</strong>didates did not fare well <strong>in</strong><br />

competition with barley l<strong>in</strong>es from o<strong>the</strong>r<br />

breed<strong>in</strong>g programs <strong>in</strong> <strong>the</strong> region.<br />

Secondly, <strong>the</strong> notion that parental<br />

germplasm is paramount was solidly<br />

re<strong>in</strong>forced when I reaped <strong>the</strong> benefits<br />

from us<strong>in</strong>g elite North Dakota <strong>an</strong>d<br />

C<strong>an</strong>adi<strong>an</strong> germplasm. Their germplasm<br />

provided a large step forward for several<br />

traits <strong>in</strong>clud<strong>in</strong>g lodg<strong>in</strong>g resist<strong>an</strong>ce,<br />

disease resist<strong>an</strong>ce, gra<strong>in</strong> yield, <strong>an</strong>d<br />

malt<strong>in</strong>g/brew<strong>in</strong>g quality.<br />

Additionally, I had numerous<br />

opportunities to observe a wide array <strong>of</strong><br />

parental germplasm <strong>in</strong> our ideotype<br />

research effort. Time <strong>an</strong>d time aga<strong>in</strong>, I<br />

observed that <strong>in</strong>ferior <strong>an</strong>d mediocre<br />

barley l<strong>in</strong>es do not make good parents.<br />

We had to be content to do parent<br />

build<strong>in</strong>g for two to three cycles to obta<strong>in</strong><br />

parents that might lead to new varieties.<br />

We needed good perform<strong>in</strong>g parents on<br />

both sides <strong>of</strong> <strong>the</strong> pedigree.<br />

Ensur<strong>in</strong>g Progress <strong>in</strong> a<br />

Mature <strong>Breed<strong>in</strong>g</strong> Program<br />

In <strong>the</strong> early years <strong>of</strong> a barley breed<strong>in</strong>g<br />

program (perhaps a couple <strong>of</strong> decades),<br />

<strong>the</strong>re are usually opportunities for<br />

improv<strong>in</strong>g several traits <strong>in</strong>clud<strong>in</strong>g<br />

resist<strong>an</strong>ce to pests, lodg<strong>in</strong>g, shatter<strong>in</strong>g,<br />

yield, <strong>an</strong>d, sometimes, malt<strong>in</strong>g quality.


4<br />

D.C. Rasmusson<br />

The germplasm is genetically diverse <strong>an</strong>d<br />

cross<strong>in</strong>g leads to populations with wide<br />

segregation that lend <strong>the</strong>mselves to<br />

effective selection for several traits. But,<br />

over time, perhaps 50 years, for<br />

discussion purposes, traits receiv<strong>in</strong>g high<br />

priority improve subst<strong>an</strong>tially <strong>an</strong>d <strong>the</strong><br />

program germplasm is called elite. At this<br />

time a breeder may observe that l<strong>in</strong>es <strong>in</strong><br />

field trials have similar phenotypes <strong>an</strong>d<br />

to a degree similar pedigrees.<br />

At this po<strong>in</strong>t, <strong>the</strong> program c<strong>an</strong> be called<br />

mature <strong>an</strong>d <strong>the</strong> breeder faces a new<br />

challenge that was not present <strong>in</strong> <strong>the</strong><br />

younger program. For future progress to<br />

occur, <strong>the</strong> breeder has two dist<strong>in</strong>ct<br />

challenges. Mak<strong>in</strong>g ga<strong>in</strong>s for traits <strong>of</strong><br />

choice, as <strong>in</strong> a younger program, rema<strong>in</strong>s<br />

a primary goal. However, <strong>the</strong>re is a<br />

second major goal, that is to preserve<br />

ga<strong>in</strong>s that have been made over decades.<br />

One c<strong>an</strong> visualize favorable comb<strong>in</strong>ations<br />

<strong>of</strong> <strong>in</strong>dividual genes scattered across <strong>the</strong><br />

genome act<strong>in</strong>g <strong>in</strong> <strong>an</strong> <strong>in</strong>teractive way to<br />

produce elite phenotypes. The breeder is<br />

obliged to f<strong>in</strong>d a strategy that adds new<br />

alleles for desired traits, while protect<strong>in</strong>g<br />

<strong>an</strong>d preserv<strong>in</strong>g accumulated favorable<br />

alleles <strong>an</strong>d gene comb<strong>in</strong>ations. It is not <strong>an</strong><br />

easy task.<br />

A new term<strong>in</strong>ology describes <strong>the</strong> new<br />

type <strong>of</strong> breed<strong>in</strong>g designed to build future<br />

ga<strong>in</strong>s upon <strong>the</strong> base <strong>of</strong> <strong>the</strong> already elite<br />

germplasm. Parent build<strong>in</strong>g or<br />

germplasm enh<strong>an</strong>cement, terms used<br />

<strong>in</strong>terch<strong>an</strong>geably, refer to <strong>in</strong>trogress<strong>in</strong>g<br />

desired traits/genes <strong>in</strong>to <strong>an</strong> elite genetic<br />

background. In mature programs, parent<br />

build<strong>in</strong>g may utilize more th<strong>an</strong> one-half<br />

<strong>of</strong> <strong>the</strong> cross<strong>in</strong>g/selection resources <strong>in</strong> a<br />

breed<strong>in</strong>g effort.<br />

Faced with <strong>the</strong> challenge <strong>of</strong> ensur<strong>in</strong>g<br />

ga<strong>in</strong>s <strong>in</strong> a mature program, we have<br />

ga<strong>in</strong>ed experience with two programs<br />

whose ultimate goal was to enh<strong>an</strong>ce<br />

gra<strong>in</strong> yield. In <strong>the</strong> first case, we worked<br />

with <strong>in</strong>dividual traits that we trusted<br />

would be yield-promot<strong>in</strong>g. This came<br />

under <strong>the</strong> head<strong>in</strong>g “ideotype breed<strong>in</strong>g.”<br />

The second program was <strong>in</strong>trogress<strong>in</strong>g<br />

genes from elite two-row germplasm to<br />

obta<strong>in</strong> useful diversity for yield <strong>an</strong>d<br />

malt<strong>in</strong>g quality. We call this program<br />

“open-parent cyclic selection.” We used<br />

three breed<strong>in</strong>g cycles. It was <strong>an</strong> openparent<br />

strategy <strong>in</strong> that each cycle may<br />

employ different parents, i.e., <strong>the</strong> most<br />

promis<strong>in</strong>g l<strong>in</strong>es or varieties at <strong>the</strong> time.<br />

Ideotype breed<strong>in</strong>g<br />

The concept <strong>of</strong> <strong>an</strong> ideal pl<strong>an</strong>t or <strong>an</strong><br />

ideotype, as Donald (1968) called it, was<br />

<strong>an</strong> effective elaboration on <strong>an</strong> older idea<br />

accomp<strong>an</strong>ied by a new term<strong>in</strong>ology. The<br />

idea was that yield could be <strong>in</strong>creased by<br />

modify<strong>in</strong>g <strong>in</strong>dividual traits like height,<br />

leaf <strong>an</strong>gle, <strong>an</strong>d head number. The entire<br />

package <strong>of</strong> desired traits would be called<br />

<strong>an</strong> ideotype or ideal pl<strong>an</strong>t. Rasmusson<br />

(1987) described <strong>an</strong> ideotype for six-row<br />

spr<strong>in</strong>g barley <strong>an</strong>d elaborated on <strong>the</strong><br />

ideotype concept <strong>an</strong>d its strengths <strong>an</strong>d<br />

limitations.<br />

The M<strong>in</strong>nesota ideotype breed<strong>in</strong>g effort<br />

beg<strong>an</strong> shortly after Donald’s hallmark<br />

paper appeared <strong>in</strong> 1968 <strong>an</strong>d occupied a<br />

signific<strong>an</strong>t proportion <strong>of</strong> <strong>the</strong> barley<br />

breed<strong>in</strong>g <strong>an</strong>d genetics effort for more<br />

th<strong>an</strong> 30 years. A brief consideration <strong>of</strong><br />

two so-called ideotype traits will<br />

illustrate import<strong>an</strong>t aspects <strong>of</strong> <strong>the</strong><br />

program.<br />

Semidwarf barley. Je<strong>an</strong> Lambert, a barley<br />

breeder at M<strong>in</strong>nesota from 1948 to 1962,<br />

obta<strong>in</strong>ed short-stature mut<strong>an</strong>ts <strong>in</strong> <strong>the</strong><br />

‘Jotun’ background from Norway <strong>an</strong>d<br />

beg<strong>an</strong> breed<strong>in</strong>g with <strong>the</strong>m <strong>in</strong> 1956. The<br />

aspiration was to duplicate ga<strong>in</strong>s


Learn<strong>in</strong>g about <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong><br />

5<br />

obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Vogel short-stature<br />

wheats. The basic M<strong>in</strong>nesota germplasm<br />

was a three-way cross, Jotun / K<strong>in</strong>dred /<br />

2 / V<strong>an</strong>tage. The cross to V<strong>an</strong>tage was<br />

critical as it provided <strong>the</strong> large-diameter<br />

sturdy culms that have been a<br />

dist<strong>in</strong>guish<strong>in</strong>g characteristic <strong>of</strong> <strong>the</strong><br />

M<strong>in</strong>nesota short-stature l<strong>in</strong>es.<br />

Subsequently, n<strong>in</strong>e cycles (40+ years) <strong>of</strong><br />

recurrent breed<strong>in</strong>g were done with <strong>the</strong><br />

aspiration <strong>of</strong> achiev<strong>in</strong>g a yield<br />

breakthrough. It never came <strong>an</strong>d,<br />

fur<strong>the</strong>rmore, <strong>the</strong> Jotun germplasm l<strong>in</strong>es<br />

appeared to preclude achiev<strong>in</strong>g<br />

favorable malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g quality, at<br />

least <strong>in</strong> <strong>the</strong> M<strong>in</strong>nesota program <strong>an</strong>d<br />

target environment. Ultimately, only one<br />

short-stature variety, Royal, was released<br />

<strong>in</strong> M<strong>in</strong>nesota. The most import<strong>an</strong>t<br />

contribution this program made was <strong>in</strong><br />

shar<strong>in</strong>g germplasm. The Lambert Jotun<br />

short-stature l<strong>in</strong>es provided parental<br />

germplasm to most barley breeders <strong>in</strong><br />

North America.<br />

The contribution <strong>of</strong> <strong>the</strong> ideotype<br />

approach to <strong>the</strong> barley program <strong>in</strong><br />

M<strong>in</strong>nesota c<strong>an</strong> be viewed <strong>in</strong> different<br />

ways. If ideotype-related research,<br />

ideotype-related breed<strong>in</strong>g ga<strong>in</strong>s, <strong>an</strong>d<br />

graduate education are considered, it has<br />

been a worthwhile venture. Thirty-three<br />

graduate students conducted <strong>the</strong>sis<br />

research on so-called ideotype traits<br />

with<strong>in</strong> <strong>the</strong> barley breed<strong>in</strong>g program, <strong>an</strong>d<br />

22 papers were published. In this<br />

context, it has been a productive <strong>an</strong>d<br />

worthwhile program.<br />

When breed<strong>in</strong>g ga<strong>in</strong>s are measured by<br />

new varieties <strong>an</strong>d enh<strong>an</strong>ced germplasm<br />

(parental germplasm), <strong>the</strong> conclusion is<br />

different. The ideotype approach could<br />

not compete with <strong>the</strong> traditional ongo<strong>in</strong>g<br />

breed<strong>in</strong>g effort. Time <strong>an</strong>d aga<strong>in</strong><br />

promis<strong>in</strong>g ga<strong>in</strong>s from <strong>in</strong>dividual traits<br />

were not realized because <strong>the</strong> traditional<br />

breed<strong>in</strong>g effort raised <strong>the</strong> bar, so to speak.<br />

The traditional program provided <strong>the</strong><br />

entire slate <strong>of</strong> traits needed <strong>in</strong> a new<br />

variety, while <strong>the</strong> <strong>in</strong>dividual trait<br />

ideotype effort too <strong>of</strong>ten came up short<br />

for one or more essential traits.<br />

Wide-leaf barley. The most <strong>in</strong>terest<strong>in</strong>g<br />

trait <strong>in</strong> our ideotype program at present is<br />

a wide-leaf trait. The source <strong>of</strong> <strong>the</strong><br />

germplasm was Harl<strong>an</strong>’s Freak<br />

Collection. The penultimate leaf width<br />

was about 2.5 cm at its widest po<strong>in</strong>t. We<br />

currently have 11 l<strong>in</strong>es <strong>in</strong> adv<strong>an</strong>ced stages<br />

<strong>of</strong> test<strong>in</strong>g that have moderately wide<br />

leaves (much reduced from <strong>the</strong> source<br />

l<strong>in</strong>e) along with several positive<br />

agronomic traits. The pedigree, which<br />

<strong>in</strong>dicates <strong>the</strong> large breed<strong>in</strong>g effort, is<br />

Robust / 63-8069 (source <strong>of</strong> wide leaf) / 2<br />

/ M47 / 3 / St<strong>an</strong>der / 4 / Excel / 5 /<br />

M81. These l<strong>in</strong>es have a large-diameter<br />

sturdy culm, large spike, high kernel<br />

weight, <strong>an</strong>d high gra<strong>in</strong> yield. We<br />

hypo<strong>the</strong>size that this attractive phenotype<br />

is <strong>the</strong> result <strong>of</strong> a gene or genes which are<br />

pleiotropic for several size-related traits.<br />

The ultimate yield level <strong>in</strong> comparison to<br />

l<strong>in</strong>es from our traditional program is yet<br />

to be determ<strong>in</strong>ed. But we are optimistic<br />

because <strong>of</strong> <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> what<br />

appear to be yield-promot<strong>in</strong>g traits.<br />

Open-Parent Cyclic<br />

Selection<br />

In response to our concern about lack <strong>of</strong><br />

genetic variation, we <strong>in</strong>itiated a program<br />

to <strong>in</strong>troduce genetic diversity for gra<strong>in</strong><br />

yield <strong>an</strong>d malt<strong>in</strong>g quality. The extreme<br />

narrowness <strong>of</strong> <strong>the</strong> M<strong>in</strong>nesota malt<strong>in</strong>g<br />

barley germplasm was described by<br />

Rasmusson <strong>an</strong>d Phillips (1997). The


6<br />

D.C. Rasmusson<br />

<strong>in</strong>trogression research us<strong>in</strong>g open-parent<br />

cyclic selection was part <strong>of</strong> a <strong>the</strong>sis effort<br />

by Michael Peel (1998).<br />

The objective <strong>of</strong> this research was to<br />

assess <strong>the</strong> effects <strong>of</strong> tr<strong>an</strong>sferr<strong>in</strong>g genes<br />

from two-row barley cultivars to <strong>the</strong><br />

M<strong>in</strong>nesota six-row gene pool. Our<br />

premise was that <strong>the</strong> gene comb<strong>in</strong>ations<br />

<strong>of</strong> <strong>the</strong> six-row cultivars should be largely<br />

ma<strong>in</strong>ta<strong>in</strong>ed with a small <strong>in</strong>trogression <strong>of</strong><br />

donor germplasm. We conducted three<br />

cycles <strong>of</strong> recurrent-type breed<strong>in</strong>g<br />

beg<strong>in</strong>n<strong>in</strong>g with crosses <strong>in</strong>volv<strong>in</strong>g five<br />

two-row donor parents. The cross<strong>in</strong>g<br />

scheme led to progenies with <strong>the</strong>oretical<br />

portions <strong>of</strong> two-row germplasm <strong>of</strong> 25-<br />

50% <strong>in</strong> cycle 1, 12.5-25% <strong>in</strong> cycle 2, <strong>an</strong>d<br />

6.25-12.5% <strong>in</strong> cycle 3.<br />

We observed <strong>the</strong> yield penalty that is<br />

commonly associated with <strong>in</strong>trogression<br />

<strong>of</strong> donor genes <strong>in</strong>to elite germplasm <strong>in</strong><br />

cycle 1. In this cycle, no putative cultivar<br />

c<strong>an</strong>didates were found. Fur<strong>the</strong>rmore, <strong>the</strong><br />

two-row progeny were decidedly<br />

<strong>in</strong>ferior <strong>in</strong> all populations, especially <strong>in</strong><br />

<strong>the</strong> backcross <strong>an</strong>d three-way cross<br />

populations. Cycle 2 populations, which<br />

<strong>the</strong>oretically conta<strong>in</strong>ed 12.5-25% <strong>of</strong> tworow<br />

germplasm, were improved, <strong>an</strong>d<br />

me<strong>an</strong> gra<strong>in</strong> yield <strong>of</strong> <strong>the</strong> populations<br />

<strong>in</strong>creased to 98% <strong>of</strong> <strong>the</strong> check me<strong>an</strong>.<br />

In cycle 3, sets <strong>of</strong> l<strong>in</strong>es represent<strong>in</strong>g three<br />

populations yielded 112-119% <strong>of</strong> <strong>the</strong><br />

check me<strong>an</strong> <strong>in</strong> 1997 <strong>an</strong>d 1998, <strong>an</strong>d<br />

<strong>in</strong>dividual l<strong>in</strong>es surpassed ‘St<strong>an</strong>der’, <strong>the</strong><br />

highest yield<strong>in</strong>g check <strong>in</strong> both 1997 <strong>an</strong>d<br />

1998. The highest yield<strong>in</strong>g l<strong>in</strong>es <strong>in</strong> each<br />

cycle were derived from populations<br />

hav<strong>in</strong>g <strong>the</strong> highest <strong>the</strong>oretical percentage<br />

<strong>of</strong> adapted recurrent parent germplasm,<br />

i.e., when six-row gene comb<strong>in</strong>ations<br />

were predom<strong>in</strong><strong>an</strong>tly left <strong>in</strong>tact. Results<br />

from <strong>the</strong> three breed<strong>in</strong>g cycles support<br />

<strong>the</strong> proposition that a strategy that<br />

ma<strong>in</strong>ta<strong>in</strong>s favorable gene comb<strong>in</strong>ations<br />

while <strong>in</strong>trogress<strong>in</strong>g relatively small<br />

amounts <strong>of</strong> donor germplasm c<strong>an</strong> lead<br />

to <strong>in</strong>cremental yield ga<strong>in</strong>s.<br />

F<strong>in</strong>al Comments<br />

• <strong>Barley</strong> breed<strong>in</strong>g was a good career<br />

choice. It is always <strong>in</strong>terest<strong>in</strong>g <strong>an</strong>d<br />

challeng<strong>in</strong>g <strong>an</strong>d frequently reward<strong>in</strong>g.<br />

• There have been m<strong>an</strong>y ch<strong>an</strong>ges s<strong>in</strong>ce I<br />

first harvested barley plots with a sickle<br />

<strong>an</strong>d we obta<strong>in</strong>ed one generation per<br />

year. As a result, barley programs are<br />

several-fold more efficient <strong>an</strong>d more<br />

productive today.<br />

• Learn<strong>in</strong>g rema<strong>in</strong>s a high priority as we<br />

wrestle with how to utilize <strong>the</strong> new<br />

molecular tools <strong>an</strong>d (for some <strong>of</strong> us)<br />

how to obta<strong>in</strong> varieties resist<strong>an</strong>t to<br />

Fusarium head blight to save our<br />

malt<strong>in</strong>g barley crop.<br />

References<br />

Donald, C.M. 1968. The breed<strong>in</strong>g <strong>of</strong> crop<br />

ideotypes. Euphytica 17:385-403.<br />

Peel, M.D. 1996. Ph.D. Thesis. University <strong>of</strong><br />

M<strong>in</strong>nesota, St. Paul.<br />

Rasmusson, D.C. 1987. An evaluation <strong>of</strong> ideotype<br />

breed<strong>in</strong>g. Crop Sci. 27:1140-1146.<br />

Rasmusson, D.C., <strong>an</strong>d Phillips, R.L. !997. Pl<strong>an</strong>t<br />

breed<strong>in</strong>g progress <strong>an</strong>d genetic diversity from<br />

de novo variation <strong>an</strong>d elevated epistasis. Crop<br />

Sci. 37:303-310.


7<br />

Hull-less <strong>Barley</strong>: An Overview<br />

J.H. HELM 1<br />

In <strong>the</strong> early 1970s, <strong>the</strong> CIMMYT hullless<br />

barley program <strong>an</strong>d my own<br />

program started shar<strong>in</strong>g germplasm <strong>an</strong>d<br />

ideas. It was a struggle <strong>in</strong> <strong>the</strong> early<br />

years, because much <strong>of</strong> our focus was on<br />

high lys<strong>in</strong>e, which brought with it poor<br />

agronomics, low yield, <strong>an</strong>d<br />

environmentally unstable prote<strong>in</strong><br />

quality. While noth<strong>in</strong>g <strong>of</strong> commercial<br />

value came from this research approach,<br />

it did teach me a lot about prote<strong>in</strong>/<br />

environment <strong>in</strong>teractions <strong>an</strong>d prote<strong>in</strong><br />

digestibility <strong>in</strong> <strong>the</strong> rat <strong>an</strong>d pig.<br />

By <strong>the</strong> end <strong>of</strong> <strong>the</strong> 1970s <strong>an</strong>d early 1980s,<br />

most breeders had quit chas<strong>in</strong>g lys<strong>in</strong>e<br />

genetics, <strong>an</strong>d I ch<strong>an</strong>ged my approach to<br />

look<strong>in</strong>g at environmental stability <strong>an</strong>d<br />

prote<strong>in</strong> <strong>an</strong>d energy digestibility. Our<br />

methods <strong>of</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong>se were not<br />

very scientific at that time, as we had<br />

very little <strong>an</strong>imal data. We pieced<br />

toge<strong>the</strong>r some rough NIRS calibrations<br />

for prote<strong>in</strong>, energy, starch, <strong>an</strong>d lys<strong>in</strong>e<br />

<strong>an</strong>d beg<strong>an</strong> screen<strong>in</strong>g large numbers <strong>of</strong><br />

l<strong>in</strong>es. While <strong>the</strong>se screen<strong>in</strong>gs were only<br />

very rough, we did notice that we were<br />

able to make improvements from<br />

breed<strong>in</strong>g cycle to breed<strong>in</strong>g cycle. I found<br />

two <strong>an</strong>imal nutritionists who would<br />

work with me, Dr. Richard Beames from<br />

<strong>the</strong> University <strong>of</strong> British Columbia <strong>an</strong>d<br />

Dr. B.O. Eggum from <strong>the</strong> National<br />

Institute <strong>of</strong> Animal Science, Denmark.<br />

While <strong>the</strong>y were <strong>of</strong>ten disappo<strong>in</strong>ted with<br />

<strong>the</strong> results from <strong>the</strong> samples I sent to<br />

<strong>the</strong>m, I always learned a lot from <strong>the</strong>ir<br />

results.<br />

It was from <strong>the</strong>se early results that I<br />

ch<strong>an</strong>ged my selection approach to<br />

selection for pig digestibility from<br />

chemical <strong>an</strong>alysis. Dr. Fr<strong>an</strong>k Aherne from<br />

<strong>the</strong> University <strong>of</strong> Alberta got <strong>in</strong>volved<br />

with our first full feed tests coupled with<br />

nylon bag tests; it was from <strong>the</strong>se results<br />

that we released <strong>the</strong> hull-less variety<br />

Condor <strong>in</strong> 1988. Condor is still <strong>the</strong><br />

predom<strong>in</strong><strong>an</strong>t hull-less variety <strong>in</strong> some<br />

areas <strong>of</strong> western C<strong>an</strong>ada, though I am<br />

conv<strong>in</strong>ced that o<strong>the</strong>r, newer varieties are<br />

better for all characteristics. It was<br />

Condor, however, that beg<strong>an</strong> <strong>the</strong> <strong>in</strong>crease<br />

<strong>of</strong> <strong>the</strong> hull-less barley acreage <strong>in</strong> western<br />

C<strong>an</strong>ada. The primary reason was that<br />

feed quality was superior <strong>in</strong> all<br />

environments to <strong>the</strong> hulled check<br />

varieties.<br />

While hull-less barley acreage took <strong>of</strong>f<br />

with <strong>the</strong> release <strong>of</strong> Condor, we must<br />

acknowledge that it was Dr. Bri<strong>an</strong><br />

Rossnagel at <strong>the</strong> Crop Development<br />

Centre, University <strong>of</strong> Saskatchew<strong>an</strong>, who<br />

paved <strong>the</strong> way with <strong>the</strong> release <strong>of</strong> Scout<br />

(1982) <strong>an</strong>d Tupper (1984). Without that<br />

push it is doubtful that I would have put<br />

Condor forward.<br />

1<br />

Head, Field Crop Development Centre, Alberta Agriculture, Food & Rural Development, 5030 -<br />

50 Street, Lacombe, AB T4L 1W8, C<strong>an</strong>ada. Phone: (403) 782-4641. Fax: (403) 782-5514. Email:<br />

james.helm@agric.gov.ab.ca


8<br />

J.H. Helm<br />

S<strong>in</strong>ce this beg<strong>in</strong>n<strong>in</strong>g, <strong>the</strong> last decade has<br />

seen hull-less barley acreage rise from<br />

near zero commercial acreage to nearly<br />

one million acres. More th<strong>an</strong> 16 varieties<br />

are now <strong>in</strong> production, with <strong>the</strong> pig<br />

<strong>in</strong>dustry as <strong>the</strong> major market. <strong>New</strong><br />

varieties are agronomically superior, <strong>an</strong>d<br />

quality is now stable with <strong>the</strong><br />

development <strong>of</strong> Falcon (1992) <strong>an</strong>d CDC<br />

Dawn (1995) as <strong>the</strong> best <strong>of</strong> <strong>the</strong> best<br />

(Table 1).<br />

The ICARDA/CIMMYT role <strong>in</strong> this, at<br />

least from my po<strong>in</strong>t <strong>of</strong> view, has been <strong>the</strong><br />

development <strong>of</strong> a diverse germplasm<br />

base that has also <strong>in</strong>troduced new sources<br />

<strong>of</strong> disease resist<strong>an</strong>ce, early maturity, <strong>an</strong>d<br />

straw strength <strong>in</strong>to <strong>the</strong> program. In 1999<br />

<strong>the</strong> predom<strong>in</strong><strong>an</strong>t hull-less variety grown<br />

was Falcon. Falcon is a six-row<br />

semidwarf variety selected from one <strong>of</strong><br />

CIMMYT’s F2 populations, about 50<br />

seeds sent to me <strong>in</strong> 1977. I was <strong>in</strong>trigued<br />

by its short stature <strong>an</strong>d large head size; I<br />

played around with it for a long time<br />

before I put it <strong>in</strong>to <strong>the</strong> variety registration<br />

system <strong>in</strong> 1989. The import<strong>an</strong>t<br />

characteristics <strong>of</strong> Falcon are its strong<br />

straw <strong>an</strong>d lodg<strong>in</strong>g resist<strong>an</strong>ce under high<br />

yield<strong>in</strong>g conditions. It also threshes<br />

easily; this characteristic is now <strong>the</strong> prime<br />

quality factor <strong>in</strong> hull-less barley. Falcon<br />

Table 1. Average feed quality <strong>an</strong>alysis for three<br />

hull-less barleys grown at 11 locations <strong>in</strong><br />

western C<strong>an</strong>ada, 1993, 1994, <strong>an</strong>d 1995.<br />

Characteristics Falcon CDC Dawn Condor<br />

Prote<strong>in</strong> (%) 13.90 12.95 13.85<br />

Prote<strong>in</strong> digestibility (%) 79.62 80.28 78.54<br />

Digestible energy (kcal/kg) 3507 3442 3478<br />

B-gluc<strong>an</strong> 3.8 3.5 4.5<br />

Soluble fiber (%) 4.4 4.0 5.0<br />

Pentos<strong>an</strong>s (%) 4.2 4.0 4.1<br />

Dietary fiber (%) 14.9 13.8 15.1<br />

Insoluble fiber (%) 10.5 9.7 10.1<br />

also has 5% higher prote<strong>in</strong> <strong>an</strong>d energy<br />

digestibility <strong>in</strong> pigs th<strong>an</strong> Condor.<br />

The future<br />

What is <strong>the</strong> future for hull-less barley? In<br />

my op<strong>in</strong>ion, we will cont<strong>in</strong>ue to make<br />

agronomic ga<strong>in</strong>s equal to what is<br />

happen<strong>in</strong>g <strong>in</strong> <strong>the</strong> hulled barley breed<strong>in</strong>g<br />

area. The ICARDA/CIMMYT program is<br />

rapidly broaden<strong>in</strong>g <strong>the</strong> hull-less barley<br />

germplasm. Our germplasm base, th<strong>an</strong>ks<br />

to <strong>the</strong> work <strong>of</strong> Hugo, is now more th<strong>an</strong> 700<br />

entries from m<strong>an</strong>y backgrounds. I th<strong>in</strong>k<br />

<strong>the</strong> pig <strong>in</strong>dustry will rema<strong>in</strong> <strong>the</strong> primary<br />

market; to this end we will be able to<br />

<strong>in</strong>crease digestible energy by 200 Kcal<br />

(Figure 1) <strong>an</strong>d prote<strong>in</strong> digestibility by 5%<br />

(Figure 2).<br />

There is a signific<strong>an</strong>t potential <strong>in</strong> <strong>the</strong> food<br />

<strong>in</strong>dustry but <strong>the</strong>se are not progress<strong>in</strong>g as<br />

rapidly as m<strong>an</strong>y th<strong>in</strong>k <strong>the</strong>y should. I th<strong>in</strong>k<br />

some <strong>of</strong> <strong>the</strong> work Hugo is do<strong>in</strong>g <strong>in</strong><br />

subsistence agriculture is <strong>in</strong>terest<strong>in</strong>g <strong>an</strong>d<br />

this is <strong>an</strong> area where we will not see <strong>the</strong><br />

food process<strong>in</strong>g <strong>in</strong>dustry or large<br />

comp<strong>an</strong>ies put <strong>an</strong>y effort. In my op<strong>in</strong>ion,<br />

barley makes good tortillas, p<strong>an</strong>cakes,<br />

muff<strong>in</strong>s, soups, rice replacer, cookies,<br />

noodles, breads, <strong>an</strong>d <strong>of</strong> course beer. It has<br />

potential as a source <strong>of</strong> food additives for<br />

fiber, tocols, <strong>an</strong>d o<strong>the</strong>r fractions.<br />

It has been <strong>an</strong> <strong>in</strong>terest<strong>in</strong>g crop to work on<br />

for <strong>the</strong> last 32 years when I made my first<br />

hull-less barley cross, to now when we see<br />

<strong>an</strong> exp<strong>an</strong>d<strong>in</strong>g <strong>in</strong>terest.<br />

<strong>Breed<strong>in</strong>g</strong> methodology<br />

I would like to complete my presentation<br />

with a quick description <strong>of</strong> how we h<strong>an</strong>dle<br />

<strong>the</strong> breed<strong>in</strong>g material <strong>in</strong> our program.<br />

Crosses are made <strong>an</strong>d F1s grown out <strong>in</strong><br />

growth rooms or <strong>in</strong> California. The F2s<br />

from our crosses are grown out <strong>in</strong> a solidseeded<br />

plot <strong>of</strong> approximately 4000 pl<strong>an</strong>ts


Hull-less <strong>Barley</strong>: An Overview<br />

9<br />

kcal/kg<br />

3,900<br />

3,700<br />

3,500<br />

3,300<br />

3,100<br />

Figure 1. R<strong>an</strong>ge <strong>of</strong> digestible energy <strong>in</strong> hull-less<br />

barley germplasm.<br />

%<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

1990 2000<br />

1990 2000<br />

Figure 2. R<strong>an</strong>ge <strong>of</strong> prote<strong>in</strong> digestibility <strong>in</strong> hullless<br />

barley germplasm.<br />

Hulled<br />

barley<br />

Hulled<br />

barley<br />

<strong>in</strong> 15.25 square meters. The F2 from<br />

Mexico is grown <strong>in</strong> a 3.5-meter row<br />

(average 65 seeds). Good populations<br />

are harvested <strong>in</strong> bulk. Seed from <strong>the</strong><br />

large plots are screened for plump seed<br />

(6/64 <strong>in</strong> slotted screen) <strong>the</strong>n run over a<br />

gravity table. The top 10% <strong>of</strong> plump,<br />

heavy seed is adv<strong>an</strong>ced to <strong>an</strong> F3<br />

population grown <strong>in</strong> Sou<strong>the</strong>rn<br />

California. We select for pl<strong>an</strong>t type based<br />

on pedigree <strong>in</strong> California, select<strong>in</strong>g<br />

approximately 500 heads out <strong>of</strong> a<br />

population <strong>of</strong> 4000 F3 pl<strong>an</strong>ts. The seeds<br />

from <strong>the</strong>se are bulked <strong>an</strong>d 4000 r<strong>an</strong>dom<br />

seeds pl<strong>an</strong>ted <strong>in</strong> Alberta <strong>in</strong> a 15.25<br />

square meter plot as are <strong>the</strong> F3 bulk from<br />

<strong>the</strong> Mexic<strong>an</strong> population. This same<br />

procedure is used <strong>in</strong> <strong>the</strong> F3 to F5. Poor<br />

populations are dropped along <strong>the</strong> way.<br />

These large bulk populations are<br />

<strong>in</strong>oculated with scald from straw each<br />

year. The rationale is that diseased pl<strong>an</strong>ts<br />

will produce smaller, lighter seed. By<br />

siev<strong>in</strong>g to take out <strong>the</strong> small seed <strong>an</strong>d<br />

us<strong>in</strong>g <strong>the</strong> gravity table to take out <strong>the</strong><br />

light seed, we move <strong>the</strong> populations<br />

toward better disease resist<strong>an</strong>ce <strong>an</strong>d<br />

larger kernels <strong>an</strong>d test weights. This<br />

selection <strong>in</strong> <strong>the</strong> F2, F4, <strong>an</strong>d F5 has shown<br />

to be effective for <strong>the</strong> kernel<br />

characteristics, <strong>an</strong>d we have been able to<br />

select our new semi-dwarf varieties with<br />

kernel weights 30% higher th<strong>an</strong> <strong>the</strong>ir<br />

parents. We are also see<strong>in</strong>g <strong>an</strong> <strong>in</strong>crease <strong>in</strong><br />

<strong>the</strong> level <strong>of</strong> field resist<strong>an</strong>ce to leaf<br />

diseases.<br />

The F5 populations are selected for pl<strong>an</strong>t<br />

type by select<strong>in</strong>g a s<strong>in</strong>gle head from up to<br />

200 pl<strong>an</strong>ts from <strong>the</strong> bulk population.<br />

These are grown <strong>in</strong> head/row plots <strong>an</strong>d<br />

<strong>in</strong>oculated for scald. Rows with poor<br />

agronomic type or moderate to heavy<br />

disease are discarded prior to harvest.<br />

The harvested rows are weighed <strong>an</strong>d<br />

scored for seed characteristics <strong>an</strong>d<br />

<strong>an</strong>alyzed <strong>in</strong> <strong>the</strong> research laboratory for<br />

quality. We use NIRS as a method to<br />

screen for all quality characteristics.<br />

Those rows that meet all agronomic,<br />

disease, <strong>an</strong>d quality st<strong>an</strong>dards are<br />

entered <strong>in</strong>to yield trials. We have two<br />

years <strong>of</strong> prelim<strong>in</strong>ary yield test<strong>in</strong>g <strong>an</strong>d<br />

three years <strong>of</strong> adv<strong>an</strong>ced yield test<strong>in</strong>g.<br />

Then <strong>the</strong> best l<strong>in</strong>es are entered <strong>in</strong>to a<br />

cooperative test<strong>in</strong>g system for two years<br />

before receiv<strong>in</strong>g registration as a variety<br />

<strong>an</strong>d released to seed growers.


10<br />

Contributions <strong>of</strong> <strong>Breed<strong>in</strong>g</strong><br />

<strong>an</strong>d Crop M<strong>an</strong>agement to<br />

Increas<strong>in</strong>g <strong>Barley</strong> Yields <strong>an</strong>d<br />

Gra<strong>in</strong> Quality <strong>in</strong> Chile<br />

E. BERATTO M. 1<br />

The first barley trials <strong>in</strong> Chile were<br />

conducted by <strong>the</strong> National Agriculture<br />

Society dur<strong>in</strong>g <strong>the</strong> first quarter <strong>of</strong> <strong>the</strong> 20th<br />

century <strong>an</strong>d later by <strong>the</strong> M<strong>in</strong>istry <strong>of</strong><br />

Agriculture’s Department <strong>of</strong> Genetics<br />

<strong>an</strong>d Pl<strong>an</strong>t Improvement (1940-1947) <strong>an</strong>d<br />

<strong>the</strong> School <strong>of</strong> Agriculture (1955-1964) <strong>of</strong><br />

<strong>the</strong> Univeridad de Chile. The trials<br />

focused on sow<strong>in</strong>g date, seed rate,<br />

adaptability, <strong>an</strong>d yield <strong>of</strong> varieties<br />

<strong>in</strong>troduced ma<strong>in</strong>ly from Europe.<br />

Research efforts <strong>in</strong> Chile up to 1976 were<br />

typically isolated trials conducted by<br />

public <strong>an</strong>d private org<strong>an</strong>izations; <strong>the</strong>y<br />

were geographically fragmented,<br />

discont<strong>in</strong>uous, had virtually no<br />

<strong>in</strong>tegrated research teams, <strong>an</strong>d did not<br />

persevere <strong>in</strong> pursu<strong>in</strong>g established<br />

objectives. These efforts produced<br />

irrelev<strong>an</strong>t results that had little impact on<br />

domestic barley production.<br />

The National Agricultural <strong>an</strong>d Livestock<br />

Research Institute (Instituto Nacional de<br />

Investigaciones Agropecuarias, INIA),<br />

through <strong>the</strong> Carill<strong>an</strong>ca Regional Research<br />

Center, <strong>of</strong>ficially <strong>in</strong>corporated barley <strong>in</strong>to<br />

its research agenda <strong>in</strong> 1976. Two years<br />

later, <strong>in</strong> 1978, a research agreement on<br />

“Genetic Improvement <strong>an</strong>d Production <strong>of</strong><br />

Malt<strong>in</strong>g <strong>Barley</strong>s” was signed between<br />

INIA <strong>an</strong>d <strong>the</strong> United Brewers Comp<strong>an</strong>y<br />

(Compañía Cervecerías Unidas, CCU); <strong>the</strong><br />

agreement is still operative 23 years later.<br />

Initial Status<br />

Released varieties<br />

In 1978, when <strong>the</strong> agreement was signed,<br />

CCU was sow<strong>in</strong>g <strong>the</strong> varieties Breun’s<br />

Wisa, Car<strong>in</strong>a, <strong>an</strong>d Firlsbeck Union. Breun’s<br />

Wisa was sown until 1979; Car<strong>in</strong>a was<br />

withdrawn from <strong>the</strong> market <strong>in</strong> 1983, <strong>an</strong>d<br />

Firlsbeck Union <strong>in</strong> 1984. Commercial<br />

cropp<strong>in</strong>g <strong>of</strong> <strong>the</strong> latter two varieties<br />

stopped ma<strong>in</strong>ly because <strong>of</strong> <strong>the</strong>ir<br />

susceptibility to yellow rust <strong>of</strong> barley,<br />

which greatly reduced yields (Caglevic<br />

<strong>an</strong>d Herrera, 1984), gra<strong>in</strong> size, test weight,<br />

<strong>an</strong>d gra<strong>in</strong> weight <strong>in</strong> both <strong>the</strong> nor<strong>the</strong>rn <strong>an</strong>d<br />

central parts <strong>of</strong> Chile (Caglevic <strong>an</strong>d<br />

Herrera, 1982; 1983).<br />

<strong>Barley</strong> yields<br />

The national average barley yield <strong>in</strong> 1978<br />

was 1.9 t/ha, but <strong>the</strong> average yields<br />

produced by commercial farmers <strong>an</strong>d seed<br />

1<br />

Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Carill<strong>an</strong>ca, Casilla<br />

58-D, Temuco, Chile. Tel.: 56-45-215706; Fax: 56-45-216112; Email: eberatto@carill<strong>an</strong>ca.<strong>in</strong>ia.cl.


Contributions <strong>of</strong> <strong>Breed<strong>in</strong>g</strong> <strong>an</strong>d Crop M<strong>an</strong>agement to Increas<strong>in</strong>g <strong>Barley</strong> Yields <strong>an</strong>d Gra<strong>in</strong> Quality <strong>in</strong> Chile<br />

11<br />

producers under contract to CCU were 1.7<br />

<strong>an</strong>d 2.2 t/ha, respectively.<br />

Diseases<br />

When <strong>the</strong> agreement was implemented,<br />

not much was known about barley<br />

diseases. Damage to yield, gra<strong>in</strong> size, <strong>an</strong>d<br />

test weight had not been evaluated, <strong>an</strong>d<br />

no chemical control methods had been<br />

developed.<br />

Gra<strong>in</strong> size<br />

<strong>Barley</strong> producers under contract to CCU<br />

received premium prices because <strong>of</strong> good<br />

gra<strong>in</strong> size, i.e., when at least 80% <strong>of</strong> <strong>the</strong><br />

gra<strong>in</strong> was reta<strong>in</strong>ed on 2.5-mm sieves; this<br />

cost <strong>the</strong> comp<strong>an</strong>y 5%.<br />

Crop m<strong>an</strong>agement practices<br />

Crop m<strong>an</strong>agement practices (sow<strong>in</strong>g date,<br />

seed<strong>in</strong>g rate, fertilization, <strong>an</strong>d weed<br />

control) used on barley at that time were<br />

similar to those recommended for wheat.<br />

This was based, with no scientific<br />

evidence, on <strong>the</strong> pr<strong>in</strong>ciple that<br />

“everyth<strong>in</strong>g that was good for wheat was<br />

good for barley.”<br />

was demonstrated by <strong>the</strong>ir impact on<br />

yield (Figures 1, 2, <strong>an</strong>d 3) <strong>an</strong>d gra<strong>in</strong> size,<br />

<strong>an</strong>d by how <strong>of</strong>ten <strong>the</strong>y were a part <strong>of</strong> <strong>the</strong><br />

sow<strong>in</strong>g agreements established by <strong>the</strong><br />

CCU (Table 1).<br />

t/ha<br />

1938<br />

1941<br />

1935<br />

1944<br />

1947<br />

1950<br />

1953<br />

1956<br />

1959<br />

1962<br />

1965<br />

1968<br />

1971<br />

1974<br />

1977<br />

1980<br />

1983<br />

1986<br />

1989<br />

Figure 1. Progress <strong>in</strong> barley yields, 1935-97.<br />

t/ha<br />

1992<br />

1995<br />

Adv<strong>an</strong>ces <strong>in</strong> <strong>Barley</strong><br />

Improvement<br />

<strong>New</strong> varieties<br />

Research activities conducted by INIA<br />

under <strong>the</strong> agreement from 1978 to 1999<br />

led to <strong>the</strong> release <strong>of</strong> five new barley<br />

varieties with good malt<strong>in</strong>g quality.<br />

Aramir, property <strong>of</strong> CEBECO, was<br />

<strong>in</strong>troduced from Holl<strong>an</strong>d; Leo INIA-CCU<br />

orig<strong>in</strong>ated from adv<strong>an</strong>ced l<strong>in</strong>es <strong>in</strong> <strong>the</strong><br />

ICARDA/CIMMYT nurseries. The o<strong>the</strong>r<br />

three, Gr<strong>an</strong>ifen INIA-CCU, Libra INIA-<br />

CCU, <strong>an</strong>d Acuario INIA-CCU, were<br />

developed by INIA’s <strong>Barley</strong> Improvement<br />

Project. The signific<strong>an</strong>ce <strong>of</strong> <strong>the</strong>se varieties<br />

1935-39<br />

1940-44<br />

1945-49<br />

1950-54<br />

1955-59<br />

1960-64<br />

1965-69<br />

1970-74<br />

1975-79<br />

1980-84<br />

1985-89<br />

1990-94<br />

1995-97<br />

Figure 2. Progress <strong>in</strong> barley yields by five-year<br />

periods, 1935-97.<br />

t/ha<br />

1979<br />

1981<br />

1983<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

B.Wisa Car<strong>in</strong>a<br />

F. Union<br />

Aramir<br />

Leo<br />

Libra<br />

Gr<strong>an</strong>ifen<br />

1995<br />

1997<br />

Figure 3. Progress <strong>in</strong> barley yields, 1978-97.<br />

Acuario


12<br />

E. Beratto M.<br />

Table 1. Distribution <strong>of</strong> barley varieties sown by United Brewers Comp<strong>an</strong>y (Compañía Cervecerías<br />

Unidas, CCU), 1977-99.<br />

Area (ha)<br />

Percentage <strong>of</strong> seed used by CCU† Under Total Percentage <strong>of</strong><br />

contract malt<strong>in</strong>g total area under<br />

Year BW FU CA AR GA LI LE AC to CCU barley contract<br />

1977-78 40 60 16,541 54,238 30.5<br />

1978-79 16 84 11,163 50,804 22.0<br />

1979-80 6 94 9,636 41,327 23.3<br />

1980-81 83 17 13,447 39,066 34.4<br />

1981-82 60 40 15,847 48,858 32.4<br />

1982-83 90 10 10,984 32,436 33.9<br />

1983-84 32 49 19 10,137 28,177 36.0<br />

1984-85 7 76 17 12,195 29,784 49.9<br />

1985-86 62 38 10,101 19,312 52.3<br />

1986-87 64 36 7,889 13,914 56.7<br />

1987-88 65 35 12,810 20,459 62.6<br />

1988-89 51 49 14,854 20,901 71.1<br />

1989-90 38 36 26 16,753 22,336 75.0<br />

1990-91 38 62 12,173 26,953 45.2<br />

1991-92 38 61 1 11,085 24,131 45.9<br />

1992-93 35 57 8 11,080 18,946 58.5<br />

1993-94 39 12 49 15,543 23,953 64.9<br />

1994-95 68 32 11,083 21,399 51.8<br />

1995-96 30 70 10,264 19,695 52.1<br />

1996-97 30 70 11,374 18,634 61.0<br />

1997-98 30 70 8,955 22,637 39.6<br />

1998-99 15 85 8,028 22,527 35.6<br />

† BW: Breun´s Wisa; FU: Firlsbeck Union; CA: Car<strong>in</strong>a; AR: Aramir; GA: Gr<strong>an</strong>ifen INIA-CCU; LI: Libra INIA-CCU; LE: Leo<br />

INIA-CCU; AC: Acuario INIA-CCU.<br />

<strong>Barley</strong> varieties sown by <strong>the</strong><br />

CCU <strong>in</strong> 1977-99<br />

When <strong>the</strong> agreement was implemented<br />

(1977-78), <strong>the</strong> varieties Breun’s Wisa <strong>an</strong>d<br />

Firlsbeck Union covered 40 <strong>an</strong>d 60%,<br />

respectively, <strong>of</strong> <strong>the</strong> area sown to barley<br />

by <strong>the</strong> CCU. Two years later (1980-81),<br />

Bruen’s Wisa was discont<strong>in</strong>ued, <strong>an</strong>d 83%<br />

<strong>of</strong> <strong>the</strong> cultivated area was sown to<br />

Firlsbeck Union <strong>an</strong>d 17% to Car<strong>in</strong>a. In<br />

1983-84, Car<strong>in</strong>a was withdrawn from <strong>the</strong><br />

market, <strong>an</strong>d Firlsbeck Union, Aramir,<br />

<strong>an</strong>d Gr<strong>an</strong>ifen INIA-CCU covered 32, 49,<br />

<strong>an</strong>d 19%, respectively, <strong>of</strong> <strong>the</strong> barley area.<br />

In 1985-86, <strong>the</strong> area sown to barley was<br />

distributed as follows: Aramir, 62%,<br />

Gr<strong>an</strong>ifen, 38%, <strong>an</strong>d Firlsbeck Union was<br />

discont<strong>in</strong>ued. In 1989-90, 38% was sown<br />

to Aramir, 36% to Gr<strong>an</strong>ifen, <strong>an</strong>d 26% to<br />

Libra INIA-CCU. Aramir was<br />

withdrawn from <strong>the</strong> market <strong>in</strong> 1990-91<br />

<strong>an</strong>d was replaced by Libra, which<br />

occupied 62% <strong>of</strong> <strong>the</strong> barley area; <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g 38% was sown to Gr<strong>an</strong>ifen. In<br />

1991-92, Gr<strong>an</strong>ifen <strong>an</strong>d Libra still covered<br />

38 <strong>an</strong>d 61%, respectively, <strong>an</strong>d Leo was<br />

sown on 1%. In 1995-99, Gr<strong>an</strong>ifen <strong>an</strong>d<br />

Leo were no longer sown, <strong>an</strong>d 70-85%<br />

was covered by Acuario INIA-CCU; <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g 15-30% was sown to Libra<br />

(Table 1).


Contributions <strong>of</strong> <strong>Breed<strong>in</strong>g</strong> <strong>an</strong>d Crop M<strong>an</strong>agement to Increas<strong>in</strong>g <strong>Barley</strong> Yields <strong>an</strong>d Gra<strong>in</strong> Quality <strong>in</strong> Chile<br />

13<br />

The length <strong>of</strong> time varieties <strong>in</strong>troduced or<br />

developed by INIA were sown is as<br />

follows: Aramir, 7 years (1983-89);<br />

Gr<strong>an</strong>ifen INIA-CCU, 12 years (1983-94);<br />

Leo INIA-CCU, 4 years (1991-94); Libra<br />

INIA-CCU, 10 years. Acuario INIA-CCU<br />

beg<strong>an</strong> to be sown 4 years ago; by 1999,<br />

100% <strong>of</strong> <strong>the</strong> barley area was sown to it.<br />

Progress <strong>in</strong> barley yields<br />

National average barley yields <strong>in</strong> Chile<br />

<strong>in</strong>creased from 1.5 t/ha (<strong>in</strong> 1935-39) to 3.6<br />

t/ha (<strong>in</strong> 1995-97) with<strong>in</strong> a 63-year period.<br />

This is equal to a yield ga<strong>in</strong> <strong>of</strong> 149.3%, or<br />

<strong>an</strong> <strong>an</strong>nual <strong>in</strong>crease <strong>of</strong> 34.6 kg/ha (Table<br />

2). Upon compar<strong>in</strong>g yields dur<strong>in</strong>g <strong>the</strong><br />

first period (characterized by <strong>an</strong> almost<br />

complete lack <strong>of</strong> systematic barley<br />

research) (from 1935-39 to 1970-74), one<br />

comes to <strong>the</strong> conclusion that <strong>in</strong> 40 years<br />

yields <strong>in</strong>creased only 31.8%, or 11.5 kg/<br />

ha <strong>an</strong>nually. In contrast, between <strong>the</strong><br />

second (1975-79) (when barley research<br />

under <strong>the</strong> CCU agreement started) <strong>an</strong>d<br />

last (1995-97) periods, yield rose by<br />

85.7%, or 73.1 kg/ha per year, over a 23-<br />

year period (Table 2). Dur<strong>in</strong>g that same<br />

period, average commercial yields<br />

obta<strong>in</strong>ed by <strong>the</strong> CCU <strong>in</strong>creased from 1.7<br />

t/ha <strong>in</strong> 1978 to 4.3 t/ha <strong>in</strong> 1997, a yield<br />

ga<strong>in</strong> <strong>of</strong> 160.8%. Average yields <strong>of</strong> CCU<br />

seed producers rose from 2.2 t/ha <strong>in</strong> 1978<br />

to 5.7 t/ha <strong>in</strong> 1997, <strong>an</strong> <strong>in</strong>crease <strong>of</strong> 132.4%.<br />

The adv<strong>an</strong>ce <strong>in</strong> <strong>an</strong>nual average barley<br />

yields from 1935 to 1997 is shown <strong>in</strong><br />

Figure 1.<br />

Ga<strong>in</strong>s <strong>in</strong> barley area <strong>an</strong>d<br />

production<br />

Over a period <strong>of</strong> 63 years, barley area<br />

<strong>an</strong>d production <strong>in</strong> Chile decreased by<br />

67.8% <strong>an</strong>d 20.8%, respectively (Table 3).<br />

The reasons for <strong>the</strong>se reductions are as<br />

follows: about 80% <strong>of</strong> <strong>the</strong> total barley<br />

area <strong>in</strong> Chile is sown to malt<strong>in</strong>g barley<br />

under contract to domestic malt<strong>in</strong>g<br />

comp<strong>an</strong>ies <strong>an</strong>d breweries. The former<br />

have signific<strong>an</strong>tly reduced <strong>the</strong> area<br />

Table 3. Progress <strong>in</strong> national average barley<br />

yields by five-year periods, 1935-97.<br />

Five-year Area Production Yield<br />

period (ha) (000 t/ha) (t/ha)<br />

1935 – 1939 74,320 1,097 1.5<br />

1940 – 1944 48,910 752 1.5<br />

1945 – 1949 49,024 798 1.6<br />

1950 – 1954 53,578 797 1.5<br />

1955 – 1959 53,056 914 1.7<br />

1960 – 1964 41,329 744 1.8<br />

1965 – 1969 50,540 1,081 2.1<br />

1970 – 1974 65,904 1,260 1.9<br />

1975 – 1979 58,360 1,149 2.0<br />

1980 – 1984 41,958 882 2.1<br />

1985 – 1989 22,814 749 3.3<br />

1990 – 1994 27,149 831 3.5<br />

1995 – 1997 23,909 869 3.6<br />

Table 2. Progress <strong>in</strong> national average barley yields<br />

compar<strong>in</strong>g different five-year periods, 1935-97.<br />

Yield (t/ha) Yield Annual<br />

1935- 1970- 1975- 1995- <strong>in</strong>crease <strong>in</strong>crease<br />

Period 1939 1974 1979 1997 (%) (kg/ha)<br />

Total period 1.5 x x 3.6 149.3 34.6<br />

(1935-1997)<br />

First period 1.5 1.9 x x 31.8 11.5<br />

(1935-1974)<br />

Second period x x 2.0 3.6 85.7 73.1<br />

(1975-1997)


14<br />

E. Beratto M.<br />

under contract due to <strong>the</strong> drastic<br />

reduction <strong>in</strong> <strong>the</strong> amount <strong>of</strong> Chile<strong>an</strong> malt<br />

exported to countries such as Bolivia,<br />

Brazil, Venezuela, <strong>an</strong>d Peru. This<br />

reduction <strong>in</strong> exports is <strong>the</strong> result <strong>of</strong><br />

strong competition from <strong>the</strong> Europe<strong>an</strong><br />

Common Market, which sells malt to<br />

those countries at a lower price. Also,<br />

local brewers such as <strong>the</strong> CCU have<br />

reduced <strong>the</strong> area <strong>the</strong>y sow to barley as a<br />

result <strong>of</strong> <strong>the</strong> sign<strong>in</strong>g <strong>an</strong>d implementation<br />

<strong>of</strong> <strong>the</strong> Free Trade Agreement between<br />

Chile <strong>an</strong>d C<strong>an</strong>ada, which allows <strong>the</strong><br />

tariff-free importation <strong>of</strong> C<strong>an</strong>adi<strong>an</strong> barley<br />

gra<strong>in</strong> <strong>an</strong>d malt <strong>in</strong>to Chile. Thus it is<br />

actually cheaper to import barley gra<strong>in</strong><br />

<strong>an</strong>d malt from C<strong>an</strong>ada th<strong>an</strong> to produce it<br />

<strong>in</strong> Chile.<br />

Improv<strong>in</strong>g gra<strong>in</strong> size<br />

The basis (<strong>in</strong> place s<strong>in</strong>ce 1978) for pay<strong>in</strong>g<br />

a premium for gra<strong>in</strong> size was ch<strong>an</strong>ged<br />

for <strong>the</strong> first time <strong>in</strong> 1984, from 80% <strong>of</strong> <strong>the</strong><br />

gra<strong>in</strong> rema<strong>in</strong><strong>in</strong>g on a 2.5-mm sieve to<br />

85%, as a result <strong>of</strong> genetic improvement<br />

research. In 1996, it was modified for <strong>the</strong><br />

second time to 90%, br<strong>in</strong>g<strong>in</strong>g Chile<strong>an</strong><br />

requirements to <strong>the</strong> same level as those<br />

stipulated <strong>in</strong> <strong>the</strong> Europe<strong>an</strong> Brewery<br />

Convention.<br />

Improv<strong>in</strong>g beer production<br />

efficiency<br />

In 1978, 18.5 kg <strong>of</strong> barley were needed to<br />

produce 100 L <strong>of</strong> beer; today 16-17 kg are<br />

necessary to produce 100 L <strong>of</strong> beer<br />

(Devilat, 1988).<br />

Adv<strong>an</strong>ces <strong>in</strong> Crop<br />

M<strong>an</strong>agement<br />

Ga<strong>in</strong>s <strong>in</strong> barley yields both <strong>in</strong> Chile <strong>an</strong>d<br />

at <strong>the</strong> global level have been <strong>the</strong> result <strong>of</strong><br />

improved barley varieties <strong>an</strong>d <strong>the</strong><br />

development <strong>of</strong> better agronomic<br />

practices for m<strong>an</strong>ag<strong>in</strong>g <strong>the</strong> barley crop.<br />

Disease m<strong>an</strong>agement<br />

Research on disease control measures<br />

beg<strong>an</strong> <strong>in</strong> 1978, when disease<br />

identification surveys <strong>in</strong> Chile’s barleyproduc<strong>in</strong>g<br />

regions were conducted by<br />

Gilchrist (1979), Caglevic <strong>an</strong>d Herrera<br />

(1984), <strong>an</strong>d Andrade (1986). Later studies<br />

evaluated <strong>the</strong> impact <strong>of</strong> diseases on<br />

barley yields <strong>an</strong>d gra<strong>in</strong> size, <strong>an</strong>d<br />

identified <strong>the</strong> most economically<br />

import<strong>an</strong>t diseases nationally (scald, net<br />

blotch, yellow <strong>an</strong>d leaf rusts, <strong>an</strong>d<br />

BYDV). They also determ<strong>in</strong>ed <strong>the</strong> most<br />

effective chemical treatments<br />

(fungicides) for controll<strong>in</strong>g scald<br />

(Rhynchosporium secalis) <strong>in</strong> particular,<br />

s<strong>in</strong>ce it reduces yield by more th<strong>an</strong> 40%<br />

<strong>in</strong> early sown barley <strong>in</strong> years with a<br />

humid spr<strong>in</strong>g (Andrade, 1989). Yellow<br />

rust (Pucc<strong>in</strong>ia striiformis f.sp. hordei)<br />

reduced yield by 48-56% <strong>in</strong> 1980-82, <strong>an</strong>d<br />

caused gra<strong>in</strong> size, test weight, <strong>an</strong>d kernel<br />

weight to drop dramatically <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn <strong>an</strong>d central parts <strong>of</strong> Chile<br />

(Caglevic <strong>an</strong>d Herrera, 1984). At <strong>the</strong><br />

same time, <strong>the</strong> breed<strong>in</strong>g program<br />

identified genetic resist<strong>an</strong>ce sources,<br />

especially to scald. Most <strong>of</strong> <strong>the</strong>se sources<br />

are from <strong>the</strong> ICARDA/CIMMYT<br />

nurseries (Beratto, 1983; CIMMYT, 1983).<br />

Fertilization<br />

The import<strong>an</strong>ce <strong>of</strong> apply<strong>in</strong>g nitrogen<br />

<strong>an</strong>d phosphorus for rais<strong>in</strong>g barley yields<br />

<strong>an</strong>d improv<strong>in</strong>g gra<strong>in</strong> quality, especially<br />

<strong>in</strong> volc<strong>an</strong>ic soils, whe<strong>the</strong>r Andisols<br />

(volc<strong>an</strong>ic soils) or Ultisols (red clay<br />

soils), <strong>in</strong> sou<strong>the</strong>rn Chile has been amply<br />

demonstrated <strong>in</strong> studies conducted by<br />

Peyrelongue (1983a, b; 1990; 1992) <strong>an</strong>d<br />

Peyrelongue et al. (1984) (Figure 4).


Contributions <strong>of</strong> <strong>Breed<strong>in</strong>g</strong> <strong>an</strong>d Crop M<strong>an</strong>agement to Increas<strong>in</strong>g <strong>Barley</strong> Yields <strong>an</strong>d Gra<strong>in</strong> Quality <strong>in</strong> Chile<br />

15<br />

Fertilization <strong>an</strong>d weed <strong>an</strong>d<br />

disease control<br />

In a study conducted at <strong>the</strong> Carill<strong>an</strong>ca<br />

Regional Research Center, Thomas (1997)<br />

concluded that fertilizer application <strong>an</strong>d<br />

disease control were essential for<br />

produc<strong>in</strong>g high yields <strong>an</strong>d improv<strong>in</strong>g<br />

barley gra<strong>in</strong> quality. He also found that<br />

<strong>of</strong> <strong>the</strong>se techniques, comb<strong>in</strong>ed nitrogen/<br />

phosphorus fertilization has <strong>the</strong> greatest<br />

impact on yield (Figure 4), gra<strong>in</strong> weight<br />

(Figure 5), number <strong>of</strong> gra<strong>in</strong>s per m 2<br />

(Figure 6), test weight (Figure 7), gra<strong>in</strong><br />

size >2.8 mm (Figure 8), <strong>an</strong>d gra<strong>in</strong> size<br />

>2.8 + 2.5 mm (Figure 9).<br />

Yield (t/ha)<br />

Gra<strong>in</strong> weight (mg)<br />

e<br />

(1)V<br />

(7)V+CE+CM<br />

(4)V+CE<br />

Figure 4. Effect <strong>of</strong> eight treatments on gra<strong>in</strong><br />

yield <strong>of</strong> Acuario INIA/CCU.<br />

c<br />

d<br />

c<br />

d<br />

d<br />

(3)V+CM<br />

(5)V+F+CE<br />

Treatment<br />

c<br />

bc<br />

(6)V+F+CM<br />

(2)V+F<br />

(8)V+F+CE+CM<br />

(1)V<br />

(3)V+CM<br />

(4)V+CE<br />

(7)V+CE+CM<br />

(2)V+F<br />

(5)V+F+CE<br />

(6)V+F+CM<br />

(8)V+F+CE+CM<br />

Treatment<br />

Figure 5. Effect <strong>of</strong> eight treatments on gra<strong>in</strong><br />

weight <strong>of</strong> Acuario INIA/CCU.<br />

ce<br />

ab<br />

b<br />

b<br />

a<br />

a a a<br />

Number <strong>of</strong> gra<strong>in</strong>s/m 2<br />

(1)V<br />

(7)V+CE+CM<br />

(4)V+CE<br />

(3)V+CM<br />

(5)V+F+CE<br />

(6)V+F+CM<br />

(2)V+F<br />

(8)V+F+CE+CM<br />

Treatment<br />

Figure 6. Effect <strong>of</strong> eight treatments on <strong>the</strong><br />

number <strong>of</strong> gra<strong>in</strong> per meter 2 <strong>of</strong> Acuario INIA/CCU.<br />

Test weight (kg/hl)<br />

(5)V+F+CE<br />

(6)V+F+CM<br />

(8)V+F+CE+CM<br />

(2)V+F<br />

(4)V+CE<br />

(7)V+CE+CM<br />

(3)V+CM<br />

(1)V<br />

Treatment<br />

Figure 7. Effect <strong>of</strong> eight treatments on test<br />

weight <strong>of</strong> Acuario INIA/CCU.<br />

Gra<strong>in</strong> size (>2.8+2.5) Gra<strong>in</strong> size (>2.8 mm)<br />

d<br />

(1)V<br />

(3)V+CM<br />

(4)V+CE<br />

(7)V+CE+CM<br />

(5)V+F+CE<br />

(2)V+F<br />

(8)V+F+CE+CM<br />

(6)V+F+CM<br />

Treatment<br />

Figure 8. Effect <strong>of</strong> eight treatments on gra<strong>in</strong><br />

size <strong>of</strong> Acuario INIA/CCU.<br />

(1)V<br />

c<br />

c<br />

(4)V+CE<br />

(3)V+CM<br />

(7)V+CE+CM<br />

(5)V+F+CE<br />

(2)V+F<br />

(8)V+F+CE+CM<br />

(6)V+F+CM<br />

Treatment<br />

Figure 9. Effect <strong>of</strong> eight treatments on gra<strong>in</strong><br />

size <strong>of</strong> Acuario INIA/CCU.<br />

b<br />

c c c bc<br />

c<br />

c<br />

c<br />

bc<br />

b b b b<br />

ab<br />

abc<br />

ab<br />

a<br />

a<br />

a<br />

ab ab a<br />

a<br />

a<br />

a a a a<br />

a


16 E. Beratto M.<br />

Economic Qu<strong>an</strong>tification<br />

<strong>of</strong> Impacts Achieved<br />

under <strong>the</strong> Agreement<br />

• The amount <strong>of</strong> barley gra<strong>in</strong> needed for<br />

produc<strong>in</strong>g 100 L <strong>of</strong> beer dim<strong>in</strong>ished<br />

from 18.5 kg <strong>in</strong> 1984 to 17.0 kg <strong>in</strong> 1988.<br />

This has been estimated to generate a<br />

cost sav<strong>in</strong>gs <strong>of</strong> US$ 420,000 for <strong>the</strong> CCU<br />

(Devilat, 1988). Today only 16.0 kg are<br />

needed to produce 100 L <strong>of</strong> beer, but<br />

this has not yet been economically<br />

qu<strong>an</strong>tified.<br />

• Ch<strong>an</strong>ges <strong>in</strong> <strong>the</strong> premium paid for bigger<br />

gra<strong>in</strong> size <strong>in</strong> 1978 <strong>an</strong>d 1988 have<br />

tr<strong>an</strong>slated <strong>in</strong>to a higher yearly <strong>in</strong>come<br />

for <strong>the</strong> CCU <strong>of</strong> US$ 105,000 (Devilat,<br />

1988). In 1996, <strong>the</strong> basis for pay<strong>in</strong>g a<br />

premium price was ch<strong>an</strong>ged to 90% <strong>of</strong><br />

<strong>the</strong> gra<strong>in</strong> reta<strong>in</strong>ed on a 2.5-mm sieve,<br />

but this has not yet been economically<br />

qu<strong>an</strong>tified.<br />

• Campos, Ortiz, <strong>an</strong>d Beratto (1989)<br />

estimated that <strong>the</strong> <strong>in</strong>ternal rate <strong>of</strong> return<br />

(IRR) for <strong>the</strong> 1978-87 period <strong>of</strong> <strong>the</strong><br />

INIA/CCU Agreement was 48-50%. In<br />

a recent <strong>an</strong>d as yet unpublished study,<br />

Campos <strong>an</strong>d Beratto (2000) found that<br />

<strong>the</strong> IRR for <strong>the</strong> 1978-99 period <strong>of</strong> <strong>the</strong><br />

INIA/CCU Agreement was 52%, which<br />

produced a social benefit valued at<br />

5,350 million Chile<strong>an</strong> pesos (US$1 =<br />

516-520 Chile<strong>an</strong> pesos). The distribution<br />

<strong>of</strong> <strong>the</strong>se benefits was 65% for producers<br />

<strong>an</strong>d 53% for consumers.<br />

Future Prospects<br />

About 80% <strong>of</strong> Chile’s barley area is<br />

currently dedicated to <strong>the</strong> production <strong>of</strong><br />

gra<strong>in</strong> for malt <strong>an</strong>d beer, 15% to feed<br />

gra<strong>in</strong>, <strong>an</strong>d 5% to seed. In <strong>the</strong> last four<br />

years, <strong>the</strong> area sown to barley for silage<br />

production has <strong>in</strong>creased, especially <strong>in</strong><br />

<strong>the</strong> cattle-rais<strong>in</strong>g region <strong>in</strong> sou<strong>the</strong>rn<br />

Chile (Goic <strong>an</strong>d Ponce, 1999); this has<br />

met with good farmer accept<strong>an</strong>ce. The<br />

commercial release <strong>of</strong> facultative hull-less<br />

varieties such as Alteza-INIA (Beratto <strong>an</strong>d<br />

Rivas, 1999), with high yield potential,<br />

resist<strong>an</strong>ce to economically import<strong>an</strong>t<br />

diseases, good agronomic traits, <strong>an</strong>d very<br />

good gra<strong>in</strong> <strong>an</strong>d nutritional quality has<br />

paved <strong>the</strong> way for barley production <strong>in</strong><br />

sou<strong>the</strong>rn Chile, where it could displace<br />

maize, given that maize cropp<strong>in</strong>g <strong>in</strong> that<br />

region is very risky due to climatic<br />

conditions. Based on <strong>the</strong>se two new<br />

alternatives, we predict that <strong>the</strong> area<br />

sown to barley for feed<strong>in</strong>g livestock (both<br />

dairy <strong>an</strong>d meat) will cont<strong>in</strong>ue to rise as it<br />

has <strong>in</strong> <strong>the</strong> past two years (1998 <strong>an</strong>d 1999).<br />

The development <strong>of</strong> facultative hull-less<br />

<strong>an</strong>d covered barley varieties me<strong>an</strong>s that<br />

farmers now have very promis<strong>in</strong>g genetic<br />

materials that could be sown<br />

commercially <strong>in</strong> regions with high ra<strong>in</strong>fall<br />

<strong>in</strong> autumn <strong>an</strong>d w<strong>in</strong>ter, <strong>an</strong>d severe<br />

drought stress <strong>in</strong> spr<strong>in</strong>g <strong>an</strong>d summer.<br />

Sow<strong>in</strong>g spr<strong>in</strong>g habit barleys is not<br />

recommended <strong>in</strong> <strong>the</strong>se regions (Beratto,<br />

1990). This type <strong>of</strong> barley, besides hav<strong>in</strong>g<br />

high yield potential, gives farmers a<br />

practical adv<strong>an</strong>tage: it has a longer<br />

sow<strong>in</strong>g period (Sal<strong>in</strong>as, 1996). As a result,<br />

barley cultivation c<strong>an</strong> extend to regions,<br />

or subregions, where until recently it<br />

could not be sown due to <strong>the</strong> prevail<strong>in</strong>g<br />

climatic conditions.<br />

Future prospects for improv<strong>in</strong>g yield <strong>an</strong>d<br />

malt<strong>in</strong>g <strong>an</strong>d nutritional quality <strong>of</strong> both<br />

spr<strong>in</strong>g <strong>an</strong>d facultative barley cont<strong>in</strong>ue to<br />

be extremely good. There is still a<br />

considerable gap between <strong>the</strong> national<br />

average yield <strong>an</strong>d <strong>the</strong> average yields <strong>of</strong><br />

<strong>in</strong>novative farmers, <strong>an</strong>d between <strong>the</strong><br />

average yield achieved <strong>in</strong> research centers<br />

with <strong>the</strong> lead<strong>in</strong>g commercial variety <strong>an</strong>d<br />

maximum yield obta<strong>in</strong>ed with <strong>the</strong> best<br />

adv<strong>an</strong>ced l<strong>in</strong>e (Beratto, 1999).


Contributions <strong>of</strong> <strong>Breed<strong>in</strong>g</strong> <strong>an</strong>d Crop M<strong>an</strong>agement to Increas<strong>in</strong>g <strong>Barley</strong> Yields <strong>an</strong>d Gra<strong>in</strong> Quality <strong>in</strong> Chile<br />

17<br />

References<br />

Andrade V., O. 1986. Enfermedades que afect<strong>an</strong> a<br />

la cebada en la IX Región. Investigación y<br />

Progreso Agropecuario Carill<strong>an</strong>ca (Chile)<br />

5(2):2-4.<br />

Andrade V., O. 1989. R<strong>in</strong>cosporiosis o escaldadura<br />

de la hoja en cebada en la zona sur de Chile.<br />

Centro Regional de Investigación Carill<strong>an</strong>ca.<br />

Boletín Técnico N° 138 (Temuco, Chile). 17 p.<br />

Beratto M., E. 1983. Selección de fuentes de<br />

resistencia a r<strong>in</strong>cosporiosis o escaldadura y<br />

polvillo estriado de la cebada. En: Beratto M., E.<br />

(ed.). Qu<strong>in</strong>to Informe Anual de Investigación en<br />

Mejoramiento Genético de Cebada Maltera.<br />

Instituto de Investigaciones Agropecuarias<br />

(Temuco, Chile). pp. 78-91.<br />

Beratto M., E. 1999. Investigación en mejoramiento<br />

genético de cebada en Chile. En: Beratto M., E.<br />

(ed.). Segundo Congreso de Cebada Maltera.<br />

FAO, INIA, Centro Regional de Investigación<br />

Carill<strong>an</strong>ca (Temuco, Chile). pp. 63-72.<br />

Beratto M., E., <strong>an</strong>d Rivas P., R. 1999. Alteza-INIA,<br />

primer cultivar de cebada facultativa de gr<strong>an</strong>o<br />

desnudo creada en Chile. Agricultura Técnica<br />

59(1):51-54.<br />

Caglevic D., M., <strong>an</strong>d Herrera M., G. 1982.<br />

Evaluación del daño causado por Pucc<strong>in</strong>ia<br />

striiformis f.sp. hordei en cebada y control<br />

químico del patógeno. En: Beratto M., E. (ed.).<br />

Cuarto Informe Anual de Investigación en<br />

Mejoramiento Genético de Cebada Maltera.<br />

Instituto de Investigaciones Agropecuarias<br />

(Temuco, Chile). pp. 44-49.<br />

Caglevic D., M., <strong>an</strong>d Herrera M., G. 1983.<br />

Evaluación del daño causado por Pucc<strong>in</strong>ia<br />

striiformis f. sp. hordei en cebada y control<br />

químico del patógeno. En: Beratto M., E. (ed.).<br />

Qu<strong>in</strong>to Informe Anual de Investigación en<br />

Mejoramiento Genético de Cebada Maltera.<br />

Instituto de Investigaciones Agropecuarias<br />

(Temuco, Chile). pp. 92-103.<br />

Caglevic D., M., <strong>an</strong>d Herrera M., G. 1984. La roya<br />

amarilla de la cebada en Chile (Pucc<strong>in</strong>ia<br />

striiformis f.sp. hordei). Estación Experimental La<br />

Plat<strong>in</strong>a (S<strong>an</strong>tiago, Chile). Trabajo publicado en<br />

las XXXV Jornadas Agronómicas.<br />

Campos M., A; Ortiz R., C., <strong>an</strong>d Beratto M., E. 1989.<br />

Análisis del impacto económico del Convenio<br />

INIA-CCU para mejoramiento genético de<br />

cebada cervecera. Boletín N°6, Programa de<br />

Economía, Instituto de Investigaciones<br />

Agropecuarias (S<strong>an</strong>tiago, Chile). 55 p.<br />

Campos M., A., <strong>an</strong>d Beratto M., E. 2000. Análisis<br />

del impacto económico del Convenio INIA-<br />

CCU en Mejoramiento Genético de Cebada<br />

Cervecera. Trabajo en etapa de revisión por el<br />

Comité Editor.<br />

CIMMYT. 1983. Materials resist<strong>an</strong>t to scald <strong>in</strong><br />

Mexico <strong>an</strong>d Chile <strong>an</strong>d to stripe rust <strong>in</strong> <strong>the</strong><br />

Ande<strong>an</strong> countries <strong>in</strong> 1983. In: CIMMYT Report<br />

on Wheat Improvement 1983. 73 p.<br />

Devilat B., J. 1988. Av<strong>an</strong>ces y logros del Convenio<br />

de Mejoramiento Genético de Cebadas con<br />

Calidad Maltera entre Instituto de<br />

Investigaciones Agropecuarias y Compañía<br />

Cervecerías Unidas. Informe Interno de<br />

Compañía del Departamento Agrícola de<br />

Compañía Cervecerías Unidas. 11 p.<br />

Gilchrist S., Lucy. 1979. Enfermedades de la<br />

cebada en Chile. Trabajo publicado en Informe<br />

de la Primera Reunión Técnica para la<br />

Promoción del Cultivo de la Cebada en<br />

América Lat<strong>in</strong>a. Asociación Lat<strong>in</strong>oameric<strong>an</strong>a<br />

de Fabric<strong>an</strong>tes de Cervezas (S<strong>an</strong>tiago, Chile).<br />

Goic M., L., <strong>an</strong>d Ponce V., M. 1999. Ensilaje de<br />

cebada. Boletín Técnico N° 252. Instituto de<br />

Investigaciones Agropecuarias, Centro<br />

Regional de Investigación Remehue. 8 p.<br />

Peyrelongue C., A. 1983a. Fertilización en cebada.<br />

Import<strong>an</strong>cia de la fertilización fosfatada y<br />

nitrogenada en cebada para malteo en la IX<br />

Región. Investigación y Progreso<br />

Agropecuario Carill<strong>an</strong>ca 2(3):16-19.<br />

Peyrelongue C., A. 1983b. Fertilización en cebada.<br />

Fertiliz<strong>an</strong>tes y época de aplicación en cebada<br />

para malteo en la IX Región. Investigación y<br />

Progreso Agropecuario Carill<strong>an</strong>ca 2(3):20-22.<br />

Peyrelongue C., A. 1990. M<strong>an</strong>ejo de la fertilización<br />

para producción de cebada para malta en la IX<br />

Región. Boletín Técnico N° 145. Centro<br />

Regional de Investigación Carill<strong>an</strong>ca (Temuco,<br />

Chile). 20 p.<br />

Peyrelongue C., A. 1992. Respuestas de líneas y<br />

variedades de cebada a dosis crecientes de<br />

nitrógeno en Andisoles de la IX Región. En:<br />

Beratto M., E. (ed.). XIV Informe Anual de<br />

Investigación en Mejoramiento Genético de<br />

Cebadas Maltera. Instituto de Investigaciones<br />

Agropecuarias (Temuco, Chile). pp. 174-179.<br />

Peyrelongue C., A., Silva F., F., <strong>an</strong>d Contreras F., E.<br />

1984. Efecto de la aplicación de nitrógeno y<br />

fósforo en el rendimiento y calidad de cebada<br />

maltera en Andisoles de la IX Región. Instituto<br />

de Investigaciones Agropecuarias, Centro<br />

Regional de Investigación La Plat<strong>in</strong>a<br />

(S<strong>an</strong>tiago, Chile). Trabajo presentado en las<br />

XXXV Jornadas Agronómicas.<br />

Sal<strong>in</strong>as G., A. 1996. Influencia de la época de<br />

siembra sobre el rendimiento y calidad física<br />

del gr<strong>an</strong>o de tres líneas av<strong>an</strong>zadas <strong>in</strong>vernales<br />

y alternativas. Universidad de la Frontera,<br />

Facultad de Ciencias Agropecuarias y<br />

Forestales (Temuco, Chile). Tesis para optar al<br />

título de Ingeniero Agrónomo. 49 p.<br />

Thomas A., E. 1997. Influencia de la fertilización,<br />

control de malezas y enfermedades sobre el<br />

rendimiento y calidad de gr<strong>an</strong>o de una cebada<br />

(Hordeum vulgare L.) de primavera con calidad<br />

maltera. Universidad de la Frontera, Facultad<br />

de Ciencias Agropecuarias y Forestales<br />

(Temuco, Chile). Tesis para optar al título de<br />

Ingeniero Agrónomo. 79 p.


18<br />

Import<strong>an</strong>ce <strong>of</strong> Identify<strong>in</strong>g<br />

Stripe Rust Resist<strong>an</strong>ce <strong>in</strong><br />

<strong>Barley</strong><br />

W.M. BROWN, J.P. HILL, AND V.R. VELASCO 1<br />

Stripe rust (Pucc<strong>in</strong>ia striiformis f. sp.<br />

hordei) <strong>of</strong> barley is a new disease <strong>of</strong><br />

barley <strong>in</strong> <strong>the</strong> Americ<strong>an</strong> hemisphere. It<br />

was recognized as a problem <strong>in</strong> Mexico<br />

<strong>an</strong>d <strong>the</strong> United States only <strong>in</strong> <strong>the</strong> last 10<br />

years (Brown, 1992; Brown et al., 1993a;<br />

Calhoun et al., 1988; L<strong>in</strong>e <strong>an</strong>d Chen,<br />

1999). In South America, race 24 <strong>of</strong> <strong>the</strong><br />

fungus was recorded near Bogota,<br />

Colombia, <strong>in</strong> 1975. With<strong>in</strong> five years,<br />

barley stripe rust was found throughout<br />

western South America caus<strong>in</strong>g losses <strong>of</strong><br />

30-70% (Dub<strong>in</strong> <strong>an</strong>d Stubbs, 1984; 1986).<br />

The fungus <strong>in</strong> recent years has spread<br />

north to Mexico (Calhoun et al., 1988),<br />

<strong>an</strong>d <strong>in</strong> 1991, Marshall <strong>an</strong>d Sutton (1995)<br />

reported it <strong>in</strong> Uvalde, Texas. It was<br />

confirmed <strong>in</strong> Arizona,1993;<br />

California,1994; Colorado,1992;<br />

Idaho,1993; Mont<strong>an</strong>a,1993; <strong>New</strong> Mexico,<br />

1992; Oklahoma, 1992; Oregon, 1995;<br />

Wash<strong>in</strong>gton, 1995; <strong>an</strong>d Utah, 1994<br />

(Brown et al., 1996; Brown et al., 1993a;<br />

Chen et al., 1995; L<strong>in</strong>e <strong>an</strong>d Chen, 1996;<br />

1999). <strong>Barley</strong> stripe rust is also present <strong>in</strong><br />

western C<strong>an</strong>ada. S<strong>in</strong>ce 1995 it has<br />

become established <strong>an</strong>d on occasion<br />

causes considerable damage <strong>an</strong>d concern<br />

<strong>in</strong> <strong>the</strong> northwest states <strong>of</strong> <strong>the</strong> USA. The<br />

stripe rust fungus could pose a major<br />

threat to <strong>the</strong> <strong>in</strong>dustry <strong>in</strong> those areas.<br />

While <strong>the</strong>re are no commercial resist<strong>an</strong>t<br />

malt<strong>in</strong>g varieties readily available at this<br />

time, sources <strong>of</strong> resist<strong>an</strong>ce are becom<strong>in</strong>g<br />

available.<br />

In 1990, Dr. Darrell Wesenberg, Director<br />

<strong>of</strong> <strong>the</strong> USDA/ARS Small Gra<strong>in</strong><br />

Germplasm Collection (NSGC) Research<br />

Laboratory at Aberdeen, ID, contacted<br />

<strong>the</strong> Colorado State University barley<br />

disease research team to <strong>in</strong>itiate stripe<br />

rust field trials with cooperators <strong>in</strong> South<br />

America. The authors <strong>an</strong>d <strong>the</strong>ir Bolivi<strong>an</strong><br />

associates were familiar with <strong>the</strong> fungus<br />

<strong>an</strong>d had <strong>in</strong>itiated some <strong>of</strong> <strong>the</strong> first<br />

studies <strong>of</strong> <strong>the</strong> disease <strong>in</strong> <strong>the</strong> late 1970s <strong>in</strong><br />

Bolivia (Velasco <strong>an</strong>d Brown, 1982;<br />

Velasco et al., 1993).<br />

Field work was established <strong>in</strong><br />

Cochabamba, Bolivia, South America, <strong>in</strong><br />

1991 (Brown, 1992). The Cochabamba<br />

area is a high Ande<strong>an</strong> valley<br />

approximately 7,500 ft above sea level.<br />

This valley shows a high endemic<br />

occurrence <strong>of</strong> barley stripe rust race 24<br />

(BSR-24) <strong>an</strong>d heavy <strong>in</strong>fections are a<br />

yearly occurrence. Field germplasm <strong>an</strong>d<br />

1 Department <strong>of</strong> Bioagricultural Sciences <strong>an</strong>d Pest M<strong>an</strong>agement, Colorado State University, Fort<br />

Coll<strong>in</strong>s, CO 80523-1177, USA.


Import<strong>an</strong>ce <strong>of</strong> Identify<strong>in</strong>g Stripe Rust Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

19<br />

associated studies were <strong>in</strong>itiated <strong>in</strong> <strong>the</strong><br />

1991 grow<strong>in</strong>g season (J<strong>an</strong>uary-May) <strong>an</strong>d<br />

cont<strong>in</strong>ued through 1996. USDA/ARS<br />

NSGC staff prepared germplasm for<br />

pl<strong>an</strong>t<strong>in</strong>g. CSU <strong>an</strong>d Bolivi<strong>an</strong> staff carried<br />

out <strong>the</strong> field trials.<br />

Germplasm screen<strong>in</strong>g trials<br />

Trials were composed <strong>of</strong> all entries from<br />

<strong>the</strong> National Small Gra<strong>in</strong> Collection <strong>an</strong>d<br />

selections developed by cooperators<br />

from:<br />

USDA/ARS (Aberdeen, ID)<br />

North Dakota State University<br />

Oregon State University<br />

Wash<strong>in</strong>gton State University<br />

Busch Agricultural Resources<br />

University <strong>of</strong> California-<br />

Davis<br />

Mont<strong>an</strong>a State University<br />

Utah State University<br />

Adolf Coors<br />

Western Pl<strong>an</strong>t Breeders<br />

Selections show<strong>in</strong>g some level <strong>of</strong><br />

resist<strong>an</strong>ce were field tested a second year<br />

<strong>in</strong> Bolivia <strong>an</strong>d also tested <strong>in</strong> Colorado,<br />

Ecuador, Germ<strong>an</strong>y, <strong>an</strong>d eventually<br />

Mexico at different times over <strong>the</strong> period<br />

from 1993 to 2000. In 1995, Ecuador was<br />

deleted <strong>in</strong> favor <strong>of</strong> add<strong>in</strong>g <strong>the</strong> Toluca<br />

Valley <strong>of</strong> Central Mexico. Field test<strong>in</strong>g is<br />

now carried out at Davis, California, by<br />

University <strong>of</strong> California staff, at <strong>the</strong><br />

Mexico site by <strong>the</strong> authors <strong>in</strong> cooperation<br />

with Dr. Hugo Vivar, <strong>an</strong>d <strong>in</strong> Idaho by<br />

USDA/ARS staff.<br />

Dur<strong>in</strong>g <strong>the</strong> period from 1991-1999, over<br />

40,000 selections <strong>of</strong> barley were field<br />

evaluated for stripe rust resist<strong>an</strong>ce.<br />

Numerous sources <strong>of</strong> resist<strong>an</strong>ce were<br />

identified <strong>an</strong>d are be<strong>in</strong>g <strong>in</strong>corporated<br />

<strong>in</strong>to commercial l<strong>in</strong>es by various barley<br />

breed<strong>in</strong>g programs throughout <strong>the</strong><br />

western U.S. All results are available on<br />

<strong>the</strong> USDA/ARS GRIN data base system.<br />

In 1999 a resist<strong>an</strong>t variety, B<strong>an</strong>cr<strong>of</strong>t (P.I.<br />

605474), was developed <strong>an</strong>d released<br />

cooperatively by <strong>the</strong> USDA/ARS,<br />

Colorado State University, Idaho State<br />

University, <strong>an</strong>d Oregon State University.<br />

Race variation studies<br />

Differential nurseries were developed <strong>in</strong><br />

cooperation with Dr. Mareike Johnston at<br />

Mont<strong>an</strong>a State University. The differential<br />

nurseries were pl<strong>an</strong>ted <strong>in</strong> Bolivia,<br />

Colorado, Ecuador, <strong>an</strong>d Germ<strong>an</strong>y (Brown<br />

et al., 1996; Hill et al., 1995). Considerable<br />

variation was observed both between<br />

field nurseries <strong>an</strong>d also under controlled<br />

conditions <strong>in</strong> greenhouse trials, where<br />

comparisons were made by Dr. Johnston<br />

(Tables 1 <strong>an</strong>d 2).<br />

Table 1. Variation <strong>of</strong> BSR-24 susceptibility <strong>in</strong><br />

Bolivia, Ecuador, <strong>an</strong>d Colorado, 1994 (field test).†<br />

Differentials Bolivia Ecuador Colorado<br />

Emir S MS MS<br />

Mazurca MS MS S<br />

Zephyr S S S<br />

I 5 MS S S<br />

BBA 2890 MS MS MS<br />

Trumpf MS 0 S<br />

Hor 4020 R MS MS<br />

Bigo MS R MS<br />

Abed B<strong>in</strong>der 12 S S MS<br />

Cambr<strong>in</strong>us S S S<br />

Luttichauer L<strong>an</strong>dgerste MS S MS<br />

Heils Fr<strong>an</strong>ken MS MR S<br />

S 3170 (Hor 3209) S MR S<br />

S 3192 (Hor 2926) MS R S<br />

Gr<strong>an</strong>nelose Zweizeilige R 0 S<br />

Weisse Von Fong Tien S S S<br />

Varunda MS R S<br />

Stauffers Obersulzer S MS S<br />

Hor 1428 MS S MS<br />

Morex S S S<br />

Steptoe S S S<br />

Larker S S S<br />

Abyss<strong>in</strong>i<strong>an</strong> 14 MS 0 MS<br />

Topper S MS S<br />

BBA 809 MR R MS<br />

Hokkaido Chevalier MS R S<br />

Hiproly MS S S<br />

† R = resist<strong>an</strong>t, MR = moderately resist<strong>an</strong>t,<br />

MS = moderately susceptible, S = susceptible.


20<br />

W.M. Brown, J.P. Hill, <strong>an</strong>d V.R. Velasco<br />

Table 2. Selected stripe rust differential<br />

reactions <strong>in</strong> greenhouse <strong>in</strong>oculations.†<br />

GER GER WPD<br />

Differentials 24 23 93 PF94 Utah Colo<br />

Mazurka R S R R R<br />

HOR 4020 R R,S I R S<br />

Cambr<strong>in</strong>us S R S S R R<br />

Heils Fr<strong>an</strong>ken S R R I R I<br />

HOR 1428 R S R R R R<br />

Dr. Johnston also tested isolates from<br />

Colorado, Mont<strong>an</strong>a, <strong>an</strong>d Utah aga<strong>in</strong>st<br />

<strong>the</strong> differentials under controlled<br />

conditions. When <strong>the</strong>se were compared<br />

to known races 24 <strong>an</strong>d 23 <strong>in</strong> tests carried<br />

out by Dr. Walters <strong>in</strong> Germ<strong>an</strong>y,<br />

considerable variation was aga<strong>in</strong> seen<br />

(Tables 3 <strong>an</strong>d 4).<br />

† R = resist<strong>an</strong>t, MR = moderately resist<strong>an</strong>t,<br />

MS = moderately susceptible, S = susceptible.<br />

Table 3. Stripe rust barley differential reactions<br />

<strong>in</strong> Mont<strong>an</strong>a, Germ<strong>an</strong>y, <strong>an</strong>d Colorado, 1994<br />

(greenhouse test).†<br />

Mont<strong>an</strong>a Germ<strong>an</strong>y Germ<strong>an</strong>y Colorado<br />

Differentials R - 24 R-24 R-23 R-24 (?)<br />

Emir R R-S R R<br />

Mazurca R R S R<br />

Zephyr S S I S<br />

I 5 R R R R<br />

BBA 2890 R R - R<br />

Trumpf R R R R<br />

HOR 4020 R,S R - S<br />

Bigo R R R R<br />

Abed B<strong>in</strong>der 12 S MS - S<br />

Cambr<strong>in</strong>us S S R R<br />

Luttichauer S S - S<br />

L<strong>an</strong>dgers<br />

Heils Fr<strong>an</strong>ken R S R S<br />

S 3170 (Hor 3209) R R R R<br />

S 3192 (Hor 2926) R R R R<br />

Gr<strong>an</strong>nenlose R R - R<br />

Zweizeil<br />

Weisse S S S S<br />

Von Fong Tie<br />

Varunda R R R R<br />

Stauffers R R - R<br />

Obersulzer<br />

Hor 1428 R R S R<br />

Morex S S S S<br />

Steptoe S MS - S<br />

Larker S I - S<br />

Abyss<strong>in</strong>i<strong>an</strong> 14 R - - MS<br />

Topper S S - S<br />

BBA 809 R - - R<br />

Hokkaido R - - S<br />

Chevalier<br />

Hiproly R R - R<br />

† R = resist<strong>an</strong>t, MS = moderately susceptible,<br />

I = <strong>in</strong>termediate, S = susceptible.<br />

Table 4. Effect <strong>of</strong> fungicide seed treatment on<br />

stripe rust race 24, at different pl<strong>an</strong>t<strong>in</strong>g times,<br />

1994.†<br />

Treatment J<strong>an</strong>uary† April<br />

CBG‡3.00 45 a 23 a<br />

CBG 2.00 45 a 22 a<br />

CBG 1.50 43 a 22 a<br />

CBG 1.00 43 a 23 a<br />

CBG 0.75 43 a 23 a<br />

Capt<strong>an</strong>/Bayt<strong>an</strong> 40 b 19 b<br />

Thiram/Raxil 39 b 14 c<br />

Vitavax extra 39 b 13 c<br />

Vitavax 200 34 c 13 c<br />

Untreated 34 c 13 c<br />

† Days after emergence when first pustules observed.<br />

‡ Capt<strong>an</strong>/Bayt<strong>an</strong>/Gaucho.<br />

Summary <strong>of</strong> germplasm<br />

screen<strong>in</strong>g<br />

Germplasm evaluation <strong>an</strong>d screen<strong>in</strong>g <strong>in</strong><br />

Bolivia <strong>an</strong>d elsewhere cont<strong>in</strong>ue to<br />

identify a wide r<strong>an</strong>ge <strong>of</strong> barley stripe<br />

rust resist<strong>an</strong>ce sources. Of note is that<br />

our work <strong>an</strong>d that <strong>of</strong> our cooperators<br />

show considerable variation <strong>in</strong> what has<br />

been called “race 24.”<br />

Variation <strong>in</strong> race 24 is also supported by<br />

observations reported <strong>in</strong> 1994 by<br />

Marshall <strong>an</strong>d Sutton (1995) <strong>an</strong>d L<strong>in</strong>e<br />

(Chen et al., 1995; L<strong>in</strong>e <strong>an</strong>d Chen, 1996;


Import<strong>an</strong>ce <strong>of</strong> Identify<strong>in</strong>g Stripe Rust Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

21<br />

1999). Thus it is clear that barley stripe<br />

rust <strong>in</strong> North America is a very<br />

heterogenous population.<br />

Fungicide Trials for<br />

Control <strong>of</strong> <strong>Barley</strong> Stripe<br />

Rust Race 24<br />

Early results <strong>in</strong> 1979 2 <strong>in</strong> Bolivia<br />

<strong>in</strong>dicat<strong>in</strong>g that seed treatments might be<br />

effective led to reevaluat<strong>in</strong>g this<br />

approach (Velasco et al., 1995). Seed<br />

treatment field trials were h<strong>an</strong>d pl<strong>an</strong>ted<br />

twice <strong>in</strong> Bolivia (J<strong>an</strong>uary <strong>an</strong>d April) <strong>in</strong><br />

1998 (Table 4). Seed was commercially<br />

treated by Gustafson Corporation. The<br />

first pl<strong>an</strong>t<strong>in</strong>g <strong>in</strong> J<strong>an</strong>uary was at <strong>the</strong><br />

normal time for <strong>the</strong> area, a period prior<br />

to <strong>the</strong> development <strong>of</strong> high stripe rust<br />

occurrence. The second pl<strong>an</strong>t<strong>in</strong>g was<br />

much later, <strong>in</strong> April, when <strong>the</strong> fungus<br />

was very active, <strong>an</strong>d under conditions <strong>of</strong><br />

extremely high stripe rust <strong>in</strong>oculum<br />

pressure.<br />

In all cases Bayt<strong>an</strong> (triadimenol) gave<br />

signific<strong>an</strong>tly enh<strong>an</strong>ced stripe rust<br />

protection after emergence (Table 5).<br />

Comb<strong>in</strong>ation seed treatment <strong>an</strong>d<br />

foliar fungicide trials<br />

Fungicide trials were <strong>in</strong>itiated <strong>in</strong> 1978,<br />

when <strong>the</strong> disease was first found <strong>in</strong><br />

Bolivia. Unfortunately at least two<br />

fungicide applications <strong>of</strong> Bayleton are<br />

required to keep <strong>the</strong> disease below a<br />

potentially damag<strong>in</strong>g level (Vealsco <strong>an</strong>d<br />

Brown, 1982; Velasco et al., 1980). It is<br />

unlikely that under U.S. conditions two<br />

field applications <strong>of</strong> <strong>an</strong>y fungicide<br />

would be economically feasible for<br />

barley stripe rust control.<br />

Integrated trials us<strong>in</strong>g seed treatments<br />

<strong>an</strong>d foliar spray comb<strong>in</strong>ations were<br />

carried out <strong>in</strong> Bolivia from J<strong>an</strong>uary<br />

through April, 1994 <strong>an</strong>d 1995. These<br />

trials demonstrated that foliar<br />

applications <strong>of</strong> Tilt, Folicur, or Bayleton<br />

applied at first sign <strong>of</strong> stripe rust were<br />

effective aga<strong>in</strong>st stripe rust (Brown et al.,<br />

1996; Velasco et al., 1993). O<strong>the</strong>r trials<br />

have demonstrated effective control with<br />

additional fungicides (Calhoun et al.,<br />

1988; L<strong>in</strong>e 1998, 1999; Navarro <strong>an</strong>d<br />

Zamora, 1990).<br />

One trial <strong>of</strong> <strong>in</strong>terest <strong>in</strong> Bolivia was<br />

pl<strong>an</strong>ted with a local barley l<strong>an</strong>drace <strong>an</strong>d<br />

had no seed treatment o<strong>the</strong>r th<strong>an</strong> noted<br />

(Table 5). A comp<strong>an</strong>ion trial was pl<strong>an</strong>ted<br />

with <strong>the</strong> variety Russell. The seed for<br />

this trial had been supplied by <strong>the</strong> ARS/<br />

USDA Small Gra<strong>in</strong>s Laboratory <strong>in</strong><br />

Aberdeen, ID, <strong>an</strong>d unknown to <strong>the</strong><br />

authors had been treated with Vitavax.<br />

All plots were h<strong>an</strong>d-pl<strong>an</strong>ted <strong>an</strong>d sprays<br />

applied with a m<strong>an</strong>ual backpack sprayer<br />

at 33 psi at label rates. No adjuv<strong>an</strong>ts<br />

were used.<br />

Table 5. <strong>Barley</strong> stripe rust race 24 fungicide trial,<br />

cv. Criolla, 1994.<br />

No. <strong>of</strong><br />

Disease<br />

Treat- applica- Rate severity (%) Yield<br />

ment tions (kg/ha) at milk stage (kg/ha)<br />

B/T 2 † 0.55 a 3,537.66 a<br />

B/T 1 † 7.35 a 3,177.50 ab<br />

Bayt<strong>an</strong> ‡ 12.72 a 3,140.00 ab<br />

Tilt 2 .6 13.22 a 2,532.00 ab<br />

Tilt 1 .6 66.77 b 2,499.16 b<br />

Control - - 91.05 c 1,094.16 c<br />

† Bayt<strong>an</strong>/Tilt at 0.6kg/ha <strong>an</strong>d 200g/100kg seed.<br />

‡ As seed treatment 200g/100kg seed.<br />

2<br />

Velasco <strong>an</strong>d Brown, unpublished field observations, Cochabamba, Bolivia.


22<br />

W.M. Brown, J.P. Hill, <strong>an</strong>d V.R. Velasco<br />

All comb<strong>in</strong>ations <strong>of</strong> Bayt<strong>an</strong> <strong>an</strong>d foliar<br />

fungicides enh<strong>an</strong>ced disease<br />

suppression <strong>an</strong>d result<strong>an</strong>t yield. Of<br />

considerable <strong>in</strong>terest, <strong>the</strong> second trial<br />

(Table 6) with a comb<strong>in</strong>ation <strong>of</strong> Vitavax<br />

<strong>an</strong>d Bayt<strong>an</strong> gave better protection th<strong>an</strong><br />

two foliar sprays without seed<br />

treatment. When compared to <strong>the</strong><br />

efficacy <strong>of</strong> Bayt<strong>an</strong> alone <strong>in</strong> <strong>the</strong> previous<br />

trial, it <strong>in</strong>dicated a possible synergistic<br />

effect between Vitavax <strong>an</strong>d Bayt<strong>an</strong>.<br />

Table 6. <strong>Barley</strong> stripe rust race 24 fungicide trial,<br />

cv. Russell, 1994.<br />

No. <strong>of</strong><br />

Disease<br />

Treat- applica- Rate severity (%) Yield<br />

ment tions (kg/ha) at milk stage (kg/ha)<br />

Bayt<strong>an</strong> † 0.82a 3,352.66a<br />

Tilt 2 0.600 7.90ab 3,075.83ab<br />

Bayleton 2 1.000 8.20ab 2,715.83 bc<br />

Folicur 2 0.750 25.45 bc 2,553.33 bcd<br />

M<strong>an</strong>zate 2 2.000 27.47 c 2,240.83 cd<br />

Control - 73.77 d 2,002.50 d<br />

† Seed treatment 200 g/100 kg seed. All seed pretreated<br />

with Vitavax.<br />

Discussion <strong>an</strong>d<br />

Conclusions<br />

Considerable progress has been made <strong>in</strong><br />

<strong>the</strong> identification <strong>of</strong> sources <strong>of</strong> resist<strong>an</strong>ce<br />

to barley stripe rust race 24 (Brown et al.,<br />

1996; Brown et al., 1993b; Hill et al., 1995;<br />

Velasco et al., 1991). The observed<br />

variability <strong>an</strong>d <strong>the</strong> conclusion reached<br />

by ourselves <strong>an</strong>d o<strong>the</strong>rs that <strong>the</strong> race 24<br />

designation is not just one race, but<br />

potentially m<strong>an</strong>y, br<strong>in</strong>gs <strong>in</strong> to question<br />

<strong>the</strong> value <strong>of</strong> search<strong>in</strong>g for gene specific<br />

“vertical resist<strong>an</strong>ce.”<br />

The import<strong>an</strong>ce <strong>of</strong> stripe rust resist<strong>an</strong>ce<br />

depends on all or <strong>an</strong>y <strong>of</strong> several<br />

characteristics:<br />

• location <strong>an</strong>d environment<br />

• o<strong>the</strong>r pest <strong>an</strong>d diseases present<br />

• total context <strong>of</strong> <strong>the</strong> cropp<strong>in</strong>g system<br />

• economics<br />

Each <strong>of</strong> <strong>the</strong> above impacts <strong>the</strong> potential<br />

usefulness <strong>of</strong> develop<strong>in</strong>g stripe rust<br />

resist<strong>an</strong>ce <strong>in</strong> barley. <strong>Barley</strong> stripe rust is<br />

favored by humid <strong>an</strong>d cooler climates.<br />

These do not necessarily prevail <strong>in</strong> m<strong>an</strong>y<br />

<strong>of</strong> <strong>the</strong> locations where malt<strong>in</strong>g <strong>an</strong>d feed<br />

barleys are produced.<br />

O<strong>the</strong>r pests <strong>an</strong>d diseases impact<strong>in</strong>g <strong>the</strong><br />

crop, such as Russi<strong>an</strong> wheat aphid <strong>an</strong>d<br />

scab, may be more import<strong>an</strong>t. Putt<strong>in</strong>g a<br />

high priority on stripe rust resist<strong>an</strong>ce<br />

may not be appropriate or <strong>the</strong> best use <strong>of</strong><br />

limited resources.<br />

Look<strong>in</strong>g at <strong>the</strong> whole cropp<strong>in</strong>g system is<br />

also import<strong>an</strong>t. In some areas such as<br />

Colorado, barley stripe rust is only a<br />

problem if barley is pl<strong>an</strong>ted late <strong>an</strong>d<br />

even <strong>the</strong>n only <strong>in</strong> some years. Use <strong>of</strong><br />

early pl<strong>an</strong>t<strong>in</strong>g provides a period when<br />

<strong>the</strong> fungus is not present <strong>an</strong>d allows<br />

major development <strong>of</strong> <strong>the</strong> crop <strong>in</strong> <strong>the</strong><br />

absence <strong>of</strong> <strong>in</strong>oculum.<br />

The economics <strong>of</strong> fungicide use is also<br />

import<strong>an</strong>t. Effective fungicides are<br />

available for stripe rust, but <strong>in</strong> less<br />

affluent societies, are beyond <strong>the</strong><br />

economic resources <strong>of</strong> <strong>the</strong> growers. Even<br />

<strong>in</strong> more affluent agriculture, <strong>the</strong> cost<br />

benefit ratio <strong>of</strong> <strong>the</strong> new generation<br />

strobul<strong>in</strong>-based fungicides may not<br />

justify fungicide use.<br />

Additionally, o<strong>the</strong>r pest or disease<br />

problems may not be as amenable to<br />

pesticide treatment. Therefore,<br />

development <strong>an</strong>d deployment <strong>of</strong>


Import<strong>an</strong>ce <strong>of</strong> Identify<strong>in</strong>g Stripe Rust Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

23<br />

resist<strong>an</strong>ce to those problems are more<br />

import<strong>an</strong>t <strong>in</strong> <strong>the</strong> total m<strong>an</strong>agement<br />

context.<br />

Use <strong>of</strong> a fungicide to m<strong>an</strong>age stripe rust<br />

will not be necessary on a yearly basis<br />

due to <strong>the</strong> sporadic development <strong>of</strong> <strong>the</strong><br />

disease <strong>in</strong> m<strong>an</strong>y areas. In those years<br />

when <strong>the</strong> fungus does develop early<br />

enough to become a threat, timely<br />

fungicide application may be economic<br />

<strong>an</strong>d outweigh <strong>the</strong> expense <strong>an</strong>d priority<br />

<strong>of</strong> develop<strong>in</strong>g resist<strong>an</strong>ce to stripe rust.<br />

Associated knowledge ga<strong>in</strong>ed from<br />

barley screen<strong>in</strong>g trials over 10 years,<br />

from field observations <strong>of</strong> <strong>the</strong><br />

epidemiology <strong>an</strong>d work with both seed<br />

<strong>an</strong>d foliar fungicide trials, suggests a<br />

long-r<strong>an</strong>ge <strong>in</strong>tegrated approach is best.<br />

Such <strong>an</strong> approach would emphasize <strong>the</strong><br />

use <strong>of</strong> trace to moderately susceptible<br />

barley l<strong>in</strong>es <strong>an</strong>d o<strong>the</strong>r m<strong>an</strong>agement<br />

techniques. Even <strong>in</strong> us<strong>in</strong>g such <strong>an</strong><br />

<strong>in</strong>tegrated approach it is still critical to<br />

m<strong>an</strong>age host pl<strong>an</strong>t resist<strong>an</strong>ce (Brown<br />

1976; Brown 1993) by <strong>the</strong> use <strong>of</strong>:<br />

• gene rotation, where different sources<br />

<strong>of</strong> resist<strong>an</strong>ce are moved <strong>in</strong> <strong>an</strong>d out <strong>of</strong><br />

<strong>the</strong> host pl<strong>an</strong>t population,<br />

• gene diversity, where a r<strong>an</strong>ge <strong>of</strong><br />

resist<strong>an</strong>ce genes are present <strong>in</strong> different<br />

cultivars with<strong>in</strong> <strong>an</strong> area at <strong>an</strong>y one<br />

time,<br />

• gene rotation, where cont<strong>in</strong>ued <strong>an</strong>d<br />

careful monitor<strong>in</strong>g <strong>of</strong> fields are<br />

rout<strong>in</strong>ely carried out <strong>an</strong>d <strong>in</strong>itial<br />

outbreaks are detected early <strong>an</strong>d spot<br />

treated with appropriate fungicides<br />

early, before <strong>the</strong> disease c<strong>an</strong> spread.<br />

Therefore a stripe rust program is<br />

recommended that uses <strong>the</strong> follow<strong>in</strong>g<br />

<strong>in</strong>tegrated m<strong>an</strong>agement tactics:<br />

• Use a slow-rust<strong>in</strong>g (TMS-5MS) l<strong>in</strong>e.<br />

• Treat seed with <strong>an</strong> appropriate<br />

fungicide.<br />

• Pl<strong>an</strong>t early.<br />

• Scout <strong>an</strong>d apply appropriate fungicide<br />

if 5% BSR prior to boot.<br />

Acknowledgments<br />

The authors would like to acknowledge<br />

<strong>an</strong>d th<strong>an</strong>k our cooperators: Dr. Ursula<br />

Walter (Germ<strong>an</strong>y), Ing. Ju<strong>an</strong> Cardova<br />

(Bolivia), Ing. Miguel Rivadeneira<br />

(Ecuador), <strong>an</strong>d Dr. Hugo Vivar (Mexico).<br />

We also th<strong>an</strong>k Dr. Mareike Johnston,<br />

Mont<strong>an</strong>a State University, for<br />

develop<strong>in</strong>g <strong>an</strong>d provid<strong>in</strong>g <strong>the</strong><br />

differential nursery l<strong>in</strong>es for field<br />

pl<strong>an</strong>t<strong>in</strong>g <strong>an</strong>d race comparison studies,<br />

<strong>an</strong>d Dr. Darrell Wesenberg <strong>an</strong>d Dr.<br />

Harrold Bockelm<strong>an</strong> at <strong>the</strong> USDA/ARS<br />

Small Gra<strong>in</strong>s Laboratory, Aberdeen, ID,<br />

for provid<strong>in</strong>g <strong>an</strong>d prepar<strong>in</strong>g barley l<strong>in</strong>es<br />

used <strong>in</strong> this program. Also we would<br />

like to th<strong>an</strong>k Dr. Rollie L<strong>in</strong>e, USDA/ARS<br />

at Wash<strong>in</strong>gton State University for<br />

identify<strong>in</strong>g multiple races <strong>of</strong> barely<br />

stripe rust from Colorado <strong>an</strong>d o<strong>the</strong>r U.S.<br />

collections. This project is supported by<br />

<strong>the</strong> USDA/ARS Small Gra<strong>in</strong>s<br />

Laboratory, Aberdeen, ID, <strong>an</strong>d <strong>the</strong><br />

Americ<strong>an</strong> Malt<strong>in</strong>g <strong>Barley</strong> Association<br />

(AMBA).


24<br />

W.M. Brown, J.P. Hill, <strong>an</strong>d V.R. Velasco<br />

References<br />

Brown, W.M. 1976. Emerg<strong>in</strong>g disease problems <strong>in</strong><br />

Kore<strong>an</strong> rice <strong>an</strong>d <strong>the</strong>ir orig<strong>in</strong>s. Kore<strong>an</strong> Journal<br />

<strong>of</strong> Pl<strong>an</strong>t Protection 15:39-46.<br />

Brown, W.M. 1992. <strong>New</strong> diseases <strong>of</strong> signific<strong>an</strong>ce<br />

to Colorado. Proc. <strong>of</strong> <strong>the</strong> Colorado Crop<br />

Protection Institute, Ft. Coll<strong>in</strong>s, CO. pp. 72-80.<br />

Brown, W.M. 1993. The role <strong>of</strong> IPM <strong>in</strong><br />

contemporary agriculture <strong>an</strong>d environmental<br />

issues. In: Successful Implementation <strong>of</strong><br />

Integrated Pest M<strong>an</strong>agement for Agricultural<br />

Crops. A.R. Leslie <strong>an</strong>d G.W. Cuperus (eds.).<br />

Lewis Publishers, CRC Press, Boca Raton, FL.<br />

pp. 171-79.<br />

Brown, W.M., Velasco, V.R., <strong>an</strong>d Hill, J.P. 1996.<br />

Integrated m<strong>an</strong>agement <strong>of</strong> barley stripe rust<br />

disease: A case study <strong>in</strong> successful<br />

<strong>in</strong>ternational cooperation. Technical Quarterly<br />

33:241-245.<br />

Brown, W.M., Velasco, V.R., Hill, J.P., <strong>an</strong>d Dillon,<br />

M.A. 1993. <strong>Barley</strong> stripe rust, Pucc<strong>in</strong>ia<br />

striiformis, found <strong>in</strong> Colorado. Phytopath.<br />

83:690 (abstr.).<br />

Brown, W.M., Velasco, V.R., Hill, J.P., Marshall, D.,<br />

Wesnberg, D.M., <strong>an</strong>d Bockelm<strong>an</strong>, H.C. 1993.<br />

Responses <strong>of</strong> national small gra<strong>in</strong> collection<br />

<strong>an</strong>d o<strong>the</strong>r elite barley germplasm to stripe rust<br />

race 24. 15th North America <strong>Barley</strong> Research<br />

Workshop, Guelph, C<strong>an</strong>ada. 1992. <strong>Barley</strong><br />

<strong>New</strong>sletter. 36:183 (abstr.).<br />

Calhoun, D.S., Arh<strong>an</strong>a, K., <strong>an</strong>d Vivar, H.E. 1988.<br />

Chemical control <strong>of</strong> barley stripe rust, a new<br />

disease for North America. <strong>Barley</strong> <strong>New</strong>sletter<br />

32:109-12.<br />

Chen, X.M., L<strong>in</strong>e, R.F., <strong>an</strong>d Leung, H. 1995.<br />

Virulence <strong>an</strong>d polymorphic DNA relationships<br />

<strong>of</strong> Pucc<strong>in</strong>ia striiformis f.sp. hordei to o<strong>the</strong>r rusts.<br />

Phytopath. 85:1335-1342.<br />

Dub<strong>in</strong>, H.J., <strong>an</strong>d Stubbs, R.W. 1984. Pucc<strong>in</strong>ia<br />

striiformis f.sp. hordei, cause <strong>of</strong> barley yellow<br />

rust epidemic <strong>in</strong> South America. Phytopath.<br />

74:821 (abstr.).<br />

Dub<strong>in</strong>, H.J., <strong>an</strong>d Stubbs, R.W. 1986. Epidemic<br />

spread <strong>of</strong> barley stripe rust <strong>in</strong> South America.<br />

Pl<strong>an</strong>t Dis. 70:141-144.<br />

Hill, J.P., Johnston, M.R., Velasco, V.R., <strong>an</strong>d Brown,<br />

W.M. 1995. Response <strong>of</strong> selected barley l<strong>in</strong>es to<br />

barley stripe rust <strong>in</strong> Bolivia, Ecuador,<br />

Colorado, <strong>an</strong>d Germ<strong>an</strong>y. Phytophath. 85:1040.<br />

L<strong>in</strong>e, R.E. 1998. Control <strong>of</strong> stripe rust <strong>an</strong>d stem<br />

rust <strong>of</strong> spr<strong>in</strong>g barley with seed treatments <strong>an</strong>d<br />

foliar fungicides, 1997. F & N Tests 53:383-386.<br />

L<strong>in</strong>e, R.E. 1999. Control <strong>of</strong> stripe rust <strong>of</strong> spr<strong>in</strong>g<br />

barley with foliar fungicides, 1998. F & N Tests<br />

54:299-303.<br />

L<strong>in</strong>e, R.F., <strong>an</strong>d Chen, X.M. 1996. Wheat <strong>an</strong>d barley<br />

stripe rust <strong>in</strong> North America. Proc. <strong>of</strong> <strong>the</strong><br />

Europe Mediterr<strong>an</strong>e<strong>an</strong> Cereal Rust Powdery<br />

Mildew Conference. 9:2-6.<br />

L<strong>in</strong>e, R.F., <strong>an</strong>d Chen, X.M. 1999. Epidemiology<br />

<strong>an</strong>d control <strong>of</strong> barley stripe rust <strong>in</strong> North<br />

America. Proc. 16th Americ<strong>an</strong> <strong>Barley</strong><br />

Researchers’ Workshop. Idaho Falls, ID. p. 24.<br />

Marshall, D., <strong>an</strong>d Sutton, R.L. 1995. Epidemiology<br />

<strong>of</strong> stripe rust virulence <strong>of</strong> Pucc<strong>in</strong>ia striiformis<br />

f.sp. hordei, <strong>an</strong>d yield loss <strong>in</strong> barley. Pl<strong>an</strong>t Dis.<br />

79:732-737.<br />

Navarro, F.M., <strong>an</strong>d Zamora, M.D. 1990. Control<br />

quimico de la roya l<strong>in</strong>eal amarilla de la cebada<br />

en la Mesa Central. SARH. INIFAP-CIFAEM.<br />

Mexico. 10 pp.<br />

Velasco, V.R., <strong>an</strong>d Brown, W.M. 1982. Stripe rust<br />

occurrence <strong>an</strong>d control <strong>in</strong> Bolivia. Phytopath.<br />

72:975 (Abstr.).<br />

Velasco, V.R., Brown, W.M., <strong>an</strong>d Hill, J.P. 1995.<br />

Evaluation <strong>of</strong> barley stripe rust control with<br />

seed treatments <strong>an</strong>d/or foliar fungicides.<br />

Phytopath. 85:1042.<br />

Velasco, V.R., Brown, W.M., Hill, J.P., Bockelm<strong>an</strong>,<br />

H.E., <strong>an</strong>d Wesenberg, D.M. 1991. <strong>Barley</strong> stripe<br />

rust race 24 resist<strong>an</strong>ce identified <strong>in</strong> field<br />

screenng trials <strong>in</strong> Bolivia, SA. Phytopath.<br />

81:1347 (Abstr.).<br />

Velasco, V.R., Hill, J.P., <strong>an</strong>d Brown, W.M. 1993.<br />

<strong>Barley</strong> stripe rust-race 24 control with triazole<br />

fungicides. Phytopath. 83:1335 (Abstr.).<br />

Velasco, V.R., <strong>an</strong>d Brown, W.M. 1980. Incidencia y<br />

control de la raza nueva de Pucc<strong>in</strong>ia striiformis<br />

en cebada. III Sem<strong>in</strong>ario Nacional de<br />

Investigaciones Agropecuarias y Forestales.<br />

S<strong>an</strong>ta Cruz de la Sierra, Bolivia.


25<br />

Impact <strong>of</strong> ICARDA/CIMMYT<br />

<strong>Barley</strong> Germplasm on <strong>Barley</strong><br />

<strong>Breed<strong>in</strong>g</strong> <strong>in</strong> Ecuador<br />

O. CHICAIZA 1<br />

S<strong>in</strong>ce 1984, <strong>the</strong> barley breed<strong>in</strong>g program<br />

<strong>in</strong> Ecuador started a very close<br />

collaboration with <strong>the</strong> ICARDA/<br />

CIMMYT <strong>Barley</strong> Program to develop<br />

varieties suitable for <strong>the</strong> Ecuadori<strong>an</strong><br />

highl<strong>an</strong>ds. In Ecuador, barley is<br />

cultivated under ra<strong>in</strong>fed conditions on<br />

mounta<strong>in</strong> slopes at altitudes <strong>of</strong> 2400 to<br />

3600 m. The highl<strong>an</strong>ds <strong>of</strong> Ecuador feature<br />

small subsistence farms where<br />

mech<strong>an</strong>ization is limited because <strong>of</strong> <strong>the</strong><br />

terra<strong>in</strong>, <strong>an</strong>d most thresh<strong>in</strong>g is done by<br />

<strong>an</strong>imals.<br />

Statistical data show that <strong>the</strong> area pl<strong>an</strong>ted<br />

to barley dropped from 100,231 ha <strong>in</strong><br />

1969 to 26,878 ha <strong>in</strong> 1978, due ma<strong>in</strong>ly to<br />

<strong>the</strong> presence <strong>of</strong> <strong>the</strong> pathogen Pucc<strong>in</strong>ia<br />

striiformis f.sp. hordei, which causes<br />

yellow rust. The new disease wiped out<br />

all <strong>the</strong> barley varieties <strong>in</strong> Ecuador. By <strong>the</strong><br />

late 1970s, <strong>the</strong> barley program had<br />

released three resist<strong>an</strong>t varieties (Dorada,<br />

Duchicela, <strong>an</strong>d Ter<strong>an</strong>) selected from<br />

materials <strong>in</strong>troduced from <strong>the</strong> world<br />

collection. Yet <strong>the</strong> rapid adoption <strong>of</strong> <strong>the</strong>se<br />

varieties by farmers was not enough to<br />

return barley to its previous area. Even<br />

though <strong>the</strong> varieties Dorada <strong>an</strong>d Ter<strong>an</strong><br />

are still resist<strong>an</strong>t to yellow rust, <strong>the</strong>y have<br />

been elim<strong>in</strong>ated from <strong>the</strong> barley grow<strong>in</strong>g<br />

area because <strong>of</strong> <strong>the</strong>ir susceptibility to leaf<br />

rust <strong>of</strong> barley, P. hordei.<br />

Development <strong>of</strong> barley cultivars<br />

with multiple disease resist<strong>an</strong>ce<br />

The ma<strong>in</strong> goal <strong>of</strong> Ecuador’s barley<br />

breed<strong>in</strong>g program has been to develop<br />

new barley cultivars with multiple<br />

disease resist<strong>an</strong>ce. Diseases or disease<br />

complexes determ<strong>in</strong>e <strong>the</strong> type <strong>of</strong><br />

germplasm that needs to be developed<br />

for <strong>the</strong> Ecuadori<strong>an</strong> highl<strong>an</strong>ds. S<strong>in</strong>ce<br />

1984, a breed<strong>in</strong>g methology for <strong>the</strong><br />

<strong>in</strong>corporation <strong>of</strong> genetic resist<strong>an</strong>ce to<br />

major diseases was adopted by <strong>the</strong><br />

ICARDA/CIMMYT <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong><br />

Program, because most available<br />

resist<strong>an</strong>ce sources, most <strong>of</strong> <strong>the</strong>m <strong>in</strong> poor<br />

agronomic backgrounds, were useful<br />

only for a s<strong>in</strong>gle disease.<br />

The <strong>in</strong>corporation <strong>of</strong> two or more<br />

disease resist<strong>an</strong>ce genes <strong>in</strong>to well<br />

adapted varieties or adv<strong>an</strong>ced l<strong>in</strong>es,<br />

followed by rounds <strong>of</strong> cross<strong>in</strong>g <strong>an</strong>d<br />

selection, allowed <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong><br />

resist<strong>an</strong>ce genes for yellow rust, leaf<br />

rust, scald (Rhynchosporium secalis), <strong>an</strong>d<br />

BYD.<br />

Because most sources <strong>of</strong> resist<strong>an</strong>ce were<br />

available at <strong>the</strong> ICARDA/CIMMYT<br />

Program, <strong>in</strong>itial crosses, at least at <strong>the</strong><br />

very beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> jo<strong>in</strong>t program,<br />

were done <strong>in</strong> Mexico. As <strong>the</strong> gene(s) was<br />

<strong>in</strong>corporated <strong>in</strong>to local germplasm,<br />

1<br />

Leader, Cereals Program, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Ecuador.


26<br />

O. Chicaiza<br />

crosses were also done by <strong>the</strong> national<br />

breed<strong>in</strong>g program. In both cases,<br />

segregat<strong>in</strong>g populations were evaluated<br />

<strong>in</strong> both Mexico <strong>an</strong>d Ecuador to speed up<br />

<strong>the</strong> selection process.<br />

<strong>New</strong> barley varieties<br />

released <strong>in</strong> Ecuador<br />

INIAP-SHYRI 89 was <strong>the</strong> first variety<br />

released <strong>in</strong> Ecuador <strong>in</strong> 1989. This variety<br />

orig<strong>in</strong>ated from <strong>the</strong> cross LIGNEE 640/<br />

KOBER//TERAN 78; <strong>the</strong> orig<strong>in</strong>al cross<br />

was made <strong>in</strong> Mexico <strong>an</strong>d <strong>in</strong>troduced to<br />

<strong>the</strong> national program as <strong>an</strong> F 5<br />

l<strong>in</strong>e <strong>in</strong><br />

1985. The new variety had high levels <strong>of</strong><br />

resist<strong>an</strong>ce to yellow rust, scald, leaf rust,<br />

net blotch, <strong>an</strong>d BYD, but was susceptible<br />

to loose smut. It has been <strong>the</strong> most<br />

widely adopted barley cultivar <strong>in</strong><br />

Ecuador. In 1992, <strong>the</strong> national program<br />

released <strong>an</strong>o<strong>the</strong>r two varieties orig<strong>in</strong>ated<br />

<strong>in</strong> <strong>the</strong> ICARDA/CIMMYT Program:<br />

INIAP-CALICUCHIMA 92 <strong>an</strong>d INIAP-<br />

ATAHUALPA 92. Toge<strong>the</strong>r <strong>the</strong>se three<br />

varieties cover almost 90% <strong>of</strong> all <strong>the</strong><br />

barley area, which <strong>in</strong>creased to 80,000 ha<br />

by 1998.<br />

The most recent release is <strong>the</strong> variety<br />

INIAP-SHYRI 2000, generated for <strong>the</strong><br />

national program us<strong>in</strong>g as parents <strong>the</strong><br />

well adapted variety INIAP-SHYRI 89<br />

<strong>an</strong>d GRIT, <strong>in</strong>troduced by <strong>the</strong> ICARDA/<br />

CIMMYT Program <strong>in</strong> 1990. The new<br />

variety will replace INIAP-SHYRI 89.<br />

The orig<strong>in</strong> <strong>an</strong>d characteristics <strong>of</strong> barley<br />

varieties released <strong>in</strong> Ecuador are<br />

presented <strong>in</strong> Table 1.<br />

<strong>New</strong> barley germplasm<br />

available <strong>in</strong> <strong>the</strong> national<br />

program<br />

The orig<strong>in</strong> <strong>an</strong>d yield perform<strong>an</strong>ce <strong>of</strong> <strong>the</strong><br />

best l<strong>in</strong>es <strong>in</strong> S<strong>an</strong>ta Catal<strong>in</strong>a <strong>in</strong> 1999 are<br />

presented <strong>in</strong> Table 2. Yields <strong>of</strong> l<strong>in</strong>es<br />

derived from crosses made by <strong>the</strong><br />

national program are very similar to<br />

those <strong>of</strong> l<strong>in</strong>es derived from crosses made<br />

by <strong>the</strong> ICARDA/CIMMYT Program. The<br />

best five l<strong>in</strong>es yielded 42-75% more th<strong>an</strong><br />

INIAP-SHYRI 89. This yield <strong>in</strong>crease<br />

Table 1. Orig<strong>in</strong> <strong>an</strong>d characteristics <strong>of</strong> barley varieties released <strong>in</strong> Ecuador.<br />

Year <strong>of</strong> Days to Pl<strong>an</strong>t Yellow Leaf Yield<br />

Variety release harvest height (cm) rust rust (kg/ha)<br />

DORADA (selection from C.I. 9650) 1973 170 110 0 80S 3636<br />

DUCHICELA 1978 180 120 30S 5MS 3700<br />

TERAN 78 (selection from Abyss<strong>in</strong>i<strong>an</strong> 669) 1978 145 105 0 60MS 2715<br />

INIAP-SHYRI 89 1989 154 105 0 5MS 4937<br />

LIGNEE640/KOBER//TERAN 78<br />

CMB83A-2561-A-2M-1Y-1LAG-1E-OGH<br />

INIAP-CALICUCHIMA 92 1992 160 110 15MS 60S 3958<br />

LB IRAN/UNA8271//GLORIA”S”/COME”S”<br />

CMB84A-1127-D-2B-1Y-6M-0Y<br />

INIAP-ATAHUALPA 92 1992 155 100 5MS 0 3542<br />

SUTTER/GLORIA”S”/COME”S”/3/PI6384/<br />

CAPUCHONA<br />

CM86-767-C-2Y-168GH-2M-2Y<br />

INIAP-SHYRI 2000 2000 160 110 0 TR 8056<br />

SHYRI/GRIT<br />

E-II-93-8891-2E-1E-4E


Impact <strong>of</strong> ICARDA/CIMMYT <strong>Barley</strong> Germplasm on <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong> <strong>in</strong> Ecuador<br />

27<br />

may be due to: 1) <strong>in</strong>corporation <strong>of</strong> yellow<br />

rust, leaf rust, <strong>an</strong>d scald resist<strong>an</strong>ce genes<br />

<strong>in</strong>to a s<strong>in</strong>gle genotype, <strong>an</strong>d 2) selection<br />

for high yield per se. Of <strong>the</strong>se new l<strong>in</strong>es,<br />

INIAP-SHYRI 2000 was released as a<br />

variety <strong>in</strong> 1999; <strong>the</strong> l<strong>in</strong>e CARDO “S” was<br />

released <strong>in</strong> <strong>the</strong> year 2000.<br />

Perform<strong>an</strong>ce <strong>of</strong> barley varieties<br />

<strong>in</strong> Saraguro, Loja, Ecuador<br />

Until 1995, <strong>the</strong> average yield obta<strong>in</strong>ed by<br />

small poor farmers <strong>in</strong> Saraguro, Loja, was<br />

700 kg/ha. This low yield was due to <strong>the</strong><br />

susceptibility <strong>of</strong> <strong>the</strong> local variety Clipper<br />

to yellow rust, scald, <strong>an</strong>d leaf rust; <strong>an</strong>d<br />

<strong>the</strong> lack <strong>of</strong> new, improved varieties. In<br />

1995, <strong>the</strong> breed<strong>in</strong>g program decided to<br />

Table 2. Orig<strong>in</strong> <strong>an</strong>d yield perform<strong>an</strong>ce <strong>of</strong> <strong>the</strong><br />

best barley adv<strong>an</strong>ced l<strong>in</strong>es <strong>in</strong> S<strong>an</strong>ta Catal<strong>in</strong>a,<br />

1999.<br />

Yield % yield<br />

Adv<strong>an</strong>ced l<strong>in</strong>e<br />

(kg/ha) <strong>in</strong>crease<br />

INIAP-SHYRI 89 (check) 4954<br />

ROLAND/EH11//ESC-II-72-83-3E-7E- 8704 75<br />

5E-1E/3/SEN”S”/4/ALELI<br />

CMB90A-871-C-1M-1Y-1M-0Y-0E<br />

INIAP-SHYRI 2000 8056 62<br />

SHYRI89/GRIT<br />

E-II-93-8891-2E-1E-4E-0E-0E-0E-<br />

0E-0E-0E<br />

GAL/PI6384//CN48/CI8985/3/ 7569 52<br />

GLORIA”S”/COPAL”S”<br />

E-II-89-8889-1E-4E-1E-3E-0E<br />

CARDO “S” 7153 44<br />

CMB85A-1300-E-15B-5E-0E<br />

GLORIA”S”/COPAL”S”//ABN/3/SHYRI 7037 42<br />

CMB87-E-2Y-3B-2Y-3M-1Y-0M-0E<br />

<strong>in</strong>troduce <strong>the</strong> variety INIAP-SHYRI 89.<br />

The high yield potential shown by this<br />

variety gave farmers enough confidence<br />

to start apply<strong>in</strong>g <strong>in</strong>puts such as fertilizers<br />

<strong>an</strong>d herbicides <strong>in</strong> <strong>the</strong> next cycles. The<br />

results <strong>of</strong> four years <strong>of</strong> work are<br />

summarized <strong>in</strong> Table 3. The rapid <strong>in</strong>crease<br />

<strong>in</strong> <strong>the</strong> number <strong>of</strong> families participat<strong>in</strong>g<br />

<strong>an</strong>d <strong>the</strong> number <strong>of</strong> hectares pl<strong>an</strong>ted to <strong>the</strong><br />

new varieties is a clear demonstration that<br />

small-scale farmers have adopted new<br />

varieties released by <strong>the</strong> national<br />

program. Average yields now r<strong>an</strong>ge from<br />

1.9 to 3.5 t/ha, with some farmers<br />

obta<strong>in</strong><strong>in</strong>g nearly 5.0 t/ha.<br />

Conclusions<br />

• <strong>Barley</strong> germplasm developed by <strong>the</strong><br />

ICARDA/CIMMYT Program has<br />

allowed <strong>the</strong> release <strong>in</strong> Ecuador <strong>of</strong> new<br />

varieties with multiple disease resist<strong>an</strong>ce<br />

<strong>an</strong>d high yield potential.<br />

• <strong>New</strong> barley germplasm that will allow<br />

cont<strong>in</strong>ued progress is available <strong>in</strong> <strong>the</strong><br />

national program.<br />

• Seed <strong>of</strong> <strong>the</strong> new high yield<strong>in</strong>g barley<br />

varieties has to be available for smallscale<br />

farmers to give <strong>the</strong>m <strong>the</strong><br />

opportunity <strong>of</strong> benefit<strong>in</strong>g from <strong>the</strong> new<br />

varieties.<br />

• Better varieties have helped small-scale<br />

farmers to develop enough confidence to<br />

apply <strong>in</strong>puts such as fertilizers <strong>an</strong>d<br />

herbicides.<br />

Table 3. Perform<strong>an</strong>ce <strong>of</strong> barley varieties <strong>in</strong> Saraguro, Loja, Ecuador.<br />

Participat<strong>in</strong>g families (no.) Hectares (no.) Me<strong>an</strong> yield (t/ha)<br />

Varieties 1996 1997 1998 1999 1996 1997 1998 1999 1996 1997 1998 1999<br />

SHYRI 89 13 240 334 600 8 80 141 190 3.16 2.05 1.94 2.1<br />

SHYRI 2000 16 6 3.5


28<br />

Malt<strong>in</strong>g <strong>Barley</strong> for <strong>the</strong><br />

<strong>New</strong> Millennium<br />

L. WRIGHT 1<br />

A brief look at <strong>the</strong> history <strong>of</strong><br />

malt<strong>in</strong>g barley<br />

What will malt<strong>in</strong>g barley look like <strong>in</strong> <strong>the</strong><br />

next thous<strong>an</strong>d years? What will <strong>the</strong><br />

malt<strong>in</strong>g quality be? To successfully<br />

<strong>an</strong>swer <strong>the</strong>se questions we need to look<br />

at what has happened <strong>in</strong> <strong>the</strong> last 1000<br />

years <strong>an</strong>d perhaps from <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><br />

recorded time. Around 6000 years ago,<br />

<strong>the</strong> Sumari<strong>an</strong>s wrote <strong>the</strong> first references<br />

about barley <strong>an</strong>d beer. Dur<strong>in</strong>g <strong>the</strong> next<br />

5000 years <strong>the</strong> Sumari<strong>an</strong> beer recipes<br />

were ref<strong>in</strong>ed by <strong>the</strong> Babyloni<strong>an</strong>s, <strong>an</strong>d<br />

<strong>the</strong>n by <strong>the</strong> Egypti<strong>an</strong>s, by <strong>the</strong> Greeks<br />

<strong>an</strong>d <strong>the</strong>n <strong>the</strong> Rom<strong>an</strong>s.<br />

With <strong>the</strong> spread <strong>of</strong> <strong>the</strong> Rom<strong>an</strong> Empire,<br />

beer mak<strong>in</strong>g spread throughout Europe<br />

<strong>an</strong>d especially to <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong><br />

Empire to <strong>the</strong> Gauls, <strong>the</strong> Teutons <strong>an</strong>d<br />

<strong>in</strong>to Sc<strong>an</strong>d<strong>in</strong>avia. By <strong>the</strong> end <strong>of</strong> <strong>the</strong> first<br />

millennium AD <strong>the</strong> art <strong>an</strong>d science <strong>of</strong><br />

malt<strong>in</strong>g barley <strong>an</strong>d beer mak<strong>in</strong>g were<br />

firmly established <strong>in</strong> <strong>the</strong> monasteries;<br />

each monastery had its own special<br />

sources <strong>of</strong> barleys used for malt<strong>in</strong>g <strong>an</strong>d<br />

its special way <strong>of</strong> brew<strong>in</strong>g beer. After <strong>the</strong><br />

Reformation, brew<strong>in</strong>g shifted from <strong>the</strong><br />

monasteries to small family breweries <strong>in</strong><br />

<strong>the</strong> towns <strong>an</strong>d cities.<br />

By <strong>the</strong> 16 th century certa<strong>in</strong> Europe<strong>an</strong><br />

regions, ma<strong>in</strong>ly <strong>the</strong> French <strong>an</strong>d D<strong>an</strong>ish<br />

areas, were prized as hav<strong>in</strong>g better<br />

malt<strong>in</strong>g barley th<strong>an</strong> o<strong>the</strong>rs. Why it was<br />

better was not specifically recorded, but<br />

a statement from a 18 th century brewer<br />

summed it up best: “You c<strong>an</strong>’t make a<br />

good beer out <strong>of</strong> poor malt”. At that time<br />

plump barley, with low prote<strong>in</strong> <strong>an</strong>d<br />

bright hull color, was a very rough “rule<br />

<strong>of</strong> thumb” for malt quality.<br />

The Industrial Revolution <strong>of</strong> <strong>the</strong> 19 th<br />

century also revolutionized brew<strong>in</strong>g<br />

science. Scientific <strong>in</strong>struments were<br />

<strong>in</strong>vented to help measure <strong>the</strong> various<br />

stages <strong>of</strong> beer mak<strong>in</strong>g. Instruments like<br />

hydrometers, attemperators, <strong>an</strong>d<br />

improvements <strong>in</strong> <strong>the</strong>rmometers <strong>an</strong>d<br />

refrigeration made it possible to make<br />

better, more consistent beer, <strong>an</strong>d <strong>in</strong><br />

larger volumes.<br />

Ano<strong>the</strong>r historical event took place <strong>in</strong><br />

1842 <strong>in</strong> Plzen, <strong>in</strong> what is now <strong>the</strong> Czech<br />

Republic: <strong>the</strong> creation <strong>of</strong> a clear, goldencolored<br />

lager beer. Until that time lager<br />

beers were dark colored <strong>an</strong>d cloudy. This<br />

clear, golden-colored lager beer became<br />

a much-sought-after st<strong>an</strong>dard <strong>in</strong> <strong>the</strong><br />

mak<strong>in</strong>g <strong>of</strong> lager beer, <strong>the</strong> most popular<br />

style <strong>of</strong> beer <strong>in</strong> <strong>the</strong> world. This beer was<br />

1<br />

Busch Agricultural Resources, Inc. The op<strong>in</strong>ions outl<strong>in</strong>ed <strong>in</strong> this talk are <strong>the</strong> author’s <strong>an</strong>d do not<br />

necessarily reflect those <strong>of</strong> Anheuser-Busch or Busch Agricultural Resource.


Malt<strong>in</strong>g <strong>Barley</strong> for <strong>the</strong> <strong>New</strong> Millennium<br />

29<br />

made from locally grown, low-prote<strong>in</strong><br />

barley, malted us<strong>in</strong>g a new British<br />

malt<strong>in</strong>g system that applied <strong>in</strong>direct heat<br />

<strong>an</strong>d used very s<strong>of</strong>t water hav<strong>in</strong>g a very<br />

low soluble m<strong>in</strong>erals content.<br />

In North America, beer mak<strong>in</strong>g<br />

developed <strong>in</strong> <strong>the</strong> 18 th century <strong>an</strong>d<br />

flourished dur<strong>in</strong>g <strong>the</strong> 19 th century.<br />

Malt<strong>in</strong>g barley varieties developed <strong>in</strong> <strong>the</strong><br />

United States were higher <strong>in</strong> prote<strong>in</strong> for<br />

several reasons. First, <strong>the</strong> orig<strong>in</strong>al barley<br />

areas <strong>in</strong> North America were better<br />

suited for grow<strong>in</strong>g six-rowed malt<strong>in</strong>g<br />

barley th<strong>an</strong> two-rowed barley. Second,<br />

six-rowed barleys were <strong>in</strong>herently higher<br />

<strong>in</strong> prote<strong>in</strong> th<strong>an</strong> two-rowed malt barley.<br />

And third, <strong>the</strong> use <strong>of</strong> supplemental starch<br />

additives <strong>in</strong> <strong>the</strong> mash<strong>in</strong>g process, called<br />

adjunct, required a higher enzyme level<br />

<strong>an</strong>d thus a higher prote<strong>in</strong> level <strong>in</strong> <strong>the</strong><br />

malt. All <strong>of</strong> <strong>the</strong>se events, plus m<strong>an</strong>y<br />

more, gave us <strong>the</strong> beer <strong>an</strong>d <strong>the</strong> malt<strong>in</strong>g<br />

barleys we have today.<br />

Trends <strong>in</strong> current <strong>an</strong>d future<br />

malt<strong>in</strong>g varieties<br />

What will <strong>the</strong> trends <strong>in</strong> malt<strong>in</strong>g barley<br />

quality be <strong>in</strong> <strong>the</strong> 21 st century? S<strong>in</strong>ce<br />

malt<strong>in</strong>g barley <strong>an</strong>d <strong>the</strong> brew<strong>in</strong>g <strong>in</strong>dustry<br />

have ch<strong>an</strong>ged so rapidly <strong>in</strong> <strong>the</strong> past 200<br />

years, it is impossible to accurately<br />

predict too far <strong>in</strong> <strong>the</strong> future. Also brew<strong>in</strong>g<br />

techniques <strong>in</strong> <strong>the</strong> future may ch<strong>an</strong>ge<br />

some <strong>of</strong> <strong>the</strong> parameters for barley quality<br />

we have today. Yet, based on what has<br />

happened <strong>in</strong> <strong>the</strong> past 200 years, certa<strong>in</strong><br />

predictions c<strong>an</strong> be made on where<br />

malt<strong>in</strong>g barley could be <strong>in</strong> <strong>the</strong> next 100<br />

years. Much <strong>of</strong> <strong>the</strong> <strong>in</strong>formation used <strong>in</strong><br />

this talk is from <strong>the</strong> Americ<strong>an</strong> Malt<strong>in</strong>g<br />

<strong>Barley</strong> Association (AMBA), which<br />

recommends malt<strong>in</strong>g barleys for <strong>the</strong><br />

United States on behalf <strong>of</strong> its member<br />

maltsters <strong>an</strong>d breweries, Anheuser-Busch<br />

among <strong>the</strong>m.<br />

In <strong>the</strong> early 20th century, m<strong>an</strong>y local<br />

malt<strong>in</strong>g varieties evolved <strong>in</strong>to regionally<br />

adapted malt<strong>in</strong>g varieties. In <strong>the</strong> latter<br />

part <strong>of</strong> <strong>the</strong> same century those regional<br />

malt<strong>in</strong>g varieties moved globally. This<br />

was driven for <strong>the</strong> most part by malt<strong>in</strong>g<br />

comp<strong>an</strong>ies buy<strong>in</strong>g suitable malt<strong>in</strong>g<br />

barley for <strong>the</strong>ir brew<strong>in</strong>g customers, who<br />

<strong>in</strong> turn had gone from be<strong>in</strong>g local<br />

breweries to regional breweries. These<br />

regional breweries needed larger<br />

amounts <strong>of</strong> high quality malt as <strong>the</strong>y<br />

<strong>in</strong>creased <strong>the</strong>ir size to meet regional<br />

dem<strong>an</strong>ds. They knew which malt<strong>in</strong>g<br />

varieties gave <strong>the</strong>m good brew<strong>in</strong>g<br />

results, so <strong>the</strong>y favored <strong>the</strong>se varieties<br />

over several lesser known malt<strong>in</strong>g<br />

varieties. Thus, locally adapted varieties<br />

gave way to regionally grown varieties.<br />

These regional varieties are now giv<strong>in</strong>g<br />

way to even fewer malt<strong>in</strong>g varieties<br />

grown <strong>in</strong> wider <strong>an</strong>d more diverse<br />

regions. As malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g<br />

comp<strong>an</strong>ies source malt<strong>in</strong>g barley from<br />

wider <strong>an</strong>d more diverse malt<strong>in</strong>g grow<strong>in</strong>g<br />

areas, malt<strong>in</strong>g barley varieties <strong>in</strong> <strong>the</strong><br />

future will need to be widely adapted <strong>in</strong><br />

terms <strong>of</strong> yield, disease resist<strong>an</strong>ce, <strong>an</strong>d<br />

malt<strong>in</strong>g quality. If a malt<strong>in</strong>g variety is<br />

not widely adapted, it may not make it<br />

on <strong>the</strong> list <strong>of</strong> malt<strong>in</strong>g varieties that<br />

breweries give to <strong>the</strong>ir malt suppliers.<br />

Therefore, future malt<strong>in</strong>g varieties will<br />

be tested <strong>in</strong> more th<strong>an</strong> one grow<strong>in</strong>g<br />

region <strong>an</strong>d will have wide adaptation. If<br />

<strong>the</strong>re is a slog<strong>an</strong> for <strong>the</strong> malt<strong>in</strong>g barley<br />

breeder <strong>in</strong> <strong>the</strong> future, it is: “Develop<br />

malt<strong>in</strong>g barley varieties locally, but test<br />

globally.”<br />

Malt<strong>in</strong>g barley must keep pace as <strong>an</strong><br />

economically viable crop for farmers to<br />

grow. The return per acre that a crop<br />

generates will rema<strong>in</strong> <strong>the</strong> factor that<br />

determ<strong>in</strong>es which crop <strong>the</strong> farmer will


30<br />

L. Wright<br />

grow <strong>in</strong> <strong>an</strong>y given year. S<strong>in</strong>ce commodity<br />

prices have rema<strong>in</strong>ed fairly const<strong>an</strong>t, <strong>the</strong><br />

<strong>in</strong>crease <strong>in</strong> <strong>the</strong> value <strong>of</strong> <strong>the</strong> crop must<br />

come from <strong>in</strong>creased gra<strong>in</strong> yield.<br />

Increased gra<strong>in</strong> yield comes from<br />

improved cultural practices <strong>an</strong>d newer,<br />

higher yield<strong>in</strong>g varieties.<br />

In <strong>the</strong> US, new malt<strong>in</strong>g varieties are<br />

accepted, on average, every 10 years.<br />

This rate <strong>of</strong> accept<strong>an</strong>ce has not kept pace<br />

with <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> varieties <strong>of</strong><br />

compet<strong>in</strong>g crops. The lag <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>troduction <strong>of</strong> new varieties is putt<strong>in</strong>g<br />

<strong>in</strong>creas<strong>in</strong>g pressure on <strong>the</strong> brew<strong>in</strong>g<br />

<strong>in</strong>dustry to accept newer varieties at a<br />

faster rate. In <strong>the</strong> future, economically<br />

viable malt<strong>in</strong>g varieties will probably<br />

have a shorter market life <strong>an</strong>d will make<br />

way for higher yield<strong>in</strong>g malt<strong>in</strong>g varieties<br />

with very similar malt<strong>in</strong>g quality.<br />

In conjunction with gra<strong>in</strong> yield <strong>an</strong>d wide<br />

adaptation, disease resist<strong>an</strong>ce also needs<br />

to be thought <strong>of</strong> globally. Disease affects<br />

not only yield but also malt<strong>in</strong>g quality<br />

through reduced plumpness, <strong>in</strong>creased<br />

prote<strong>in</strong>, <strong>an</strong>d reduced malt extract. Future<br />

malt<strong>in</strong>g barleys will be grown <strong>in</strong> m<strong>an</strong>y<br />

areas <strong>an</strong>d under different disease<br />

pressure. The developers <strong>of</strong> future<br />

malt<strong>in</strong>g varieties must be aware <strong>of</strong> which<br />

genes for resist<strong>an</strong>ce to m<strong>in</strong>or as well as<br />

major diseases <strong>the</strong>ir varieties possess.<br />

This is import<strong>an</strong>t to determ<strong>in</strong>e whe<strong>the</strong>r a<br />

variety c<strong>an</strong> be <strong>in</strong>troduced <strong>in</strong>to o<strong>the</strong>r<br />

regions.<br />

The successful malt<strong>in</strong>g barley <strong>of</strong> <strong>the</strong><br />

future will have to have a set b<strong>an</strong>k <strong>of</strong><br />

disease resist<strong>an</strong>ce genes to give it <strong>the</strong><br />

extra flexibility to be sown <strong>in</strong> diverse<br />

grow<strong>in</strong>g areas. This is be<strong>in</strong>g greatly<br />

facilitated today with <strong>the</strong> advent <strong>of</strong><br />

molecular marker assisted selection <strong>an</strong>d<br />

technologies to screen for several<br />

markers at <strong>the</strong> same time.<br />

This is just a sampl<strong>in</strong>g <strong>of</strong> <strong>the</strong> m<strong>an</strong>y<br />

import<strong>an</strong>t agronomic traits that <strong>the</strong><br />

malt<strong>in</strong>g barley <strong>of</strong> <strong>the</strong> future will need.<br />

Yet it gives <strong>an</strong> idea <strong>of</strong> what is needed for<br />

developers <strong>of</strong> new malt<strong>in</strong>g varieties. The<br />

bottom l<strong>in</strong>e is that future malt<strong>in</strong>g barley<br />

breeders need to th<strong>in</strong>k globally when<br />

<strong>the</strong>y develop new malt<strong>in</strong>g varieties.<br />

Quality requirements<br />

What will be needed <strong>in</strong> malt<strong>in</strong>g quality<br />

<strong>in</strong> <strong>the</strong> future? Basically, brewers w<strong>an</strong>t<br />

large qu<strong>an</strong>tities <strong>of</strong> gra<strong>in</strong> <strong>of</strong> known<br />

varieties with consistent quality.<br />

Remember that malt<strong>in</strong>g comp<strong>an</strong>ies are<br />

buy<strong>in</strong>g malt<strong>in</strong>g barley for <strong>the</strong>ir brew<strong>in</strong>g<br />

customers. The brew<strong>in</strong>g <strong>in</strong>dustry, as a<br />

whole, is very conservative <strong>an</strong>d ch<strong>an</strong>ges<br />

slowly. Breweries need consistent<br />

malt<strong>in</strong>g quality <strong>an</strong>d approve only those<br />

new varieties that meet <strong>the</strong>ir needs. Yet<br />

<strong>the</strong>re are some trends <strong>in</strong> malt<strong>in</strong>g quality<br />

that may be predicted.<br />

Extract is <strong>the</strong> measure <strong>of</strong> everyth<strong>in</strong>g that<br />

is put <strong>in</strong> solution from <strong>the</strong> malt at <strong>the</strong><br />

start <strong>of</strong> <strong>the</strong> brew<strong>in</strong>g process. It is a<br />

measure <strong>of</strong> soluble sugars, dextr<strong>in</strong>s,<br />

soluble prote<strong>in</strong>s, beta-gluc<strong>an</strong>s, <strong>an</strong>d o<strong>the</strong>r<br />

compounds. Just as gra<strong>in</strong> yield is money<br />

to <strong>the</strong> farmer, extract yield is money to<br />

<strong>the</strong> brewer. Generally speak<strong>in</strong>g, <strong>the</strong> more<br />

extract <strong>the</strong>re is <strong>in</strong> <strong>the</strong> wort, <strong>the</strong> more food<br />

for <strong>the</strong> yeast <strong>in</strong> <strong>the</strong> fermentation process.<br />

The amount <strong>of</strong> fermentable sugars <strong>in</strong> <strong>the</strong><br />

extract is particularly import<strong>an</strong>t because<br />

<strong>the</strong> yeast converts <strong>the</strong>se sugars <strong>in</strong>to<br />

alcohol <strong>an</strong>d CO 2<br />

.<br />

In <strong>the</strong> last 40 years <strong>the</strong> extract <strong>of</strong> US<br />

varieties has <strong>in</strong>creased from around 75%<br />

to roughly 80%. Will we see <strong>an</strong>o<strong>the</strong>r 5%<br />

<strong>in</strong>crease <strong>in</strong> <strong>the</strong> next 40 years? Perhaps,<br />

but we should po<strong>in</strong>t out that <strong>the</strong>re is <strong>an</strong><br />

upper limit for extract <strong>in</strong> <strong>the</strong> barley<br />

kernel, <strong>an</strong>d we are close to reach<strong>in</strong>g it. In


Malt<strong>in</strong>g <strong>Barley</strong> for <strong>the</strong> <strong>New</strong> Millennium<br />

31<br />

determ<strong>in</strong><strong>in</strong>g <strong>the</strong> maximum extract<br />

potential, we have to take <strong>in</strong>to account<br />

not only <strong>the</strong> soluble compounds <strong>in</strong><br />

barley malt, but also all <strong>the</strong> <strong>in</strong>soluble<br />

compounds. The hull component, <strong>the</strong><br />

<strong>in</strong>soluble prote<strong>in</strong>s, <strong>an</strong>d o<strong>the</strong>r <strong>in</strong>soluble<br />

components have been estimated at<br />

around 15%; thus <strong>the</strong> maximum<br />

extract potential <strong>in</strong> <strong>the</strong> barley kernel is<br />

around 85%.<br />

There are only a few ways that extract<br />

could <strong>in</strong>crease beyond this limit. The<br />

author <strong>of</strong> a recent publication states that<br />

<strong>the</strong> percent extract would <strong>in</strong>crease by<br />

more th<strong>an</strong> 5% through <strong>the</strong> use <strong>of</strong> a hullless<br />

malt<strong>in</strong>g barley. This <strong>in</strong>crease <strong>in</strong><br />

extract is very <strong>in</strong>terest<strong>in</strong>g to <strong>the</strong><br />

brewers, who consider a 0.1% <strong>in</strong>crease<br />

to be subst<strong>an</strong>tial. Will <strong>the</strong> brew<strong>in</strong>g<br />

<strong>in</strong>dustry shift to us<strong>in</strong>g hull-less malt<strong>in</strong>g<br />

barleys? Not without ch<strong>an</strong>g<strong>in</strong>g <strong>the</strong><br />

brew<strong>in</strong>g process. <strong>Barley</strong> hulls are <strong>an</strong><br />

import<strong>an</strong>t component <strong>of</strong> <strong>the</strong> wortfilter<strong>in</strong>g<br />

process <strong>an</strong>d contribute essential<br />

flavor to <strong>the</strong> beer. However, due to <strong>the</strong><br />

signific<strong>an</strong>t jump <strong>in</strong> extract that hull-less<br />

malt<strong>in</strong>g barley could contribute, its use<br />

will no doubt be studied closely by <strong>the</strong><br />

brewers. If hull-less malt<strong>in</strong>g barley is<br />

used <strong>in</strong> brew<strong>in</strong>g, <strong>the</strong> smaller breweries<br />

will start us<strong>in</strong>g it first; <strong>the</strong> larger <strong>an</strong>d<br />

more conservative breweries will<br />

probably not use it until all process<strong>in</strong>g<br />

<strong>an</strong>d flavor concerns are satisfactorily<br />

<strong>an</strong>swered.<br />

Ano<strong>the</strong>r way to <strong>in</strong>crease extract is by<br />

reduc<strong>in</strong>g prote<strong>in</strong>. There is a reverse<br />

correlation between malt extract <strong>an</strong>d<br />

barley prote<strong>in</strong>. Less prote<strong>in</strong> is related to<br />

more starch <strong>in</strong> <strong>the</strong> gra<strong>in</strong>. From a<br />

brewer’s st<strong>an</strong>dpo<strong>in</strong>t, a high starch<br />

content <strong>in</strong> malt<strong>in</strong>g barley is desirable as<br />

a source <strong>of</strong> fermentable sugars. Gra<strong>in</strong><br />

prote<strong>in</strong> content, on <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, is<br />

import<strong>an</strong>t because it controls <strong>an</strong>d<br />

<strong>in</strong>fluences m<strong>an</strong>y aspects <strong>of</strong> malt quality,<br />

<strong>in</strong>clud<strong>in</strong>g enzymatic activity, foam<br />

properties, <strong>an</strong>d beer flavor. Therefore, a<br />

bal<strong>an</strong>ce needs to be ma<strong>in</strong>ta<strong>in</strong>ed between<br />

<strong>the</strong>se factors. Higher malt prote<strong>in</strong> will<br />

<strong>in</strong>crease <strong>the</strong> enzymatic activity <strong>of</strong> <strong>the</strong><br />

malt, but will also lower <strong>the</strong> fermentable<br />

sugar content <strong>in</strong> <strong>the</strong> extract. Lower malt<br />

prote<strong>in</strong> will <strong>in</strong>crease <strong>the</strong> fermentable<br />

sugar content <strong>in</strong> <strong>the</strong> extract, but could<br />

lower enzymatic activity below <strong>the</strong> level<br />

needed to convert <strong>the</strong> adjunct starch. A<br />

proper bal<strong>an</strong>ce has to be ma<strong>in</strong>ta<strong>in</strong>ed to<br />

accomplish both high fermentable sugars<br />

<strong>an</strong>d high enzymatic activity.<br />

Soluble prote<strong>in</strong>, or wort prote<strong>in</strong>, is <strong>the</strong><br />

amount <strong>of</strong> malt prote<strong>in</strong> that becomes<br />

soluble <strong>in</strong> <strong>the</strong> mash<strong>in</strong>g process. Brew<strong>in</strong>g<br />

yeast needs a certa<strong>in</strong> level <strong>of</strong> soluble<br />

prote<strong>in</strong> to provide <strong>the</strong> nutritional am<strong>in</strong>o<br />

acids needed for proper yeast growth.<br />

Too little or too much prote<strong>in</strong> will cause<br />

problems <strong>in</strong> <strong>the</strong> fermentation process <strong>an</strong>d<br />

may lead to undesirable beer flavor<br />

compounds <strong>an</strong>d beer color. Soluble<br />

prote<strong>in</strong> has <strong>in</strong>creased over <strong>the</strong> last 40<br />

years. For example, <strong>the</strong> high level <strong>of</strong><br />

soluble prote<strong>in</strong> <strong>in</strong> <strong>the</strong> six-rowed variety<br />

“St<strong>an</strong>der” has caused problems <strong>in</strong> <strong>the</strong><br />

brew<strong>in</strong>g process. As a result, <strong>the</strong> AMBA<br />

has implemented new guidel<strong>in</strong>es for <strong>the</strong><br />

maximum desired level <strong>of</strong> soluble<br />

prote<strong>in</strong>.<br />

These new guidel<strong>in</strong>es have brought<br />

about a progression toward lower<br />

soluble prote<strong>in</strong> malt<strong>in</strong>g varieties.<br />

<strong>Breed<strong>in</strong>g</strong> guidel<strong>in</strong>es are 11.5% to 12.5%<br />

for malt prote<strong>in</strong> <strong>an</strong>d 4.7% to 5.5% for<br />

soluble prote<strong>in</strong>. These levels may be<br />

lowered aga<strong>in</strong> some time <strong>in</strong> <strong>the</strong> future to<br />

11.0% to 12.0% for malt prote<strong>in</strong> <strong>an</strong>d 0.0%<br />

to 5.0% for soluble prote<strong>in</strong>. This<br />

reduction should ma<strong>in</strong>ta<strong>in</strong> favorable


32<br />

L. Wright<br />

brew<strong>in</strong>g components while m<strong>in</strong>imiz<strong>in</strong>g<br />

unsatisfactory process<strong>in</strong>g conditions,<br />

beer color, <strong>an</strong>d/or beer flavor. Even<br />

lower levels may be possible if brew<strong>in</strong>g<br />

processes <strong>an</strong>d yeast nutrition are not<br />

adversely impacted.<br />

Enzymatic activity <strong>of</strong> malt<strong>in</strong>g barley is<br />

needed to break down <strong>the</strong> starch <strong>in</strong> <strong>the</strong><br />

kernel <strong>in</strong>to sugars that <strong>in</strong> turn are<br />

converted <strong>in</strong>to alcohol by <strong>the</strong> yeast. In<br />

North America, a higher level <strong>of</strong><br />

enzymatic activity is needed to convert<br />

<strong>the</strong> starch <strong>of</strong> <strong>the</strong> adjunct as well.<br />

Enzymatic activity is generally<br />

measured us<strong>in</strong>g two parameters:<br />

diastatic power <strong>an</strong>d alpha-amylase.<br />

Diastatic power is <strong>the</strong> measure <strong>of</strong><br />

amylolytic enzymes levels <strong>in</strong> <strong>the</strong> malt,<br />

<strong>in</strong>clud<strong>in</strong>g alpha- <strong>an</strong>d beta-amylase, limit<br />

dextr<strong>in</strong>ase, <strong>an</strong>d <strong>the</strong> alpha-glucosidases.<br />

This is a general measurement <strong>of</strong> <strong>the</strong><br />

ability <strong>of</strong> <strong>the</strong> malt to rapidly break down<br />

<strong>the</strong> starch <strong>in</strong>to fermentable sugars.<br />

Alpha-amylase is <strong>the</strong> major enzyme <strong>in</strong><br />

starch conversion <strong>an</strong>d is measured<br />

separately.<br />

North Americ<strong>an</strong> malt<strong>in</strong>g barleys,<br />

especially <strong>the</strong> two-rowed malt<strong>in</strong>g<br />

varieties, have <strong>in</strong>creased both <strong>the</strong>ir<br />

diastatic power <strong>an</strong>d alpha-amylase<br />

levels <strong>in</strong> <strong>the</strong> past 40 years. Consequently,<br />

<strong>the</strong>re is concern that <strong>the</strong>se higher<br />

enzymatic varieties have more spout<strong>in</strong>g<br />

problems under wet harvest conditions.<br />

In addition, <strong>the</strong>re are <strong>in</strong>dications that <strong>the</strong><br />

upper limit for both diastatic power <strong>an</strong>d<br />

alpha-amylase may have been reached<br />

when look<strong>in</strong>g at brewhouse<br />

perform<strong>an</strong>ce. Aga<strong>in</strong>, <strong>the</strong> six-rowed<br />

variety “St<strong>an</strong>der” is <strong>in</strong> <strong>the</strong> center <strong>of</strong> <strong>the</strong><br />

debate due to its higher levels <strong>of</strong> both<br />

diastatic power <strong>an</strong>d alpha-amylase.<br />

After <strong>the</strong> release <strong>of</strong> St<strong>an</strong>der, breed<strong>in</strong>g<br />

guidel<strong>in</strong>es were ch<strong>an</strong>ged to state that<br />

diastatic power <strong>an</strong>d alpha-amylase<br />

levels must be similar to ei<strong>the</strong>r<br />

Harr<strong>in</strong>gton, a two-rowed malt<strong>in</strong>g<br />

variety, or Robust or Morex for sixrowed<br />

malt<strong>in</strong>g barley. These varieties are<br />

generally lower <strong>in</strong> <strong>the</strong>se enzymes th<strong>an</strong><br />

St<strong>an</strong>der. Desired levels <strong>of</strong> diastatic<br />

power are now 120 to 150, while alphaamylase<br />

levels are 45 to 55. These new<br />

levels should rema<strong>in</strong> fairly stable or<br />

perhaps be slightly lower <strong>in</strong> <strong>the</strong> future,<br />

unless <strong>the</strong>re are signific<strong>an</strong>t ch<strong>an</strong>ges <strong>in</strong><br />

<strong>the</strong> brew<strong>in</strong>g process.<br />

Application <strong>of</strong> new technologies<br />

<strong>New</strong> technology will be developed to<br />

assist <strong>in</strong> breed<strong>in</strong>g better malt<strong>in</strong>g barley<br />

varieties. Molecular marker assisted<br />

selection (MAS) will cont<strong>in</strong>ue to be a<br />

tool to determ<strong>in</strong>e <strong>the</strong> genetic make-up <strong>of</strong><br />

new experimental barleys. As locations<br />

<strong>of</strong> genes conferr<strong>in</strong>g import<strong>an</strong>t traits <strong>an</strong>d<br />

markers for <strong>the</strong>m are discovered, a<br />

library <strong>of</strong> markers will be built to enable<br />

<strong>the</strong> breeder first to test experimental<br />

malt<strong>in</strong>g l<strong>in</strong>es <strong>in</strong> <strong>the</strong> lab <strong>an</strong>d <strong>the</strong>n to<br />

verify <strong>the</strong> selected l<strong>in</strong>es <strong>in</strong> <strong>the</strong> field. <strong>New</strong><br />

test<strong>in</strong>g procedures <strong>an</strong>d <strong>in</strong>strumentation<br />

will make it possible to screen for several<br />

hundred markers at <strong>the</strong> same time. This<br />

will greatly improve <strong>the</strong> effectiveness <strong>of</strong><br />

<strong>the</strong> breeder <strong>in</strong> select<strong>in</strong>g successful<br />

malt<strong>in</strong>g l<strong>in</strong>es.<br />

S<strong>in</strong>ce we are speculat<strong>in</strong>g on future<br />

developments, <strong>the</strong>re is a possibility that<br />

improved brew<strong>in</strong>g chemistry could help<br />

<strong>the</strong> breeder by f<strong>in</strong>d<strong>in</strong>g appropriate <strong>an</strong>d<br />

<strong>in</strong>appropriate flavor compounds <strong>an</strong>d <strong>the</strong><br />

genes beh<strong>in</strong>d <strong>the</strong>m. This would allow<br />

<strong>the</strong> breeder to <strong>in</strong>clude additional<br />

markers for <strong>the</strong>se flavor genes <strong>in</strong> his<br />

library <strong>of</strong> markers. It should be stressed<br />

that <strong>the</strong> malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g <strong>in</strong>dustry<br />

will still require barley breeders to grow


Malt<strong>in</strong>g <strong>Barley</strong> for <strong>the</strong> <strong>New</strong> Millennium<br />

33<br />

out <strong>the</strong>ir malt<strong>in</strong>g l<strong>in</strong>es to determ<strong>in</strong>e <strong>the</strong>ir<br />

malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g potential.<br />

One new technology that will take more<br />

time to be accepted for use <strong>in</strong> approved<br />

malt<strong>in</strong>g barley varieties are genetically<br />

modified org<strong>an</strong>isms (GMOs), which<br />

me<strong>an</strong> that non-barley genes have been<br />

<strong>in</strong>corporated <strong>in</strong>to malt<strong>in</strong>g barley. GMOs<br />

are a controversial subject yet to be<br />

settled <strong>in</strong> Europe, Jap<strong>an</strong>, <strong>an</strong>d <strong>the</strong> U.S. It<br />

is a mixed bless<strong>in</strong>g that barley has not<br />

been easily tissue cultured. By <strong>the</strong> time a<br />

truly genetically modified malt<strong>in</strong>g<br />

barley is ready to be tested by <strong>the</strong><br />

brew<strong>in</strong>g community, <strong>the</strong> issue <strong>of</strong> GMOs<br />

may be resolved. In <strong>the</strong> me<strong>an</strong>time, <strong>the</strong><br />

brew<strong>in</strong>g community is not ready to start<br />

us<strong>in</strong>g GMO raw materials <strong>in</strong> <strong>the</strong><br />

brew<strong>in</strong>g process. However, I believe this<br />

type <strong>of</strong> research needs to be encouraged<br />

<strong>in</strong> barley while <strong>the</strong> GMO issue is be<strong>in</strong>g<br />

reviewed by <strong>the</strong> brew<strong>in</strong>g <strong>in</strong>dustry.<br />

This is a little <strong>of</strong> what may be wait<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> future <strong>of</strong> malt<strong>in</strong>g barley. Some<br />

researchers c<strong>an</strong> already see <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>gs <strong>of</strong> new tools that may help<br />

select malt<strong>in</strong>g barley varieties <strong>in</strong> <strong>the</strong><br />

future. O<strong>the</strong>rs researchers may already<br />

be implement<strong>in</strong>g some <strong>of</strong> <strong>the</strong> ideas<br />

mentioned here. There are o<strong>the</strong>r new<br />

<strong>an</strong>d excit<strong>in</strong>g improvements <strong>in</strong> both <strong>the</strong><br />

barley field <strong>an</strong>d <strong>in</strong> <strong>the</strong> brewhouse that<br />

have not been mentioned here but we<br />

await <strong>the</strong> report <strong>of</strong> <strong>the</strong>se improvements<br />

at a later date.


34<br />

<strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong> <strong>in</strong> Peru<br />

M. ROMERO LOLI AND L. GOMEZ PANDO 1<br />

<strong>Barley</strong> is a very import<strong>an</strong>t crop <strong>in</strong> <strong>the</strong><br />

highl<strong>an</strong>ds <strong>of</strong> Peru, especially at altitudes<br />

above 3000 m (Table 1). Few crops, aside<br />

from barley, are suitable for grow<strong>in</strong>g<br />

under <strong>the</strong> adverse environmental<br />

conditions (such as frost <strong>an</strong>d drought)<br />

that predom<strong>in</strong>ate <strong>in</strong> this region. <strong>Barley</strong><br />

Table 1. Ma<strong>in</strong> crops, area, production, <strong>an</strong>d yield<br />

per unit area <strong>in</strong> Peru, 1998.<br />

Food Area Production Yield<br />

crops (ha) (t) (kg/ha)<br />

Rice 269080 1548778 5756<br />

Potato 268847 2589338 9631<br />

Maize 214590 230450 1074<br />

<strong>Barley</strong> 146698 165831 1130<br />

Wheat 125894 146285 1162<br />

B<strong>an</strong><strong>an</strong>a 117792 1321890 11222<br />

Cassava 80708 884118 10955<br />

Be<strong>an</strong> 75164 67563 899<br />

Faba be<strong>an</strong> 34184 38129 1115<br />

Pea 31415 33365 1062<br />

Qu<strong>in</strong>oa 30720 28614 931<br />

Olluco 23523 116897 4969<br />

Oca 21626 101639 4700<br />

Sweet potato 17397 221609 12738<br />

Onion 14317 315622 22045<br />

Mashua 7244 32859 4536<br />

Industrial<br />

Corn 229114 702479 3066<br />

Cotton 73629 95262 1294<br />

Sugar c<strong>an</strong>e 52614 5705340 108438<br />

Marigold 5507 96070 17445<br />

Source: OIA. Producción Agrícola 1998.<br />

contributes at least 20% <strong>of</strong> <strong>the</strong> total<br />

caloric <strong>in</strong>take <strong>of</strong> rural families.<br />

Accord<strong>in</strong>g to national statistics, <strong>the</strong>re are<br />

3 million poor people liv<strong>in</strong>g <strong>in</strong> highl<strong>an</strong>d<br />

rural areas who subsist ma<strong>in</strong>ly th<strong>an</strong>ks to<br />

<strong>the</strong>ir farm<strong>in</strong>g activities.<br />

Table 2 shows <strong>the</strong> barley area,<br />

production, <strong>an</strong>d yield per hectare from<br />

1977 to 1998. <strong>Barley</strong> is produced ma<strong>in</strong>ly<br />

by subsistence farmers as a staple food<br />

crop <strong>in</strong> relatively small plots (Table 3).<br />

<strong>Barley</strong> grows mostly <strong>in</strong> low-fertility<br />

soils. In m<strong>an</strong>y cases, <strong>the</strong> use <strong>of</strong><br />

mach<strong>in</strong>ary is not possible due to <strong>the</strong><br />

steeply slop<strong>in</strong>g terra<strong>in</strong>. There is virtually<br />

no flat, well-watered agricultural l<strong>an</strong>d.<br />

Plots are perched one above <strong>an</strong>o<strong>the</strong>r up<br />

mounta<strong>in</strong> sides ris<strong>in</strong>g thous<strong>an</strong>d <strong>of</strong><br />

meters. Frost, drought, hail, <strong>an</strong>d o<strong>the</strong>r<br />

climatic factors reduce barley production<br />

at that altitude.<br />

The rusts are <strong>the</strong> most aggressive <strong>of</strong> <strong>the</strong><br />

diseases present <strong>in</strong> <strong>the</strong> region. Leaf rust<br />

causes damage all <strong>the</strong> way from sea level<br />

(<strong>the</strong> coast) to 2800 masl. Stem rust c<strong>an</strong> be<br />

found at <strong>the</strong> same altitudes, but <strong>in</strong> recent<br />

years <strong>the</strong>re have been very few<br />

outbreaks <strong>of</strong> <strong>the</strong> disease. Stripe rust is<br />

<strong>the</strong> ma<strong>in</strong> disease above 2600 masl,<br />

affect<strong>in</strong>g 90% <strong>of</strong> <strong>the</strong> cereal area. S<strong>in</strong>ce<br />

1978, it has been <strong>the</strong> most serious<br />

1<br />

Programa de Cereales, Universidad Nacional Agraria La Mol<strong>in</strong>a, Apdo. Postal 456, Lima 100.<br />

Email: pcereal@lamol<strong>in</strong>a.edu.pe.


<strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong> <strong>in</strong> Peru<br />

35<br />

Table 2. <strong>Barley</strong> area, yield, <strong>an</strong>d production <strong>in</strong><br />

Peru, 1977–98.<br />

Malt <strong>an</strong>d<br />

Harvest<br />

barley<br />

area Yield Production imports<br />

Year (000 ha) (kg/ha) (000 MT) (000 MT)<br />

1977 169.72 861 146.20 43.10<br />

1978 151.54 855 129.51 38.20<br />

1979 152.59 861 131.44 51.00<br />

1980 109.93 890 97.87 74.10<br />

1981 118.13 969 114.50 82.80<br />

1982 114.82 960 110.24 61.30<br />

1983 105.76 830 87.81 51.30<br />

1984 108.67 946 102.80 64.70<br />

1985 117.08 1060 124.11 95.60<br />

1986 104.05 1130 118.14 83.90<br />

1987 110.57 997 110.23 108.40<br />

1988 123.70 1040 128.59 92.40<br />

1989 120.22 1045 125.60 46.20<br />

1990 75.10 954 71.64 84.20<br />

1991 111.08 1028 115.22 77.70<br />

1992† 81.76 842 68.81 80.55<br />

1993† 101.17 1112 112.49 86.40<br />

1994 112.50 1154 129.84<br />

1995 107.03 1143 131.19<br />

1996 108.93 1190 152.94 39.65<br />

1997 129.91 1062 138.03 29.55<br />

1998 149.89 1130 165.83 29.95<br />

† J<strong>an</strong>.-Nov. 1993/1992 (prelim<strong>in</strong>ary data).<br />

Source: Ofic<strong>in</strong>a de Información Agraria.<br />

limit<strong>in</strong>g factor for barley production.<br />

There are m<strong>an</strong>y o<strong>the</strong>r diseases such as<br />

powdery mildew, BYDV, <strong>an</strong>d foliar<br />

diseases caused by Helm<strong>in</strong>thosporium spp.<br />

<strong>an</strong>d Rhynchosporium secalis, which are<br />

import<strong>an</strong>t <strong>in</strong> <strong>the</strong> highl<strong>an</strong>d region dur<strong>in</strong>g<br />

warm <strong>an</strong>d wet years.<br />

In general, very little farm<strong>in</strong>g technology<br />

is applied to barley production. The<br />

average barley yield was 0.8 t/ha some<br />

years ago. However, <strong>the</strong> average yield<br />

has now <strong>in</strong>creased to 1.5 t/ha <strong>in</strong> some<br />

areas th<strong>an</strong>ks to new varieties developed<br />

by Universidad Nacional Agraria La<br />

Mol<strong>in</strong>a (Pasco; Table 4).<br />

In 1968, Universidad Nacional Agraria<br />

La Mol<strong>in</strong>a started a cereal breed<strong>in</strong>g<br />

program that cont<strong>in</strong>ues to this day. The<br />

program was developed <strong>in</strong> close<br />

collaboration with Malteria Lima S.A.<br />

(Backus Corporation), ICARDA/<br />

CIMMYT, Nebraska State University,<br />

<strong>an</strong>d <strong>the</strong> International Atomic Energy<br />

Agency (IAEA). It focuses on cereals, but<br />

especially on barley production <strong>in</strong> <strong>the</strong><br />

highl<strong>an</strong>ds.<br />

Objectives<br />

• To develop improved varieties with<br />

high yield potential, resist<strong>an</strong>ce or<br />

toler<strong>an</strong>ce to abiotic <strong>an</strong>d biotic stress,<br />

<strong>an</strong>d good quality.<br />

• To develop production technologies<br />

adapted to different barley production<br />

areas.<br />

• To tr<strong>an</strong>sfer research results to<br />

agronomy students, agronomists, <strong>an</strong>d<br />

farmers.<br />

<strong>Breed<strong>in</strong>g</strong><br />

The breed<strong>in</strong>g program has <strong>an</strong> excellent<br />

bal<strong>an</strong>ce between conventional pl<strong>an</strong>t<br />

breed<strong>in</strong>g, ICARDA/CIMMYT<br />

germplasm augmentation, <strong>in</strong>duced<br />

mutation, <strong>an</strong>d biotechnology.<br />

Germplasm <strong>in</strong>troduction <strong>an</strong>d<br />

evaluation<br />

The United States Department <strong>of</strong><br />

Agriculture <strong>an</strong>d CIMMYT have<br />

provided more th<strong>an</strong> 10,000 barley<br />

accessions. This entire collection was<br />

screened for adaptability <strong>in</strong> several parts<br />

<strong>of</strong> <strong>the</strong> Ande<strong>an</strong> Region. Only a few<br />

foreign accessions were adapted to such<br />

extreme environmental conditions.<br />

National collections <strong>of</strong> local barley were<br />

put toge<strong>the</strong>r for <strong>the</strong> highl<strong>an</strong>ds <strong>of</strong> Peru<br />

<strong>an</strong>d Bolivia. These materials have been


36<br />

M. Romero Loli <strong>an</strong>d L. Gomez P<strong>an</strong>do<br />

Table 3. Size <strong>an</strong>d number <strong>of</strong> farm units <strong>an</strong>d uses <strong>of</strong> barley gra<strong>in</strong> <strong>in</strong> Peru.<br />

Gra<strong>in</strong> uses<br />

Sold at <strong>the</strong> Sold on <strong>the</strong> Home Sold as<br />

Total units farmgate market consumption seed<br />

Below 0.5 ha<br />

Number <strong>of</strong> units 22657 74 433 22137 73<br />

Area 1589.75 7.93 42.28 1537.43 2.12<br />

0.5 to 4.9 ha<br />

Number <strong>of</strong> units 162166 1204 7832 154624 281<br />

Area 59279.45 545.45 3756.54 54891.77 85.69<br />

5.0 to 9.9 ha<br />

Number <strong>of</strong> units 37151 499 2738 34722 89<br />

Area 29512.47 490.68 2888.86 26069.66 63.27<br />

10 to 19.9 ha<br />

Number <strong>of</strong> units 16505 250 1299 15309 53<br />

Area 17790.38 385.7 2120.2 15206.68 77.8<br />

20 to 49.9 ha<br />

Number <strong>of</strong> units 7635 131 624 7024 34<br />

Area 10455.31 285.4 1519.99 8585.76 64.15<br />

Above 50 ha<br />

Number <strong>of</strong> units 5319 89 406 3076 19<br />

Area 7251.42 240.47 1728.94 5241.09 40.91<br />

Total no. <strong>of</strong> units 249633 2247 13332 236892 549<br />

Total area 125878.78 1955.63 12056.81 111532.39 333.94<br />

Source: INEI. III Censo Nacional Agropecuario, Resultados def<strong>in</strong>itivos, 1996.<br />

used to develop <strong>an</strong>d improve new<br />

varieties. The cont<strong>in</strong>uous <strong>in</strong>troduction <strong>of</strong><br />

new accessions through <strong>the</strong> ICARDA/<br />

CIMMYT <strong>Barley</strong> Program <strong>an</strong>d o<strong>the</strong>r<br />

<strong>in</strong>stitutions is very useful to our<br />

breed<strong>in</strong>g program.<br />

Methods<br />

Hybridization. In this method, one<br />

parent is usually a l<strong>in</strong>e locally developed<br />

by <strong>the</strong> cereals program; <strong>the</strong> o<strong>the</strong>r is<br />

generally a selected <strong>in</strong>troduction.<br />

Selection is done us<strong>in</strong>g bulk or<br />

<strong>in</strong>dividual selection.<br />

Table 4. <strong>Barley</strong> area, yield per hectare, <strong>an</strong>d<br />

number <strong>of</strong> farm units <strong>in</strong> different departments<br />

<strong>in</strong> <strong>the</strong> Peruvi<strong>an</strong> highl<strong>an</strong>ds.<br />

<strong>Barley</strong> Yield Farm<br />

Department area (ha) (t/ha) units<br />

Ancash 6657.65 939 11005<br />

Apurimac 3128.00 1026 7892<br />

Ayacucho 8764.96 738 18941<br />

Cajamarca 7011.36 986 11679<br />

Cusco 8905.66 1250 23143<br />

Hu<strong>an</strong>cavelica 20632.97 1319 31801<br />

Hu<strong>an</strong>uco 3803.27 1300 8474<br />

Jun<strong>in</strong> 8724.07 1422 16796<br />

La Libertad 11475.12 1209 10278<br />

Pasco 29.26 1519 191<br />

Puno 43970.57 1003 191<br />

Source: INEI. III Censo Nacional Agropecuario,<br />

Resultados def<strong>in</strong>itivos.


<strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong> <strong>in</strong> Peru<br />

37<br />

Mutation <strong>in</strong>duction. Mutation is used to<br />

improve <strong>the</strong> adaptability <strong>of</strong> modern,<br />

high yield<strong>in</strong>g cereal varieties to make<br />

<strong>the</strong>m suitable for cultivation <strong>in</strong> stressprone<br />

areas <strong>of</strong> <strong>the</strong> Peruvi<strong>an</strong> Highl<strong>an</strong>ds<br />

<strong>an</strong>d to improve gra<strong>in</strong> quality<br />

characteristics.<br />

Doubled haploid production. Pl<strong>an</strong>ts<br />

selected from F1, F3, or M1 are used each<br />

cycle to produce doubled haploids us<strong>in</strong>g<br />

<strong>an</strong><strong>the</strong>r culture.<br />

Improved crop m<strong>an</strong>agement<br />

practices<br />

Studies on chemical fertilization, seed<strong>in</strong>g<br />

density, seed<strong>in</strong>g methods, time <strong>of</strong><br />

seed<strong>in</strong>g, <strong>an</strong>d chemical weed control are<br />

conducted to develop or improve<br />

agronomic practices specifically for <strong>the</strong><br />

region. Each year <strong>in</strong> <strong>the</strong> highl<strong>an</strong>ds<br />

demonstration plots us<strong>in</strong>g new varieties<br />

are established with <strong>the</strong> cooperation <strong>of</strong><br />

m<strong>an</strong>y <strong>in</strong>stitutions to show farmers new<br />

crop m<strong>an</strong>agement practices.<br />

<strong>New</strong> improved varieties<br />

Yellow rust resist<strong>an</strong>t Zapata 588 played<br />

<strong>an</strong> import<strong>an</strong>t role dur<strong>in</strong>g <strong>the</strong> severe<br />

epidemic that occurred from 1976 to<br />

1978. Almost all barley varieties<br />

cultivated <strong>in</strong> Peru were killed by <strong>the</strong><br />

yellow rust pathogen <strong>in</strong>troduced <strong>in</strong>to<br />

South America at that time.<br />

The varieties UNA 80, UNA 8270,<br />

Y<strong>an</strong>amuclo 87, Buenavista, UNA La<br />

Mol<strong>in</strong>a 94, UNA La Mol<strong>in</strong>a 95, <strong>an</strong>d UNA<br />

La Mol<strong>in</strong>a 96 were released between<br />

1980 <strong>an</strong>d 1996. These varieties show<br />

higher yield potential, improved yellow<br />

rust resist<strong>an</strong>ce, <strong>an</strong>d better gra<strong>in</strong> quality.<br />

Highl<strong>an</strong>d farmers adopted improved<br />

varieties due ma<strong>in</strong>ly to <strong>the</strong>ir good<br />

perform<strong>an</strong>ce (Table 5). It should be<br />

noted that UNA La Mol<strong>in</strong>a 95 is <strong>an</strong> early<br />

matur<strong>in</strong>g hull-less variety developed by<br />

<strong>in</strong>duc<strong>in</strong>g mutation <strong>in</strong> <strong>the</strong> variety<br />

Buenavista us<strong>in</strong>g gamma rays.<br />

Increase <strong>in</strong> National<br />

Average <strong>Barley</strong> Yields<br />

Accord<strong>in</strong>g to statistics <strong>of</strong> <strong>the</strong> Peruvi<strong>an</strong><br />

M<strong>in</strong>istry <strong>of</strong> Agriculture, <strong>the</strong> national<br />

average barley yield <strong>in</strong>creased from 859<br />

kg/ha <strong>in</strong> 1978 to 1130 kg/ha <strong>in</strong> 1998.<br />

This considerable <strong>in</strong>crease <strong>in</strong> yield was<br />

due to <strong>the</strong> use <strong>of</strong> fertilizers <strong>an</strong>d o<strong>the</strong>r<br />

cultural practices <strong>in</strong> <strong>the</strong> highl<strong>an</strong>d region,<br />

which is not usual among small farmers<br />

<strong>in</strong> Peru. The <strong>in</strong>crease <strong>in</strong> barley yields<br />

was <strong>of</strong> great signific<strong>an</strong>ce for small<br />

l<strong>an</strong>dholders <strong>in</strong> <strong>the</strong> Peruvi<strong>an</strong> highl<strong>an</strong>ds.<br />

Socioeconomic Impact<br />

The value <strong>of</strong> <strong>the</strong> <strong>an</strong>nual barley<br />

production <strong>in</strong> Peru is estimated at US$<br />

12 million. <strong>Barley</strong> varieties released by<br />

Universidad Nacional Agraria La Mol<strong>in</strong>a<br />

account for 80% <strong>of</strong> this production. From<br />

1977 to 1998 barley production totalled<br />

US$ 228 million, to <strong>the</strong> direct benefit <strong>of</strong><br />

<strong>the</strong> highl<strong>an</strong>d population.<br />

National statistics <strong>in</strong>dicate that<br />

aproximately 49.6% <strong>of</strong> Peru’s total<br />

population lives <strong>in</strong> poverty or extreme<br />

poverty; three million <strong>of</strong> those people<br />

live <strong>in</strong> rural highl<strong>an</strong>d areas. <strong>Barley</strong> is<br />

ma<strong>in</strong>ly used for food <strong>an</strong>d feed <strong>in</strong> Peru.<br />

In <strong>the</strong> highl<strong>an</strong>d region, about 70% <strong>of</strong><br />

barley gra<strong>in</strong> is used for hum<strong>an</strong><br />

consumption.


38<br />

M. Romero Loli <strong>an</strong>d L. Gomez P<strong>an</strong>do<br />

Table 5. Improved barley varieties released by Universidad Nacional Agraria La Mol<strong>in</strong>a from 1978 to<br />

1996.<br />

Yield Adaptation<br />

Genealogy (t/ha) (masl) Disease reaction<br />

Zapata 588 2 – 6 3000 –3800 Toler<strong>an</strong>t to yellow rust<br />

B112(F7-1962)D2hsIII/Compuesto XXI-51Cz<br />

UNA 8270 2 –5 3000 - 3800 Resist<strong>an</strong>t to yellow rust<br />

CNC 203131/Compuesto XXI<br />

Toler<strong>an</strong>t to scald<br />

UNA 80 2.2 – 6 3000 – 3800 Resist<strong>an</strong>t to yellow rust<br />

CNC 203346/CXXI<br />

Y<strong>an</strong>amuclo 87 2.4 – 5 3000 - 3800 Resist<strong>an</strong>t to yellow rust<br />

UNA 8309 x It<strong>in</strong>tec 77<br />

Buenavista 2.5 –3 3000 – 3800 Resist<strong>an</strong>t to yellow rust<br />

P71318-Row134.78 (ICARDA/CIMMYT: F3 Generation)<br />

UNA La Mol<strong>in</strong>a 95 2.5 –5 3000 – 3800 Resist<strong>an</strong>t to yellow rust<br />

Parent Material Buenavista (Gamma ray 300 Gy)<br />

Toler<strong>an</strong>t to Pyrenophora teres<br />

UNA La Mol<strong>in</strong>a 96 2.5 -5 3000 – 3600 Resist<strong>an</strong>t to yellow rust, leaf<br />

Gloria”s”/Celo”s”/ESCII-77-83-3E-7E-5E/1E/3/Lignee 527<br />

rust <strong>an</strong>d powdery mildew<br />

(ICARDA/CIMMYT: F3 Generation)


39<br />

Accumulat<strong>in</strong>g Genes for Disease<br />

Resist<strong>an</strong>ce <strong>in</strong> Two-Rowed <strong>Barley</strong><br />

for North Dakota<br />

J.D. FRANCKOWIAK 1<br />

A large portion <strong>of</strong> <strong>the</strong> barley (Hordeum<br />

vulgare) crop <strong>in</strong> North Dakota (ND) is<br />

grown for <strong>the</strong> malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g<br />

<strong>in</strong>dustry. Most cultivars have a six-rowed<br />

spike type <strong>an</strong>d are used as malt<strong>in</strong>g barley<br />

based on recommendations made by <strong>the</strong><br />

Americ<strong>an</strong> Malt<strong>in</strong>g <strong>Barley</strong> Association,<br />

Inc. (AMBA). Eastern ND is generally<br />

more favorable for produc<strong>in</strong>g malt<strong>in</strong>g<br />

barley th<strong>an</strong> western ND, where low<br />

yields <strong>an</strong>d th<strong>in</strong> kernels are frequently<br />

production problems. Dur<strong>in</strong>g relatively<br />

dry grow<strong>in</strong>g seasons <strong>in</strong> western ND,<br />

two-rowed barley <strong>of</strong>ten yields more th<strong>an</strong><br />

six-rowed barley. Therefore, <strong>the</strong> ND<br />

Agricultural Experiment Station funded<br />

<strong>an</strong> improvement program for two-rowed<br />

barley <strong>in</strong> <strong>the</strong> 1970s.<br />

<strong>Barley</strong> research at North Dakota State<br />

University (NDSU) is partially supported<br />

by gr<strong>an</strong>ts from AMBA <strong>an</strong>d its precursory<br />

agencies. Support for two-rowed barley<br />

improvement was based on <strong>the</strong><br />

assumptions that two-rowed cultivars<br />

will show greater yield stability <strong>in</strong><br />

western ND <strong>an</strong>d will be suitable for<br />

production <strong>of</strong> malt<strong>in</strong>g barley <strong>in</strong> eastern<br />

ND. The two-rowed program<br />

complements <strong>the</strong> six-rowed program,<br />

which was started <strong>in</strong> <strong>the</strong> early 1940s.<br />

M<strong>an</strong>y <strong>of</strong> <strong>the</strong> six-rowed barley cultivars<br />

released for production <strong>in</strong> M<strong>an</strong>itoba,<br />

M<strong>in</strong>nesota, North Dakota, <strong>an</strong>d South<br />

Dakota have similar agronomic traits <strong>an</strong>d<br />

are <strong>of</strong>ten referred to as Midwest sixrowed<br />

barley. Historically, spot blotch,<br />

<strong>in</strong>cited by Cochliobolus sativus, <strong>an</strong>d wheat<br />

stem rust, <strong>in</strong>cited by Pucc<strong>in</strong>ia gram<strong>in</strong>is f.<br />

sp. tritici, are <strong>the</strong> barley diseases that have<br />

caused <strong>the</strong> greatest production losses <strong>in</strong><br />

eastern <strong>an</strong>d central ND. <strong>Barley</strong> diseases<br />

rarely cause losses <strong>in</strong> western ND.<br />

Development <strong>of</strong> two-rowed<br />

barley for ND<br />

In 1970, Dr. Glenn A. Peterson made<br />

crosses designed for improvement <strong>of</strong><br />

two-rowed barley. He assumed that some<br />

traits <strong>of</strong> Midwest six-rowed barley were<br />

needed <strong>in</strong> two-rowed barley for ND. The<br />

best two-rowed cultivars from <strong>the</strong><br />

western USA <strong>an</strong>d prairie prov<strong>in</strong>ces <strong>of</strong><br />

C<strong>an</strong>ada were susceptible to spot blotch,<br />

wheat stem rust, <strong>an</strong>d net blotch, <strong>in</strong>cited<br />

by Pyrenophora teres f. teres. Crosses were<br />

made between <strong>the</strong> two types <strong>of</strong> barley<br />

<strong>an</strong>d <strong>the</strong> F 1<br />

pl<strong>an</strong>ts were crossed to <strong>an</strong>o<strong>the</strong>r<br />

two-rowed cultivar to <strong>in</strong>crease <strong>the</strong><br />

frequency <strong>of</strong> two-rowed pl<strong>an</strong>ts <strong>in</strong> <strong>the</strong><br />

progenies. In 1974, Dr. Melvern K.<br />

1<br />

Department <strong>of</strong> Pl<strong>an</strong>t Sciences, North Dakota State University, Fargo, North Dakota, 58105 USA.


40<br />

J.D. Fr<strong>an</strong>ckowiak<br />

Anderson was employed as <strong>the</strong> first tworowed<br />

barley breeder at NDSU.<br />

Two-rowed l<strong>in</strong>es selected from <strong>the</strong> <strong>in</strong>itial<br />

three-way crosses were tall <strong>an</strong>d lacked<br />

adequate disease resist<strong>an</strong>ce. To generate<br />

better material, good selections were<br />

crossed to six-rowed cultivars <strong>an</strong>d <strong>the</strong> F 1<br />

pl<strong>an</strong>ts crossed to a two-rowed cultivar. In<br />

1978, when selections from <strong>the</strong> second<br />

cycle <strong>of</strong> crosses were <strong>in</strong> prelim<strong>in</strong>ary yield<br />

trials, this author was employed as <strong>the</strong><br />

two-rowed barley breeder. Research on<br />

barley is conducted at NDSU by a team<br />

<strong>of</strong> scientists <strong>in</strong>clud<strong>in</strong>g a two-rowed<br />

barley breeder, a six-rowed barley<br />

breeder, a cereal chemist, a pl<strong>an</strong>t<br />

pathologist, a geneticist, a virologist, <strong>an</strong>d<br />

agronomists at <strong>the</strong> ND Research<br />

Extension Centers.<br />

Development <strong>of</strong> ‘Midwest’ tworowed<br />

barley cultivars<br />

As two-rowed l<strong>in</strong>es suitable for<br />

production <strong>in</strong> western ND were<br />

identified, phenotypic variability among<br />

<strong>the</strong> l<strong>in</strong>es derived from <strong>the</strong> two-rowed by<br />

six-rowed crosses was rapidly restricted.<br />

In 1979, <strong>the</strong> l<strong>in</strong>e ND4994 was observed to<br />

be earlier, shorter, <strong>an</strong>d stiffer th<strong>an</strong> most<br />

o<strong>the</strong>r selections. ND4994 had large,<br />

plump kernels; acceptable levels <strong>of</strong> malt<br />

extract; <strong>an</strong>d moderate values for gra<strong>in</strong><br />

prote<strong>in</strong>, diastatic power, <strong>an</strong>d alphaamylase;<br />

but its yields were below<br />

average. In 1980, however, when <strong>the</strong><br />

grow<strong>in</strong>g season was relatively hot <strong>an</strong>d<br />

dry, ND4994 was <strong>the</strong> only early l<strong>in</strong>e with<br />

high yields. A reselection was released <strong>in</strong><br />

1984 under <strong>the</strong> name Bowm<strong>an</strong> (PI483237)<br />

<strong>an</strong>d recommended for production <strong>in</strong><br />

western ND (Fr<strong>an</strong>ckowiak et al., 1985).<br />

Bowm<strong>an</strong> was classified by AMBA as a<br />

non-malt<strong>in</strong>g barley cultivar.<br />

Bowm<strong>an</strong> was widely grown <strong>in</strong><br />

southwestern ND because it yielded well<br />

<strong>an</strong>d <strong>of</strong>ten had much higher test weight<br />

values th<strong>an</strong> o<strong>the</strong>r barley cultivars.<br />

Bowm<strong>an</strong> was utilized <strong>in</strong> breed<strong>in</strong>g<br />

subsequent two-rowed cultivars for ND<br />

because <strong>of</strong> its unique comb<strong>in</strong>ation <strong>of</strong><br />

pl<strong>an</strong>t height <strong>an</strong>d maturity genes. O<strong>the</strong>r<br />

two-rowed barley cultivars released for<br />

ND <strong>in</strong>clude Stark <strong>in</strong> 1991, Log<strong>an</strong> <strong>in</strong> 1995,<br />

<strong>an</strong>d Conlon <strong>in</strong> 1996. Conlon was<br />

recommended as a malt<strong>in</strong>g barley<br />

cultivar by AMBA <strong>in</strong> 2000 <strong>an</strong>d as such is<br />

<strong>the</strong> first two-rowed malt<strong>in</strong>g barley<br />

recommended for production <strong>in</strong> ND.<br />

These two-rowed cultivars have similar<br />

agronomic characteristics <strong>an</strong>d are best<br />

adapted for production <strong>in</strong> western ND<br />

<strong>an</strong>d adjacent areas <strong>of</strong> Mont<strong>an</strong>a <strong>an</strong>d South<br />

Dakota. They c<strong>an</strong> be referred to as<br />

‘Midwest’ two-rowed barley.<br />

<strong>Barley</strong> diseases <strong>in</strong> eastern ND<br />

When released, Bowm<strong>an</strong> was resist<strong>an</strong>t to<br />

wheat stem rust <strong>an</strong>d moderately resist<strong>an</strong>t<br />

to net <strong>an</strong>d spot blotch. However, its levels<br />

<strong>of</strong> net <strong>an</strong>d spot blotch resist<strong>an</strong>ce were not<br />

adequate to recommend Bowm<strong>an</strong> for<br />

production <strong>in</strong> eastern ND. Bowm<strong>an</strong> is<br />

susceptible to number <strong>of</strong> pathogens <strong>of</strong><br />

m<strong>in</strong>or import<strong>an</strong>ce <strong>in</strong> ND. They <strong>in</strong>clude<br />

leaf rust, Pucc<strong>in</strong>ia hordei; barley yellow<br />

dwarf virus (BYDV); scald,<br />

Rhynchosporium secalis; bacterial blight,<br />

X<strong>an</strong>thomonas campestris pv. tr<strong>an</strong>slucens;<br />

powdery mildew, Blumeria gram<strong>in</strong>is f. sp.<br />

hordei; loose smut, Ustilago nuda; <strong>an</strong>d<br />

covered smut, Ustilago hordei. Bowm<strong>an</strong> is<br />

resist<strong>an</strong>t to barley stripe mosaic virus<br />

(BSMV) <strong>an</strong>d shows some resist<strong>an</strong>ce to<br />

black po<strong>in</strong>t <strong>an</strong>d common root rot, both<br />

<strong>in</strong>cited by C. sativus.<br />

After <strong>the</strong> release <strong>of</strong> Bowm<strong>an</strong>, ch<strong>an</strong>ges<br />

occurred <strong>in</strong> <strong>the</strong> relative import<strong>an</strong>ce <strong>of</strong>


Accumulat<strong>in</strong>g Genes for Disease Resist<strong>an</strong>ce <strong>in</strong> Two-Rowed <strong>Barley</strong> for North Dakota<br />

41<br />

several barley pathogens. In 1989, a new<br />

race <strong>of</strong> Pucc<strong>in</strong>ia gram<strong>in</strong>is f. sp. tritici<br />

attacked cultivars previously classified as<br />

resist<strong>an</strong>t (J<strong>in</strong> et al., 1994). In 1990, a new<br />

pathotype <strong>of</strong> C. sativus was found to<br />

attack Bowm<strong>an</strong> <strong>an</strong>d m<strong>an</strong>y <strong>of</strong> its<br />

derivatives (Fetch <strong>an</strong>d Steffenson, 1994).<br />

This pathogenicity ch<strong>an</strong>ge greatly<br />

lowered <strong>the</strong> yields <strong>of</strong> Bowm<strong>an</strong> <strong>in</strong> trials at<br />

Fargo <strong>an</strong>d L<strong>an</strong>gdon <strong>in</strong> eastern ND (Table<br />

1). In <strong>the</strong> early 1990s, speckled leaf<br />

blotch, <strong>in</strong>cited by Septoria passer<strong>in</strong>ii <strong>an</strong>d<br />

Stagonospora avenae f. sp. triticea, returned<br />

as production problems <strong>in</strong> nor<strong>the</strong>astern<br />

ND (Toubia-Rhame <strong>an</strong>d Steffenson,<br />

1999). In <strong>the</strong> 1990s, Bowm<strong>an</strong> showed a<br />

susceptible reaction to new isolates <strong>of</strong> P.<br />

teres. However, <strong>the</strong> major event <strong>in</strong> <strong>the</strong><br />

Upper Midwest barley production area<br />

was epidemics <strong>of</strong> Fusarium head blight<br />

(FHB), <strong>in</strong>cited primarily by Fusarium<br />

gram<strong>in</strong>earum, which started <strong>in</strong> 1993<br />

(Schwarz et al., 1995a). The presence <strong>of</strong><br />

<strong>the</strong> tox<strong>in</strong> deoxynivalenol (DON) reduced<br />

<strong>the</strong> value <strong>of</strong> crop <strong>an</strong>d products made<br />

from <strong>in</strong>fected gra<strong>in</strong> (Schwarz et al.,<br />

1995b).<br />

Table 1. Gra<strong>in</strong> yields (t/ha) <strong>of</strong> selected barley<br />

cultivars <strong>in</strong> trials conducted <strong>in</strong> North Dakota<br />

from 1995 to 1998.<br />

Trial locations <strong>in</strong> North Dakota<br />

Row Williston Carr<strong>in</strong>gton Fargo L<strong>an</strong>gdon Average<br />

Cultivar type 4† 4 4 4 28<br />

Bowm<strong>an</strong> 2 3.72 3.51 2.98 3.86 3.32<br />

Log<strong>an</strong> 2 3.87 4.42 3.99 4.93 4.23<br />

Conlon 2 3.57 4.12 3.52 4.53 3.84<br />

Morex 6 3.71 3.90 3.56 4.29 3.71<br />

St<strong>an</strong>der 6 3.79 4.60 3.75 4.67 4.18<br />

† Number <strong>of</strong> trials.<br />

Development <strong>of</strong> diseaseresist<strong>an</strong>t,<br />

Midwest two-rowed<br />

barley<br />

Because barley is a low value crop <strong>an</strong>d<br />

disease epidemics are <strong>of</strong>ten sporadic,<br />

m<strong>an</strong>y ND farmers do not apply<br />

fungicides. A few barley diseases c<strong>an</strong> be<br />

controlled by cle<strong>an</strong> seed programs or by<br />

seed treatments. Genetic resist<strong>an</strong>ce to<br />

barley pathogens is considered <strong>the</strong> best<br />

me<strong>an</strong>s to m<strong>in</strong>imize losses caused by<br />

diseases. Thus, <strong>in</strong>corporation <strong>of</strong> genetic<br />

resist<strong>an</strong>ce to barley pathogens was<br />

established as a breed<strong>in</strong>g goal when<br />

breed<strong>in</strong>g <strong>of</strong> six-rowed barley was<br />

<strong>in</strong>itiated.<br />

The two most import<strong>an</strong>t diseases, wheat<br />

stem rust <strong>an</strong>d spot blotch, received more<br />

attention th<strong>an</strong> o<strong>the</strong>r diseases. Genes for<br />

resist<strong>an</strong>ce to loose smut, speckled leaf<br />

blotch, net blotch, <strong>an</strong>d BSMV were<br />

<strong>in</strong>corporated <strong>in</strong>to a few six-rowed<br />

cultivars. When o<strong>the</strong>r diseases occurred<br />

<strong>in</strong> field plots, highly susceptible l<strong>in</strong>es <strong>an</strong>d<br />

selections were discarded. When<br />

improvement <strong>of</strong> two-rowed barley was<br />

undertaken, disease test<strong>in</strong>g focused on<br />

wheat stem rust, spot blotch, <strong>an</strong>d net<br />

blotch.<br />

Resist<strong>an</strong>ce to spot blotch<br />

Controll<strong>in</strong>g losses caused by spot blotch<br />

has been challeng<strong>in</strong>g. Shortly after <strong>the</strong><br />

barley improvement program was<br />

started, <strong>the</strong> six-rowed selection ND B112<br />

(CIho 11531) was shown to be highly<br />

resist<strong>an</strong>t to spot blotch (Wilcoxson et al.,<br />

1990). Six-rowed cultivars developed<br />

from crosses to ND B112 were released <strong>in</strong><br />

<strong>the</strong> 1960s <strong>an</strong>d 1970s. Bowm<strong>an</strong> has a<br />

moderate level <strong>of</strong> spot blotch resist<strong>an</strong>ce,<br />

which is probably controlled by two<br />

genes from its six-rowed parents<br />

(Steffenson et al., 1996).


42<br />

J.D. Fr<strong>an</strong>ckowiak<br />

Although this level <strong>of</strong> resist<strong>an</strong>ce is lower<br />

th<strong>an</strong> that <strong>of</strong> ND B112, spot blotch<br />

epidemics were not observed on<br />

Bowm<strong>an</strong> dur<strong>in</strong>g <strong>the</strong> 1980s. Dur<strong>in</strong>g <strong>the</strong><br />

1990 grow<strong>in</strong>g season, however, over 80%<br />

<strong>of</strong> <strong>the</strong> two-rowed l<strong>in</strong>es <strong>in</strong> nurseries near<br />

Fargo were prematurely defoliated by a<br />

spot blotch epidemic. This <strong>an</strong>d<br />

subsequent epidemics on two-rowed<br />

barley were caused by a new pathotype<br />

<strong>of</strong> C. sativus (Fetch <strong>an</strong>d Steffenson, 1994).<br />

Six-rowed cultivars are resist<strong>an</strong>t to <strong>the</strong><br />

new isolate, which was found only <strong>in</strong><br />

ND (Valjavec-Grati<strong>an</strong> <strong>an</strong>d Steffenson,<br />

1997). This isolate cont<strong>in</strong>ued to cause<br />

epidemics <strong>in</strong> two-rowed breed<strong>in</strong>g<br />

nurseries until susceptible l<strong>in</strong>es were<br />

discarded.<br />

F<strong>in</strong>d<strong>in</strong>g two-rowed l<strong>in</strong>es that are highly<br />

resist<strong>an</strong>t to <strong>the</strong> ‘old’ isolate <strong>of</strong> C. sativus<br />

has been more difficult. Two recent<br />

observations have been helpful <strong>in</strong><br />

select<strong>in</strong>g l<strong>in</strong>es hav<strong>in</strong>g better spot blotch<br />

resist<strong>an</strong>ce. First, six-rowed cultivars<br />

reta<strong>in</strong> green leaves <strong>an</strong>d culms longer<br />

th<strong>an</strong> two-rowed cultivars <strong>in</strong> trials grown<br />

<strong>in</strong> eastern ND. Second, l<strong>in</strong>es with <strong>the</strong><br />

lowest spot blotch read<strong>in</strong>gs <strong>in</strong> seedl<strong>in</strong>g<br />

tests <strong>of</strong>ten have <strong>the</strong> lowest spot reactions<br />

<strong>in</strong> field tests. Us<strong>in</strong>g <strong>the</strong>se selection<br />

criteria, two-rowed l<strong>in</strong>es with better spot<br />

blotch resist<strong>an</strong>ce have been identified<br />

recently.<br />

Resist<strong>an</strong>ce to net blotch<br />

Two-rowed breed<strong>in</strong>g l<strong>in</strong>es with a<br />

moderately resist<strong>an</strong>t reaction to P. teres f.<br />

teres were easy to identify with seedl<strong>in</strong>g<br />

tests; however, a portion <strong>of</strong> <strong>the</strong>m showed<br />

susceptible reactions <strong>in</strong> subsequent field<br />

tests. These ch<strong>an</strong>ges <strong>in</strong> disease reactions<br />

illustrate <strong>the</strong> variability associated with<br />

genetic resist<strong>an</strong>ce to net blotch. In <strong>the</strong><br />

late 1980s, Midwest six-rowed barley<br />

cultivars were found to exhibit<br />

susceptible field reactions to net blotch <strong>in</strong><br />

eastern ND while m<strong>an</strong>y two-rowed l<strong>in</strong>es<br />

were resist<strong>an</strong>t. In <strong>the</strong> mid 1990s, Bowm<strong>an</strong><br />

<strong>an</strong>d Stark showed susceptible reactions<br />

to net blotch <strong>in</strong> western ND, but sixrowed<br />

cultivars were resist<strong>an</strong>t <strong>in</strong> those<br />

trials. These observations suggest that<br />

host-pathogen <strong>in</strong>teractions for net blotch<br />

<strong>in</strong> ND are similar to those reported <strong>in</strong><br />

o<strong>the</strong>r barley grow<strong>in</strong>g areas (Kh<strong>an</strong>, 1982;<br />

Steffenson <strong>an</strong>d Webster, 1992; Tekauz,<br />

1990). As new genes for net blotch<br />

resist<strong>an</strong>ce are <strong>in</strong>corporated <strong>in</strong>to cultivars,<br />

isolates <strong>of</strong> P. teres with different virulence<br />

patterns are identified.<br />

Some l<strong>in</strong>es selected from crosses between<br />

Bowm<strong>an</strong>-derived cultivars <strong>an</strong>d <strong>the</strong> tworowed<br />

cultivar Norbert (PI 452125), bred<br />

<strong>in</strong> M<strong>an</strong>itoba <strong>an</strong>d released by Agriculture<br />

C<strong>an</strong>ada, have cont<strong>in</strong>ued to show low<br />

reactions to net blotch <strong>in</strong> greenhouse <strong>an</strong>d<br />

<strong>in</strong> field tests. The orig<strong>in</strong> <strong>of</strong> <strong>the</strong>se Rpt<br />

genes for net blotch resist<strong>an</strong>ce is<br />

unknown, but <strong>the</strong> cultivar Norbert,<br />

which was derived from a complex cross<br />

to CIho 5791 (Metcalfe <strong>an</strong>d Bendelow,<br />

1981), is one possible source. Some l<strong>in</strong>es<br />

derived from crosses to accessions from<br />

<strong>the</strong> ICARDA-CIMMYT barley<br />

improvement program <strong>in</strong> Mexico also<br />

have low net blotch scores. Hopefully,<br />

presence <strong>of</strong> Rpt genes from more th<strong>an</strong><br />

one source will permit <strong>the</strong>ir rapid<br />

deployment when future ch<strong>an</strong>ges <strong>in</strong><br />

virulence occur.<br />

Resist<strong>an</strong>ce to BYDV<br />

<strong>Barley</strong> yellow dwarf symptoms occur<br />

sporadically on barley grown <strong>in</strong> eastern<br />

ND, but production losses are <strong>of</strong>ten, but<br />

not always, low (Gill, 1970). Severe<br />

BYDV epidemics do occur frequently <strong>in</strong><br />

late-pl<strong>an</strong>ted breed<strong>in</strong>g nurseries. Crosses<br />

were made <strong>in</strong> <strong>the</strong> early 1980s to<br />

<strong>in</strong>troduce <strong>the</strong> Ryd2 gene for BYDV


Accumulat<strong>in</strong>g Genes for Disease Resist<strong>an</strong>ce <strong>in</strong> Two-Rowed <strong>Barley</strong> for North Dakota<br />

43<br />

resist<strong>an</strong>ce from CIho 2376 (Rasmusson<br />

<strong>an</strong>d Schaller, 1959), but BYDV resist<strong>an</strong>t<br />

selections were late <strong>an</strong>d susceptible to<br />

lodg<strong>in</strong>g. Additional cycles <strong>of</strong> cross<strong>in</strong>g<br />

<strong>an</strong>d selection did not improve greatly <strong>the</strong><br />

agronomic traits <strong>of</strong> BYDV resist<strong>an</strong>t l<strong>in</strong>es.<br />

Thus, ICARDA-CIMMYT l<strong>in</strong>es were<br />

used as <strong>an</strong> alternative source <strong>of</strong> <strong>the</strong> Ryd2<br />

gene. L<strong>in</strong>es with BYDV resist<strong>an</strong>ce <strong>an</strong>d<br />

good agronomic traits have been<br />

recovered, but <strong>the</strong>ir malt<strong>in</strong>g quality is<br />

not acceptable. Malt extract values need<br />

improvement <strong>an</strong>d <strong>the</strong> low prote<strong>in</strong> gene<br />

from <strong>the</strong> six-rowed cultivar Karl needs to<br />

be added.<br />

Resist<strong>an</strong>ce to leaf rust<br />

Yield <strong>an</strong>d quality losses caused by leaf<br />

rust <strong>of</strong> barley <strong>in</strong> ND are generally low<br />

because <strong>the</strong> crop is seldom <strong>in</strong>fected<br />

before head<strong>in</strong>g. The <strong>in</strong>oculum is blown<br />

northward from over-w<strong>in</strong>ter<strong>in</strong>g sites <strong>in</strong><br />

<strong>the</strong> sou<strong>the</strong>astern USA. Rapid ch<strong>an</strong>ges <strong>in</strong><br />

leaf rust races are not expected because<br />

resist<strong>an</strong>t cultivars are rarely grown <strong>in</strong> <strong>the</strong><br />

over-w<strong>in</strong>ter<strong>in</strong>g sites. S<strong>in</strong>ce Midwest<br />

barley cultivars do not have genes for<br />

leaf rust resist<strong>an</strong>ce, crosses were made to<br />

<strong>in</strong>troduce <strong>the</strong> Rph3 <strong>an</strong>d Rph7 genes from<br />

Estate (CIho 3410) <strong>an</strong>d Cebada Capa<br />

(CIho 6193), respectively. Experimental<br />

l<strong>in</strong>es with leaf rust resist<strong>an</strong>ce were<br />

selected, but <strong>the</strong>y are not suitable for<br />

release as cultivars. Because <strong>the</strong> Rph3 <strong>an</strong>d<br />

Rph7 genes are no longer effective<br />

aga<strong>in</strong>st all leaf rust isolates worldwide<br />

(J<strong>in</strong> et al., 1996), accessions <strong>of</strong> wild<br />

barley, H. vulgare subsp. spont<strong>an</strong>eum,<br />

were evaluated as a source <strong>of</strong> new leaf<br />

rust resist<strong>an</strong>ce genes. The Rph15 gene<br />

from PI 355447 was isolated <strong>in</strong> a<br />

Bowm<strong>an</strong> backcross-derived l<strong>in</strong>e <strong>an</strong>d is<br />

be<strong>in</strong>g <strong>in</strong>corporated <strong>in</strong>to Midwest tworowed<br />

breed<strong>in</strong>g material (Chicaiza et al.,<br />

1996). Prelim<strong>in</strong>ary tests <strong>in</strong>dicate<br />

accessions from <strong>the</strong> ICARDA-CIMMYT<br />

barley program may have Rph genes that<br />

are different from those reported <strong>in</strong> <strong>the</strong><br />

literature.<br />

Resist<strong>an</strong>ce to speckled leaf blotch<br />

In <strong>the</strong> 1950s <strong>an</strong>d 1960s, speckled leaf<br />

blotch was a problem <strong>in</strong> nor<strong>the</strong>astern<br />

ND; however, severe losses were not<br />

observed aga<strong>in</strong> until <strong>the</strong> early 1990s. The<br />

disease develops late dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g<br />

season <strong>an</strong>d causes premature death <strong>of</strong><br />

leaves <strong>an</strong>d post-maturation straw<br />

breakage. Several genes for resist<strong>an</strong>ce to<br />

S. passer<strong>in</strong>ii have been identified<br />

(Rasmusson <strong>an</strong>d Rogers, 1963), but <strong>the</strong>y<br />

are not present <strong>in</strong> Midwest six-rowed<br />

cultivars. In 1993, several six-rowed l<strong>in</strong>es<br />

from <strong>the</strong> barley ICARDA-CIMMYT<br />

program were observed to show resist<strong>an</strong>t<br />

reactions <strong>in</strong> field plots at L<strong>an</strong>gdon, ND.<br />

These l<strong>in</strong>es ma<strong>in</strong>ta<strong>in</strong>ed green leaves <strong>an</strong>d<br />

stems longer th<strong>an</strong> susceptible cultivars.<br />

In trials at L<strong>an</strong>gdon, delayed loss <strong>of</strong><br />

green leaves is a criteria used to select<br />

speckled leaf blotch resist<strong>an</strong>t l<strong>in</strong>es.<br />

Subsequent seedl<strong>in</strong>g tests confirmed that<br />

selections from crosses to ICARDA-<br />

CIMMYT l<strong>in</strong>es are resist<strong>an</strong>t to <strong>an</strong> isolate<br />

<strong>of</strong> S. passer<strong>in</strong>ii (Toubia-Rhame <strong>an</strong>d<br />

Steffenson, 1999). Septoria resist<strong>an</strong>t l<strong>in</strong>es<br />

from <strong>the</strong> second cycle <strong>of</strong> three-way<br />

crosses have been identified.<br />

Resist<strong>an</strong>ce to Fusarium head<br />

blight<br />

Fusarium head blight (FHB) or scab is a<br />

frequent barley production problem <strong>in</strong><br />

m<strong>an</strong>y humid <strong>an</strong>d subhumid climates.<br />

Yield losses are <strong>of</strong>ten low, but <strong>the</strong><br />

accumulation <strong>of</strong> tox<strong>in</strong>s reduces <strong>the</strong> value<br />

<strong>of</strong> <strong>the</strong> gra<strong>in</strong>. Until 1993, FHB was<br />

considered a m<strong>in</strong>or disease problem <strong>in</strong><br />

ND. Above normal ra<strong>in</strong>fall dur<strong>in</strong>g<br />

head<strong>in</strong>g is believed to be partially


44<br />

J.D. Fr<strong>an</strong>ckowiak<br />

responsible for <strong>the</strong> FHB epidemics <strong>in</strong><br />

1993 <strong>an</strong>d subsequent years. The best<br />

resist<strong>an</strong>ce to FHB has been found <strong>in</strong><br />

accessions closely related to <strong>the</strong> tworowed<br />

cultivar Sv<strong>an</strong>hals <strong>an</strong>d <strong>the</strong> sixrowed<br />

cultivar Chevron (Urrea-Flórez,<br />

2000). Although resist<strong>an</strong>ce to FHB is<br />

<strong>in</strong>herited <strong>in</strong> a qu<strong>an</strong>titative m<strong>an</strong>ner<br />

(Takeda, 1992), resist<strong>an</strong>ce is frequently<br />

associated with <strong>the</strong> two-rowed spike<br />

trait, controlled by <strong>the</strong> Vrs1.b allele at <strong>the</strong><br />

vrs1 locus (Prom et al., 1997; Takeda,<br />

1990). Molecular mapp<strong>in</strong>g <strong>of</strong> FHB<br />

resist<strong>an</strong>ce <strong>in</strong> Chevron identified<br />

several QTLs <strong>of</strong> which one is associated<br />

with <strong>the</strong> vrs1 locus <strong>in</strong> <strong>the</strong> proximal<br />

region <strong>of</strong> chromosome 2HL (de la Peña<br />

et al., 1999).<br />

Most FHB resist<strong>an</strong>t selections from<br />

crosses between Midwest six-rowed<br />

cultivars <strong>an</strong>d accessions related to<br />

Sv<strong>an</strong>hals have a two-rowed spike (Urrea-<br />

Flórez, 2000). FHB resist<strong>an</strong>t six-rowed<br />

selections are very rare, very tall, <strong>an</strong>d<br />

late. This phenomenon has also been<br />

observed <strong>in</strong> crosses to Midwest tworowed<br />

cultivars. A close l<strong>in</strong>kage between<br />

<strong>the</strong> vrs1 locus <strong>an</strong>d one <strong>of</strong> <strong>the</strong> genes for<br />

FHB resist<strong>an</strong>ce appears to cause <strong>the</strong><br />

problem. The Vrs1.b <strong>an</strong>d vrs1.a alleles <strong>in</strong><br />

Midwest two-rowed <strong>an</strong>d six-rowed<br />

barley, respectively, are also closely<br />

l<strong>in</strong>ked to a short culm gene (hcm1.a)<br />

(Swenson <strong>an</strong>d Wells, 1944) <strong>an</strong>d one or<br />

more early maturity genes. The FHB<br />

resist<strong>an</strong>ce locus is likely positioned <strong>in</strong> <strong>the</strong><br />

middle <strong>of</strong> this chromosome 2HL l<strong>in</strong>kage<br />

group. Thus, a double crossover is<br />

required to obta<strong>in</strong> FHB resist<strong>an</strong>t l<strong>in</strong>es<br />

adapted to ND. Identification <strong>of</strong><br />

desirable recomb<strong>in</strong><strong>an</strong>ts is difficult<br />

because several pl<strong>an</strong>t height <strong>an</strong>d<br />

maturity genes are segregat<strong>in</strong>g <strong>in</strong> crosses<br />

to FHB resist<strong>an</strong>t accessions. <strong>Barley</strong><br />

cultivars from Jap<strong>an</strong> <strong>an</strong>d Ch<strong>in</strong>a have<br />

some resist<strong>an</strong>ce to FHB based on tests <strong>in</strong><br />

eastern Ch<strong>in</strong>a, but that resist<strong>an</strong>ce is<br />

poorly expressed <strong>in</strong> ND (Urrea-Flórez,<br />

2000), where <strong>the</strong>se photoperiod sensitive<br />

cultivars head extremely early.<br />

Multiple disease resist<strong>an</strong>ce <strong>in</strong><br />

Midwest two-rowed barley<br />

<strong>New</strong> two-rowed cultivars for ND should<br />

ideally conta<strong>in</strong> a large number <strong>of</strong> disease<br />

resist<strong>an</strong>ce genes. however, accumulation<br />

<strong>of</strong> <strong>the</strong>se genes <strong>in</strong> elite breed<strong>in</strong>g material<br />

is slow because <strong>the</strong> donor parents are<br />

poorly adapted to ND. Thus,<br />

development <strong>of</strong> locally adapted material<br />

with multiple disease resist<strong>an</strong>ce genes<br />

consumes a large portion <strong>of</strong> <strong>the</strong> resources<br />

available for two-rowed barley<br />

improvement. The pattern us<strong>in</strong>g donor<br />

parents <strong>in</strong> three-way crosses, which was<br />

employed by Dr. Glenn Peterson, is still<br />

followed. Greenhouses <strong>an</strong>d <strong>of</strong>f-season<br />

nurseries have facilitated cross<strong>in</strong>g <strong>an</strong>d<br />

generation adv<strong>an</strong>ce. A modified pedigree<br />

scheme is used to select l<strong>in</strong>es with<br />

desirable agronomic traits. Seedl<strong>in</strong>g tests<br />

<strong>an</strong>d <strong>of</strong>f-season nurseries are used to<br />

identify ones that are disease resist<strong>an</strong>t.<br />

The best l<strong>in</strong>es become parents for <strong>an</strong>o<strong>the</strong>r<br />

cycle <strong>of</strong> three-way crosses.<br />

Two cycles <strong>of</strong> cross<strong>in</strong>g <strong>an</strong>d selection are<br />

generally adequate to recover disease<br />

resist<strong>an</strong>t l<strong>in</strong>es with acceptable agronomic<br />

traits. Disease resist<strong>an</strong>ce genes from<br />

different sources are comb<strong>in</strong>ed <strong>in</strong><br />

subsequent breed<strong>in</strong>g cycles. However,<br />

this scheme for breed<strong>in</strong>g locally adapted<br />

l<strong>in</strong>es with multiple disease resist<strong>an</strong>ce has<br />

not been highly successful because it<br />

takes a long time. For accept<strong>an</strong>ce by <strong>the</strong><br />

malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g <strong>in</strong>dustry, new<br />

cultivars must also have better malt<br />

quality th<strong>an</strong> that <strong>of</strong> <strong>the</strong> recurrent parents.


Accumulat<strong>in</strong>g Genes for Disease Resist<strong>an</strong>ce <strong>in</strong> Two-Rowed <strong>Barley</strong> for North Dakota<br />

45<br />

Sources <strong>of</strong> disease resist<strong>an</strong>t<br />

barley germplasm<br />

The tr<strong>an</strong>sfer <strong>of</strong> disease resist<strong>an</strong>ce genes<br />

from several l<strong>an</strong>draces to elite breed<strong>in</strong>g<br />

materials takes a long time. Utilization <strong>of</strong><br />

donor parents hav<strong>in</strong>g multiple disease<br />

resist<strong>an</strong>ce could shorten this time<br />

requirement. As <strong>an</strong> added benefit,<br />

accessions with multiple disease<br />

resist<strong>an</strong>ce might conta<strong>in</strong> resist<strong>an</strong>ce to<br />

some m<strong>in</strong>or diseases. M<strong>in</strong>or diseases<br />

become import<strong>an</strong>t because genetic<br />

control <strong>of</strong> major diseases alters both crop<br />

physiology <strong>an</strong>d pathogen <strong>in</strong>teractions.<br />

Predom<strong>in</strong><strong>an</strong>t pathogens c<strong>an</strong> no longer<br />

adequately suppress less aggressive ones<br />

<strong>in</strong> disease resist<strong>an</strong>t cultivars. Diseases<br />

such as bacterial blight, powdery mildew,<br />

scald, black po<strong>in</strong>t, <strong>an</strong>d root rots may<br />

need attention <strong>in</strong> <strong>the</strong> future.<br />

M<strong>an</strong>y barley l<strong>in</strong>es bred by Dr. Hugo E.<br />

Vivar for <strong>the</strong> ICARDA-CIMMYT barley<br />

program <strong>in</strong> Mexico have multiple disease<br />

resist<strong>an</strong>ce. Although <strong>the</strong>y are not well<br />

adapted to ND, <strong>the</strong>y have been utilized<br />

<strong>in</strong> <strong>the</strong> development <strong>of</strong> Midwest tworowed<br />

barley. This was, however, more<br />

by accident th<strong>an</strong> by design. In 1988,<br />

several ICARDA-CIMMYT barley l<strong>in</strong>es<br />

were <strong>in</strong>troduced because barley stripe<br />

rust, Pucc<strong>in</strong>ia striiformis f. sp. hordei, was<br />

spread<strong>in</strong>g <strong>in</strong>to North America (Dub<strong>in</strong><br />

<strong>an</strong>d Stubbs, 1986). In 1990, control <strong>of</strong><br />

wheat stem rust provided by <strong>the</strong> Rpg1<br />

gene was found to be <strong>in</strong>adequate. <strong>New</strong><br />

genes for stem rust resist<strong>an</strong>ce were<br />

identified <strong>in</strong> l<strong>in</strong>es from <strong>the</strong> ICARDA-<br />

CIMMYT barley program (J<strong>in</strong> et al.,<br />

1994). Although stripe rust never became<br />

a problem <strong>in</strong> ND <strong>an</strong>d <strong>the</strong> Rpg1 gene is<br />

effective aga<strong>in</strong>st current pathotypes <strong>of</strong><br />

stem rust, utilization <strong>of</strong> <strong>the</strong> ICARDA-<br />

CIMMYT barley l<strong>in</strong>es helped establish<br />

multiple disease resist<strong>an</strong>ce as a barley<br />

improvement goal.<br />

Summary<br />

S<strong>in</strong>ce most barley grown for North<br />

Dakota (ND) has a six-rowed spike type,<br />

two-rowed spr<strong>in</strong>g barley c<strong>an</strong> be<br />

considered a new crop <strong>in</strong> ND. Drought<br />

<strong>an</strong>d high temperatures <strong>in</strong> western ND<br />

<strong>an</strong>d barley diseases <strong>in</strong> eastern ND are <strong>the</strong><br />

primary factors limit<strong>in</strong>g barley<br />

production. A large portion <strong>of</strong> <strong>the</strong> ND<br />

barley crop is used by <strong>the</strong> malt<strong>in</strong>g <strong>an</strong>d<br />

brew<strong>in</strong>g <strong>in</strong>dustry; <strong>the</strong>refore, desirable<br />

malt quality parameters are needed <strong>in</strong><br />

elite breed<strong>in</strong>g material. The two-rowed<br />

cultivars <strong>an</strong>d breed<strong>in</strong>g materials<br />

developed for ND have a unique<br />

comb<strong>in</strong>ation <strong>of</strong> pl<strong>an</strong>t height <strong>an</strong>d maturity<br />

genes <strong>an</strong>d c<strong>an</strong> be referred to as Midwest<br />

two-rowed barley. Multiple disease<br />

resist<strong>an</strong>ce was established as a breed<strong>in</strong>g<br />

goal because a large number <strong>of</strong> barley<br />

pathogens c<strong>an</strong> cause losses <strong>in</strong> ND.<br />

Accessions from m<strong>an</strong>y countries were<br />

used as sources <strong>of</strong> disease resist<strong>an</strong>ce<br />

genes, but l<strong>in</strong>es from <strong>the</strong> ICARDA-<br />

CIMMYT barley improvement program<br />

<strong>in</strong> Mexico have been <strong>an</strong> extremely<br />

valuable source <strong>of</strong> disease resist<strong>an</strong>ce<br />

genes.<br />

References<br />

Chicaiza, O., J.D. Fr<strong>an</strong>ckowiak, <strong>an</strong>d B.J. Steffenson.<br />

1996. <strong>New</strong> sources <strong>of</strong> resist<strong>an</strong>ce to leaf rust <strong>in</strong><br />

barley. In: A.E. Sl<strong>in</strong>kard, G.J. Scoles, <strong>an</strong>d B.G.<br />

Rossnagel (eds.). Proc. Fifth Int. Oat Conf. &<br />

Seventh Int. <strong>Barley</strong> Genet. Symp. Saskatoon.<br />

Univ. <strong>of</strong> Saskatchew<strong>an</strong>, Saskatoon. pp. 706-708.<br />

de la Peña, R.C., K.P. Smith, F. Capett<strong>in</strong>i, G.J.<br />

Muehlbauer, M. Gallo-Meagher, R. Dill-Macky,<br />

D.A. Sommers, <strong>an</strong>d D.C. Rasmusson. 1999.<br />

Qu<strong>an</strong>titative trait loci associated with resist<strong>an</strong>ce<br />

to Fusarium head blight <strong>an</strong>d kernel<br />

discoloration <strong>in</strong> barley. Theor. Appl. Genet.<br />

99:561-569.<br />

Dub<strong>in</strong>, H.J., <strong>an</strong>d R.W. Stubbs. 1986. Epidemic<br />

spread <strong>of</strong> barley stripe rust <strong>in</strong> South America.<br />

Pl<strong>an</strong>t Dis. 70:141-144.


46<br />

J.D. Fr<strong>an</strong>ckowiak<br />

Fetch, T.G., Jr., <strong>an</strong>d B.J. Steffenson. 1994.<br />

Identification <strong>of</strong> Cochliobolus sativus isolates<br />

express<strong>in</strong>g differential virulence on two-row<br />

barley genotypes from North Dakota. C<strong>an</strong>. J.<br />

Pl<strong>an</strong>t Pathol. 16:202-206.<br />

Fr<strong>an</strong>ckowiak, J.D., A.E. Foster, V.D. Pederson, <strong>an</strong>d<br />

R.E Pyler. 1985. Registration <strong>of</strong> ‘Bowm<strong>an</strong>’<br />

barley. Crop Sci. 25:883.<br />

Gill, D.D. 1970. Epidemiology <strong>of</strong> barley yellow<br />

dwarf <strong>in</strong> M<strong>an</strong>itoba <strong>an</strong>d effect <strong>of</strong> <strong>the</strong> virus on<br />

yield <strong>of</strong> cereals. Phytopathology 60:1826-1830.<br />

Ho, K.M., A. Tekauz, T.M. Choo, <strong>an</strong>d R.A. Mart<strong>in</strong>.<br />

1996. Genetic studies on net blotch resist<strong>an</strong>ce<br />

<strong>in</strong> a barley cross. C<strong>an</strong>. J. Pl<strong>an</strong>t Sci. 76:715-719.<br />

J<strong>in</strong>, Y., G.H. Cui, B.J. Steffenson, <strong>an</strong>d J.D.<br />

Fr<strong>an</strong>ckowiak. 1996. <strong>New</strong> leaf rust resist<strong>an</strong>ce<br />

genes <strong>in</strong> barley <strong>an</strong>d <strong>the</strong>ir allelic <strong>an</strong>d l<strong>in</strong>kage<br />

relationships with o<strong>the</strong>r Rph genes.<br />

Phytopathology 86:887-890.<br />

J<strong>in</strong>, Y., B.J. Steffenson, <strong>an</strong>d J.D. Miller. 1994.<br />

Inherit<strong>an</strong>ce <strong>of</strong> resist<strong>an</strong>ce to pathotypes QCC<br />

<strong>an</strong>d MCC <strong>of</strong> Pucc<strong>in</strong>ia gram<strong>in</strong>is f. sp. tritici <strong>in</strong><br />

barley l<strong>in</strong>e Q21861 <strong>an</strong>d temperature effects on<br />

<strong>the</strong> expression <strong>of</strong> resist<strong>an</strong>ce. Phytopathology<br />

84:452-455.<br />

Kh<strong>an</strong>, T.N. 1982. Ch<strong>an</strong>ges <strong>in</strong> pathogenicity <strong>of</strong><br />

Drechslera teres relat<strong>in</strong>g to ch<strong>an</strong>ges <strong>in</strong> barley<br />

cultivars grown <strong>in</strong> Western Australia. Pl<strong>an</strong>t<br />

Dis. 66:655-656.<br />

Metcalfe, D.K., <strong>an</strong>d V.M. Bendelow. 1981. Norbert<br />

barley. C<strong>an</strong>. J. Pl<strong>an</strong>t Sci. 61:1005-1007.<br />

Prom, L.K., B.J. Steffenson, B. Salas, T.G. Fetch, Jr.,<br />

<strong>an</strong>d H.H. Casper. 1997. <strong>Barley</strong> accessions<br />

resist<strong>an</strong>t to Fusarium head blight <strong>an</strong>d <strong>the</strong><br />

accumulation <strong>of</strong> deoxynivalenol. In: Á.<br />

Metsterházy (ed.). Proc. 5 th Europe<strong>an</strong><br />

Fusarium Sem<strong>in</strong>ar. Cereal Research Institute,<br />

Szeged, Hungary. Cereal Research Comm.<br />

25:807-808.<br />

Rasmusson, D.C., <strong>an</strong>d W.E. Rogers. 1963.<br />

Inherit<strong>an</strong>ce <strong>of</strong> resist<strong>an</strong>ce to Septoria <strong>in</strong> barley.<br />

Crop Sci. 3:161-163.<br />

Rasmusson, D.C., <strong>an</strong>d C.W. Schaller. 1959. The<br />

<strong>in</strong>herit<strong>an</strong>ce <strong>of</strong> resist<strong>an</strong>ce <strong>in</strong> barley to barley<br />

yellow dwarf. Agron. J. 51:661-664.<br />

Schwarz, P.B., H.H. Casper, <strong>an</strong>d J.M. Barr. 1995a.<br />

Survey <strong>of</strong> <strong>the</strong> natural occurrence <strong>of</strong><br />

deoxynivalenol (vomitox<strong>in</strong>) <strong>in</strong> barley grown <strong>in</strong><br />

M<strong>in</strong>nesota, North Dakota <strong>an</strong>d South Dakota<br />

dur<strong>in</strong>g 1993. Tech. Quart. MBAA 32:190-194.<br />

Schwarz, P.B., H.H. Casper, <strong>an</strong>d S. Beattie. 1995b.<br />

The fate <strong>an</strong>d development <strong>of</strong> naturally<br />

occurr<strong>in</strong>g Fusarium mycotox<strong>in</strong>s dur<strong>in</strong>g<br />

malt<strong>in</strong>g <strong>an</strong>d brew<strong>in</strong>g. J. Am. Soc. Brew. Chem.<br />

53:121-127.<br />

Steffenson, B.J., P.M. Hayes, <strong>an</strong>d A. Kle<strong>in</strong>h<strong>of</strong>s.<br />

1996. Genetics <strong>of</strong> seedl<strong>in</strong>g <strong>an</strong>d adult pl<strong>an</strong>t<br />

resist<strong>an</strong>ce to net blotch (Pyrenophora teres f.<br />

teres) <strong>an</strong>d spot blotch (Cochliobolus sativus) <strong>in</strong><br />

barley. Theor. Appl. Genet. 92:552-558.<br />

Steffenson, B.J., <strong>an</strong>d R.K. Webster. 1992. Pathotype<br />

diversity <strong>of</strong> Pyrenophora teres f. teres on barley.<br />

Phytopathology 82:170-177.<br />

Swenson, S.P., <strong>an</strong>d D.G. Wells. 1944. The l<strong>in</strong>kage<br />

relation <strong>of</strong> four genes <strong>in</strong> chromosome 1 <strong>of</strong><br />

barley. J. Am. Soc. Agron. 36:429-435.<br />

Takeda, K. 1990. Selection response <strong>an</strong>d parent<strong>of</strong>fspr<strong>in</strong>g<br />

correlation <strong>of</strong> <strong>the</strong> resist<strong>an</strong>ce to<br />

Fusarium head blight <strong>in</strong> barley. Jap<strong>an</strong> J. Breed.<br />

40:91-101.<br />

Takeda, K. 1992. Current topics on <strong>the</strong> scab<br />

disease resist<strong>an</strong>ce <strong>in</strong> barley. Jap<strong>an</strong> J. Toxic.<br />

36:13-17.<br />

Tekauz, A. 1990. Characterization <strong>an</strong>d distribution<br />

<strong>of</strong> <strong>an</strong>d sources <strong>of</strong> pathogenic variation <strong>in</strong><br />

Pyrenophora teres f. teres <strong>an</strong>d P. teres f. maculata<br />

from western C<strong>an</strong>ada. C<strong>an</strong>. J. Pl<strong>an</strong>t Pathol.<br />

12:141-148.<br />

Toubia-Rhame, H., <strong>an</strong>d B.J. Steffenson. 1999.<br />

Sources <strong>of</strong> resist<strong>an</strong>ce to Septoria passer<strong>in</strong>ii <strong>in</strong><br />

Hordeum vulgare <strong>an</strong>d H. vulgare subsp.<br />

spont<strong>an</strong>eum. p. 156-158. In: M. v<strong>an</strong> G<strong>in</strong>kel, A.<br />

McNab, <strong>an</strong>d J. Krup<strong>in</strong>sky (eds.). Septoria <strong>an</strong>d<br />

Stagonospora Diseases <strong>of</strong> Cereals: A<br />

Compilation <strong>of</strong> Global Research. Mexico, D.F.:<br />

CIMMYT.<br />

Urrea-Flórez, C.A. 2000. Genetic studies on<br />

Fusarium head blight resist<strong>an</strong>ce <strong>an</strong>d<br />

deoxynivalenol accumulation <strong>in</strong> barley. Ph.D.<br />

<strong>the</strong>sis. North Dakota State University, Fargo.<br />

Valjavec-Grati<strong>an</strong>, M., <strong>an</strong>d B.J. Steffenson. 1997.<br />

Pathotypes <strong>of</strong> Cochliobolus sativus on barley <strong>in</strong><br />

North Dakota. Pl<strong>an</strong>t Dis. 81:1275-1278.<br />

Wilcoxson, R.D., D.C. Rasmusson, <strong>an</strong>d M.R.<br />

Miles. 1990. Development <strong>of</strong> barley resist<strong>an</strong>t to<br />

spot blotch <strong>an</strong>d genetics <strong>of</strong> resist<strong>an</strong>ce. Pl<strong>an</strong>t<br />

Dis. 74:207-210.<br />

Zamora-Diaz, M. 1997. Genetic control <strong>of</strong> yellow<br />

stripe rust (Pucc<strong>in</strong>ia striiformis f. sp. hordei) <strong>in</strong><br />

barley. Ph.D. <strong>the</strong>sis. North Dakota State<br />

University, Fargo.


47<br />

Collaborative Stripe Rust<br />

Resist<strong>an</strong>ce Gene Mapp<strong>in</strong>g <strong>an</strong>d<br />

Deployment Efforts<br />

P.M. HAYES, 1 A. CASTRO, 1 A.E. COREY, 1 T. FILICHKIN, 1 C. ROSSI, 1 J.S. SANDOVAL, 2<br />

I. VALES, 1 H.E. VIVAR, 3 AND J. VON ZITZEWITZ 1<br />

Our collaborative stripe rust resist<strong>an</strong>ce<br />

research projects have multiple objectives.<br />

The first <strong>an</strong>d foremost is to provide<br />

agronomically-competitive, diseaseresist<strong>an</strong>t<br />

varieties to our clients, who<br />

r<strong>an</strong>ge from <strong>the</strong> Saraguro Indi<strong>an</strong>s <strong>of</strong><br />

Ecuador to North Americ<strong>an</strong> malt<strong>in</strong>g<br />

barley producers. A second objective is to<br />

broaden <strong>the</strong> genetic base <strong>of</strong> our barley<br />

germplasm via <strong>the</strong> systematic<br />

characterization <strong>an</strong>d <strong>in</strong>trogression <strong>of</strong><br />

unique alleles. A third objective is to<br />

contribute to a better underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> genetic basis <strong>of</strong> durable disease<br />

resist<strong>an</strong>ce <strong>in</strong> crop pl<strong>an</strong>ts.<br />

Three key components <strong>of</strong> this research<br />

are: 1) phenotyp<strong>in</strong>g at <strong>the</strong> ICARDA/<br />

CIMMYT facilities <strong>in</strong> Toluca, Mexico, <strong>an</strong><br />

environment <strong>in</strong> which <strong>the</strong> heritability <strong>of</strong><br />

disease symptom expression is<br />

maximized; 2) genotyp<strong>in</strong>g with molecular<br />

markers; <strong>an</strong>d 3) accelerated germplasm<br />

adv<strong>an</strong>ce. Initially, we mapped resist<strong>an</strong>ce<br />

genes <strong>in</strong> ICARDA/CIMMYT germplasm<br />

<strong>an</strong>d <strong>the</strong>n <strong>in</strong>trogressed <strong>the</strong>m <strong>in</strong>to North<br />

Americ<strong>an</strong> germplasm via marker-assisted<br />

selection. More recently, we have<br />

pyramided qu<strong>an</strong>titative <strong>an</strong>d qualitative<br />

resist<strong>an</strong>ce genes <strong>an</strong>d attempted to<br />

<strong>in</strong>tegrate gene discovery <strong>an</strong>d deployment.<br />

The objective <strong>of</strong> this report is to<br />

summarize multiple areas <strong>of</strong> endeavor<br />

that converge on stripe rust resist<strong>an</strong>ce<br />

gene mapp<strong>in</strong>g <strong>an</strong>d deployment: 1) stripe<br />

rust epidemiology, 2) qu<strong>an</strong>titative vs.<br />

qualitative resist<strong>an</strong>ce, <strong>an</strong>d 3) <strong>an</strong>d l<strong>in</strong>kage<br />

mapp<strong>in</strong>g <strong>an</strong>d QTL <strong>an</strong>alysis efforts <strong>in</strong><br />

barley. The results <strong>of</strong> our collaborative<br />

stripe rust resist<strong>an</strong>ce mapp<strong>in</strong>g <strong>an</strong>d<br />

germplasm improvement efforts are<br />

summarized <strong>in</strong> <strong>an</strong> accomp<strong>an</strong>y<strong>in</strong>g Figure 1<br />

<strong>an</strong>d Table 1. Because this stripe rust<br />

resist<strong>an</strong>t germplasm development is <strong>an</strong><br />

ongo<strong>in</strong>g process, updated summaries will<br />

be ma<strong>in</strong>ta<strong>in</strong>ed on <strong>the</strong> Internet at http://<br />

www.css.orst.edu/barley/orbarley/<br />

collab.htm.<br />

<strong>Barley</strong> Stripe Rust<br />

<strong>Barley</strong> stripe rust (Pucc<strong>in</strong>ia striiformis f.sp.<br />

hordei) has caused serious yield losses <strong>in</strong><br />

Europe, <strong>the</strong> Asi<strong>an</strong> subcont<strong>in</strong>ent, <strong>an</strong>d <strong>the</strong><br />

Americas (Dub<strong>in</strong> <strong>an</strong>d Stubbs, 1985; Hayes<br />

et al., 1996c). The disease was first<br />

reported <strong>in</strong> South America <strong>in</strong> 1975 <strong>an</strong>d <strong>in</strong><br />

1<br />

Dept. <strong>of</strong> Crop <strong>an</strong>d Soil Science, Oregon State University, Corvallis, Oregon, USA.<br />

2<br />

Instituto de Fitos<strong>an</strong>idad, Colegio de Postgraduados, Montecillo, Texcoco, Mexico.<br />

3<br />

ICARDA/CIMMYT <strong>Barley</strong> Program, Apdo. Postal 6-641, Mexico, D.F., Mexico, 06600.


48<br />

P.M. Hayes et al.<br />

<strong>the</strong> U.S. <strong>in</strong> 1991 (Marshall <strong>an</strong>d Sutton,<br />

1995). By 1995, it had been reported <strong>in</strong><br />

every state <strong>of</strong> <strong>the</strong> western U.S.<br />

Commercial-scale epidemics have<br />

occurred <strong>an</strong>nually <strong>in</strong> California <strong>an</strong>d<br />

Oregon s<strong>in</strong>ce 1995. Environments <strong>in</strong> <strong>the</strong><br />

Pacific Northwest favor <strong>the</strong> disease:<br />

wheat stripe rust (Pucc<strong>in</strong>ia striiformis f.sp.<br />

tritici) is <strong>the</strong> most import<strong>an</strong>t disease<br />

<strong>of</strong> wheat <strong>in</strong> <strong>the</strong> Pacific Northwest<br />

(L<strong>in</strong>e, 1993).<br />

The two f.sp. <strong>of</strong> Pucc<strong>in</strong>ia striiformis are,<br />

however, highly specialized, <strong>an</strong>d cross<strong>in</strong>fection<br />

is not <strong>of</strong> economic import<strong>an</strong>ce.<br />

Initially, only race 24 <strong>of</strong> P. striiformis f.sp.<br />

hordei was thought to be present <strong>in</strong> <strong>the</strong><br />

Americas (Dub<strong>in</strong> <strong>an</strong>d Stubbs, 1985).<br />

Recently, more extensive <strong>an</strong>alysis has<br />

revealed considerable variation <strong>in</strong><br />

pathogen isolates collected <strong>in</strong> <strong>the</strong> U.S.<br />

(Chen et al., 1995b; Roelfs <strong>an</strong>d Huerta-<br />

Esp<strong>in</strong>o, 1994).<br />

Genetic resist<strong>an</strong>ce is <strong>the</strong> most costeffective<br />

<strong>an</strong>d environmentally<br />

appropriate technique for crop disease<br />

m<strong>an</strong>agement. Durability <strong>of</strong> resist<strong>an</strong>ce is a<br />

key consideration <strong>in</strong> disease resist<strong>an</strong>ce<br />

breed<strong>in</strong>g. Unfortunately, durability c<strong>an</strong><br />

only be demonstrated <strong>in</strong> h<strong>in</strong>dsight.<br />

<strong>Barley</strong> germplasm developed by <strong>the</strong><br />

ICARDA/CIMMYT <strong>Barley</strong> Program <strong>in</strong><br />

Mexico allows limited symptom<br />

development when exposed to <strong>the</strong><br />

spectrum <strong>of</strong> virulence encountered <strong>in</strong><br />

field tests <strong>in</strong> South America, Mexico, <strong>an</strong>d<br />

<strong>the</strong> U.S. The fact that this germplasm has<br />

rema<strong>in</strong>ed resist<strong>an</strong>t over a 15-year period<br />

may be grounds for describ<strong>in</strong>g it as<br />

“durable.” S<strong>an</strong>doval-Islas et al. (1998)<br />

provided additional evidence for <strong>the</strong><br />

qu<strong>an</strong>titative <strong>an</strong>d durable nature <strong>of</strong> <strong>the</strong><br />

resist<strong>an</strong>ce <strong>of</strong> genotypes <strong>in</strong> <strong>the</strong> ICARDA/<br />

CIMMYT program.<br />

Qu<strong>an</strong>titative <strong>an</strong>d qualitative<br />

resist<strong>an</strong>ce<br />

There is <strong>an</strong> extensive literature on <strong>the</strong><br />

merits <strong>of</strong> different types <strong>of</strong> resist<strong>an</strong>ce, <strong>an</strong>d<br />

much <strong>of</strong> <strong>the</strong> debate is phrased <strong>in</strong> <strong>the</strong><br />

context <strong>of</strong> probable durability (Johnson,<br />

1981). The term<strong>in</strong>ology <strong>of</strong> disease<br />

resist<strong>an</strong>ce genetics does justice to <strong>the</strong><br />

complexity <strong>of</strong> <strong>the</strong> subject. The terms<br />

“qu<strong>an</strong>titative,” “qualitative,” “vertical,”<br />

“horizontal,” “partial,” <strong>an</strong>d “toler<strong>an</strong>ce”<br />

have precise def<strong>in</strong>itions (Brown<strong>in</strong>g et al.,<br />

1977). Resist<strong>an</strong>t phenotypes are a<br />

cont<strong>in</strong>uum r<strong>an</strong>g<strong>in</strong>g from <strong>the</strong><br />

hypersensitive response (HR) to a modest<br />

reduction <strong>in</strong> <strong>the</strong> rate <strong>of</strong> epidemic<br />

development. Throughout <strong>the</strong> cont<strong>in</strong>uum,<br />

<strong>the</strong>re are cases represent<strong>in</strong>g permutations<br />

<strong>of</strong> locus number, allele effect, racespecificity,<br />

stage <strong>of</strong> expression, <strong>an</strong>d<br />

durability (Brown<strong>in</strong>g et al., 1977).<br />

Therefore, locus number, allele effects,<br />

stage <strong>of</strong> expression, <strong>an</strong>d race-specificity<br />

need to be def<strong>in</strong>ed on a case-by-case basis.<br />

In <strong>the</strong> case <strong>of</strong> cereal rusts, a large body <strong>of</strong><br />

<strong>the</strong>ory has developed regard<strong>in</strong>g <strong>the</strong> risks<br />

associated with race-specific resist<strong>an</strong>ce<br />

genes (Johnson, 1981; Parlevliet, 1983;<br />

V<strong>an</strong>derpl<strong>an</strong>k, 1978). There is evidence that<br />

pathogen virulence c<strong>an</strong> evolve more<br />

quickly th<strong>an</strong> pl<strong>an</strong>t breeders c<strong>an</strong> deploy<br />

s<strong>in</strong>gle resist<strong>an</strong>ce genes <strong>in</strong> new varieties<br />

(Parlevliet, 1977). Accord<strong>in</strong>gly, a number<br />

<strong>of</strong> alternative disease resist<strong>an</strong>ce breed<strong>in</strong>g<br />

strategies have been proposed <strong>an</strong>d, <strong>in</strong><br />

some cases, implemented. One approach<br />

is to pyramid multiple race-specific genes<br />

<strong>in</strong>to a s<strong>in</strong>gle genotype (Hu<strong>an</strong>g et al., 1997;<br />

McIntosh <strong>an</strong>d Brown, 1997; Mundt, 1991).<br />

Ano<strong>the</strong>r approach is to use resist<strong>an</strong>ce<br />

genes that do not exhibit gene-for-gene<br />

relationships. Dist<strong>in</strong>ctions between<br />

qu<strong>an</strong>titative <strong>an</strong>d qualitative resist<strong>an</strong>ce,<br />

adult pl<strong>an</strong>t <strong>an</strong>d seedl<strong>in</strong>g resist<strong>an</strong>ce, <strong>an</strong>d


Collaborative Stripe Rust Resist<strong>an</strong>ce Gene Mapp<strong>in</strong>g <strong>an</strong>d Deployment Efforts<br />

49<br />

partial <strong>an</strong>d complete resist<strong>an</strong>ce are<br />

import<strong>an</strong>t considerations with<strong>in</strong> this<br />

general approach to disease<br />

m<strong>an</strong>agement. At <strong>the</strong> risk <strong>of</strong><br />

oversimplification, <strong>the</strong>re is empirical<br />

evidence that non-race-specific resist<strong>an</strong>ce<br />

genes may be more durable th<strong>an</strong> racespecific<br />

s<strong>in</strong>gle genes (Parlevliet, 1983).<br />

Despite <strong>the</strong> existence <strong>of</strong> considerable<br />

qu<strong>an</strong>titative resist<strong>an</strong>ce <strong>the</strong>ory, <strong>the</strong>re is<br />

relatively little empirical data on <strong>the</strong><br />

<strong>in</strong>herit<strong>an</strong>ce <strong>an</strong>d mech<strong>an</strong>ism <strong>of</strong><br />

qu<strong>an</strong>titative resist<strong>an</strong>ce. Molecular tools<br />

have revealed some unexpected results:<br />

unsuspected complexities <strong>in</strong> some genefor-gene<br />

resist<strong>an</strong>ce systems <strong>an</strong>d<br />

unsuspected large-effect determ<strong>in</strong><strong>an</strong>ts <strong>in</strong><br />

some qu<strong>an</strong>titative resist<strong>an</strong>ce systems (see<br />

reviews by Michelmore, 1995; Young,<br />

1996). If qu<strong>an</strong>titative resist<strong>an</strong>ce genes are<br />

to be useful, we need to underst<strong>an</strong>d <strong>the</strong>ir<br />

effects, <strong>in</strong>teractions, <strong>an</strong>d relationships<br />

with genes determ<strong>in</strong><strong>in</strong>g o<strong>the</strong>r<br />

economically import<strong>an</strong>t, qu<strong>an</strong>titatively<br />

<strong>in</strong>herited phenotypes.<br />

Characterization <strong>of</strong> pl<strong>an</strong>t resist<strong>an</strong>ce genes<br />

at <strong>the</strong> molecular level has provided<br />

<strong>in</strong>formation upon which to develop<br />

models <strong>in</strong>volv<strong>in</strong>g signal detection, signal<br />

tr<strong>an</strong>sduction, <strong>an</strong>d response (Beynon,<br />

1997). These studies (Buschges et al.,<br />

1997; Mart<strong>in</strong> et al., 1993; Salmeron et al.,<br />

1994; Schulze-Lefert, 1997; Zhou, 1995)<br />

have provided molecular evidence<br />

confirm<strong>in</strong>g hypo<strong>the</strong>ses based on whole<br />

pl<strong>an</strong>t data (summarized by Ell<strong>in</strong>gboe,<br />

1976; Gabriel <strong>an</strong>d Rolfe, 1995) <strong>in</strong>dicat<strong>in</strong>g<br />

that “monogenic” gene-for-gene<br />

relationships are recognition processes<br />

that turn on multiple genes <strong>in</strong> a<br />

resist<strong>an</strong>ce pathway.<br />

At <strong>the</strong> same time, QTL <strong>an</strong>alysis<br />

procedures have facilitated dissection <strong>of</strong><br />

qu<strong>an</strong>titative disease resist<strong>an</strong>ce (see<br />

reviews by Michelmore, 1995; Young,<br />

1996). In some cases, a signific<strong>an</strong>t<br />

proportion <strong>of</strong> <strong>the</strong> total vari<strong>an</strong>ce <strong>in</strong> <strong>the</strong><br />

expression <strong>of</strong> qu<strong>an</strong>titative traits may be<br />

attributable to one locus or a few loci<br />

(Chen et al., 1994; Hayes et al., 1996;<br />

Michelmore, 1995; Young, 1995),<br />

confirm<strong>in</strong>g classic qu<strong>an</strong>titative genetic<br />

studies (summarized by V<strong>an</strong>derpl<strong>an</strong>k,<br />

1978). This may be <strong>an</strong> oversimplification<br />

due to overestimation <strong>of</strong> locus effects <strong>an</strong>d<br />

underestimation <strong>of</strong> locus numbers<br />

(Beavis,1998; J<strong>an</strong>sen <strong>an</strong>d Stam,1994;<br />

Kaeppler, 1997; Melch<strong>in</strong>ger et al., 1998;<br />

Utz et al., <strong>in</strong> press; Visscher et al, 1997;<br />

Zeng, 1994). However, <strong>the</strong> overall picture<br />

is one <strong>of</strong> converg<strong>in</strong>g l<strong>in</strong>es <strong>of</strong> evidence<br />

support<strong>in</strong>g complexity <strong>in</strong> some<br />

qualitative models <strong>an</strong>d simplicity <strong>in</strong><br />

some qu<strong>an</strong>titative models.<br />

Differentiation <strong>of</strong> qualitative versus<br />

qu<strong>an</strong>titative resist<strong>an</strong>ce has long been a<br />

source <strong>of</strong> controversy. At one extreme is<br />

<strong>the</strong> view that <strong>the</strong>se classifications<br />

represent genes with dist<strong>in</strong>ctly different<br />

mech<strong>an</strong>isms <strong>an</strong>d race specificity<br />

(V<strong>an</strong>derpl<strong>an</strong>k, 1968, 1978). At <strong>the</strong> o<strong>the</strong>r<br />

extreme is <strong>the</strong> view that all resist<strong>an</strong>ce<br />

genes are similar, but are merely<br />

expressed differently <strong>in</strong> different<br />

comb<strong>in</strong>ations <strong>an</strong>d <strong>in</strong> different genetic<br />

backgrounds (Nelson, 1978).<br />

Unfortunately, three decades <strong>of</strong> debate<br />

have failed to resolve <strong>the</strong> issue.<br />

W<strong>an</strong>g et al. (1994) used recomb<strong>in</strong><strong>an</strong>t<br />

<strong>in</strong>bred l<strong>in</strong>es <strong>of</strong> rice (Oryza sativa) to show<br />

that a cultivar with durable resist<strong>an</strong>ce<br />

(sensu Johnson, 1981) to rice blast (caused<br />

by Magnapor<strong>the</strong> grisea) conta<strong>in</strong>s two racespecific,<br />

qualitative genes for resist<strong>an</strong>ce<br />

<strong>an</strong>d ten QTLs contribut<strong>in</strong>g to partial


50<br />

P.M. Hayes et al.<br />

resist<strong>an</strong>ce (sensu Parlevliet, 1989). Qi et<br />

al. (1999) have presented evidence for<br />

race-specific QTLs <strong>an</strong>d argued that<br />

qu<strong>an</strong>titative resist<strong>an</strong>ce to leaf rust is <strong>an</strong><br />

example <strong>of</strong> m<strong>in</strong>or gene-for-m<strong>in</strong>or gene<br />

<strong>in</strong>teraction. However, <strong>the</strong> contribution <strong>of</strong><br />

<strong>the</strong> qualitative vs. qu<strong>an</strong>titative genes to<br />

resist<strong>an</strong>ce rema<strong>in</strong>s unclear.<br />

<strong>Barley</strong> L<strong>in</strong>kage Maps<br />

<strong>an</strong>d QTLs<br />

<strong>Barley</strong> is <strong>an</strong> excellent system for genome<br />

mapp<strong>in</strong>g <strong>an</strong>d map-based <strong>an</strong>alyses. This<br />

diploid (2n = 14) species has seven<br />

cytologically dist<strong>in</strong>ct chromosomes<br />

conta<strong>in</strong><strong>in</strong>g approximately 5.3 x 10 9 bp<br />

DNA (Bennett <strong>an</strong>d Smith, 1976).<br />

Although barley is <strong>an</strong> autogamous<br />

species, <strong>the</strong>re is sufficient DNA-level<br />

diversity for efficient l<strong>in</strong>kage map<br />

construction <strong>in</strong> populations derived from<br />

crosses between related genotypes<br />

(Gr<strong>an</strong>er et al., 1991; Kle<strong>in</strong>h<strong>of</strong>s et al., 1993;<br />

Kasha et al., 1995; Becker et al., 1995;<br />

Hayes et al., 1997). The North Americ<strong>an</strong><br />

<strong>Barley</strong> Genome Mapp<strong>in</strong>g Project<br />

(NABGMP) has focused on build<strong>in</strong>g<br />

maps <strong>in</strong> elite germplasm to facilitate <strong>the</strong><br />

direct application <strong>of</strong> <strong>the</strong>se maps to pl<strong>an</strong>t<br />

breed<strong>in</strong>g (reviewed by Hayes et al.,<br />

1996). Several thous<strong>an</strong>d loci have been<br />

placed on <strong>the</strong>se maps, provid<strong>in</strong>g a<br />

comprehensive catalog <strong>of</strong> markers.<br />

Higher throughput markers, such as<br />

AFLPs, have been used for barley map<br />

construction (Becker et al., 1995; Hayes et<br />

al. l997). Microsatellite polymorphism<br />

has been demonstrated (Saghai-Maro<strong>of</strong><br />

et al., 1994) <strong>an</strong>d used for barley<br />

germplasm characterization <strong>an</strong>d map<br />

construction (Powell et al., 1996; Russell<br />

et al., 1997; Becker <strong>an</strong>d Heun, 1995;<br />

Tooj<strong>in</strong>da et al., 2000). The Scottish Crop<br />

Research Institute (SCRI) has a very<br />

productive SSR development program<br />

(http://www.scri.sari.ac.uk/SSR/). We<br />

are currently cooperat<strong>in</strong>g with <strong>the</strong> SCRI<br />

<strong>in</strong> <strong>an</strong> <strong>in</strong>ternational barley SSR<br />

characterization effort <strong>an</strong>d are<br />

systematically mapp<strong>in</strong>g <strong>the</strong> SCRI SSRs<br />

on NABGMP populations (Tooj<strong>in</strong>da et<br />

al., 2000).<br />

L<strong>in</strong>kage maps are useful from <strong>the</strong><br />

st<strong>an</strong>dpo<strong>in</strong>t <strong>of</strong> underst<strong>an</strong>d<strong>in</strong>g genome<br />

org<strong>an</strong>ization, establish<strong>in</strong>g synteny as a<br />

platform for map-based clon<strong>in</strong>g, <strong>an</strong>d for<br />

QTL detection. For a review <strong>of</strong> QTL<br />

detected <strong>in</strong> barley with references <strong>an</strong>d<br />

l<strong>in</strong>ks, see Hayes et al., 1996; Gra<strong>in</strong>Genes<br />

(http://wheat.pw.usda.gov/<br />

gra<strong>in</strong>genes.html); <strong>an</strong>d <strong>the</strong> NABGMP<br />

home pages (http://www.css.orst.edu/<br />

barley/nabgmp/nabgmp.htm; http://<br />

gnome.agrenv.mcgill.ca). In barley, as <strong>in</strong><br />

o<strong>the</strong>r crop species, much <strong>of</strong> <strong>the</strong> activity<br />

<strong>in</strong> QTL mapp<strong>in</strong>g has been descriptive.<br />

The experiments required for validation<br />

<strong>of</strong> estimates <strong>of</strong> QTL number, effect, <strong>an</strong>d<br />

<strong>in</strong>teraction are just com<strong>in</strong>g to fruition.<br />

Larson et al. (1996), Romagosa et al.<br />

(1996), Sp<strong>an</strong>er et al. (1999) <strong>an</strong>d Zhu et al.<br />

(1999) have conducted marker-assisted<br />

selection experiments to verify QTLs for<br />

agronomic traits <strong>in</strong> barley. H<strong>an</strong> et al.<br />

(1997) <strong>an</strong>d Marquez-Cedillo et al. (<strong>in</strong><br />

press) have conducted similar<br />

experiments for malt<strong>in</strong>g quality traits. In<br />

all cases, marker-assisted selection was<br />

effective for some, but not all QTLs. For<br />

stripe rust, we have successfully<br />

<strong>in</strong>trogressed resist<strong>an</strong>ce QTL alleles <strong>in</strong>to a<br />

susceptible genotype (Tooj<strong>in</strong>da et al.<br />

1998). The limited population sizes used<br />

<strong>in</strong> m<strong>an</strong>y <strong>of</strong> <strong>the</strong> reported QTL detection<br />

experiments may have led to<br />

underestimation <strong>of</strong> QTL number,<br />

overestimation <strong>of</strong> QTL effects, <strong>an</strong>d a


Collaborative Stripe Rust Resist<strong>an</strong>ce Gene Mapp<strong>in</strong>g <strong>an</strong>d Deployment Efforts<br />

51<br />

failure to qu<strong>an</strong>tify QTL <strong>in</strong>teractions<br />

(Beavis, 1998; J<strong>an</strong>sen <strong>an</strong>d Stam, 1994;<br />

Kaeppler, 1997; Melch<strong>in</strong>ger et al. 1998;<br />

Utz et al., <strong>in</strong> press; Visscher et al, 1997;<br />

Zeng, 1994).<br />

Mapp<strong>in</strong>g <strong>an</strong>d deployment<br />

<strong>of</strong> stripe rust resist<strong>an</strong>ce<br />

genes <strong>in</strong> barley<br />

Four qualitative resist<strong>an</strong>ce genes, Yr1 -<br />

Yr4, were described by Lehm<strong>an</strong>n et al.<br />

(1975). Of <strong>the</strong>se genes, only <strong>the</strong> Yr4<br />

locus has been mapped, <strong>an</strong>d it is on <strong>the</strong><br />

short arm <strong>of</strong> chromosome 5 (1H)<br />

(vonWettste<strong>in</strong>-Knowles, 1992). We<br />

recently mapped a qualitative resist<strong>an</strong>ce<br />

gene to <strong>the</strong> long arm <strong>of</strong> chromosome 1<br />

(7H) <strong>in</strong> CI10587 (Hayes et al., 1999), but<br />

<strong>the</strong> identity <strong>of</strong> this gene relative to <strong>the</strong><br />

Yr1 - Yr3 genes rema<strong>in</strong>s to be<br />

established. We mapped resist<strong>an</strong>ce<br />

QTLs on chromosomes 4 (4H) <strong>an</strong>d 7<br />

(5H) <strong>in</strong> Calicuchima-sib (Cali-sib), <strong>an</strong><br />

ICARDA/CIMMYT germplasm l<strong>in</strong>e<br />

(Chen et al.1994; Hayes et al. 1996c). We<br />

also mapped a major adult pl<strong>an</strong>t stripe<br />

rust resist<strong>an</strong>ce QTL on <strong>the</strong> short arm <strong>of</strong><br />

chromosome 5 (1H) <strong>in</strong> <strong>the</strong> ICARDA/<br />

CIMMYT-derived variety Shyri <strong>an</strong>d<br />

smaller-effect QTLs on chromosomes 2<br />

(2H), 3 (3H), <strong>an</strong>d 6 (6H) (Tooj<strong>in</strong>da et al.,<br />

2000). At <strong>the</strong> level <strong>of</strong> resolution afforded<br />

by <strong>the</strong> available maps, <strong>the</strong> chromosome<br />

5 (1H) QTL co<strong>in</strong>cides with <strong>the</strong> position<br />

<strong>of</strong> <strong>the</strong> Yr4 locus. Yr4 is reported to<br />

confer resist<strong>an</strong>ce to race 23 (von<br />

Wettste<strong>in</strong>-Knowles, 1992) while <strong>the</strong><br />

virulence spectrum <strong>in</strong> <strong>the</strong> Americas is<br />

described <strong>in</strong> terms <strong>of</strong> race 24 <strong>an</strong>d its<br />

vari<strong>an</strong>ts (Chen et al., 1995b).<br />

Thomas et al. (1995) also mapped <strong>an</strong><br />

adult pl<strong>an</strong>t resist<strong>an</strong>ce QTL <strong>in</strong> <strong>the</strong> same<br />

region <strong>in</strong> <strong>the</strong> variety Blenheim <strong>an</strong>d<br />

hypo<strong>the</strong>sized that it was <strong>an</strong> effect <strong>of</strong> <strong>an</strong><br />

allele at <strong>the</strong> Yr4 locus. We mapped a<br />

QTL to <strong>the</strong> same region on chromosome<br />

5 (1H) <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter six-row variety Kold<br />

<strong>an</strong>d a resist<strong>an</strong>ce QTL on chromosome 7<br />

(5H) (at <strong>the</strong> same position as <strong>the</strong><br />

chromosome 7 (5H) QTL <strong>in</strong> Cali-sib), <strong>in</strong><br />

<strong>the</strong> CIMMYT/ICARDA spr<strong>in</strong>g two-row<br />

germplasm CMB643 (Hayes et al., 1999).<br />

These stripe rust resist<strong>an</strong>ce mapp<strong>in</strong>g<br />

efforts are summarized <strong>in</strong> <strong>the</strong><br />

accomp<strong>an</strong>y<strong>in</strong>g Table 1.<br />

Deployment <strong>of</strong> resist<strong>an</strong>ce genes has<br />

<strong>in</strong>volved marker-assisted selection <strong>in</strong><br />

various germplasm adv<strong>an</strong>ced<br />

strategies—backcross<strong>in</strong>g <strong>in</strong> <strong>the</strong> case <strong>of</strong><br />

<strong>the</strong> six-row variety “T<strong>an</strong>go” (Tooj<strong>in</strong>da et<br />

al., 1998)—<strong>an</strong>d, more recently,<br />

pyramid<strong>in</strong>g. Pyramid<strong>in</strong>g efforts, focused<br />

on two-row barley, are summarized <strong>in</strong><br />

<strong>the</strong> accomp<strong>an</strong>y<strong>in</strong>g Figure 1. The first step<br />

<strong>in</strong> construction <strong>of</strong> resist<strong>an</strong>ce gene<br />

pyramids <strong>in</strong>volved position<strong>in</strong>g <strong>the</strong><br />

resist<strong>an</strong>ce QTL alleles from Shyri <strong>an</strong>d<br />

Cali-sib <strong>in</strong> a malt<strong>in</strong>g quality background<br />

contributed by Harr<strong>in</strong>gton <strong>an</strong>d Galena.<br />

These resist<strong>an</strong>ce QTL allele pyramid l<strong>in</strong>es<br />

constitute <strong>the</strong> “BCD” population. The<br />

acronym has local athletic allusions <strong>an</strong>d<br />

st<strong>an</strong>ds for “Beavers conquer Ducks”.<br />

This germplasm has been extensively<br />

phenotyped, <strong>an</strong>d its allelic structure at<br />

<strong>the</strong> target stripe rust resist<strong>an</strong>ce QTL is<br />

currently be<strong>in</strong>g def<strong>in</strong>ed (Castro et al.,<br />

2000).<br />

The second step <strong>in</strong> <strong>the</strong> construction <strong>of</strong> <strong>the</strong><br />

resist<strong>an</strong>ce gene pyramids <strong>in</strong>volved<br />

add<strong>in</strong>g a qualitative resist<strong>an</strong>ce gene,<br />

contributed by CI10587. Because CI10587<br />

is agronomically disadv<strong>an</strong>taged, <strong>the</strong><br />

qualitative resist<strong>an</strong>ce gene was<br />

tr<strong>an</strong>sferred to Baronesse, <strong>the</strong> lead<strong>in</strong>g feed<br />

variety <strong>in</strong> <strong>the</strong> Pacific Northwest <strong>of</strong> <strong>the</strong><br />

U.S. The qu<strong>an</strong>titative/qualitative<br />

resist<strong>an</strong>ce gene pyramids are referred to<br />

as <strong>the</strong> “Ajo, Sal, Bu, <strong>an</strong>d Ops”


52<br />

P.M. Hayes et al.<br />

Table 1. Summary <strong>of</strong> OSU/ICARDA/CIMMYT collaborative disease resist<strong>an</strong>ce mapp<strong>in</strong>g <strong>an</strong>d<br />

germplasm enh<strong>an</strong>cement projects.†<br />

Two-row populations. Phase I<br />

Cross:<br />

CB. Calicuchima-sib/Bowm<strong>an</strong> (Yd2). AKA: ‘BSR’<br />

Parents:<br />

Cali-sib: Stripe rust, leaf rust, scald<br />

Bowm<strong>an</strong> (Yd2): Stress toler<strong>an</strong>ce, BYDV<br />

Population: F1-derived doubled haploid. N = 94. Stripe rust, leaf rust, scald, BYDV<br />

Mapped genes: Stripe rust, leaf rust, scald, BYDV<br />

Selections: BSR45 (2-row) = Orca. Stripe rust, scald, BYDV BSR41 (6-row). Stripe rust, scald<br />

References: Chen et al., 1994; Hayes et al., 1996; Hayes et al., 2000<br />

Comments: Also mapped malt<strong>in</strong>g quality QTL Orca released <strong>in</strong> 1998 as a feed variety.<br />

Not recommended as a malt<strong>in</strong>g variety due to high prote<strong>in</strong> <strong>an</strong>d enzymes.<br />

Cross:<br />

Parents:<br />

SG. Shyri/Galena. AKA: ‘D1’<br />

Shyri: Stripe rust, leaf rust, scald, net blotch, BYDV, FHB<br />

Galena: Malt quality, leaf rust, BYDV<br />

F1-derived doubled haploid. N = 94. Stripe rust, leaf rust, scald, net blotch, BYDV<br />

Stripe rust, leaf rust, BYDV<br />

D1-72: Stripe rust<br />

Population:<br />

Mapped genes:<br />

Selections:<br />

References: Tooj<strong>in</strong>da et al., 2000<br />

Comments: Scald <strong>an</strong>d net blotch mapp<strong>in</strong>g <strong>in</strong> progress<br />

Cross:<br />

Parents:<br />

Population:<br />

Mapped genes:<br />

Selections:<br />

References:<br />

Comments:<br />

Cross:<br />

Parents:<br />

Population:<br />

Mapped genes:<br />

Selections:<br />

References:<br />

Comments:<br />

Cross:<br />

Parents:<br />

Population:<br />

Mapped genes:<br />

Selections:<br />

References:<br />

Comments:<br />

CG. CI10587/Galena. AKA: ‘D3’<br />

CI10587: Stripe rust, leaf rust, Russi<strong>an</strong> wheat aphid<br />

Galena: Malt quality, leaf rust, BYDV<br />

F1-derived doubled haploid. N = 94. Stripe rust, RWA<br />

Stripe rust<br />

D3-6: Stripe rust, RWA<br />

In progress<br />

RWA mapp<strong>in</strong>g deferred until full map available<br />

DB. D3-6/Baronesse. AKA: D3-6/B<br />

D3-6: Stripe rust, RWA<br />

Baronesse: Yield<br />

F1-derived doubled haploid. N = 100. Stripe rust, RWA<br />

NA<br />

D3-6/B-23 Stripe rust, RWA<br />

D3-6/B-45 Stripe rust, RWA<br />

D3-6/B-61 Stripe rust, RWA<br />

NA<br />

CI10587 is agronomically challenged. D3-6 was <strong>the</strong> most prepossess<strong>in</strong>g l<strong>in</strong>e.<br />

We crossed it with Baronesse to improve agronomic type. Stripe rust <strong>an</strong>d RWA resist<strong>an</strong>ce<br />

phenotypes were confirmed <strong>in</strong> <strong>the</strong> D3-6/B progeny.<br />

GA. Gobernadora/Azafr<strong>an</strong>. AKA: Gobe x CMB643, Gobe<br />

Gobernadora: Fusarium<br />

Azafr<strong>an</strong>: Fusarium, stripe rust, leaf rust<br />

F1-derived doubled haploid. N = 144. Fusarium (I,II,III), stripe rust<br />

Fusarium (I,II, III), stripe rust<br />

Gobe 24: Fusarium, stripe rust<br />

Gobe 96: Fusarium, stripe rust, scald<br />

Zhu et al., 1999b<br />

Stripe rust QTL not published. Maps to same position on chromosome 7 (5H) as QTL <strong>in</strong><br />

Cali-sib.


Collaborative Stripe Rust Resist<strong>an</strong>ce Gene Mapp<strong>in</strong>g <strong>an</strong>d Deployment Efforts<br />

53<br />

Two-row populations: Phase II<br />

Cross:<br />

BCD. Orca/1*Harr<strong>in</strong>gton//D1-72 AKA: ‘BCD’<br />

Parents:<br />

Orca: Stripe rust, scald, BYDV<br />

Harr<strong>in</strong>gton: Malt<strong>in</strong>g quality<br />

D1-72: Stripe rust<br />

Population: BC1-derived doubled haploid. N = 115. Stripe rust, scald, BYDV<br />

Mapped genes: Stripe rust<br />

Selections: BCD-12: Stripe rust, leaf rust, scald, BYDV<br />

BCD-47: Stripe rust, leaf rust, scald<br />

References: In progress<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to<br />

Cali-sib <strong>an</strong>d Shyri. BCD-47 is <strong>in</strong> regional test<strong>in</strong>g <strong>an</strong>d <strong>the</strong> AMBA pilot program.<br />

Cross:<br />

RECLA. AKA: Red Cebada Lat<strong>in</strong>a<br />

A complex cross <strong>in</strong>volv<strong>in</strong>g:<br />

Gobe-24; Gobe-96; AF9216; Orca; Kredit; <strong>an</strong>d Azafr<strong>an</strong><br />

Parents:<br />

Gobe-24: Fusarium<br />

Gobe-96: Fusarium, stripe rust, leaf rust<br />

AF9216: Leaf rust<br />

Orca: Stripe rust, scald, BYDV<br />

Kredit: Stripe rust, leaf rust<br />

Azafr<strong>an</strong>: Fusarium, stripe rust, leaf rust<br />

Population: DH = 125<br />

Mapped genes: NA<br />

Selections: L<strong>in</strong>es adv<strong>an</strong>ced to breed<strong>in</strong>g program<br />

References:<br />

Comments:<br />

http://www.css.orst.edu/recla/la_red.htm<br />

Objective <strong>of</strong> this population is to pyramid multiple resist<strong>an</strong>ce genes <strong>an</strong>d to stimulate a<br />

Lat<strong>in</strong> Americ<strong>an</strong> Barely <strong>in</strong>itiative. Parents selected for adaptation to various environments<br />

<strong>in</strong> Lat<strong>in</strong> America.<br />

Two-row populations: Phase III<br />

Cross:<br />

Bu. BCD-47//D3-6/B-23<br />

Parents:<br />

BCD-47: Stripe rust, leaf rust, scald<br />

D3-6/B-23: Stripe rust, RWA<br />

Population: F1-derived doubled haploid. N = 89. Stripe rust, scald, BYDV<br />

Mapped genes: In progress<br />

Selections: L<strong>in</strong>es adv<strong>an</strong>ced to breed<strong>in</strong>g program<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to<br />

Cali-sib <strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587.<br />

Cross:<br />

Parents:<br />

Population:<br />

Mapped genes:<br />

Selections:<br />

References:<br />

Comments:<br />

Sal. BCD-47//D3-6/B-45<br />

BCD-47: Stripe rust, leaf rust, scald<br />

D3-6/B-45: Stripe rust, RWA<br />

F1-derived doubled haploid. N = 11. Stripe rust, scald, BYDV<br />

In progress<br />

L<strong>in</strong>es adv<strong>an</strong>ced to breed<strong>in</strong>g program<br />

NA<br />

Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to<br />

Cali-sib <strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587.


54<br />

P.M. Hayes et al.<br />

Cross:<br />

Parents:<br />

Population:<br />

Mapped genes:<br />

Selections:<br />

References:<br />

Comments:<br />

Cross:<br />

Parents:<br />

Population:<br />

Mapped genes:<br />

Selections:<br />

References:<br />

Comments:<br />

Ajo BCD-47//D3-6/B-61<br />

BCD-47: Stripe rust, leaf rust, scald<br />

D3-6/B-61: Stripe rust, RWA<br />

F1-derived doubled haploid. N = 119. Stripe rust, scald, BYDV<br />

In progress<br />

L<strong>in</strong>es adv<strong>an</strong>ced to breed<strong>in</strong>g program<br />

NA<br />

Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to Cali-sib<br />

<strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587.<br />

Ops. BCD-12//D3-6/B-61<br />

BCD-47: Stripe rust, leaf rust, scald<br />

D3-6/B-61: Stripe rust, RWA<br />

F1-derived doubled haploid. N = 108. Stripe rust, scald, BYDV<br />

In progress<br />

L<strong>in</strong>es adv<strong>an</strong>ced to breed<strong>in</strong>g program<br />

NA<br />

Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to<br />

Cali-sib <strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587.<br />

Two-row populations: Phase IV<br />

Cross:<br />

Bub. BCD-47//D3-6/B-23 F1///BCD-47<br />

Parents:<br />

BCD-47: Stripe rust, leaf rust, scald<br />

D3-6/B-23: Stripe rust, RWA<br />

Population: SSD N = 130<br />

Mapped genes: NA<br />

Selections: NA<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to Cali-sib<br />

<strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587.<br />

Cross:<br />

Buh. BCD-47/D3-6/B-23, F1///He6890<br />

Parents:<br />

BCD-47: Stripe rust, leaf rust, scald<br />

D3-6/B-23: Stripe rust, RWA<br />

He6890: Stripe rust, Czech malt<strong>in</strong>g barley<br />

Population: SSD N = 160<br />

Mapped genes: NA<br />

Selections: NA<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to<br />

Cali-sib <strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587 <strong>an</strong>d <strong>the</strong> uncharacterized<br />

resist<strong>an</strong>ce <strong>in</strong> He6890.<br />

Cross:<br />

Opb. BCD-12/D3-6/B-61, F1///BCD-47<br />

Parents:<br />

BCD-12: Stripe rust, leaf rust, scald, BYDV<br />

D3-6/B-61: Stripe rust, RWA<br />

BCD-47: Stripe rust, leaf rust, scald<br />

Population: SSD N = 149<br />

Mapped genes: NA<br />

Selections: NA<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to Cali-sib<br />

<strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587.


Collaborative Stripe Rust Resist<strong>an</strong>ce Gene Mapp<strong>in</strong>g <strong>an</strong>d Deployment Efforts<br />

55<br />

Cross:<br />

Oph. BCD-12/D3-6/B-61, F1///He6890<br />

Parents:<br />

BCD-12: Stripe rust, leaf rust, scald, BYDV<br />

D3-6/B-61: Stripe rust, RWA<br />

He6890: Stripe rust, Czech malt<strong>in</strong>g barley<br />

Population: SSD N = 130<br />

Mapped genes: NA<br />

Selections: NA<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to<br />

Cali-sib <strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587 CI10587 <strong>an</strong>d <strong>the</strong> uncharacterized<br />

resist<strong>an</strong>ce <strong>in</strong> He6890.<br />

Cross:<br />

Ajb. BCD-47/D3-6/B-61, F1///BCD47<br />

Parents:<br />

BCD-47: Stripe rust, leaf rust, scald<br />

D3-6/B-61: Stripe rust, RWA<br />

BCD-47: Stripe rust, leaf rust, scald<br />

Population: SSD N = 149<br />

Mapped genes: NA<br />

Selections: NA<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to Cali-sib<br />

<strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587.<br />

Cross:<br />

Ajh. BCD-47/D3-6/B61, F1///He6890<br />

Parents:<br />

BCD-47: Stripe rust, lLeaf rust, scald<br />

D3-6/B-61: Stripe rust, RWA<br />

He6890: Stripe rust, Czech malt<strong>in</strong>g barley<br />

Population: SSD N = 169<br />

Mapped genes: NA<br />

Selections: NA<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to<br />

Cali-sib <strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587 <strong>an</strong>d <strong>the</strong> uncharacterized<br />

`<br />

resist<strong>an</strong>ce <strong>in</strong> He6890.<br />

Cross:<br />

Sah. BCD-47/D3-6/B-45, F1///He6890<br />

Parents:<br />

BCD-47: Stripe rust, leaf rust, scald<br />

D3-6/B-45: Stripe rust, RWA<br />

He6890: Stripe rust, Czech malt<strong>in</strong>g barley<br />

Population: SSD N = 94<br />

Mapped genes: NA<br />

Selections: NA<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to pyramid stripe rust resist<strong>an</strong>ce QTL alleles trac<strong>in</strong>g to<br />

Cali-sib <strong>an</strong>d Shyri with <strong>the</strong> s<strong>in</strong>gle gene trac<strong>in</strong>g to CI10587 <strong>an</strong>d <strong>the</strong> uncharacterized<br />

resist<strong>an</strong>ce <strong>in</strong> He6890.


56 P.M. Hayes et al.<br />

Two-row populations: Phase V<br />

Cross:<br />

BAR12. BCD-12/Baronesse<br />

Parents:<br />

BCD12: Stripe rust, leaf rust, scald, BYDV<br />

Baronesse: Yield<br />

Population: In progress. Target n = 500 s<strong>in</strong>gle seed descent<br />

Mapped genes: NA<br />

Selections: NA<br />

References: NA<br />

Comments: Objective <strong>of</strong> this population is to optimize estimates <strong>of</strong> resist<strong>an</strong>ce gene effects <strong>an</strong>d measure<br />

resist<strong>an</strong>ce gene <strong>in</strong>teractions.<br />

Cross:<br />

Parents:<br />

Baronesse: Yield<br />

Population:<br />

Mapped genes:<br />

Selections:<br />

References:<br />

Comments:<br />

BAR47. BCD-47/Baronesse<br />

BCD47: Stripe rust, leaf rust, scald<br />

In progress. Target n = 500 doubled haploids<br />

NA<br />

NA<br />

NA<br />

Objective <strong>of</strong> this population is to optimize estimates <strong>of</strong> resist<strong>an</strong>ce gene effects <strong>an</strong>d measure<br />

resist<strong>an</strong>ce gene <strong>in</strong>teractions.<br />

† Cross: Abbreviation <strong>in</strong> bold corresponds to Figure.<br />

Parents: Parents contribute favorable alleles for phenotypes listed.<br />

Population: Population assayed for phenotypes listed.<br />

Mapped genes: Phenotypes measured <strong>in</strong> <strong>the</strong> population for which genetic determ<strong>in</strong><strong>an</strong>ts have been mapped.<br />

Selections: Correspond to designation <strong>in</strong> Figure. Selections contribute favorable alleles for phenotypes listed.<br />

Two-row<br />

Six-row<br />

Orca<br />

CB SG CG GA GA<br />

BSR-45<br />

BSR-41<br />

DI-72<br />

D3-6<br />

Gobe-24<br />

Gobe-96<br />

Harr<strong>in</strong>gton Baronesse Colter<br />

Steptoe<br />

BCD<br />

DB<br />

T<strong>an</strong>go SR<br />

BCD-12 BCD-47 D3-6/B-23 D3-6/B-45 D3-6/B-61 SR58-4<br />

CRSR<br />

CR<br />

CR30-3<br />

OPS<br />

BU<br />

SAL<br />

AJO<br />

Excel<br />

St<strong>an</strong>der<br />

He6890<br />

OPH BUH BUB SAH AJH AJB SOE TSE SOT SOST<br />

BAR-12<br />

BAR-47<br />

RECLA<br />

Mapp<strong>in</strong>g population<br />

Variety selected from<br />

mapp<strong>in</strong>g population<br />

Selection from mapp<strong>in</strong>g population<br />

Variety used as parent<br />

Figure 1. Construction <strong>of</strong> resist<strong>an</strong>ce gene pyramids <strong>in</strong> two- <strong>an</strong>d six-row barley us<strong>in</strong>g markerassisted<br />

selection.


Collaborative Stripe Rust Resist<strong>an</strong>ce Gene Mapp<strong>in</strong>g <strong>an</strong>d Deployment Efforts<br />

57<br />

germplasm. These germplasm descriptors<br />

have gastronomic allusions; <strong>the</strong><br />

germplasm itself has been extensively<br />

phenotyped. Genotyp<strong>in</strong>g is <strong>in</strong> progress.<br />

The third step <strong>in</strong> pyramid construction<br />

has <strong>in</strong>volved He6890, <strong>an</strong> agronomically<br />

attractive Czech selection with<br />

uncharacterized stripe rust resist<strong>an</strong>ce.<br />

Our stripe rust resist<strong>an</strong>ce breed<strong>in</strong>g effort<br />

<strong>in</strong> six-row barley is not as adv<strong>an</strong>ced as<br />

our effort <strong>in</strong> two-row barley. As shown <strong>in</strong><br />

<strong>the</strong> accomp<strong>an</strong>y<strong>in</strong>g Figure, <strong>the</strong> six-row<br />

effort is currently directed deploy<strong>in</strong>g<br />

resist<strong>an</strong>ce QTL alleles, trac<strong>in</strong>g to Cali-sib,<br />

<strong>in</strong> a Midwestern malt<strong>in</strong>g quality<br />

background.<br />

Conclusions<br />

In summary, <strong>the</strong> ICARDA/CIMMYT<br />

program has been very successful <strong>in</strong><br />

accumulat<strong>in</strong>g resist<strong>an</strong>ce to multiple<br />

diseases <strong>in</strong> s<strong>in</strong>gle genotypes. Although<br />

this review has focused on stripe rust, this<br />

germplasm is also rich <strong>in</strong> genes<br />

conferr<strong>in</strong>g resist<strong>an</strong>ce to a r<strong>an</strong>ge <strong>of</strong><br />

diseases <strong>in</strong>clud<strong>in</strong>g barley yellow dwarf,<br />

leaf rust, net blotch, scald, <strong>an</strong>d spot<br />

blotch. This accumulation <strong>of</strong> disease<br />

resist<strong>an</strong>ce alleles has been accomplished<br />

based on phenotypic data alone, <strong>an</strong>d this<br />

success is testimony to Dr. Hugo Vivar’s<br />

sharp eye <strong>an</strong>d powers <strong>of</strong> recollection, <strong>an</strong>d<br />

to <strong>the</strong> dedication <strong>of</strong> his staff. The<br />

genotypic characterization <strong>of</strong> this<br />

germplasm should be <strong>of</strong> assist<strong>an</strong>ce to all<br />

particip<strong>an</strong>ts.<br />

Faced with a field nursery <strong>of</strong><br />

agronomically promis<strong>in</strong>g germplasm, all<br />

<strong>of</strong> which is phenotypically resist<strong>an</strong>t to<br />

diseases, knowledge regard<strong>in</strong>g <strong>the</strong><br />

genetic architecture <strong>of</strong> each germplasm<br />

accession c<strong>an</strong> be <strong>in</strong>valuable <strong>in</strong> decid<strong>in</strong>g<br />

which genotypes to adv<strong>an</strong>ce as varieties,<br />

<strong>an</strong>d which genotypes to use as parents<br />

<strong>in</strong> order to cont<strong>in</strong>ue <strong>the</strong> allele<br />

accumulation process. Knowledge<br />

regard<strong>in</strong>g <strong>the</strong> genetic architecture <strong>of</strong><br />

exotic germplasm should <strong>in</strong>crease its<br />

utility, ensur<strong>in</strong>g a broader germplasm<br />

base <strong>an</strong>d provid<strong>in</strong>g <strong>an</strong> impetus for<br />

germplasm conservation.<br />

Acknowledgments<br />

This collaboration has succeeded th<strong>an</strong>ks<br />

to <strong>the</strong> efforts <strong>of</strong> numerous <strong>in</strong>dividuals<br />

<strong>an</strong>d to support from a number <strong>of</strong><br />

org<strong>an</strong>izations. Special th<strong>an</strong>ks to all who<br />

have contributed to this research over<br />

<strong>the</strong> years, <strong>in</strong>clud<strong>in</strong>g Fuqi<strong>an</strong>g Chen,<br />

Xi<strong>an</strong>m<strong>in</strong>g Chen, Je<strong>an</strong><strong>in</strong>e DeNoma,<br />

Aihong P<strong>an</strong>, Mareike Johnston, John<br />

Korte, Rollie L<strong>in</strong>e, Vicente Morales,<br />

Chris Mundt, Doris Prehn, Bernardo<br />

Ramirez, <strong>an</strong>d Theerayut Tooj<strong>in</strong>da. For<br />

<strong>the</strong> OSU particip<strong>an</strong>ts, this research was<br />

made possible by <strong>the</strong> barley growers <strong>of</strong><br />

Oregon, Wash<strong>in</strong>gton, <strong>an</strong>d Idaho; <strong>the</strong><br />

Americ<strong>an</strong> Malt<strong>in</strong>g <strong>Barley</strong> Association;<br />

<strong>the</strong> Anheuser Busch Comp<strong>an</strong>y; Busch<br />

Agricultural Resource, Inc.; Great<br />

Western Malt<strong>in</strong>g/ConAgra Malt; <strong>the</strong><br />

North Americ<strong>an</strong> <strong>Barley</strong> Genome<br />

Mapp<strong>in</strong>g Project; <strong>an</strong>d <strong>the</strong> Oregon<br />

Agricultural Experiment Station. The<br />

Colegio de Postgraduados <strong>an</strong>d<br />

ICARDA/CIMMYT provided support<br />

for <strong>the</strong>ir participat<strong>in</strong>g staff.


58<br />

P.M. Hayes et al.<br />

References<br />

Beavis, W.D. 1998. QTL <strong>an</strong>alyses: Power, precision,<br />

<strong>an</strong>d accuracy. In: A.H. Patterson (ed.).<br />

Molecular dissection <strong>of</strong> complex traits. CRC<br />

Press, Boca Raton.<br />

Becker, J., <strong>an</strong>d M. Heun. 1995. <strong>Barley</strong><br />

microsatellites: allele variation <strong>an</strong>d mapp<strong>in</strong>g.<br />

Pl<strong>an</strong>t Mol. Biol. 27:835-845.<br />

Bennett, M.D., <strong>an</strong>d J.B. Smith. 1976. Nuclear DNA<br />

amounts <strong>in</strong> <strong>an</strong>giosperms. Phil. Tr<strong>an</strong>s. R. Soc.<br />

London Biol. 274:227-274.<br />

Beynon, J.L. 1997. Molecular genetics <strong>of</strong> disease<br />

resist<strong>an</strong>ce: <strong>an</strong>d end to <strong>the</strong> gene-for-gene<br />

concept? In: I.R. Crute, E.B. Holub, <strong>an</strong>d I.J.<br />

Burdon (eds.). The gene-for-gene relationship<br />

<strong>in</strong> pl<strong>an</strong>t-parasite <strong>in</strong>teractions. CAB<br />

International, Wall<strong>in</strong>gford, UK.<br />

Brown<strong>in</strong>g, J.A., M.D. Simons, <strong>an</strong>d E. Torres. 1977.<br />

M<strong>an</strong>ag<strong>in</strong>g host genes: epidemiologic <strong>an</strong>d<br />

genetic concepts. In: J.G. Horsfall <strong>an</strong>d E.B.<br />

Cowl<strong>in</strong>g (eds.). Pl<strong>an</strong>t Disease: An Adv<strong>an</strong>ced<br />

Treatise. Vol. 1. Academic Press, <strong>New</strong> York.<br />

Buschges, R., K. Hollricher, R. P<strong>an</strong>struga, G.<br />

Simons, M. Wolter, A. Frijters, R. v<strong>an</strong> Daelen, T.<br />

v<strong>an</strong> de Lee, P. Diergaarde, J. Groenendijk, S.<br />

Topsch, P. Vos, F. Salam<strong>in</strong>i, <strong>an</strong>d P. Schulze-<br />

Lefert. 1997. The barley Mlo gene: a novel<br />

control element <strong>of</strong> pl<strong>an</strong>t pathogen resist<strong>an</strong>ce.<br />

Cell 88:695-705.<br />

Castro, A., A. Corey, T. Filichk<strong>in</strong>, P. Hayes, J.S.<br />

S<strong>an</strong>doval-Islas, T. Tooj<strong>in</strong>da, <strong>an</strong>d H. Vivar. 2000.<br />

Development <strong>an</strong>d characterization <strong>of</strong> stripe<br />

rust resist<strong>an</strong>ce QTL pyramids <strong>in</strong> barley. Pl<strong>an</strong>t<br />

<strong>an</strong>d Animal Genome VIII.<br />

Chen, F., D. Prehn, P.M. Hayes, D. Mulrooney, A.<br />

Corey, <strong>an</strong>d H. Vivar. 1994. Mapp<strong>in</strong>g genes for<br />

resist<strong>an</strong>ce to barley stripe rust (Pucc<strong>in</strong>ia<br />

striiformis f. sp. hordei). Theor. Appl. Genet.<br />

88:215-219.<br />

Chen, X.M., <strong>an</strong>d R.F. L<strong>in</strong>e. 1995a. Gene action <strong>in</strong><br />

wheat cultivars for with durable, hightemperature,<br />

adult-pl<strong>an</strong>t resist<strong>an</strong>ce <strong>an</strong>d<br />

<strong>in</strong>teraction <strong>of</strong> HTAP <strong>an</strong>d race-specific seedl<strong>in</strong>g<br />

resist<strong>an</strong>ce to Pucc<strong>in</strong>ia striiformis.<br />

Phytopathology 85:567-572.<br />

Chen, X., R.F. L<strong>in</strong>e, <strong>an</strong>d H. Leung. 1995b. Virulence<br />

<strong>an</strong>d polymorphic DNA relationships <strong>of</strong><br />

Pucc<strong>in</strong>ia striiformis f. sp. hordei to o<strong>the</strong>r rusts.<br />

Phytopathology 85:1335-1342.<br />

Dub<strong>in</strong>, H.J., <strong>an</strong>d R.W. Stubbs. 1985. Epidemic<br />

spread <strong>of</strong> barley stripe rust <strong>in</strong> South America.<br />

Pl<strong>an</strong>t Dis. 70:141-144.<br />

Ell<strong>in</strong>gboe, A.H. 1976. Genetics <strong>of</strong> host-parasite<br />

<strong>in</strong>teractions. In: R. Heitefuss <strong>an</strong>d P.H. Williams<br />

(eds.). Physiological Pl<strong>an</strong>t Pathology. Spr<strong>in</strong>ger-<br />

Verlag, Berl<strong>in</strong>.<br />

Gabriel, D.W., <strong>an</strong>d B.G. Rolfe. 1990. Work<strong>in</strong>g<br />

models <strong>of</strong> specific recognition <strong>in</strong> pl<strong>an</strong>t-parasite<br />

<strong>in</strong>teractions. Ann. Rev. Phytopathol. 28:365-391.<br />

Gr<strong>an</strong>er, A., A. Jahoor, J. Schondelmaier, H. Siedler,<br />

K. Pillen, G. Fischbeck, G. Wensel, <strong>an</strong>d R.G.<br />

Herrm<strong>an</strong>n. 1991. Construction <strong>of</strong> <strong>an</strong> RFLP map<br />

<strong>of</strong> barley. Theor. Appl. Genet. 83:250-256.<br />

H<strong>an</strong>, F., I. Romagosa, S. Ullrich, B. Jones, P. Hayes,<br />

<strong>an</strong>d D. Wesenberg. 1997. Molecular markerassisted<br />

selection for malt<strong>in</strong>g quality traits <strong>in</strong><br />

barley. Molecular <strong>Breed<strong>in</strong>g</strong> 3:427-437.<br />

Hayes, P.M., J. Cerono, H. Witsenboer, M. Kuiper,<br />

M. Zabeau, K. Sato, A. Kle<strong>in</strong>h<strong>of</strong>s, D. Kudrna,<br />

A. Kili<strong>an</strong>, M. Saghai-Maro<strong>of</strong>, D. H<strong>of</strong>fm<strong>an</strong> <strong>an</strong>d<br />

<strong>the</strong> North Americ<strong>an</strong> <strong>Barley</strong> Genome Mapp<strong>in</strong>g<br />

Project. 1997. Characteriz<strong>in</strong>g <strong>an</strong>d exploit<strong>in</strong>g<br />

genetic diversity <strong>an</strong>d qu<strong>an</strong>titative traits <strong>in</strong><br />

barley (Hordeum vulgare). J.Qu<strong>an</strong>t.Trait Loci<br />

http://probe.nalusda.gov:8000/o<strong>the</strong>rdocs/<br />

jqtl/jqtl1997-02/.<br />

Hayes, P.M., F.Q. Chen, A. Kle<strong>in</strong>h<strong>of</strong>s, A. Kili<strong>an</strong>,<br />

<strong>an</strong>d D. Ma<strong>the</strong>r. 1996. <strong>Barley</strong> genome mapp<strong>in</strong>g<br />

<strong>an</strong>d its applications. In: P.P. Jauhar (ed.).<br />

Methods <strong>of</strong> Genome Analysis <strong>in</strong> Pl<strong>an</strong>ts: CRC<br />

Press, Boca Raton, USA.<br />

Hayes, P.M., X. Chen, A. Corey, M. Johnston, A.<br />

Kle<strong>in</strong>h<strong>of</strong>s, J. Korte, D. Kudrna, T. Tooj<strong>in</strong>da, <strong>an</strong>d<br />

H. Vivar. 1999. A summary <strong>of</strong> barley stripe rust<br />

mapp<strong>in</strong>g efforts. Pl<strong>an</strong>t <strong>an</strong>d Animal Genome<br />

VII. http://www.<strong>in</strong>tl-pag.org/.<br />

Hayes, P.M., B.H. Liu, S.J. Knapp, F. Chen, B. Jones,<br />

T. Blake, J. Fr<strong>an</strong>ckowiak, D. Rasmusson, M.<br />

Sorrells, S.E. Ullrich, D. Wesenberg, <strong>an</strong>d A.<br />

Kle<strong>in</strong>h<strong>of</strong>s. 1993. Qu<strong>an</strong>titative trait locus effects<br />

<strong>an</strong>d environmental <strong>in</strong>teraction <strong>in</strong> a sample <strong>of</strong><br />

North Americ<strong>an</strong> barley germplasm. Theor.<br />

Appl. Genet. 87:392-401.<br />

Hayes, P.M., D. Prehn, H. Vivar, T. Blake, A.<br />

Comeau, I. Henry, M. Johnston, B. Jones, <strong>an</strong>d B.<br />

Steffenson. 1996c. Multiple disease resist<strong>an</strong>ce<br />

loci <strong>an</strong>d <strong>the</strong>ir relationship to agronomic <strong>an</strong>d<br />

quality loci <strong>in</strong> a spr<strong>in</strong>g barley population.<br />

J.Qu<strong>an</strong>t. Trait Loci http://<br />

probe.nalusda.gov:8000/o<strong>the</strong>rdocs/jqtl/<br />

<strong>in</strong>dex.htm.<br />

Hayes, P.M., A.E. Corey, R. Dovel, R. Karow, C.<br />

Mundt, K. Rh<strong>in</strong>art, <strong>an</strong>d H. Vivar. 2000.<br />

Registration <strong>of</strong> Orca barley. Crop Sci. (<strong>in</strong> press).<br />

Hu<strong>an</strong>g, N., E.R. Angeles, J. Dom<strong>in</strong>go, G.<br />

Magp<strong>an</strong>tay, S. S<strong>in</strong>gh, G. Zh<strong>an</strong>g, N.<br />

Kumaradivel, J. Bennett, <strong>an</strong>d G.S. Khush. 1997.<br />

Pyramid<strong>in</strong>g <strong>of</strong> bacterial blight resist<strong>an</strong>ce genes<br />

<strong>in</strong> rice:marker-assisted selection us<strong>in</strong>g RFLP<br />

<strong>an</strong>d PCR. Theor. Appl. Genet. 95:313-320.<br />

J<strong>an</strong>sen, R.C., <strong>an</strong>d P. Stam. 1994. High resolution<br />

mapp<strong>in</strong>g <strong>of</strong> qu<strong>an</strong>titative traits <strong>in</strong>to multiple<br />

loci via <strong>in</strong>terval mapp<strong>in</strong>g. Genetics 136:1447-<br />

1455.<br />

Johnson, R.1981. Durable resist<strong>an</strong>ce: def<strong>in</strong>ition <strong>of</strong>,<br />

genetic control, <strong>an</strong>d atta<strong>in</strong>ment.<br />

Phytopathology 71:567-568.


Collaborative Stripe Rust Resist<strong>an</strong>ce Gene Mapp<strong>in</strong>g <strong>an</strong>d Deployment Efforts<br />

59<br />

Kaeppler, S. 1997. Power <strong>an</strong>alysis for qu<strong>an</strong>titative<br />

trait locus mapp<strong>in</strong>g <strong>in</strong> populations derived by<br />

multiple backcrosses. Theor. Appl. Genet.<br />

95:618-621.<br />

Kasha, K.J., A. Kle<strong>in</strong>h<strong>of</strong>s, A. Kili<strong>an</strong>, M. Saghai<br />

Maro<strong>of</strong>, G.J. Scoles., P.M. Hayes, F.Q. Chen, X.<br />

Xia, X.Z. Li, R.M. Biyashev, D. H<strong>of</strong>fm<strong>an</strong>n, L.<br />

Dahleen, T.K. Blake, B.G. Rossnagel, B.J.<br />

Steffenson, P.L. Thomas, D.E. Falk, A. Laroche,<br />

W. Kim, <strong>an</strong>d S.J. Molnar. 1995. The North<br />

Americ<strong>an</strong> barley genome map on <strong>the</strong> cross HT<br />

<strong>an</strong>d its comparison to <strong>the</strong> map on cross SM. In:<br />

K. Tsunekawi (ed.). Pl<strong>an</strong>t Genome <strong>an</strong>d<br />

Plastome: Their Structure <strong>an</strong>d Evolution.<br />

Kod<strong>an</strong>sha Scientific, LTD, Tokyo, JP.<br />

Kle<strong>in</strong>h<strong>of</strong>s, A., A. Kili<strong>an</strong>, M. Saghai Maro<strong>of</strong>, R.<br />

Biyashev, P. Hayes, F. Chen, N. Lapit<strong>an</strong>, A.<br />

Fenwick, T.Blake, V. K<strong>an</strong>az<strong>in</strong>, E. An<strong>an</strong>iev, L.<br />

Dahleen, D. Kudrna, J. Boll<strong>in</strong>ger, S. Knapp, B.<br />

Liu, M. Sorrells, M. Heun, J. Fr<strong>an</strong>ckowiak, D.<br />

H<strong>of</strong>fm<strong>an</strong>, R. Skadsen, <strong>an</strong>d B.Steffenson. 1993.<br />

A molecular, isozyme, <strong>an</strong>d morphological map<br />

<strong>of</strong> <strong>the</strong> barley (Hordeum vulgare) genome. Theor.<br />

Appl. Genet. 86:705-712.<br />

Larson, S.R., D. Kadyrzh<strong>an</strong>ova, M. McDonald, M.<br />

Sorrells, <strong>an</strong>d T.K. Blake. 1996. Evaluation <strong>of</strong><br />

barley chromosome-3 yield QTLs <strong>in</strong> a<br />

backcross F2 population us<strong>in</strong>g STS-PCR.<br />

Theor. Appl. Genet. 93:618-625.<br />

Lehm<strong>an</strong>, E., I. Nover, <strong>an</strong>d F. Scholz. 1975. The<br />

Gaterslaben barley collection <strong>an</strong>d evaluation.<br />

In: H. Gaul (ed.). Proc. Symp. <strong>Barley</strong> Genetics<br />

III. Karl Theimig, Munich. pp 64-69.<br />

L<strong>in</strong>e, R.F. 1993. Durability <strong>of</strong> resist<strong>an</strong>ce to Pucc<strong>in</strong>ia<br />

striiformis <strong>in</strong> North Americ<strong>an</strong> wheat cultivars.<br />

In: Durability <strong>of</strong> Disease Resist<strong>an</strong>ce. T. Jacobs<br />

<strong>an</strong>d J.E. Parlevliet (eds.). Kluwer Academic<br />

Publishers, The Ne<strong>the</strong>rl<strong>an</strong>ds.<br />

Marquez-Cedillo, L.A., P.M. Hayes, B.L. Jones, A.<br />

Kle<strong>in</strong>h<strong>of</strong>s, W.G. Legge, B.G. Rossnagel, K.<br />

Sato, S.E. Ullrich, D.M. Wesenberg, <strong>an</strong>d <strong>the</strong><br />

NABGMP. 2000. QTL <strong>an</strong>alysis <strong>of</strong> malt<strong>in</strong>g<br />

quality <strong>in</strong> barley based on <strong>the</strong> doubled haploid<br />

progeny <strong>of</strong> two elite North Americ<strong>an</strong> varieties<br />

represent<strong>in</strong>g different germplasm groups.<br />

Theor. Appl. Genet. (<strong>in</strong> press).<br />

Marshall, D. <strong>an</strong>d R.L. Sutton. 1995. Epidemiology<br />

<strong>of</strong> stripe rust, virulence <strong>of</strong> Pucc<strong>in</strong>ia striiformis f.<br />

sp. hordei, <strong>an</strong>d yield loss <strong>in</strong> barley. Pl<strong>an</strong>t Dis.<br />

70: 732-737.<br />

Mart<strong>in</strong>, G.B., S.H. Brommonschenkel, J.<br />

Chunwongse, A. Frary, M.W. G<strong>an</strong>al, R. Spivey,<br />

T.Wu, E.D. Earle, <strong>an</strong>d S.D. T<strong>an</strong>ksley. 1993.<br />

Map-based clon<strong>in</strong>g <strong>of</strong> a prote<strong>in</strong> k<strong>in</strong>ase gene<br />

conferr<strong>in</strong>g disease resist<strong>an</strong>ce <strong>in</strong> tomato.<br />

Science 262:1432-1436.<br />

McIntosh, R.A., <strong>an</strong>d G.N. Brown. 1997.<br />

Anticipatory breed<strong>in</strong>g for resist<strong>an</strong>ce to rust<br />

diseases <strong>in</strong> wheat. Ann. Rev. Phytopathol.<br />

35:311-326.<br />

Melch<strong>in</strong>ger, A.E., H.F. Utz, <strong>an</strong>d C.C. Schon. 1998.<br />

Qu<strong>an</strong>titative trait locus (QTL) mapp<strong>in</strong>g us<strong>in</strong>g<br />

different testers <strong>an</strong>d <strong>in</strong>dependent population<br />

samples <strong>in</strong> maize reveals low power <strong>of</strong> QTL<br />

detection <strong>an</strong>d large bias <strong>in</strong> estimates <strong>of</strong> QTL<br />

effects. Genetics 149:383-403.<br />

Michelmore, R.W. 1995. Molecular approaches to<br />

m<strong>an</strong>ipulation <strong>of</strong> disease resist<strong>an</strong>ce genes. Ann.<br />

Rev. Phytopathol. 33: 393-428.<br />

Mundt, C.C. 1994. Use <strong>of</strong> host genetic diversity to<br />

control cereal diseases: implications for rice<br />

blast. In: R.S. Zeigler, S.A. Leong, <strong>an</strong>d P.S. Teng<br />

(eds.). Rice blast disease. CAB Intl.,<br />

Wall<strong>in</strong>gford, UK.<br />

Nelson, R.R. 1978. Genetics <strong>of</strong> horizontal resist<strong>an</strong>ce<br />

to pl<strong>an</strong>t diseases. Ann. Rev. Phytopathol.<br />

16:359-378.<br />

Parlevliet, J.E. 1983. Race-specific resist<strong>an</strong>ce <strong>an</strong>d<br />

cultivar-specific virulence <strong>in</strong> <strong>the</strong> barley-leaf<br />

rust pathosystem <strong>an</strong>d <strong>the</strong>ir consequences for<br />

<strong>the</strong> breed<strong>in</strong>g <strong>of</strong> leaf rust resist<strong>an</strong>t barley.<br />

Euphytica 32:367-375.<br />

Parlevliet, J.E. 1989. Identification <strong>an</strong>d evaluation<br />

<strong>of</strong> qu<strong>an</strong>titative resist<strong>an</strong>ce. In: Pl<strong>an</strong>t disease,<br />

epidemiology: genetics, resist<strong>an</strong>ce, <strong>an</strong>d<br />

m<strong>an</strong>agement. Vol. II. K.J. Leonard <strong>an</strong>d W.E. Fry<br />

(eds.). McGraw-Hill, <strong>New</strong> York.<br />

Powell, W., E. Baird, A. Booth, P. Lawrence, M.<br />

MacAulay, N. Bonar, G. Young, W.T.B. Thomas,<br />

J.W. McNicol, <strong>an</strong>d R. Waugh. 1996. S<strong>in</strong>gle <strong>an</strong>d<br />

multi-locus molecular assays for barley<br />

breed<strong>in</strong>g <strong>an</strong>d research. In: <strong>Barley</strong> Genetics VII<br />

Proc. <strong>of</strong> Intl. Symp. Saskatoon, C<strong>an</strong>ada.<br />

Qi, X., G. Ji<strong>an</strong>g, W. Chen, R.E. Niks, P. Stam, <strong>an</strong>d P.<br />

L<strong>in</strong>dhout. 1999. Isolate-specific QTLs for<br />

partial resist<strong>an</strong>ce to Pucc<strong>in</strong>ia hordei <strong>in</strong> barley.<br />

Theor. Appl. Genet. 99:877-884.<br />

Roelfs, A.P., <strong>an</strong>d J. Huerto-Esp<strong>in</strong>o. 1994. Seedl<strong>in</strong>g<br />

resist<strong>an</strong>ce <strong>in</strong> Hordeum to barley stripe rust from<br />

Texas. Pl<strong>an</strong>t Dis. 78:1046-1049.<br />

Romagosa, I., S.E Ullrich, P.M. Hayes, D.M.<br />

Wesenberg, <strong>an</strong>d <strong>the</strong> NABGMP. 1996.<br />

Verification <strong>of</strong> qu<strong>an</strong>titative trait loci for gra<strong>in</strong><br />

yield <strong>in</strong> <strong>the</strong> ‘Steptoe’/’Morex’ barley cross. In:<br />

A.Sl<strong>in</strong>kard, G.Scoles, <strong>an</strong>d B. Rossnagel (eds.). V<br />

International Oat Conference & VII<br />

International <strong>Barley</strong> Genetics Symposium:<br />

Proceed<strong>in</strong>gs. University <strong>of</strong> Saskatchew<strong>an</strong>,<br />

Saskatoon. Poster Sessions Vol. 1: 298-300.<br />

Russell, J., J. Fuller, G. Young, B. Thomas, G.<br />

Taram<strong>in</strong>o, M. Macaulay, R. Waugh, <strong>an</strong>d W.<br />

Powell. 1997. Discrim<strong>in</strong>at<strong>in</strong>g between barley<br />

genotypes us<strong>in</strong>g microsatellite markers.<br />

Genome 40:442-450.<br />

Saghai-Maro<strong>of</strong>, M.A., R.M. Biyashev, G.P. Y<strong>an</strong>g, Q.<br />

Zh<strong>an</strong>g, <strong>an</strong>d R.W. Allard. 1994. Extraord<strong>in</strong>arily<br />

polymorphic microsatellite DNA <strong>in</strong> barley:<br />

species diversity, chromosomal locations, <strong>an</strong>d<br />

population dynamics. Proc. Natl. Acad. Sci.<br />

USA 91:5466-5470.


60 P.M. Hayes et al.<br />

Salmeron, J.M., S.J. Barker, F.M. Carl<strong>an</strong>d, A.Y.<br />

Mehta, <strong>an</strong>d B.J. Staskawicz. 1994. Tomato<br />

mut<strong>an</strong>ts altered <strong>in</strong> bacterial disease resist<strong>an</strong>ce<br />

provide evidence for a new locus controll<strong>in</strong>g<br />

pathogen recognition. Pl<strong>an</strong>t Cell 6:511-520.<br />

S<strong>an</strong>doval-Islas, J.S. L. Broers, H. Vivar, <strong>an</strong>d K.<br />

Osada. 1998. Evaluation <strong>of</strong> qu<strong>an</strong>titative<br />

resist<strong>an</strong>ce to yellow rust <strong>in</strong> ICARDA/<br />

CIMMYT’s barley breed<strong>in</strong>g programme. Pl<strong>an</strong>t<br />

<strong>Breed<strong>in</strong>g</strong> 117:127-130.<br />

Schulze-Lefert, C., C. Peterhaensel, <strong>an</strong>d A.<br />

Freialdenhoven. 1997. Mutation <strong>an</strong>alysis for<br />

<strong>the</strong> dissection <strong>of</strong> resist<strong>an</strong>ce. In: I.R. Crute, E.B.<br />

Holub, <strong>an</strong>d I.J. Burdon (eds.). The gene-forgene<br />

relationship <strong>in</strong> pl<strong>an</strong>t-parasite <strong>in</strong>teractions.<br />

CAB International, Wall<strong>in</strong>gford, UK.<br />

Sp<strong>an</strong>er, D. B.G. Rossnagel, W.G. Legge, G.J. Scoles,<br />

P.E. Eckste<strong>in</strong>, G.A. Penner, N.A. T<strong>in</strong>ker, K.G.<br />

Briggs, D.E. Falk, J.C. Afele, P.M. Hayes, <strong>an</strong>d<br />

D.E. Ma<strong>the</strong>r. 1999. Verification <strong>of</strong> a qu<strong>an</strong>titative<br />

trait locus affect<strong>in</strong>g agronomic traits <strong>in</strong> tworow<br />

barley. Crop Sci. 39:248-252.<br />

Thomas, W.T.B., W. Powell, R. Waugh, K.J.<br />

Chalmers, U.M. Barua, P. Jack, V. Lea, B.P.<br />

Forster, J.S. Sw<strong>an</strong>ston, R.P. Ellis, P.R. H<strong>an</strong>son,<br />

<strong>an</strong>d R.C.M. L<strong>an</strong>ce. 1995. Detection <strong>of</strong><br />

qu<strong>an</strong>titative trait loci for agronomic, yield,<br />

gra<strong>in</strong> <strong>an</strong>d disease characters <strong>in</strong> spr<strong>in</strong>g barley<br />

(Hordeum vulgare L.). Theor. Appl. Genet.<br />

91:1037-1047.<br />

Tooj<strong>in</strong>da, T., E. Baird, A. Booth, L. Broers, P. Hayes,<br />

W. Powell, W. Thomas, H. Vivar, <strong>an</strong>d G. Young.<br />

1998. Introgression <strong>of</strong> qu<strong>an</strong>titative trait loci<br />

(QTLs) determ<strong>in</strong><strong>in</strong>g stripe rust resist<strong>an</strong>ce <strong>in</strong><br />

barley: <strong>an</strong> example <strong>of</strong> marker-assisted l<strong>in</strong>e<br />

development. Theor. Appl. Genet. 96:123-131.<br />

Tooj<strong>in</strong>da, T., E. Baird, L. Broers, X.M. Chen, P.M.<br />

Hayes, A. Kle<strong>in</strong>h<strong>of</strong>s, J. Korte, D. Kudrna, H.<br />

Leung, R.F. L<strong>in</strong>e, W. Powell, <strong>an</strong>d H. Vivar.<br />

2000. Mapp<strong>in</strong>g qualitative <strong>an</strong>d qu<strong>an</strong>titative<br />

disease resist<strong>an</strong>ce genes <strong>in</strong> a doubled haploid<br />

population <strong>of</strong> barley. Theor. Appl. Genet.<br />

(<strong>in</strong> press).<br />

Utz, H.F., A.E. Melch<strong>in</strong>ger, <strong>an</strong>d C.C. Schon. 1999.<br />

Bias <strong>an</strong>d sampl<strong>in</strong>g error <strong>of</strong> <strong>the</strong> estimated<br />

proportion <strong>of</strong> genotypic vari<strong>an</strong>ce expla<strong>in</strong>ed by<br />

QTL determ<strong>in</strong>ed from experimental data <strong>in</strong><br />

maize us<strong>in</strong>g cross validation <strong>an</strong>d validation<br />

with <strong>in</strong>dependent samples. Genetics (<strong>in</strong> press).<br />

V<strong>an</strong>derpl<strong>an</strong>k, J.E. 1968. Disease resist<strong>an</strong>ce <strong>in</strong><br />

pl<strong>an</strong>ts. Academic Press, <strong>New</strong> York.<br />

V<strong>an</strong>derpl<strong>an</strong>k, J.E. 1978. Genetic <strong>an</strong>d molecular<br />

basis <strong>of</strong> pl<strong>an</strong>t pathogenesis. Spr<strong>in</strong>ger-Verlag.<br />

Berl<strong>in</strong>, Heidelberg, <strong>New</strong> York.<br />

Visscher, P.M., C.S. Haley, <strong>an</strong>d R. Thompson. 1996.<br />

Marker-assisted <strong>in</strong>trogression <strong>in</strong> backcross<br />

breed<strong>in</strong>g programs. Genetics 144:1923-1932.<br />

Von Wettste<strong>in</strong>-Knowles, P. 1992. Cloned <strong>an</strong>d<br />

mapped genes: current status. In: <strong>Barley</strong>:<br />

Genetics, Biochemistry, Molecular Biology <strong>an</strong>d<br />

Biotechnology. Shewry, P.R. (ed.). CAB<br />

International, Wall<strong>in</strong>gford, UK. pp. 73-98.<br />

W<strong>an</strong>g, G.L., D.J. Mackill, J.M. Bonm<strong>an</strong>, S.R.<br />

McCouch, M.C. Champoux, <strong>an</strong>d R.J. Nelson.<br />

1994. RFLP mapp<strong>in</strong>g <strong>of</strong> genes conferr<strong>in</strong>g<br />

complete <strong>an</strong>d partial resist<strong>an</strong>ce to blast <strong>in</strong> a<br />

durably resist<strong>an</strong>t rice cultivar. Genetics<br />

136:1421-1434.<br />

Young, N.D. 1996. QTL mapp<strong>in</strong>g <strong>an</strong>d qu<strong>an</strong>titative<br />

disease resist<strong>an</strong>ce <strong>in</strong> pl<strong>an</strong>ts. Ann. Rev.<br />

Phytopathol. 34:479-501.<br />

Zeng, Z.B. 1994. Precision mapp<strong>in</strong>g <strong>of</strong><br />

qu<strong>an</strong>titative trait loci. Genetics 136:1457-1468.<br />

Zhou, J., Y.Y. Loh, R.A. Bress<strong>an</strong>, <strong>an</strong>d G.B. Mart<strong>in</strong>.<br />

1995. The tomato gene Pti1 encodes a ser<strong>in</strong>e/<br />

threon<strong>in</strong>e k<strong>in</strong>ase that is phosphorylated by Pto<br />

<strong>an</strong>d is <strong>in</strong>volved <strong>in</strong> <strong>the</strong> hypersensitive response.<br />

Cell 83:925-935.<br />

Zhu, H., G. Briceño, R. Dovel, P.M. Hayes, B.H.<br />

Liu, C.T. Liu, T. Tooj<strong>in</strong>da, <strong>an</strong>d S.E. Ullrich.<br />

1999a. Molecular breed<strong>in</strong>g for gra<strong>in</strong> yield <strong>in</strong><br />

barley: <strong>an</strong> evaluation <strong>of</strong> QTL effects <strong>in</strong> a spr<strong>in</strong>g<br />

barley cross. Theor. Appl. Genet. 98:772-779.<br />

Zhu, H., L. Gilchrist, P. Hayes, A. Kle<strong>in</strong>h<strong>of</strong>s, D.<br />

Kudrna, Z. Liu, L. Prom, B. Steffenson, T.<br />

Tooj<strong>in</strong>da, <strong>an</strong>d H. Vivar. 1999b. Does function<br />

follow form? QTLs for Fusarium Head Blight<br />

(FHB) resist<strong>an</strong>ce are co<strong>in</strong>cident with QTLs for<br />

<strong>in</strong>florescence traits <strong>an</strong>d pl<strong>an</strong>t height <strong>in</strong> a<br />

doubled haploid population <strong>of</strong> barley. Theor.<br />

Appl. Genet. 99:1221-1232.


61<br />

Perspectives on Fusarium Head<br />

Blight Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

L. GILCHRIST 1<br />

Global Import<strong>an</strong>ce <strong>an</strong>d<br />

Distribution<br />

Fusarium head blight (FHB), or scab, has<br />

economic impact <strong>in</strong> barley-produc<strong>in</strong>g<br />

areas all over <strong>the</strong> world. It reduces yield<br />

<strong>an</strong>d affects quality due to <strong>the</strong> tox<strong>in</strong> it<br />

produces <strong>in</strong> <strong>the</strong> gra<strong>in</strong>.<br />

Asia<br />

Among Asi<strong>an</strong> countries, Ch<strong>in</strong>a has <strong>the</strong><br />

most extensive scab-affected area <strong>in</strong> its<br />

barley grow<strong>in</strong>g regions. The disease<br />

occurs ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> lower Y<strong>an</strong>gtze River<br />

Bas<strong>in</strong> (100,000 ha), where <strong>the</strong> humidity is<br />

high. Scab has also appeared <strong>in</strong> <strong>the</strong><br />

Heilongji<strong>an</strong>g Prov<strong>in</strong>ce <strong>in</strong> recent years<br />

(Sun et al., 1999). Scab may cause 20-50%<br />

yield losses <strong>in</strong> <strong>an</strong> epidemic year (Chen et<br />

al., 1991).<br />

<strong>Barley</strong> is produced <strong>in</strong> four prov<strong>in</strong>ces <strong>of</strong><br />

Korea (Chonbuck, Chonnam,<br />

Kyungbuck, <strong>an</strong>d Kyunnam). The natural<br />

occurrence <strong>of</strong> fusarium mycotox<strong>in</strong>s was<br />

surveyed <strong>in</strong> 39 barley samples collected<br />

<strong>in</strong> those prov<strong>in</strong>ces. Five tox<strong>in</strong> compounds<br />

were detected: deoxynivalenol (DON),<br />

nivalenol (NIV), 4-acetylnivalenol (4-<br />

ANIV), 3-acetildeoxynivalenol (3-DON),<br />

4,15-diacetynivalenol (4,15-DANIV), <strong>an</strong>d<br />

zearalenone (ZEA). DON, NIV, <strong>an</strong>d ZEA<br />

were <strong>the</strong> major contam<strong>in</strong><strong>an</strong>ts (Kim, 1993).<br />

North America<br />

The USA <strong>an</strong>d C<strong>an</strong>ada. S<strong>in</strong>ce 1993, scab <strong>an</strong>d<br />

vomitox<strong>in</strong>s have affected barley crops <strong>in</strong><br />

<strong>the</strong> Nor<strong>the</strong>rn Great Pla<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g<br />

North Dakota, M<strong>in</strong>nesota, <strong>an</strong>d C<strong>an</strong>ada.<br />

From 1993 to 1997, North Dakota farmers<br />

suffered cumulative losses due to scab <strong>an</strong>d<br />

vomitox<strong>in</strong> estimated at US$200 million<br />

(Anonymous, 1999).<br />

Surveys <strong>of</strong> US regional crops have shown<br />

DON to be <strong>the</strong> primary mycotox<strong>in</strong><br />

associated with <strong>in</strong>fected barley, although<br />

ZEA <strong>an</strong>d o<strong>the</strong>r fusarium tox<strong>in</strong>s have also<br />

been detected. It is estimated that 67 <strong>an</strong>d<br />

82% <strong>of</strong> <strong>the</strong> malt<strong>in</strong>g barley crop have been<br />

contam<strong>in</strong>ated with DON (0.6-60mg/g)<br />

dur<strong>in</strong>g 1993 (Schwartz, 1995).<br />

Scab is very common <strong>in</strong> <strong>the</strong> highl<strong>an</strong>ds <strong>of</strong><br />

central Mexico (<strong>the</strong> states <strong>of</strong> Mexico,<br />

Tlaxcala, Hidalgo, Puebla, <strong>an</strong>d Jalisco). In<br />

a first survey conducted <strong>in</strong> <strong>the</strong> states <strong>of</strong><br />

Puebla <strong>an</strong>d Tlaxcala <strong>in</strong> 1999, 33 samples <strong>of</strong><br />

malt<strong>in</strong>g barley were collected <strong>an</strong>d <strong>the</strong><br />

follow<strong>in</strong>g Fusarium species detected: F.<br />

semitectum, F. avenaceum, F. sabuc<strong>in</strong>um, F.<br />

poae, F. gram<strong>in</strong>earum, F. moniliforme, F.<br />

dimerum, F. equiseti, <strong>an</strong>d F. subglut<strong>in</strong><strong>an</strong>s. Of<br />

<strong>the</strong>se, F. sabuc<strong>in</strong>um <strong>an</strong>d F. dimerum are not<br />

reported <strong>in</strong> <strong>the</strong> literature. However, <strong>in</strong> this<br />

study, <strong>the</strong>se two species were isolated<br />

from gra<strong>in</strong>s, <strong>an</strong>d from root <strong>an</strong>d stem<br />

lesions <strong>in</strong> blotter <strong>an</strong>d germ<strong>in</strong>ation tests<br />

(Gutierrez, 2000).<br />

1<br />

CIMMYT Wheat Program, Apdo. Postal 6-641, Mexico, D.F., Mexico, 06600.


62<br />

L. Gilchrist<br />

South America<br />

Fusarium head blight is very import<strong>an</strong>t<br />

<strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn Cone <strong>an</strong>d <strong>the</strong> Ande<strong>an</strong><br />

Region, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Ecuadori<strong>an</strong> <strong>an</strong>d<br />

Peruvi<strong>an</strong> highl<strong>an</strong>ds, where barley is used<br />

for feed <strong>an</strong>d food purposes. In Uruguay,<br />

Brazil, <strong>an</strong>d Argent<strong>in</strong>a, barley is used<br />

ma<strong>in</strong>ly for malt<strong>in</strong>g <strong>an</strong>d feed (Vivar, 1997).<br />

Incipient damage has been detected <strong>in</strong><br />

sou<strong>the</strong>rn Chile (regions IX <strong>an</strong>d X) around<br />

lakes <strong>an</strong>d rivers, <strong>an</strong>d wherever maize has<br />

been <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> crop rotation for<br />

silage production (Mellado, 1999; von<br />

Baer, 1999, pers. comm.).<br />

In Uruguay barley was evaluated over a<br />

period <strong>of</strong> four years (1993-97) for <strong>the</strong><br />

natural occurrence <strong>of</strong> fusarium tox<strong>in</strong>s.<br />

DON <strong>an</strong>d Fumonos<strong>in</strong>e B1 (FB1) were<br />

predom<strong>in</strong><strong>an</strong>t. <strong>Barley</strong> was second to<br />

wheat <strong>in</strong> severity <strong>of</strong> <strong>in</strong>fection. ZEA levels<br />

were considerable only <strong>in</strong> barley <strong>an</strong>d<br />

mixed feed, draw<strong>in</strong>g attention to its use<br />

for <strong>an</strong>imal consumption <strong>an</strong>d its potential<br />

deleterious estrogenic effects. Locally,<br />

barley feed is used extensively <strong>in</strong> <strong>an</strong>imal<br />

nutrition. The 1993-94 crop season was<br />

<strong>the</strong> first <strong>in</strong> <strong>the</strong> last decade to show severe<br />

fusarium damage (Piñeiro <strong>an</strong>d Silva,<br />

1997).<br />

A comparative <strong>an</strong>alysis <strong>of</strong> F. gram<strong>in</strong>earum<br />

isolates from C<strong>an</strong>ada, USA, Mexico,<br />

Argent<strong>in</strong>a, <strong>an</strong>d Uruguay confirmed that<br />

<strong>the</strong>y belong to chemotype IB. There is a<br />

regional relationship between <strong>the</strong> orig<strong>in</strong><br />

<strong>of</strong> F. gram<strong>in</strong>earum <strong>an</strong>d <strong>the</strong> production <strong>of</strong> 3<br />

or 15 Ac DON as <strong>the</strong> major isomer<br />

(Piñeiro et al., 1996).<br />

Causal Agents<br />

Most countries recorded F. gram<strong>in</strong>earum<br />

as <strong>the</strong> most import<strong>an</strong>t scab caus<strong>in</strong>g<br />

pathogen. However, a broad r<strong>an</strong>ge <strong>of</strong><br />

Fusarium species was reported to cause<br />

<strong>the</strong> disease (Table 1).<br />

Table 1. Pathogenic Fusarium species reported<br />

on barley by country.<br />

Fusarium<br />

Country†<br />

species C<strong>an</strong>ada USA Mexico Jap<strong>an</strong> Pol<strong>an</strong>d<br />

F. gram<strong>in</strong>earum + + + + +<br />

F. culmorum + + + +<br />

F. avenaceum + + + + +<br />

F. poae + + + +<br />

F. sporotrichum + + + +<br />

F. equiseti + + + + +<br />

F. acum<strong>in</strong>atum + + +<br />

F. moniliforme + +<br />

F. semitectum + +<br />

F. nivale +<br />

F. tric<strong>in</strong>ctum +<br />

† Gordon, 1959; Clear et al., 1996.<br />

Mihuta-Grimm, 1989; Salas et al., 1999.<br />

Gutierrez, 2000.<br />

Koizumi et al., 1995; Takeda et al., 1995.<br />

Perkowski et al., 1996.<br />

FHB symptoms <strong>an</strong>d <strong>in</strong>teraction<br />

with o<strong>the</strong>r pathogens<br />

The first symptom <strong>of</strong> scab <strong>in</strong>fection is a<br />

small, water-soaked, somewhat<br />

brownish or p<strong>in</strong>kish brown spot at <strong>the</strong><br />

base or <strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> glumes or on<br />

<strong>the</strong> rachis. Water-soak<strong>in</strong>g <strong>an</strong>d<br />

discoloration spread <strong>in</strong> all directions<br />

from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> <strong>in</strong>fection <strong>an</strong>d c<strong>an</strong> cover<br />

<strong>the</strong> gra<strong>in</strong> partially or completely. If<br />

conditions are favorable, spread is<br />

evident <strong>in</strong> adjacent gra<strong>in</strong>s. If <strong>the</strong> tissue<br />

takes on a brown color, <strong>the</strong> symptoms<br />

may be confused with those produced<br />

by o<strong>the</strong>r pathogens such as Bipolaris<br />

sorok<strong>in</strong>i<strong>an</strong>a, Rynchosporium secalis,<br />

Pyrenophora teres, <strong>an</strong>d Alternaria spp.,<br />

<strong>an</strong>d saprophytes such as Diccocum spp.<br />

Field diagnoses c<strong>an</strong> be difficult to make,<br />

<strong>an</strong>d a laboratory <strong>an</strong>alysis is<br />

recommended <strong>in</strong> specific cases.<br />

If pl<strong>an</strong>ts are affected by o<strong>the</strong>r diseases<br />

like <strong>the</strong> rusts <strong>an</strong>d BYDV before<br />

<strong>in</strong>oculation, <strong>in</strong>oculation is not


Perspectives on Fusarium Head Blight Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

63<br />

recommended, nor should <strong>the</strong><br />

germplasm even be evaluated. Resist<strong>an</strong>t<br />

germplasm may show a susceptible<br />

reaction <strong>an</strong>d produce very brownish,<br />

shriveled gra<strong>in</strong>. One clear example <strong>of</strong> this<br />

is <strong>the</strong> <strong>in</strong>teraction observed dur<strong>in</strong>g <strong>the</strong> last<br />

two years <strong>in</strong> Toluca, Mexico (no stripe<br />

rust <strong>in</strong> 1998 <strong>an</strong>d a heavy stripe rust<br />

epidemic <strong>in</strong> 1999), where scab resist<strong>an</strong>t<br />

adv<strong>an</strong>ced l<strong>in</strong>es from a breed<strong>in</strong>g program<br />

<strong>in</strong> M<strong>in</strong>nesota, which are very susceptible<br />

to Pucc<strong>in</strong>ia striiformis f. sp. hordei (race 24),<br />

showed a resist<strong>an</strong>t reaction to fusarium <strong>in</strong><br />

1998 <strong>an</strong>d a susceptible one <strong>in</strong> 1999.<br />

FHB resist<strong>an</strong>ce mech<strong>an</strong>isms<br />

Underst<strong>an</strong>d<strong>in</strong>g <strong>the</strong> different types <strong>of</strong><br />

resist<strong>an</strong>ce mech<strong>an</strong>isms <strong>an</strong>d <strong>the</strong>ir<br />

epidemiological role is necessary for<br />

breed<strong>in</strong>g head scab resist<strong>an</strong>ce. Key po<strong>in</strong>ts<br />

are to use specific <strong>in</strong>oculation, screen<strong>in</strong>g,<br />

<strong>an</strong>d evaluation methods for each<br />

resist<strong>an</strong>ce mech<strong>an</strong>ism. This is import<strong>an</strong>t<br />

when work<strong>in</strong>g with a virulent pathogen<br />

population under extreme environmental<br />

conditions. As Parry et al., (1995)<br />

reported, “Differences <strong>in</strong> resist<strong>an</strong>ce<br />

between cultivars could be masked, with<br />

even <strong>the</strong> most resist<strong>an</strong>t cultivars<br />

becom<strong>in</strong>g <strong>in</strong>fected under extreme<br />

conditions.”<br />

The model proposed by Schroeder <strong>an</strong>d<br />

Christensen for wheat <strong>in</strong> 1963, which<br />

suggested <strong>the</strong> existence <strong>of</strong> two<br />

components <strong>of</strong> resist<strong>an</strong>ce (Type I <strong>an</strong>d<br />

Type II), has been accepted by most<br />

authors. Type I resist<strong>an</strong>ce operates<br />

aga<strong>in</strong>st <strong>in</strong>itial <strong>in</strong>fection <strong>an</strong>d Type II<br />

aga<strong>in</strong>st <strong>the</strong> spread <strong>of</strong> <strong>the</strong> pathogen with<strong>in</strong><br />

<strong>the</strong> host. Type I <strong>an</strong>d Type II resist<strong>an</strong>ces<br />

varied <strong>in</strong>dependently among cultivars.<br />

Today <strong>the</strong>re is evidence that this model<br />

is also applicable to barley. Field data<br />

presented <strong>in</strong> Table 2 for Gobernadora<br />

doubled haploid populations <strong>an</strong>d QTLs<br />

confirmed that Type I resist<strong>an</strong>ce is<br />

<strong>in</strong>dependent <strong>of</strong> Type II, with Type II<br />

hav<strong>in</strong>g <strong>the</strong> largest QTL detected near <strong>the</strong><br />

centromeric region <strong>of</strong> chromosome 2<br />

(Zhu et al., 1999).<br />

Table 2. Relative r<strong>an</strong>k<strong>in</strong>g <strong>of</strong> five doubled<br />

haploid l<strong>in</strong>es (out <strong>of</strong> 100) <strong>an</strong>d both parents for<br />

resist<strong>an</strong>ce to head blight (Fusarium<br />

gram<strong>in</strong>earum) aga<strong>in</strong>st fungal penetration (Type<br />

I) <strong>an</strong>d hyphae spread (Type II), or a comb<strong>in</strong>ation<br />

<strong>of</strong> both. Atizap<strong>an</strong> Station, Toluca, Mexico, 1996.<br />

Cultivar Type I Type II<br />

DH-83 5 71<br />

DH-96 8 2<br />

DH-98 9 87<br />

DH-52 50 1<br />

DH-89 98 25<br />

Gobernadora (Zhenmai 1) 1 6<br />

CMB 643 (Azafr<strong>an</strong>) 45 5<br />

Snijder <strong>an</strong>d Perkowski (1990) found a<br />

negative correlation <strong>in</strong> wheat between<br />

head blight <strong>an</strong>d <strong>in</strong>cubation period, given<br />

that <strong>the</strong> more resist<strong>an</strong>t genotypes had<br />

longer <strong>in</strong>cubation periods. This<br />

correlation makes <strong>the</strong> <strong>in</strong>cubation period<br />

a potentially useful criterion for select<strong>in</strong>g<br />

for resist<strong>an</strong>ce.<br />

Type III resist<strong>an</strong>ce was described <strong>an</strong>d<br />

proved to occur <strong>in</strong> wheat by a team <strong>of</strong><br />

C<strong>an</strong>adi<strong>an</strong> researchers (Miller <strong>an</strong>d<br />

Arnison, 1986). It was proposed that<br />

resist<strong>an</strong>t cultivars possessed a factor that<br />

enabled <strong>the</strong>m ei<strong>the</strong>r to prevent DON<br />

syn<strong>the</strong>sis or to promote its degradation.<br />

The resist<strong>an</strong>t cultivar Front<strong>an</strong>a was able<br />

to degrade 18% radioactive (C14) DON<br />

<strong>in</strong>to two breakdown products, while <strong>the</strong>


64<br />

L. Gilchrist<br />

susceptible cultivar Casav<strong>an</strong>t degraded<br />

only 5%. Snijder <strong>an</strong>d Krecht<strong>in</strong>g (1992),<br />

also work<strong>in</strong>g <strong>in</strong> wheat, <strong>in</strong>dicated that<br />

DON played a part <strong>in</strong> pathogenicity, as<br />

<strong>the</strong>y found it to be tr<strong>an</strong>sported from<br />

fusarium <strong>in</strong>fected chaff to <strong>the</strong> young<br />

kernel, which <strong>the</strong> pathogen later<br />

colonized. The phytotoxic effect <strong>of</strong> DON<br />

c<strong>an</strong> be expla<strong>in</strong>ed by <strong>the</strong> fact that it is a<br />

very potent <strong>in</strong>hibitor <strong>of</strong> eukaryotic<br />

prote<strong>in</strong> syn<strong>the</strong>sis (W<strong>an</strong>g <strong>an</strong>d Miller,<br />

1988). In a resist<strong>an</strong>t wheat l<strong>in</strong>e, DON<br />

tr<strong>an</strong>sport was <strong>in</strong>hibited, so colonization<br />

was reduced.<br />

To lower DON concentration <strong>in</strong> <strong>the</strong> gra<strong>in</strong><br />

is <strong>the</strong> aim <strong>of</strong> most barley breeders.<br />

Steffenson (1998) mentions that <strong>the</strong>re is a<br />

fairly positive correlation (r=0.64;<br />

P=0.0001) between FHB <strong>in</strong>cidence <strong>an</strong>d<br />

DON concentration <strong>in</strong> barley gra<strong>in</strong>.<br />

Skadhauge et al., (1997) discovered a<br />

pro<strong>an</strong>thocy<strong>an</strong>id<strong>in</strong>-free mut<strong>an</strong>t <strong>of</strong> barley<br />

that shows extreme resist<strong>an</strong>ce to<br />

fusarium <strong>in</strong> vitro. This resist<strong>an</strong>ce is due<br />

to <strong>the</strong> accumulation <strong>of</strong> dihydroquercit<strong>in</strong>,<br />

a potent <strong>in</strong>hibitor <strong>of</strong> fusarium growth.<br />

Type IV resist<strong>an</strong>ce was described as<br />

toler<strong>an</strong>ce to high DON concentrations by<br />

W<strong>an</strong>g <strong>an</strong>d Miller <strong>in</strong> 1988. They reported<br />

that some cultivars could tolerate high<br />

mycotox<strong>in</strong> concentrations with no<br />

negative effects on growth. Ma et al.,<br />

(1999) conducted a prelim<strong>in</strong>ary study<br />

where <strong>the</strong>y <strong>in</strong>jected pure DON solution<br />

(100 ppm) 10 cm below <strong>the</strong> spike <strong>in</strong> three<br />

different varieties [Sumai 3 (R), Norm<br />

(S), <strong>an</strong>d Pioneer 2375(MS)]. They found<br />

that toler<strong>an</strong>ce to DON may be<br />

<strong>in</strong>dependent <strong>of</strong> Type II reaction s<strong>in</strong>ce<br />

Pioneer 2375 (MS type II) had lower<br />

average dry kernel weight. This type <strong>of</strong><br />

research has not been done <strong>in</strong> barley.<br />

Influence <strong>of</strong> tox<strong>in</strong>s on<br />

pathogenesis <strong>an</strong>d virulence<br />

factors<br />

Inoculum composition. Today we know<br />

that different F. gram<strong>in</strong>earum isolates have<br />

different toxigenic capacities. For this<br />

reason, it is absolutely necessary that<br />

when <strong>in</strong>oculat<strong>in</strong>g for different types <strong>of</strong><br />

scab resist<strong>an</strong>ce, both <strong>in</strong>oculum<br />

composition <strong>an</strong>d <strong>the</strong> conditions <strong>an</strong>d<br />

tim<strong>in</strong>g <strong>of</strong> <strong>in</strong>oculation be controlled. For<br />

example, <strong>the</strong> phytotoxicity <strong>of</strong> some<br />

tricho<strong>the</strong>cenes has been demonstrated<br />

(Miller <strong>an</strong>d Arnison,1986; Wong et al.,<br />

1994). A USDA team created a genetically<br />

modified stra<strong>in</strong> <strong>of</strong> F. gram<strong>in</strong>earum GzT40<br />

that does not produce tricho<strong>the</strong>cene<br />

because it does not carry gene Tri 5-,<br />

which confers virulence (Proctor et al.,<br />

1995). Eudes et al., (1998) <strong>in</strong>oculated 17<br />

wheat varieties with specific <strong>in</strong>ocula <strong>of</strong><br />

GzT40 <strong>an</strong>d <strong>of</strong> its wild parent Gz3639 <strong>in</strong> a<br />

controlled environment (Figure 1). The<br />

stra<strong>in</strong> possess<strong>in</strong>g toxigenic capacity<br />

(Gz3639) was virulent <strong>an</strong>d produced host<br />

damage depend<strong>in</strong>g on <strong>the</strong> resist<strong>an</strong>ce<br />

present <strong>in</strong> each variety. This suggests it is<br />

essential that <strong>the</strong> composition <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>oculum used as well as <strong>the</strong> conditions<br />

dur<strong>in</strong>g <strong>in</strong>oculation be controlled with<strong>in</strong><br />

<strong>the</strong> same year <strong>an</strong>d across years, to avoid<br />

variation <strong>an</strong>d <strong>in</strong>correct <strong>in</strong>terpretations.<br />

A barley example is presented <strong>in</strong> Table 3,<br />

where two varieties [Robust (MS) <strong>an</strong>d<br />

Chevron (MR)] were <strong>in</strong>oculated with<br />

n<strong>in</strong>e different fusarium isolates (Ev<strong>an</strong>s et<br />

al., 1996). The reaction <strong>of</strong> <strong>the</strong> two<br />

varieties differed depend<strong>in</strong>g on <strong>the</strong><br />

<strong>in</strong>oculated stra<strong>in</strong>.<br />

Inoculum concentration. Accord<strong>in</strong>g to<br />

studies carried out <strong>in</strong> Toluca dur<strong>in</strong>g<br />

1980-82 (G. Bekele, pers. comm.) on<br />

wheat, no differences were detected<br />

us<strong>in</strong>g 30,000-70,000 spores per ml. This


Perspectives on Fusarium Head Blight Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

65<br />

S<br />

Laval-19<br />

Norsem<strong>an</strong><br />

Max<br />

Concorde<br />

Mondor<br />

Messier<br />

Veerys<br />

QW 550.13<br />

Katepwa<br />

Voyageur<br />

R<br />

N<strong>in</strong>g 8331<br />

Key 94/28<br />

Key 94/34<br />

Nyu-Bay<br />

Front<strong>an</strong>a<br />

Toropi<br />

N<strong>an</strong>j<strong>in</strong>g 7840<br />

Stra<strong>in</strong> Gz3639<br />

Tricho<strong>the</strong>cene+<br />

Stra<strong>in</strong> Gz3T40<br />

Tricho<strong>the</strong>cene+<br />

0.0 0.15 0.30 0.45 0.60 0.75 0.90<br />

Number <strong>of</strong> florets show<strong>in</strong>g symptoms <strong>in</strong> greenhouse<br />

Figure 1. Virulence <strong>of</strong> <strong>the</strong> Fusarium gram<strong>in</strong>earum genetically modified GzT40 stra<strong>in</strong> (Tri 5-gene) <strong>an</strong>d<br />

<strong>the</strong> Gz3639 wild stra<strong>in</strong> (Tri 5-gene) on 17 wheat cultivars.<br />

Source: Eudes et al. (1998).<br />

Table 3. Number <strong>of</strong> <strong>in</strong>fected spikelets on barley<br />

varieties Robust (moderately susceptible) <strong>an</strong>d<br />

Chevron (moderately resist<strong>an</strong>t).<br />

Robust<br />

Chevron<br />

Isolate Rep I Rep II Rep I Rep II<br />

2B-2A1 17 25 12 26<br />

3A-2A1 3 11 0 1<br />

3A-4A1 18 23 21 16<br />

4B-5A2 10 1 15 3<br />

5C-3A2 4 6 4 4<br />

6A-2A1 13 3 6 5<br />

Butte 86-ADA-11 24 11 5 12<br />

M66-ADA-B1-A1 3 1 13 1<br />

94RO/STE 4 9 17 25 21<br />

Control 0 0 0 0<br />

Source: Ev<strong>an</strong>s et al. (1996).<br />

was confirmed <strong>in</strong> barley at <strong>the</strong> same<br />

location dur<strong>in</strong>g <strong>the</strong> 1996 cycle. Based on<br />

this <strong>in</strong>formation, a suspension <strong>of</strong> 50,000<br />

spores per ml is recommended for use <strong>in</strong><br />

<strong>in</strong>oculation.<br />

Inoculation methods for<br />

evaluat<strong>in</strong>g different types <strong>of</strong><br />

FHB resist<strong>an</strong>ce<br />

At CIMMYT different plots are used to<br />

screen for each FHB resist<strong>an</strong>ce type.<br />

Type I. Wheat <strong>in</strong>oculation is carried out<br />

<strong>in</strong> <strong>the</strong> even<strong>in</strong>g with a h<strong>an</strong>d sprayer<br />

(Bekele, 1984). A spore suspension is<br />

sprayed on 15 spikes that were selected<br />

<strong>an</strong>d marked at <strong>the</strong> <strong>in</strong>itial <strong>an</strong><strong>the</strong>sis<br />

growth stage. After 10-15 days spikes<br />

are evaluated for penetration po<strong>in</strong>ts.<br />

The precise tim<strong>in</strong>g <strong>of</strong> <strong>the</strong> evaluation<br />

will depend on <strong>the</strong> reaction <strong>of</strong> resist<strong>an</strong>t<br />

<strong>an</strong>d susceptible checks to <strong>the</strong><br />

environment that particular year.<br />

<strong>Barley</strong> spikes c<strong>an</strong> be <strong>in</strong>fected by<br />

Fusarium species as soon as <strong>the</strong>y emerge<br />

from <strong>the</strong> flag leaf sheath, <strong>an</strong>d <strong>the</strong>y<br />

rema<strong>in</strong> susceptible throughout <strong>the</strong>


66<br />

L. Gilchrist<br />

gra<strong>in</strong> fill<strong>in</strong>g period. Spike growth stage <strong>of</strong><br />

resist<strong>an</strong>t cultivars at <strong>in</strong>oculation affects<br />

<strong>the</strong> amount <strong>of</strong> damage observed <strong>in</strong> a<br />

particular year (Tables 4 <strong>an</strong>d 5).<br />

Type II. Inoculation us<strong>in</strong>g <strong>the</strong> cotton<br />

method (Bekele, 1984) is done on 20<br />

barley spikes at <strong>the</strong> <strong>in</strong>itial <strong>an</strong><strong>the</strong>sis<br />

growth stage. Spikes are evaluated 25-30<br />

days after <strong>in</strong>oculation. As with Type I<br />

resist<strong>an</strong>ce, <strong>the</strong> precise tim<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

evaluation will depend on <strong>the</strong> reaction <strong>of</strong><br />

resist<strong>an</strong>t <strong>an</strong>d susceptible checks to <strong>the</strong><br />

environment that particular year.<br />

Types III <strong>an</strong>d IV. A small plot (two 50-cm<br />

rows) is sprayed with a spore suspension<br />

when 50% <strong>of</strong> barley spikes have reached<br />

<strong>an</strong><strong>the</strong>sis. A similar plot is sprayed with<br />

fungicide (Folicur plus) every 10 days.<br />

At harvest, a 200-g sample is used for<br />

DON <strong>an</strong>alysis (Type III), <strong>an</strong>d a<br />

comparison <strong>of</strong> 300-kernel weight is<br />

done between <strong>the</strong> two plots (Type IV).<br />

Resist<strong>an</strong>ce Sources from<br />

All Over <strong>the</strong> World<br />

Nearly 40 barley genotypes have been<br />

identified as hav<strong>in</strong>g partial FHB<br />

resist<strong>an</strong>ce <strong>an</strong>d low DON accumulation.<br />

The genetic dist<strong>an</strong>ce between<br />

genotypes was calculated separately<br />

us<strong>in</strong>g morphological, agronomic, FHB<br />

severity <strong>an</strong>d DON content, <strong>an</strong>d foliar<br />

disease data. Five clusters were<br />

Table 4. Inoculation us<strong>in</strong>g two methods (spray<br />

<strong>an</strong>d cotton) at three spike growth stages (pre<strong>an</strong><strong>the</strong>sis,<br />

<strong>in</strong>itial <strong>an</strong><strong>the</strong>sis, <strong>an</strong>d post-<strong>an</strong><strong>the</strong>sis) <strong>an</strong>d<br />

<strong>the</strong> damage produced <strong>in</strong> barley varieties.<br />

Atizap<strong>an</strong>, Toluca, 1998.<br />

Spike<br />

growth Spray Cotton<br />

Variety stage † method method<br />

Shyri PRA 6.3 (3.6-11.0)ai 39.6 (31-48.2) k<br />

IA 4.9 (2.6-9.1)af 26.1 (19.6-33.7)hk<br />

PA 1.7 (0.6-4.9)ac 21.6 (15.7-29.0) fj<br />

Arupo/K8755// PRA 7.9 (4.7-13.3)cl 23.1 (16.3-31.8)fk<br />

Mora (Selec 2) IA 6.6 (3.8-11.3)ak 11.7 (7.2-18.4)cg<br />

PA 9.0 (5.6-14.2)dm 3.9 (1.7-8.8)ac<br />

Gob/Humai 10 PRA 11.1 (7.3-16.5)fo 29.1 (22.1-37.4)ik<br />

IA 9.5 (6.1-14.6)dm 0.3 (6.3-16.3)cf<br />

PA 7.0 (4.1-11.6)ck 19.1 (13.4-26.5)ej<br />

Azafr<strong>an</strong> PRA 5.1 (2.7-9.4)ah 23.5 (16.3-32.6)gk<br />

IA 1.4 (0.4-4.3)ac 32.3 (25.0-40.6)jk<br />

PA 1.0 (0.3-3.9)a 28.0 (21.2-36.0)ik<br />

LP/Shyri PRA 3.5 (1.6-7.2)ad 28.3 (21.7-35.9)ik<br />

(Selec 1) IA 7.4 (4.1-13.0)bl 28.7 (21.9-36.7)ik<br />

PA 10.2 (6.6-15.5)dn 22.1 (16.0-29.8)fj<br />

† PRA = Pre-<strong>an</strong><strong>the</strong>sis; IA = Initial <strong>an</strong><strong>the</strong>sis; PA = Post <strong>an</strong><strong>the</strong>sis.<br />

Table 5. Inoculation us<strong>in</strong>g two methods (spray<br />

<strong>an</strong>d cotton) at three spike growth stages (pre<strong>an</strong><strong>the</strong>sis,<br />

<strong>in</strong>itial <strong>an</strong><strong>the</strong>sis, <strong>an</strong>d post-<strong>an</strong><strong>the</strong>sis) <strong>an</strong>d<br />

<strong>the</strong> damage produced <strong>in</strong> barley cultivars.<br />

Atizap<strong>an</strong>, Toluca, 1999.<br />

Spike<br />

growth Spray Cotton<br />

Variety stage † method method<br />

Shyri PRA 5.0 (2.9-8.2) cl 9.3 (5.9-14.2) ag<br />

IA 7.0 (4.4-10.9) gn 10.5 (6.9-15.7) ag<br />

PA 2.4 (1.2-4.7) bg 4.4 (2.4-8.0) a<br />

Arupo/K8755// PRA 6.1 (3.8-9.6) fm 34.3 (27.8-41.6) ln<br />

Mora (Selec 2) IA 3.7 (2.1-6.5) bk 38.7 (32.1-45.7) n<br />

PA 0.4 (0.1-2.2) b 24.5 (18.9-31.2)lm<br />

Gob/Humai 10 PRA 1.6 (0.6-4.3) bf 14.7 (10.5-20.3) ei<br />

IA 1.2 (0.4-3.2) be 6.5 (3.8-10.9) ae<br />

PA 2.3 (1.2-4.7) bg 4.3 (2.3-7.7) a<br />

Azafr<strong>an</strong> PRA 5.4 (3.2-8.9) cl 8.8 (5.7-13.2) af<br />

IA 9.1 (6.1-13.3) jn 8.1 (5.1-12.8) af<br />

PA 9.4 (6.7-13.2) ln 4.8 (2.7-8.3) ab<br />

LP/Shyri PRA 3.2 (1.6-6.0) bf 11.8 (8.0-17.1) bh<br />

(Selec 1) IA 2.8 (1.4-5.7) bh 8.3 (5.2-13.1) af<br />

PA 3.2 (1.6-6.0) bi 7.0 (4.3-11.2) ae<br />

† PRA = Pre-<strong>an</strong><strong>the</strong>sis; IA = Initial <strong>an</strong><strong>the</strong>sis; PA = Post <strong>an</strong><strong>the</strong>sis.


Perspectives on Fusarium Head Blight Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

67<br />

identified (Figure 2), <strong>an</strong>d three<br />

genotypes did not fall <strong>in</strong>to <strong>an</strong>y cluster.<br />

Most two-rowed Ch<strong>in</strong>ese barley<br />

genotypes are grouped <strong>in</strong> cluster 1, plus<br />

Sv<strong>an</strong>hals, developed <strong>in</strong> Sweden.<br />

Chevron <strong>an</strong>d Chevron –derived<br />

genotype Ciho 16128 (compris<strong>in</strong>g<br />

cluster 5) are <strong>the</strong> most resist<strong>an</strong>t to FHB<br />

<strong>an</strong>d have <strong>the</strong> lowest DON<br />

concentrations.<br />

Most FHB-resist<strong>an</strong>t, two-rowed barley<br />

genotypes are susceptible to wheat stem<br />

rust, net blotch, <strong>an</strong>d powdery mildew,<br />

<strong>an</strong>d all are susceptible to leaf rust. All<br />

FHB-resist<strong>an</strong>t, six- rowed genotypes are<br />

susceptible to leaf rust, wheat stem rust<br />

(pathotype Pgt-QCC), <strong>an</strong>d powdery<br />

mildew (Urrea et al., 1999).<br />

Information presented <strong>in</strong> Figure 2 is<br />

useful for breed<strong>in</strong>g programs, s<strong>in</strong>ce it<br />

allows <strong>the</strong> identification <strong>of</strong> FHBresist<strong>an</strong>t<br />

cultivars whose resist<strong>an</strong>ce base<br />

might be different, <strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g<br />

<strong>the</strong> probability <strong>of</strong> accumulat<strong>in</strong>g levels <strong>of</strong><br />

resist<strong>an</strong>ce when gene action for FHB<br />

resist<strong>an</strong>ce is additive. However,<br />

susceptibility to leaf blotches <strong>an</strong>d rust<br />

diseases cont<strong>in</strong>ues to be a problem that<br />

could prevent <strong>the</strong> use <strong>of</strong> <strong>the</strong>se<br />

genotypes <strong>in</strong> some regions.<br />

QTLs for FHB Resist<strong>an</strong>ce<br />

Mapp<strong>in</strong>g QTLs for FHB resist<strong>an</strong>ce<br />

genes was carried out <strong>in</strong> doubled<br />

haploid populations. In Gobernadora x<br />

CMB 643 (Azafr<strong>an</strong>), a QTL for type II<br />

1<br />

Zhedar 1<br />

Sv<strong>an</strong>hals<br />

Zhedar 2<br />

2<br />

Gobernadora<br />

3<br />

Shyri<br />

4<br />

5<br />

Chevron<br />

0.0<br />

0.23 0.45 0.68 0.90<br />

Genetic dist<strong>an</strong>ce<br />

Figure 2. Dendrogram based on cluster <strong>an</strong>alysis <strong>of</strong> <strong>the</strong> dist<strong>an</strong>ce among 39 barley genotypes.<br />

Source: Conci et al. (1999).


68<br />

L. Gilchrist<br />

resist<strong>an</strong>ce was found <strong>in</strong> chromosome 2<br />

(Zhu et al., 1999). Chevron <strong>an</strong>d Chevron<br />

progeny have been used extensively <strong>in</strong><br />

breed<strong>in</strong>g for resist<strong>an</strong>ce to FHB <strong>an</strong>d<br />

kernel discoloration (KD) <strong>in</strong> a<br />

M<strong>in</strong>nesota breed<strong>in</strong>g program (C<strong>an</strong>ci et<br />

al., 1999). Four <strong>of</strong> <strong>the</strong> QTLs associated<br />

with FHB <strong>in</strong> chromosomes 1, 2, <strong>an</strong>d 4<br />

were also associated with KD (De la<br />

Peña et al., 1999).<br />

Evaluat<strong>in</strong>g <strong>Barley</strong><br />

Varieties <strong>an</strong>d Adv<strong>an</strong>ced<br />

L<strong>in</strong>es for FHB Resist<strong>an</strong>ce<br />

In <strong>the</strong> last five years, barley varieties<br />

<strong>an</strong>d adv<strong>an</strong>ced l<strong>in</strong>es used <strong>in</strong> <strong>the</strong><br />

CIMMYT/ICARDA <strong>Barley</strong> Program<br />

were evaluated for FHB resist<strong>an</strong>ce at<br />

Toluca, Mexico. The result<strong>in</strong>g data are<br />

presented <strong>in</strong> Tables 6, 7, <strong>an</strong>d 8.<br />

Conclusions<br />

Fusarium gram<strong>in</strong>earum resist<strong>an</strong>ce is<br />

difficult to evaluate under field<br />

conditions. Although produc<strong>in</strong>g<br />

symptoms is easy, it is essential to control<br />

<strong>the</strong> precise composition <strong>of</strong> <strong>the</strong> <strong>in</strong>oculum<br />

used, <strong>the</strong> method <strong>of</strong> application, <strong>an</strong>d <strong>the</strong><br />

circumst<strong>an</strong>ces <strong>in</strong> which <strong>in</strong>oculation is<br />

performed. O<strong>the</strong>rwise, great variability<br />

may be <strong>in</strong>troduced that would make it<br />

practically impossible to <strong>in</strong>terpret <strong>the</strong><br />

observed results correctly.<br />

The basis <strong>of</strong> FHB resist<strong>an</strong>ce is complex<br />

<strong>an</strong>d not well understood today. The<br />

environment <strong>in</strong>teracts with <strong>the</strong> host pl<strong>an</strong>t<br />

<strong>an</strong>d <strong>the</strong> pathogen to produce a resist<strong>an</strong>t<br />

reaction. The extent <strong>of</strong> <strong>the</strong> <strong>in</strong>fected area <strong>in</strong><br />

<strong>the</strong> host pl<strong>an</strong>t is <strong>the</strong> product <strong>of</strong> <strong>the</strong>se three<br />

components (Figure 3). However,<br />

evaluat<strong>in</strong>g FHB reaction <strong>in</strong> <strong>the</strong> field is not<br />

enough for establish<strong>in</strong>g resist<strong>an</strong>ce; kernel<br />

Table 6. Characterization <strong>of</strong> fusarium head blight resist<strong>an</strong>ce (Types I, II, III, <strong>an</strong>d IV) <strong>in</strong> n<strong>in</strong>e barley<br />

cultivars.<br />

Type I Type II Type III Type IV Gra<strong>in</strong><br />

Variety or % <strong>in</strong>fec. % <strong>in</strong>fec. DON ppm. % losses (1-5)†<br />

l<strong>in</strong>e 98 99 98 99 98 99 98 99 99<br />

Shyri 4.9 7.1 26.1 10.6 3.9 16.0 5.0 4.1 2<br />

Atahualpa 92(H) 16.8 5.0 21.7 8.9 0.0 0.99 10.1 8.1 2<br />

Arupo/K8755 6.6 11.7 3.7 38.7 1.0 2.9 13.6 4.0 2<br />

//Mora (selec. 2)<br />

Gob/Humai10 9.5 1.2 0.3 6.5 NA‡ 2.2 4.6 27.6 4<br />

B89.3.1 (early)<br />

Gob/Humai10 5.8 5.7 27.1 20.4 1.6 1.1 3.9 15.4 3<br />

B89.3.2 (late)<br />

Chevron 5.1 4.0 11.8 26.6 1.1 2.1 2.06 40.6 4<br />

Gobernadora 5.3 9.2 20.7 14.6 1.9 12.0 13.4 28.5 2<br />

Azafr<strong>an</strong> 1.4 9.1 32.3 8.1 NA 120.0 11.3 6.28 3<br />

LP/Shyri 12.5 2.1 23.4 10.6 NA 2.8 15.6 14.1 4<br />

(Selec. 2)<br />

† 1=good gra<strong>in</strong>; 5=poor gra<strong>in</strong>. ‡ NA=Not available.


Perspectives on Fusarium Head Blight Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

69<br />

weight losses <strong>an</strong>d tox<strong>in</strong> (DON)<br />

concentration <strong>in</strong> <strong>the</strong> gra<strong>in</strong> are also<br />

import<strong>an</strong>t.<br />

Environment<br />

Pathogen<br />

Mesterhazy (1997) made <strong>an</strong> import<strong>an</strong>t <strong>an</strong>d<br />

appropriate statement regard<strong>in</strong>g this<br />

issue: “Without reliable methods noth<strong>in</strong>g<br />

c<strong>an</strong> be said about <strong>the</strong> level <strong>of</strong> resist<strong>an</strong>ce,<br />

factors <strong>of</strong> resist<strong>an</strong>ce, about <strong>the</strong>ir<br />

<strong>in</strong>herit<strong>an</strong>ce <strong>an</strong>d about <strong>an</strong> appropriate<br />

selection procedure. Without adequate<br />

methods we will not have appropriate<br />

<strong>in</strong>formation, or what is even worse,<br />

<strong>in</strong>correct <strong>in</strong>formation will be <strong>the</strong> result.”<br />

Environment<br />

Pathogen<br />

Host<br />

Environment<br />

Host<br />

Host<br />

Pathogen<br />

Environment<br />

Pathogen<br />

Figure 3. Area <strong>of</strong> <strong>the</strong> disease.<br />

Host<br />

Table 7. Characterization <strong>of</strong> fusarium head blight resist<strong>an</strong>ce (Types I, II, III, <strong>an</strong>d IV) <strong>in</strong> a group <strong>of</strong><br />

adv<strong>an</strong>ced hull-less barley l<strong>in</strong>es.<br />

Type I Type II Type III Type IV Gra<strong>in</strong><br />

Variety or % <strong>in</strong>fec. % <strong>in</strong>fec. DON ppm. % losses (1-5)‡<br />

l<strong>in</strong>e† 98 99 98 99 98 99 98 99 99<br />

Tocte//Gob/Humai 1.9 5.3 14.8 7.2 2.8 3.6 12.4 6.4 1<br />

10/3/Atah 92/Aleli<br />

CBSS96M00766D-B-2M-3Y<br />

Tocte//Gob/Humai 2.2 3.7 14.4 15.3 1.1 12.0 10.2 3.0 2<br />

10/3/Atah 92/Aleli<br />

CBSS96M00766D-B-2M-4Y<br />

Penco/Chevron-Bar 10.2 1.5 38.1 20.5 NA 9.2 2.0 6.1 1<br />

CBSS96Y00341s-1Y-1M-10Y<br />

Penco/Chevron-Bar – 2.6 16.9 13.2 NA 11.0 4.5 4.1 1<br />

CBSS96Y00341s-1Y-1M-16Y<br />

Ataco/Bermejo// 0.9 5.1 18.7 9.3 NA 14.0 0.3 3.8 1<br />

Higo/3/CLNB/80.5138//<br />

Gloria-Bar/Copal/4/<br />

Chevron-Bar<br />

CBSS96Y00653T-A-14Y-1M-16Y<br />

Ataco/Bermejo// 0.9 3.7 7.3 5.1 2.3 5.3 4.7 3.9 2<br />

Higo/3/CLNB/80.5138//<br />

Gloria-Bar/Copal/4/<br />

Chevron-Bar<br />

CBSS96Y00653T-A-14Y-1M-17Y<br />

Chamico/ Tocte// 6.8 4.6 53.1 12.6 2.0 34.0 14.8 8.8 3<br />

Congona<br />

CBSS95Y00352T-D-12Y-2Y-0M<br />

† Resist<strong>an</strong>ce sources are <strong>in</strong> boldface. ‡ 1=good gra<strong>in</strong>; 5=poor gra<strong>in</strong>.


70<br />

L. Gilchrist<br />

Table 8. Characterization <strong>of</strong> fusarium head blight resist<strong>an</strong>ce (Types I, II, III, <strong>an</strong>d IV) <strong>in</strong> seven adv<strong>an</strong>ced<br />

covered barley l<strong>in</strong>es.<br />

Type I Type II Type III Type IV Gra<strong>in</strong><br />

Variety or % <strong>in</strong>fec % <strong>in</strong>fec DON ppm % losses (1-5)‡<br />

l<strong>in</strong>e† 98 99 98 99 98 99 98 99 99<br />

Gob/Humai 10/3/ 1.0 9.7 16.3 9.4 38.0 12.9 4.3 1<br />

Mpyt169.1Y/Laurel/<br />

Olmo/4/ C<strong>an</strong>ela<br />

CBSS95M00804T-F-1M-7Y-0M<br />

Escoba/Moradilla/3/ 3.8 11.0 7.2 8.4 24.0 7.1 3.3 2<br />

Zhedar#2/NDB112//<br />

Mora<br />

CMB94A.595-A-2M-6Y-2M-3Y-0M<br />

GOB 24 DH 4.0 14.6 6.0 8.0 27.0 13.0 5.9 2<br />

(Gobernadora/Azafr<strong>an</strong>)<br />

GOB 45 DH 5.7 19.9 6.5 19.0 26.0 2.2 15.4 2<br />

GOB 96 DH 9.7 25.0 7.4 33.1 3.6 4.3 4.9 1<br />

Mosquera 7.3 18.2 8.2 18.1 27.0 16.3 16.4 1<br />

(F<strong>in</strong>gal/F784.70/4/Zhedar/<br />

3Hlla/Gob/Hlla/Shyri)<br />

Zhedar #1/Shyri // 2.5 23.4 5.2 11.7 31.0 7.2 4.5 2<br />

Olmo<br />

CMB93.572-A-4Y-1Y-2M-1Y-0M<br />

† Resist<strong>an</strong>ce sources <strong>in</strong> boldface. ‡ 1=good gra<strong>in</strong>; 5=poor gra<strong>in</strong>.<br />

References<br />

Anonymous. 1999. US Agriculture. Gra<strong>in</strong> Fungus<br />

Creates F<strong>in</strong><strong>an</strong>cial Distress for North Dakota<br />

<strong>Barley</strong> Producers. United States General<br />

Account<strong>in</strong>g Office. Report to <strong>the</strong> Honorable<br />

Byron L. Dorg<strong>an</strong>, U.S. Senate.<br />

Bekele, G. 1985. Head scab screen<strong>in</strong>g methods<br />

used at CIMMYT. In: Wheats for More<br />

Tropical Environments. A Proceed<strong>in</strong>gs <strong>of</strong> <strong>an</strong><br />

International Symposium. Mexico, D.F.:<br />

CIMMYT. pp. 169-173.<br />

C<strong>an</strong>ci, P.C., Smith, K., Dill-Macky, R., Muehlbauer,<br />

A., <strong>an</strong>d D.C. Rasmusson. 1999. Genetic<br />

relationship between fusarium head blight,<br />

kernel discoloration, <strong>an</strong>d gra<strong>in</strong> prote<strong>in</strong>. 16 th<br />

Americ<strong>an</strong> <strong>Barley</strong> Researcher Workshop. Idaho<br />

Falls, Idaho USA.<br />

Chen, X., Y. Y<strong>an</strong>g, <strong>an</strong>d D. Gao. 1991. The primary<br />

study <strong>of</strong> Ch<strong>in</strong>ese germplasm for barley head<br />

blight diseases. Zheji<strong>an</strong>g Agricultural Sciences<br />

2:91-92.<br />

Clear, R.M., Patrick, S.K., Nowicki, T., Gaba, D.,<br />

Edney, M., <strong>an</strong>d Babb, J.C. 1996. The effect <strong>of</strong><br />

hull removal <strong>an</strong>d pearl<strong>in</strong>g on Fusarium<br />

species <strong>an</strong>d tricho<strong>the</strong>cenes <strong>in</strong> hulless barley.<br />

C<strong>an</strong>adi<strong>an</strong> Journal <strong>of</strong> Pl<strong>an</strong>t Science 77:161-166.<br />

De la Peña, R.C., K.P. Smith, F. Capett<strong>in</strong>i, G.J.<br />

Muehlbauer, M. Gallo-Meagher, R. Dill-Macky,<br />

R., D.A. Somers, <strong>an</strong>d D.C. Rasmusson. 1999.<br />

Qu<strong>an</strong>titative trait loci associated with<br />

resist<strong>an</strong>ce to Fusarium head blight <strong>an</strong>d kernel<br />

descoloration <strong>in</strong> barley. Theor. Appl. Genet.<br />

99:561-569.<br />

Ev<strong>an</strong>s, C.K., Dill-Macky, R., Mirocha, C.J., <strong>an</strong>d<br />

E.K. Kolaczkowski. 1996. Deox<strong>in</strong>ivalenol <strong>in</strong><br />

microconidia <strong>of</strong> Fusarium isolates from <strong>the</strong><br />

Red River Valley <strong>of</strong> M<strong>in</strong>nesota. APS/MSA<br />

Jo<strong>in</strong>t Annual Meet<strong>in</strong>g. Indi<strong>an</strong>apolis, Indi<strong>an</strong>a.<br />

Phytopathology Abstract 499A:86(11):558.<br />

Gordon, W.L. 1959. The occurrence <strong>of</strong> Fusarium<br />

species <strong>in</strong> C<strong>an</strong>ada. VI. Taxonomy <strong>an</strong>d<br />

geographic distribution <strong>of</strong> Fusarium species<br />

on pl<strong>an</strong>ts, <strong>in</strong>sects <strong>an</strong>d fungi. C<strong>an</strong>. J. Bot.<br />

37:257-290.<br />

Gutierrez, G. 2000. Patógenos tr<strong>an</strong>smitidos vía<br />

semilla en el cultivo de cebada (Hordeum<br />

vulgare L.) en los Valles Altos de México.<br />

Master <strong>of</strong> Science. Thesis. Colegio de<br />

Postgraduados, Montecillo, Mexico.


Perspectives on Fusarium Head Blight Resist<strong>an</strong>ce <strong>in</strong> <strong>Barley</strong><br />

71<br />

Kim, J.C., K<strong>an</strong>g, H.J., Lee, D.H., Lee, Y.W., <strong>an</strong>d<br />

Yoshizawa, T. 1993. Natural occurrence <strong>of</strong><br />

Fusarium mycotox<strong>in</strong>s (tricho<strong>the</strong>cenes <strong>an</strong>d<br />

zearalenone) <strong>in</strong> barley <strong>an</strong>d corn <strong>in</strong> Korea.<br />

Appl. Environ. Microbiol. 59(11):37-98.<br />

Koizumi, S., Kato, H., Yosh<strong>in</strong>o, R., Hayoshi, N.,<br />

<strong>an</strong>d Ich<strong>in</strong>oe, M. 1991. Distribution <strong>of</strong> causal<br />

fusaria <strong>of</strong> wheat <strong>an</strong>d barley scab <strong>in</strong> Jap<strong>an</strong>.<br />

Annals <strong>of</strong> <strong>the</strong> Phytopathological Society <strong>of</strong><br />

Jap<strong>an</strong> 57:165-173.<br />

Ma, H., Dill-Macky, R., <strong>an</strong>d Bush, R.H. 1997. Effect<br />

<strong>of</strong> deox<strong>in</strong>ivalenol on wheat gra<strong>in</strong> fill<strong>in</strong>g.<br />

Phytopathology 87(6):61 (abstract).<br />

Mesterhazy, A. 1997. Methodology <strong>of</strong> resist<strong>an</strong>ce<br />

test<strong>in</strong>g <strong>an</strong>d breed<strong>in</strong>g aga<strong>in</strong>st Fusarium head<br />

blight <strong>in</strong> wheat <strong>an</strong>d results <strong>of</strong> <strong>the</strong> selection.<br />

Fifth Europe<strong>an</strong> Fusarium Sem<strong>in</strong>ar. Szeged,<br />

Hungary. pp. 631-637.<br />

Miller, J.D., <strong>an</strong>d Arnison, P.G. 1986. Degradation<br />

<strong>of</strong> deoxynivalenol by suspension cultures <strong>of</strong><br />

<strong>the</strong> Fusarium head blight resist<strong>an</strong>t wheat<br />

cultivar Front<strong>an</strong>a. C<strong>an</strong>. J. Pl<strong>an</strong>t Pathol.<br />

8:147-150.<br />

M<strong>in</strong>huta-Grimm, L., <strong>an</strong>d Foster, R.L. 1989. Scab <strong>of</strong><br />

wheat <strong>an</strong>d barley <strong>in</strong> Sou<strong>the</strong>rn Idaho <strong>an</strong>d<br />

evaluation <strong>of</strong> seed treatment for erradication<br />

<strong>of</strong> Fusarium spp. Pl<strong>an</strong>t Dis. 73:769-71.<br />

Parry, D.W., Jenk<strong>in</strong>son, P., <strong>an</strong>d McLeod, L. 1995.<br />

Fusarium ear blight (scab) <strong>in</strong> small gra<strong>in</strong><br />

cereals-a review. Pl<strong>an</strong>t Pathol. 44:207-238.<br />

Perkowski, J., Kiec<strong>an</strong>a, I., <strong>an</strong>d Chelkowski, J. 1995.<br />

Susceptibility <strong>of</strong> barley cultivars <strong>an</strong>d l<strong>in</strong>es to<br />

Fusarium <strong>in</strong>fection <strong>an</strong>d mycotox<strong>in</strong><br />

accumulation <strong>in</strong> kernels. J. Phytopathol.<br />

143:547-551.<br />

Piñeiro, M., Scott, P., <strong>an</strong>d K<strong>an</strong>here, S. 1996.<br />

Mycotox<strong>in</strong> produc<strong>in</strong>g potencial <strong>of</strong> Fusarium<br />

gram<strong>in</strong>earum isolates from Uruguay<strong>an</strong> barley.<br />

Mycopathologia 132:167-172.<br />

Piñeiro, M., <strong>an</strong>d Silva, G. 1997. Fusarium tox<strong>in</strong> <strong>in</strong><br />

Uruguay: Head Blight, Tox<strong>in</strong> Level <strong>an</strong>d Gra<strong>in</strong><br />

Quality. Fifth Europe<strong>an</strong> Fusarium Sem<strong>in</strong>ar.<br />

Szeged, Hungary. pp 805-806.<br />

Proctor, R.H., Hohn, T.M., <strong>an</strong>d McCormick, S.P.<br />

1995. Reduced virulence <strong>of</strong> Gibberella zeae<br />

caused by disruption <strong>of</strong> a tricho<strong>the</strong>cene tox<strong>in</strong><br />

biosyn<strong>the</strong>tic gene. Molecular Pl<strong>an</strong>t-Microbe<br />

Interactions 8(4):593-601.<br />

Salas, B., Steffenson, B.J., Carper, H.H., Tacke, B.,<br />

Prom, L.K., Fetch, T.G. Jr., <strong>an</strong>d Schartz, P.B.<br />

1999. Fusarium species pathogenic to barley<br />

<strong>an</strong>d <strong>the</strong>ir associated mycotox<strong>in</strong>s. Pl<strong>an</strong>t Dis.<br />

83(7):667-671.<br />

Schwarst, P.B., Casper, H.H., <strong>an</strong>d Barr, J.M. 1995.<br />

Survey <strong>of</strong> <strong>the</strong> occurrence <strong>of</strong> deox<strong>in</strong>ivalenol<br />

(vomitox<strong>in</strong>) <strong>in</strong> barley grown <strong>in</strong> M<strong>in</strong>nesota,<br />

Noth Dakota <strong>an</strong>d South Dakota dur<strong>in</strong>g 1993.<br />

Technical Quarterly, Master Brewers<br />

Association <strong>of</strong> <strong>the</strong> Americas 32(4):190-194.<br />

Shoerder, H.W., <strong>an</strong>d Christensen, J.J. 1963. Factors<br />

affect<strong>in</strong>g <strong>the</strong> resist<strong>an</strong>ce <strong>of</strong> wheat to scab caused<br />

by Gibberella zeae. Phytopathology 53:831-838.<br />

Skadhauge, B., Thomsen, K.K., <strong>an</strong>d von Wettste<strong>in</strong>,<br />

D. 1997. The role <strong>of</strong> <strong>the</strong> barley testa layer <strong>an</strong>d<br />

its flavonoid content <strong>in</strong> resist<strong>an</strong>ce to Fusarium<br />

<strong>in</strong>fections. Heriditas 126:147-160.<br />

Snijder, C.H.A., <strong>an</strong>d Kretch<strong>in</strong>g, C.F. 1992.<br />

Inhibition <strong>of</strong> deoxynivalenol tr<strong>an</strong>slocation <strong>an</strong>d<br />

fungal colonisation <strong>in</strong> Fusarium head blight<br />

resist<strong>an</strong>t wheat. C<strong>an</strong>. J. Bot. 70:1570-1576.<br />

Steffenson, B. 1998. Fusarium head blight <strong>of</strong><br />

barley: Epidemic, impact, <strong>an</strong>d breed<strong>in</strong>g for<br />

resist<strong>an</strong>ce. MBAA TQ 35(4):177-184.<br />

Sun Lijun, Wei Lu, J<strong>in</strong>g Zh<strong>an</strong>g, <strong>an</strong>d W<strong>an</strong>xia<br />

Zh<strong>an</strong>g. 1999. Investigation <strong>of</strong> barley<br />

germplasm <strong>in</strong> Ch<strong>in</strong>a. Genetic Resources <strong>an</strong>d<br />

Crop Evolution 46:361-369.<br />

Takeda, K., Wu, J., <strong>an</strong>d Heta, H. 1995. Analysis <strong>of</strong><br />

host-pathogen <strong>in</strong>teraction <strong>of</strong> fusarium head<br />

blight <strong>of</strong> wheat <strong>an</strong>d barley. <strong>Breed<strong>in</strong>g</strong> Sci.<br />

45:349-356.<br />

Urrea, C.A., Horsley, R.D., Schwarz, P.B., <strong>an</strong>d B.J.<br />

Steffenson. 1999. Genetic diversity <strong>an</strong>d<br />

characterization <strong>of</strong> barley genotypes with<br />

partial resist<strong>an</strong>ce to fusarium head blight. 16 th<br />

Americ<strong>an</strong> <strong>Barley</strong> Researcher Workshop. Idaho<br />

Falls, ID, USA.<br />

Vivar, H.E., Gilchrist, L., Hayes, P., Zonghen, L.,<br />

Steffenson, B., Fr<strong>an</strong>co, J., <strong>an</strong>d Henry, M. 1997.<br />

Head scab resist<strong>an</strong>t barley for malt<strong>in</strong>g <strong>an</strong>d<br />

food. Fifth Europe<strong>an</strong> Fusarium Sem<strong>in</strong>ar.<br />

Szeged, Hungary. pp 693-697.<br />

W<strong>an</strong>g, Y.Z., <strong>an</strong>d Miller, J.D. 1988. Effects <strong>of</strong><br />

Fusarium gram<strong>in</strong>earum metabolites on wheat<br />

tissue <strong>in</strong> relation to Fusarium head blight<br />

resist<strong>an</strong>ce. J. Phytopathol. 122:118-125.<br />

Wong, L.S., Abramson, D., Tekauz, A., Leisle, D.,<br />

<strong>an</strong>d McKensie, R.I.H. 1995. Pathogenecity <strong>an</strong>d<br />

mycotox<strong>in</strong> production <strong>of</strong> Fusarium species<br />

caus<strong>in</strong>g head blight <strong>in</strong> wheat cultivars vary<strong>in</strong>g<br />

<strong>in</strong> resist<strong>an</strong>ce. C<strong>an</strong>. J. Pl<strong>an</strong>t Sci. 261-267.<br />

Zhu, H., Gilchrist, L., Hayes, P., Kle<strong>in</strong>h<strong>of</strong>s, A.,<br />

Kundrna, D., Liu, Z., Steffenson. B., Tooj<strong>in</strong>da,<br />

T., <strong>an</strong>d Vivar, H. 1999 . Does function follow<br />

form? Pr<strong>in</strong>cipal QTLs for fusarium head blight<br />

(FHB) resist<strong>an</strong>ce are co<strong>in</strong>cident with QTLs for<br />

<strong>in</strong>florescence traits <strong>an</strong>d pl<strong>an</strong>t height <strong>in</strong> a<br />

double haploid population <strong>of</strong> barley. Theo.<br />

Appl. Gen. 99:1221-1232.


72<br />

Resist<strong>an</strong>ce <strong>an</strong>d/or Toler<strong>an</strong>ce<br />

to BYDV: Recent Adv<strong>an</strong>ces <strong>in</strong><br />

<strong>Barley</strong> at CIMMYT<br />

M. HENRY 1 AND H.E. VIVAR 2<br />

<strong>Barley</strong> yellow dwarf is <strong>the</strong> most<br />

import<strong>an</strong>t viral disease <strong>of</strong> barley. It is<br />

caused by a complex <strong>of</strong> luteoviruses<br />

known as barley yellow dwarf viruses<br />

(BYDVs). They are tr<strong>an</strong>smitted <strong>in</strong> a<br />

persistent m<strong>an</strong>ner by aphids to all<br />

common cereals. The five serotypes PAV,<br />

MAV, RPV, RMV, <strong>an</strong>d SGV differ <strong>in</strong><br />

severity, PAV be<strong>in</strong>g <strong>in</strong> general <strong>the</strong> most<br />

severe <strong>an</strong>d most common, followed by<br />

MAV <strong>an</strong>d RPV. RMV <strong>an</strong>d SGV are only<br />

found occasionally. Control <strong>of</strong> BYDV c<strong>an</strong><br />

be achieved through elim<strong>in</strong>ation <strong>of</strong> its<br />

<strong>in</strong>sect vector by <strong>in</strong>secticide application,<br />

cultural practices, <strong>an</strong>d <strong>the</strong> use <strong>of</strong> toler<strong>an</strong>t<br />

<strong>an</strong>d/or resist<strong>an</strong>t materials.<br />

Accord<strong>in</strong>g to Cooper <strong>an</strong>d Jones (1983),<br />

toler<strong>an</strong>ce <strong>in</strong> a pl<strong>an</strong>t is associated with <strong>an</strong><br />

attenuation <strong>of</strong> symptoms without<br />

reduction <strong>in</strong> virus multiplication. In a<br />

resist<strong>an</strong>t pl<strong>an</strong>t, virus multiplication or<br />

spread is affected. The term resist<strong>an</strong>ce has<br />

been broadly used to refer to <strong>an</strong>y type <strong>of</strong><br />

<strong>in</strong>teraction to <strong>the</strong> disease development;<br />

most field resist<strong>an</strong>ce reported <strong>in</strong> <strong>the</strong><br />

literature was assessed through symptom<br />

expression <strong>in</strong> <strong>the</strong> field <strong>an</strong>d is <strong>the</strong>refore<br />

toler<strong>an</strong>ce. In this paper, we will<br />

differentiate <strong>the</strong> two mech<strong>an</strong>isms <strong>an</strong>d<br />

refer to true resist<strong>an</strong>ce only when virus<br />

concentration is affected. In some oats<br />

(Jedl<strong>in</strong>ski et al., 1977) <strong>an</strong>d barleys (Skaria<br />

et al., 1985, R<strong>an</strong>ieri et al., 1993), resist<strong>an</strong>ce<br />

has been associated with field toler<strong>an</strong>ce.<br />

The most common <strong>an</strong>d effective source<br />

<strong>of</strong> toler<strong>an</strong>ce to BYD <strong>in</strong> barley was<br />

identified <strong>in</strong> Ethiopi<strong>an</strong> barleys (Schaller<br />

et al., 1963) <strong>an</strong>d found to be associated to<br />

<strong>the</strong> major semidom<strong>in</strong><strong>an</strong>t gene Yd2<br />

(Rasmusson <strong>an</strong>d Schaller, 1959). As m<strong>an</strong>y<br />

authors report, this gene is associated<br />

with field toler<strong>an</strong>ce <strong>an</strong>d with reduction<br />

<strong>in</strong> virus concentration (resist<strong>an</strong>ce). It is<br />

located on chromosome 3 (Schaller et al.,<br />

1964) close to <strong>the</strong> centromere (Coll<strong>in</strong>s et<br />

al., 1996). It is associated with reduction<br />

<strong>in</strong> virus concentration with BYDV-PAV<br />

<strong>an</strong>d MAV but not with BYDV-RPV<br />

(B<strong>an</strong>ks et al., 1992; Skaria et al., 1985;<br />

Herrera <strong>an</strong>d Plumb, 1989).<br />

Recently, Paltridge et al. (1998)<br />

developed <strong>an</strong> assay based on a prote<strong>in</strong><br />

show<strong>in</strong>g allelic variation that correlates<br />

with Yd2. Later, Ford et al. (1998)<br />

developed a PCR marker for <strong>the</strong> Yd2-<br />

associated allele <strong>of</strong> Ylp us<strong>in</strong>g allelespecific<br />

primer pair. These molecular<br />

markers are useful for identify<strong>in</strong>g <strong>the</strong><br />

presence <strong>of</strong> Yd2 <strong>in</strong> barley cultivars.<br />

1<br />

CIMMYT Wheat Program, Apdo. Postal 6-641, Mexico, D.F., Mexico, 06600.<br />

2<br />

Head, CIMMYT-ICARDA <strong>Barley</strong> Program, Apdo. Postal 6-641, Mexico, D.F., Mexico, 06600.


Resist<strong>an</strong>ce <strong>an</strong>d/or Toler<strong>an</strong>ce to BYDV: Recent Adv<strong>an</strong>ces <strong>in</strong> <strong>Barley</strong> at CIMMYT<br />

73<br />

The CIMMYT-ICARDA <strong>Barley</strong> Program<br />

for Lat<strong>in</strong> America holds a number <strong>of</strong> l<strong>in</strong>es<br />

with high field toler<strong>an</strong>ce to BYDV isolates<br />

PAV, MAV <strong>an</strong>d RPV comb<strong>in</strong>ed with<br />

resist<strong>an</strong>ce to foliar diseases. The objectives<br />

<strong>of</strong> <strong>the</strong> present study were to evaluate <strong>the</strong><br />

type <strong>of</strong> resist<strong>an</strong>ce present <strong>in</strong> <strong>the</strong> CIMMYT<br />

barley l<strong>in</strong>es, dist<strong>in</strong>guish between true<br />

resist<strong>an</strong>ce <strong>an</strong>d toler<strong>an</strong>ce, <strong>an</strong>d measure to<br />

what extent <strong>the</strong> gene Yd2 was present <strong>in</strong><br />

those l<strong>in</strong>es. Some <strong>of</strong> <strong>the</strong> results presented<br />

here are still prelim<strong>in</strong>ary.<br />

Materials <strong>an</strong>d Methods<br />

Virus isolates <strong>an</strong>d <strong>in</strong>oculation<br />

The BYDV PAV-Mex, MAV-Mex, <strong>an</strong>d RPV-<br />

Mex isolates used <strong>in</strong> <strong>the</strong> experiment were<br />

collected <strong>in</strong> Mexico <strong>in</strong> 1993 <strong>an</strong>d<br />

ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> CIMMYT’s greenhouse<br />

through tr<strong>an</strong>smission by aphids. The<br />

aphid species Rhopalosiphum padi (PAV<br />

<strong>an</strong>d RPV) <strong>an</strong>d Metopolophium dirhodum<br />

(MAV) were used for tr<strong>an</strong>smission.<br />

Inoculation was performed <strong>in</strong> <strong>the</strong><br />

greenhouse by <strong>in</strong>fest<strong>in</strong>g five 6-day old<br />

seedl<strong>in</strong>gs per l<strong>in</strong>e with 10 viruliferous<br />

aphids that had acquired BYDV by<br />

feed<strong>in</strong>g on <strong>in</strong>fected pl<strong>an</strong>ts for 48 hours.<br />

Seedl<strong>in</strong>gs were isolated from each o<strong>the</strong>r<br />

by tr<strong>an</strong>sparent plastic tubes. After a twoday<br />

<strong>in</strong>oculation period, aphids were killed<br />

with <strong>the</strong> <strong>in</strong>secticide Metasystox (Bayer). In<br />

all experiments, one or two pl<strong>an</strong>ts were<br />

kept free <strong>of</strong> aphids to serve as <strong>the</strong> non<strong>in</strong>oculated<br />

controls.<br />

In <strong>the</strong> field, pl<strong>an</strong>ts were <strong>in</strong>fested at <strong>the</strong><br />

three-leaf stage with aphids reared <strong>in</strong> <strong>the</strong><br />

greenhouse on BYDV <strong>in</strong>fected pl<strong>an</strong>ts. To<br />

avoid contam<strong>in</strong>ation, <strong>the</strong> non-<strong>in</strong>oculated<br />

treatments were sprayed soon after<br />

emergence with <strong>the</strong> <strong>in</strong>secticide<br />

Metasystox; <strong>in</strong> <strong>the</strong> <strong>in</strong>oculated treatments,<br />

approximately 10 aphids were deposited<br />

at <strong>the</strong> base <strong>of</strong> each seedl<strong>in</strong>g us<strong>in</strong>g a<br />

calibrated mech<strong>an</strong>ical dispenser. Aphid<br />

movement was controlled through<br />

fortnightly <strong>in</strong>secticide application<br />

(Metasystox) on <strong>the</strong> entire trial, start<strong>in</strong>g<br />

one week after <strong>in</strong>oculation.<br />

Pl<strong>an</strong>t materials<br />

N<strong>in</strong>ety-one l<strong>in</strong>es from <strong>the</strong> CIMMYT-<br />

ICARDA <strong>Barley</strong> Program were tested <strong>in</strong><br />

this study. These l<strong>in</strong>es were selected<br />

because <strong>the</strong>y showed field toler<strong>an</strong>ce to<br />

one <strong>of</strong> <strong>the</strong> BYDV isolates tested. The<br />

controls were non-Yd2 l<strong>in</strong>es Atlas 57,<br />

Cent<strong>in</strong>ela, <strong>an</strong>d Calicuchima “S” <strong>an</strong>d Yd2<br />

l<strong>in</strong>es Atlas 68, Sutter, Sutter /2*Numar.<br />

Field evaluation <strong>of</strong> BYDV<br />

toler<strong>an</strong>ce <strong>an</strong>d/or resist<strong>an</strong>ce<br />

L<strong>in</strong>es were tested under BYDV <strong>in</strong>fection<br />

<strong>in</strong> Toluca <strong>an</strong>d El Bat<strong>an</strong>, Mexico, dur<strong>in</strong>g<br />

<strong>the</strong> summers <strong>of</strong> 1997, 1998, <strong>an</strong>d 1999. For<br />

each l<strong>in</strong>e, four 1-m double plots (20<br />

pl<strong>an</strong>ts) were sown adjacent to each o<strong>the</strong>r,<br />

to constitute <strong>the</strong> four treatments: non<strong>in</strong>oculated,<br />

<strong>in</strong>oculated with PAV, MAV, or<br />

RPV.<br />

Symptoms were evaluated at flower<strong>in</strong>g<br />

us<strong>in</strong>g a 1-9 scale as described by<br />

Berstch<strong>in</strong>ger (1994), 1 be<strong>in</strong>g <strong>the</strong> most<br />

toler<strong>an</strong>t <strong>an</strong>d 9 <strong>the</strong> most susceptible. The<br />

three parameters measured were <strong>in</strong>tensity<br />

<strong>of</strong> yellow<strong>in</strong>g, dwarfism, <strong>an</strong>d reduction <strong>in</strong><br />

tiller<strong>in</strong>g. In 1999, biomass was evaluated<br />

<strong>in</strong>stead <strong>of</strong> tiller<strong>in</strong>g because it seems to<br />

better represent <strong>the</strong> effect <strong>of</strong> BYD on pl<strong>an</strong>t<br />

growth.<br />

Evaluation <strong>of</strong> resist<strong>an</strong>ce to BYDV<br />

us<strong>in</strong>g ELISA<br />

Flag leaf-1 <strong>an</strong>d roots were collected seven<br />

days after <strong>in</strong>oculation to evaluate virus<br />

titers by ELISA (enzyme-l<strong>in</strong>ked<br />

immunosorbent assay). Double Antibody


74<br />

M. Henry <strong>an</strong>d H.E. Vivar<br />

S<strong>an</strong>dwich ELISA (DAS ELISA) was used<br />

as described <strong>in</strong> Ayala et al. (2000). The<br />

coat<strong>in</strong>g polyclonal <strong>an</strong>tibodies aga<strong>in</strong>st <strong>the</strong><br />

US PAV, MAV, or RPV isolates were<br />

provided by K. Perry (Purdue<br />

University). Optical density (OD) was<br />

measured at 410 hm us<strong>in</strong>g <strong>an</strong>d MR 700<br />

Microplate reader (Dynatech<br />

Laboratories). A pl<strong>an</strong>t was considered<br />

<strong>in</strong>fected when <strong>the</strong> OD obta<strong>in</strong>ed <strong>in</strong> ELISA<br />

was higher th<strong>an</strong> twice <strong>the</strong> one obta<strong>in</strong>ed<br />

with <strong>the</strong> non-<strong>in</strong>fected control. The higher<br />

<strong>the</strong> OD, <strong>the</strong> higher <strong>the</strong> concentration <strong>an</strong>d<br />

<strong>the</strong> lower <strong>the</strong> resist<strong>an</strong>ce.<br />

Detection <strong>of</strong> <strong>the</strong> presence <strong>of</strong> Yd2<br />

us<strong>in</strong>g molecular markers<br />

The marker pair (Ylp PCR MF <strong>an</strong>d Ylp<br />

PCR MR) described by Ford et al. (1998)<br />

was used <strong>in</strong> this study follow<strong>in</strong>g <strong>the</strong><br />

procedure described by <strong>the</strong> same<br />

authors. A 311 base pair product was<br />

obta<strong>in</strong>ed after PCR <strong>of</strong> DNA from both<br />

Yd2 <strong>an</strong>d non-Yd2 pl<strong>an</strong>ts. After digestion<br />

<strong>of</strong> <strong>the</strong> PCR product with <strong>the</strong> restriction<br />

enzyme NlaIII, two products <strong>of</strong> 253 <strong>an</strong>d<br />

58 base pairs were obta<strong>in</strong>ed with <strong>the</strong><br />

DNA from pl<strong>an</strong>ts with <strong>the</strong> Yd2 gene,<br />

while a s<strong>in</strong>gle product <strong>of</strong> 311 base pairs<br />

was obta<strong>in</strong>ed with pl<strong>an</strong>ts not conta<strong>in</strong><strong>in</strong>g<br />

Yd2. The products were visualized on a<br />

3% agarose gel.<br />

Results<br />

As expected, a s<strong>in</strong>gle product <strong>of</strong> 311bp<br />

was obta<strong>in</strong>ed with <strong>the</strong> non-Yd2 l<strong>in</strong>es<br />

(Atlas 57, Cent<strong>in</strong>ela <strong>an</strong>d Calicuchima<br />

“S”) while a 253bp product could be<br />

visualize with <strong>the</strong> Yd2 l<strong>in</strong>es (Atlas 68,<br />

Sutter, Sutter /2*Numar) (data not<br />

shown), confirm<strong>in</strong>g <strong>the</strong> usefulness <strong>of</strong> <strong>the</strong><br />

marker for <strong>the</strong> detection <strong>of</strong> Yd2. The Yd2-<br />

associated allele (Ylp) was detected <strong>in</strong><br />

82% <strong>of</strong> <strong>the</strong> CIMMYT barleys tested (73).<br />

OD<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Sutter<br />

Yd2+<br />

Cent<strong>in</strong>ela No<br />

Yd2+<br />

Sutter*2/Numar<br />

Yd2+<br />

Calicuchima “S”<br />

No Yd2<br />

Roots<br />

Leaves<br />

Atlas 68<br />

Yd2+<br />

Atlas 57 No<br />

Yd2<br />

Figure 1. Virus titers <strong>in</strong> roots <strong>an</strong>d leaves <strong>of</strong><br />

barley genotypes seven days after <strong>in</strong>fection<br />

with BYDV-PAV.<br />

Effect <strong>of</strong> Yd2 on BYDV<br />

concentration<br />

In <strong>the</strong> l<strong>in</strong>es with Yd2, Sutter <strong>an</strong>d Sutter/<br />

2*Numar, virus titers were low <strong>in</strong> both<br />

roots <strong>an</strong>d leaves (Figure 1). However, <strong>in</strong><br />

Atlas 68, <strong>the</strong> virus titers reached<br />

moderate levels <strong>in</strong> <strong>the</strong> leaves. Accord<strong>in</strong>g<br />

to this, differentiation between Yd2 <strong>an</strong>d<br />

non-Yd2 l<strong>in</strong>es is easier by compar<strong>in</strong>g<br />

virus titers <strong>in</strong> roots.<br />

As shown <strong>in</strong> Table 1, virus titers were<br />

lower when <strong>the</strong> Yd2-associated allele was<br />

present th<strong>an</strong> when it was absent,<br />

confirm<strong>in</strong>g that Yd2 reduces<br />

multiplication <strong>of</strong> BYDV-PAV <strong>in</strong> barley.<br />

Table 1. Me<strong>an</strong> virus titers <strong>in</strong> ELISA measured <strong>in</strong><br />

leaves <strong>an</strong>d roots <strong>of</strong> barley genotypes with <strong>an</strong>d<br />

without Yd2, seven days after <strong>in</strong>oculation with<br />

BYDV-PAV.<br />

Yd2-associated Number Average OD<br />

allele <strong>of</strong> l<strong>in</strong>es Leaves Roots<br />

Present 46 0.244 0.195<br />

Absent 16 0.682 0.998


Resist<strong>an</strong>ce <strong>an</strong>d/or Toler<strong>an</strong>ce to BYDV: Recent Adv<strong>an</strong>ces <strong>in</strong> <strong>Barley</strong> at CIMMYT<br />

75<br />

Effect <strong>of</strong> Yd2 on field toler<strong>an</strong>ce<br />

to BYDV<br />

Most l<strong>in</strong>es carry<strong>in</strong>g <strong>the</strong> Yd2-associated<br />

allele had a toler<strong>an</strong>t or <strong>in</strong>termediate<br />

response to BYDV-PAV <strong>an</strong>d MAV (Table<br />

2). In contrast, most l<strong>in</strong>es not carry<strong>in</strong>g<br />

<strong>the</strong> gene were sensitive to <strong>in</strong>fection by<br />

<strong>the</strong> two BYDV serotypes. The response<br />

to BYDV-RPV did not differ greatly<br />

between l<strong>in</strong>es with <strong>an</strong>d without <strong>the</strong><br />

Yd2-associated allele.<br />

Symptoms were more severe <strong>in</strong> <strong>the</strong> absence<br />

<strong>of</strong> <strong>the</strong> Yd2-associated allele after BYDV PAV<br />

<strong>an</strong>d MAV <strong>in</strong>fection (Table 3). The difference<br />

was not so marked with BYDV-RPV<br />

<strong>in</strong>fection.<br />

Germplasm with field<br />

toler<strong>an</strong>ce to BYDV<br />

Table 4 shows a list <strong>of</strong> l<strong>in</strong>es with field<br />

toler<strong>an</strong>ce to BYDV. The follow<strong>in</strong>g l<strong>in</strong>es<br />

comb<strong>in</strong>ed field toler<strong>an</strong>ce to <strong>the</strong> three BYDVs<br />

tested as well as resist<strong>an</strong>ce to BYDV-PAV:<br />

LIMON, BOLDO/MJA, GUAYABA,<br />

JACAPA, CANTUA, <strong>an</strong>d CLAVO.<br />

Table 2. Response <strong>of</strong> CIMMYT barleys to BYDV<br />

field <strong>in</strong>fection.<br />

BYDV Yd2 Non-Yd2<br />

response PAV MAV RPV PAV MAV RPV<br />

Table 4. Selected CIMMYT barley l<strong>in</strong>es with<br />

comb<strong>in</strong>ed toler<strong>an</strong>ce to <strong>the</strong> three BYDV Mexic<strong>an</strong><br />

isolates PAV, MAV, <strong>an</strong>d RPV.<br />

Name<br />

Selection history<br />

Toler<strong>an</strong>t 57.8† 69.6 34.8 0.0 6.7 14.3<br />

Intermediate 22.2 13.0 30.4 7.1 6.7 28.6<br />

Sensitive 20.0 17.4 34.8 92.9 86.7 57.1<br />

† Percentage <strong>of</strong> l<strong>in</strong>es <strong>in</strong> each category accord<strong>in</strong>g to <strong>the</strong><br />

presence <strong>of</strong> Yd2 as identified by <strong>the</strong> marker pair.<br />

Table 3. Severity <strong>of</strong> BYDV response after<br />

artificial <strong>in</strong>oculation <strong>in</strong> El Bat<strong>an</strong>, Mexico.†<br />

Yd2<br />

associated PAV MAV RPV<br />

allele Y D B Y D B Y D B<br />

Present 1.2 0.7 0.7 1.0 0.5 0.4 1.3 0.8 0.9<br />

Absent 3.3 3.8 5.1 1.8 1.4 1.3 2.3 0.4 0.8<br />

† Y= yellow<strong>in</strong>g, D= dwarf<strong>in</strong>g, B= reduction <strong>in</strong> biomass,<br />

measured on a 1-9 scale.<br />

PETUNIA 1<br />

CHAMICO/TOCTE//CONGONA<br />

DUMARI<br />

FAIQUE<br />

MADRE SELVA<br />

LIMON<br />

INCIENSO<br />

PALTON<br />

LIMON<br />

ARAVISCO<br />

BOLDO/MJA<br />

TINCTORIA<br />

BOLDO/MJA<br />

GRAMALOTE<br />

CANTUA<br />

CANTUA<br />

CANTUA<br />

PAPELILLO<br />

CALENDULA<br />

INCIENSO<br />

JACINTO<br />

MJA/BRB2//QUINA<br />

BBSC/CONGONA<br />

ABN-B/KC-B//RAISA/3/ALELI<br />

QUINN/ALOE//CARDO<br />

COMINO/3/MATICO/JET//<br />

SHYRI/4/ALELI<br />

ATACO/COMINO//ALELI<br />

ATACO/COMINO//ALELI<br />

CANTUA<br />

CMB93.855-G-15Y-1M-0Y<br />

CBSS95Y00352T-H-7Y-2M-0Y<br />

CMB93.755-C-1Y-1M-0Y<br />

CMB93.885-A-7Y-2M-1Y-0M<br />

CMB92A.790-H-4M-1Y-2B-0Y<br />

CMB92A.655-B-7M-1Y-1B-0Y<br />

CMB92A.1264-P-1M-1Y-1B-0Y<br />

CMB92.391-B-3Y-1M-1Y-1B-0Y<br />

CMB92A.655-C-9M-1Y-1B-0Y<br />

CMB91A.629-B-0M-1Y-1M-1Y-2B-0Y<br />

CMB91A.60-1M-1Y-1M-1Y-0B<br />

CMB91A.210-23M-2Y-1M-1Y-2B-0Y<br />

CMB91A.60-1M-1Y-3M-1Y-1B-0Y<br />

CMB92A.893-A-1M-2Y-1B-0Y<br />

CMB92.546-X-2Y-4M-0Y<br />

CMB92.546-I-1Y-1M-0Y<br />

CMB92.546-I-1Y-4M-0Y<br />

CMB92A.920-A-2M-1Y-0B<br />

CMB93.947-D-5Y-1M-0Y<br />

CMB92A.1264-A-3M-1Y-0M<br />

CMB92.490-E-6Y-1M-1Y-2B-0Y<br />

CMB93.987-C-1Y-1M-0Y<br />

CBSS95M00144S-3M-3Y-0M<br />

CMB92.338-A-6Y-1M-2Y-1B-0Y<br />

CMB92A.1439-I-6M-1Y-1B-0Y<br />

CMB92.494-C-2Y-1M-2Y-1B-0Y<br />

CMB92.367-E-7Y-1M-1Y-1B-0Y<br />

CMB92.367-Q-6Y-1M-0Y<br />

CMB92.546-I-1Y-5M-1Y-1B-0Y


76<br />

M. Henry <strong>an</strong>d H.E. Vivar<br />

Conclusions<br />

The CIMMYT-ICARDA <strong>Barley</strong> Program<br />

for Lat<strong>in</strong> America holds germplasm with<br />

comb<strong>in</strong>ed field toler<strong>an</strong>ce to <strong>the</strong> three<br />

major BYDVs (PAV, MAV <strong>an</strong>d RPV) <strong>an</strong>d<br />

to o<strong>the</strong>r major diseases. Fur<strong>the</strong>rmore,<br />

some <strong>of</strong> <strong>the</strong> material is truly resist<strong>an</strong>t<br />

(low virus concentration) at least to<br />

BYDV-PAV. Most l<strong>in</strong>es possesses <strong>the</strong><br />

gene Yd2; however, it is still possible that<br />

o<strong>the</strong>r genes are present, because <strong>of</strong> <strong>the</strong><br />

extremely high level <strong>of</strong> toler<strong>an</strong>ce is some<br />

l<strong>in</strong>es. This work is still <strong>in</strong> progress <strong>an</strong>d<br />

will be completed by study<strong>in</strong>g true<br />

resist<strong>an</strong>ce to MAV <strong>an</strong>d RPV.<br />

Acknowledgments<br />

We th<strong>an</strong>k Dr. Mireille Khairallah for her<br />

assist<strong>an</strong>ce <strong>in</strong> sett<strong>in</strong>g up <strong>the</strong> PCR assay,<br />

Javier Segura <strong>an</strong>d Gabriel Posadas for<br />

<strong>the</strong>ir technical assist<strong>an</strong>ce, <strong>an</strong>d Alma<br />

McNab for her editorial <strong>in</strong>put.<br />

References<br />

Ayala, L., Khairallah, M., González-de-Leon, D.,<br />

v<strong>an</strong> G<strong>in</strong>kel, M., Mujeeb-Kazi, A., Keller, B.,<br />

<strong>an</strong>d Henry, M. 2000. Identification <strong>an</strong>d use <strong>of</strong><br />

molecular markers to detect barley yellow<br />

dwarf virus resist<strong>an</strong>ce derived from Th.<br />

<strong>in</strong>termedium <strong>in</strong> bread wheat. Submitted to<br />

Theoretical <strong>an</strong>d Applied Genetics.<br />

B<strong>an</strong>ks, P.M., Waterhouse, P.M., <strong>an</strong>d Lark<strong>in</strong>, P.J.<br />

1992. Pathogenicity <strong>of</strong> three RPV isolates <strong>of</strong><br />

<strong>Barley</strong> Yellow Dwarf Virus on barley, wheat<br />

<strong>an</strong>d wheat alien addition l<strong>in</strong>es. Annals <strong>of</strong><br />

Applied Biology 121:305-314.<br />

Berstch<strong>in</strong>ger, L. 1994. <strong>New</strong> procedures for <strong>the</strong><br />

effective screen<strong>in</strong>g <strong>of</strong> cereals for symptomatic<br />

toler<strong>an</strong>ce to barley yellow dwarf luteoviruses.<br />

BYD <strong>New</strong>sletter 5:14.<br />

Burnett, P.A., Comeau, A., <strong>an</strong>d Qualset, C.O. 1995.<br />

Host pl<strong>an</strong>t toler<strong>an</strong>ce or resist<strong>an</strong>ce for control <strong>of</strong><br />

barley yellow dwarf. In: <strong>Barley</strong> Yellow Dwarf,<br />

40 Years <strong>of</strong> Progress. D’Arcy, C.J. <strong>an</strong>d Burnett,<br />

P.A. (eds.). APS Press, St Paul.<br />

Coll<strong>in</strong>s, N.C., Paltridge, N.G., Ford, C.M., <strong>an</strong>d<br />

Symons, R.H. 1996. The Yd2 gene for barley<br />

yellow dwarf virus resist<strong>an</strong>ce maps close to<br />

centromere on <strong>the</strong> long arm <strong>of</strong> barley<br />

chromosome 3. Theoretical <strong>an</strong>d Applied<br />

Genetics 92:858-864.<br />

Cooper, J.I., <strong>an</strong>d Jones, A.T. 1983. Responses <strong>of</strong><br />

pl<strong>an</strong>ts to viruses: proposals for <strong>the</strong> use <strong>of</strong><br />

terms. Phytopathology 73:127-128.<br />

Ford, C.M., Paltridge, N.G., Rathjen, J.P., Moritz,<br />

R.L., Simpson, R.J., <strong>an</strong>d Symons, R.H. 1998.<br />

Rapid <strong>an</strong>d <strong>in</strong>formative assays for Yd2, <strong>the</strong><br />

barley yellow dwarf virus resist<strong>an</strong>ce gene,<br />

based on <strong>the</strong> nucleotide sequence <strong>of</strong> a closely<br />

l<strong>in</strong>ked gene. Molecular <strong>Breed<strong>in</strong>g</strong> 4:23-31.<br />

Herrera, M.G.F. 1989. Interactions between host<br />

pl<strong>an</strong>ts <strong>an</strong>d British isolates <strong>of</strong> barley yellow<br />

dwarf virus. Thesis, University <strong>of</strong> London.<br />

Jedl<strong>in</strong>ski, H., Rochow, W.F., <strong>an</strong>d Brown, C.M.<br />

1977. Toler<strong>an</strong>ce to barley yellow dwarf virus <strong>in</strong><br />

oats. Phytopathology 67:1408-1411.<br />

Paltridge, N.G., Coll<strong>in</strong>s, N.C., Bendahm<strong>an</strong>e, A.,<br />

<strong>an</strong>d Symons, R.H. 1998. Development <strong>of</strong> YLM,<br />

a codom<strong>in</strong><strong>an</strong>t PCR marker closely l<strong>in</strong>ked to<br />

<strong>the</strong> Yd2 gene for resist<strong>an</strong>ce to barley yellow<br />

dwarf disease. Theoretical <strong>an</strong>d Applied<br />

Genetics 96:1170-1177.<br />

R<strong>an</strong>ieri, R., Lister, R.M., <strong>an</strong>d Burnett, P.A. 1993.<br />

Relationships between barley yellow dwarf<br />

titer <strong>an</strong>d symptom expression <strong>in</strong> barley. Crop<br />

Sci. 33:968-973.<br />

Rasmusson, D.C., <strong>an</strong>d Schaller, C.W. 1959. The<br />

<strong>in</strong>herit<strong>an</strong>ce <strong>of</strong> resist<strong>an</strong>ce <strong>in</strong> barley to <strong>the</strong><br />

yellow dwarf virus. Agron. J. 51:661-664.<br />

Schaller, C.W., Qualset, C.O., <strong>an</strong>d Rutger, J.N.<br />

1964. Inherit<strong>an</strong>ce <strong>an</strong>d l<strong>in</strong>kage <strong>of</strong> <strong>the</strong> Yd2 gene<br />

condition<strong>in</strong>g resist<strong>an</strong>ce to <strong>the</strong> barley yellow<br />

dwarf disease <strong>in</strong> barley. Crop Sci. 4:544-548.<br />

Schaller, C.W., Rasmusson, D.C., <strong>an</strong>d Qualset,<br />

C.O. 1963. Sources <strong>of</strong> resist<strong>an</strong>ce to <strong>the</strong> yellow<br />

dwarf virus <strong>in</strong> barley. Crop Sci. 3:342-344.<br />

Skaria, M., Lister R.M., Foster J.E., <strong>an</strong>d Sch<strong>an</strong>ner,<br />

G. 1985. Virus content as <strong>an</strong> <strong>in</strong>dex <strong>of</strong><br />

symptomatic resist<strong>an</strong>ce to barley yellow dwarf<br />

virus <strong>in</strong> cereals. Phytopathology 75:212-216.


77<br />

Two Decades <strong>of</strong> <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong><br />

H.E. VIVAR 1<br />

Pl<strong>an</strong>t breeders seek<strong>in</strong>g to improve a<br />

particular trait, such as disease<br />

resist<strong>an</strong>ce, search for sources <strong>of</strong> that trait<br />

<strong>in</strong> collections stored <strong>in</strong> germplasm<br />

b<strong>an</strong>ks. Most germplasm b<strong>an</strong>k accessions<br />

have been screened for different traits<br />

<strong>an</strong>d <strong>the</strong> results published. The<br />

ICARDA/CIMMYT barley breed<strong>in</strong>g<br />

program relies on this type <strong>of</strong><br />

<strong>in</strong>formation for identify<strong>in</strong>g cultivars to<br />

be used as parents <strong>in</strong> crosses.<br />

The Colombi<strong>an</strong> National Research<br />

Institute (Anonymous, 1984) screened<br />

8,650 barley accessions from <strong>the</strong> world<br />

collection aga<strong>in</strong>st race 24 <strong>of</strong> stripe rust<br />

caused by Pucc<strong>in</strong>ia striiformis f.sp. hordei,<br />

a disease recently <strong>in</strong>troduced to <strong>the</strong><br />

Ande<strong>an</strong> Region <strong>of</strong> South America. In<br />

1982, accessions found to be stripe rust<br />

resist<strong>an</strong>t <strong>in</strong> Colombia were brought to<br />

Mexico, where <strong>the</strong>y were used to launch<br />

extensive breed<strong>in</strong>g efforts aimed at<br />

develop<strong>in</strong>g germplasm resist<strong>an</strong>t to <strong>the</strong><br />

disease. Stripe rust has s<strong>in</strong>ce become<br />

endemic <strong>in</strong> <strong>the</strong> Ande<strong>an</strong> Region.<br />

In California, Webster et al. (1980) found<br />

273 entries with no symptoms <strong>of</strong><br />

pathogen virulence <strong>of</strong> Rynchosporium<br />

secalis present <strong>in</strong> <strong>the</strong> state. The extensive<br />

effort devoted to f<strong>in</strong>d<strong>in</strong>g scald resist<strong>an</strong>t<br />

cultivars among 18,000 accessions from<br />

<strong>the</strong> world barley collection <strong>in</strong> <strong>the</strong> US<br />

saved us from screen<strong>in</strong>g a large number<br />

<strong>of</strong> accessions <strong>in</strong> Mexico. Our work was to<br />

field test 273 resist<strong>an</strong>t accessions aga<strong>in</strong>st<br />

races <strong>of</strong> R. secalis present <strong>in</strong> central<br />

Mexico. Most accessions were still<br />

resist<strong>an</strong>t to US <strong>an</strong>d Mexic<strong>an</strong> races, <strong>an</strong>d<br />

only 13% proved to be scald susceptible<br />

<strong>an</strong>d discarded.<br />

In 1983, accessions from <strong>the</strong> world barley<br />

collection were screened aga<strong>in</strong>st leaf rust<br />

at <strong>the</strong> CIANO Experiment Station located<br />

<strong>in</strong> <strong>the</strong> Yaqui Valley <strong>in</strong> northwestern<br />

Mexico. Of 11,087 accessions screened<br />

aga<strong>in</strong>st races 8, 19, <strong>an</strong>d 30 <strong>of</strong> P. hordei,<br />

only 285 were found to be resist<strong>an</strong>t to leaf<br />

rust (Vivar, 1986).<br />

In Jap<strong>an</strong>, Takeda <strong>an</strong>d Heta (1989)<br />

screened 5,000 barley accessions aga<strong>in</strong>st<br />

Fusarium gram<strong>in</strong>earum <strong>an</strong>d found 23<br />

entries with good levels <strong>of</strong> scab<br />

resist<strong>an</strong>ce.<br />

Breeders <strong>an</strong>d pathologists who have to<br />

work with resist<strong>an</strong>t accessions from <strong>the</strong><br />

world collection <strong>in</strong>variably f<strong>in</strong>d that<br />

resist<strong>an</strong>ce is <strong>in</strong> poor agronomic pl<strong>an</strong>t<br />

types. Therefore, <strong>the</strong>y have to devote a<br />

lot <strong>of</strong> effort to tr<strong>an</strong>sferr<strong>in</strong>g disease<br />

resist<strong>an</strong>ce genes <strong>in</strong>to improved cultivars.<br />

Multiple disease resist<strong>an</strong>ce<br />

Researchers at Mont<strong>an</strong>a State University<br />

adv<strong>an</strong>ced <strong>the</strong> concept <strong>of</strong> <strong>in</strong>troduc<strong>in</strong>g<br />

multiple disease resist<strong>an</strong>ce <strong>in</strong>to barley<br />

us<strong>in</strong>g male-sterile pl<strong>an</strong>ts to facilitate<br />

1<br />

Head, ICARDA/CIMMYT <strong>Barley</strong> Program, Apdo. Postal 6-641, Mexico, D.F., Mexico, 06600.


78<br />

H.E. Vivar<br />

recurrent selection. The project required<br />

distribut<strong>in</strong>g several barley populations<br />

among cooperators around <strong>the</strong> world.<br />

The objective was achieved after several<br />

years <strong>of</strong> work. Pl<strong>an</strong>ts with multiple<br />

disease resist<strong>an</strong>ce became available, but<br />

barley breeders were reluct<strong>an</strong>t to use<br />

resist<strong>an</strong>t pl<strong>an</strong>ts <strong>in</strong> crosses with <strong>the</strong>ir elite<br />

cultivars because <strong>of</strong> <strong>the</strong>ir poor agronomic<br />

pl<strong>an</strong>t type.<br />

In <strong>the</strong> 1970s, Colombi<strong>an</strong> breeders carried<br />

out activities aimed at develop<strong>in</strong>g stripe<br />

rust resist<strong>an</strong>t varieties. Their efforts<br />

culm<strong>in</strong>ated <strong>in</strong> <strong>the</strong> release <strong>of</strong> Quibenras, a<br />

variety characterized by its outst<strong>an</strong>d<strong>in</strong>g<br />

stripe rust resist<strong>an</strong>ce. Despite this<br />

resist<strong>an</strong>ce, Quibenras had a short life <strong>in</strong><br />

farmers’ fields due to its susceptibility to<br />

leaf rust, which was predom<strong>in</strong><strong>an</strong>t where<br />

Quibenras was sown. Farmers who had<br />

been us<strong>in</strong>g expensive chemical<br />

treatments to control stripe rust were<br />

forced to cont<strong>in</strong>ue us<strong>in</strong>g fungicides<br />

(Bayleton) to control leaf rust.<br />

Both experiences po<strong>in</strong>ted to <strong>the</strong> need for<br />

cultivars with multiple disease resist<strong>an</strong>ce<br />

to provide stability <strong>in</strong> barley production.<br />

Incorporat<strong>in</strong>g multiple disease resist<strong>an</strong>ce<br />

<strong>in</strong>to high yield<strong>in</strong>g barley germplasm<br />

thus became <strong>the</strong> ma<strong>in</strong> objective <strong>of</strong> <strong>the</strong><br />

ICARDA/CIMMYT barley program <strong>in</strong><br />

1982.<br />

This breed<strong>in</strong>g strategy was implemented<br />

<strong>in</strong> several steps. The first template was<br />

achieved by cross<strong>in</strong>g scald <strong>an</strong>d leaf rust<br />

resist<strong>an</strong>t cultivars. Once adv<strong>an</strong>ced l<strong>in</strong>es<br />

with resist<strong>an</strong>ce to both diseases were<br />

obta<strong>in</strong>ed, <strong>the</strong>y were used as parents to<br />

form a second template, to which stripe<br />

rust resist<strong>an</strong>ce was added. Over 18 years<br />

<strong>of</strong> breed<strong>in</strong>g (two generations per year)<br />

<strong>an</strong>d a total <strong>of</strong> 36 generations, we have<br />

built templates that conta<strong>in</strong> resist<strong>an</strong>ce to<br />

BYD, net blotch, spot blotch, <strong>an</strong>d head<br />

scab, <strong>in</strong> addition to scald <strong>an</strong>d <strong>the</strong> three<br />

rusts (leaf, stripe, <strong>an</strong>d stem).<br />

Several import<strong>an</strong>t factors were <strong>in</strong>volved<br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>corporation <strong>of</strong> multiple disease<br />

resist<strong>an</strong>ce, but a few were essential to <strong>the</strong><br />

success <strong>of</strong> <strong>the</strong> project. First, <strong>the</strong> use <strong>of</strong><br />

large numbers <strong>of</strong> crosses (s<strong>in</strong>gle <strong>an</strong>d top)<br />

made it possible to comb<strong>in</strong>e resist<strong>an</strong>ce to<br />

several diseases <strong>in</strong> a s<strong>in</strong>gle pl<strong>an</strong>t. Second,<br />

large segregat<strong>in</strong>g populations were<br />

screened <strong>in</strong> <strong>the</strong> field at several<br />

experiment stations. The Toluca Station<br />

was used for screen<strong>in</strong>g scald, stripe rust,<br />

<strong>an</strong>d head scab; <strong>the</strong> CIANO Station for<br />

leaf <strong>an</strong>d stem rust, El Bat<strong>an</strong> for leaf rust,<br />

<strong>an</strong>d Poza Rica for spot blotch. The use <strong>of</strong><br />

<strong>the</strong> stations helped us produce reliable<br />

artificial epidemics <strong>an</strong>d effective pl<strong>an</strong>t<br />

selection. Third, <strong>in</strong>ternational test<strong>in</strong>g <strong>in</strong><br />

cooperation with national program<br />

scientists spread over five cont<strong>in</strong>ents<br />

allowed us to identify pl<strong>an</strong>ts resist<strong>an</strong>t to<br />

pathogenic races not present <strong>in</strong> Mexico.<br />

The ability to create artificial large-scale<br />

epidemics was key for select<strong>in</strong>g aga<strong>in</strong>st<br />

scald <strong>an</strong>d <strong>the</strong> three rusts. With diseases<br />

such as barley yellow dwarf <strong>an</strong>d head<br />

scab, develop<strong>in</strong>g artificial large-scale<br />

epidemics is cumbersome <strong>an</strong>d expensive;<br />

for this reason, <strong>the</strong> identification <strong>of</strong><br />

potentially resist<strong>an</strong>t pl<strong>an</strong>ts was done by<br />

visual selection <strong>in</strong> adv<strong>an</strong>ced segregat<strong>in</strong>g<br />

populations at <strong>the</strong> Toluca Station. The<br />

prelim<strong>in</strong>ary identification <strong>of</strong> potentially<br />

resist<strong>an</strong>t pl<strong>an</strong>ts required more detailed<br />

screen<strong>in</strong>g by CIMMYT pl<strong>an</strong>t pathologists<br />

Drs. L. Gilchrist <strong>an</strong>d M. Henry, both <strong>of</strong><br />

whom presented <strong>the</strong>ir results at this<br />

meet<strong>in</strong>g.<br />

Artificial <strong>in</strong>oculation at times creates<br />

friction between pl<strong>an</strong>t pathologists <strong>an</strong>d<br />

pl<strong>an</strong>t breeders. A frequent compla<strong>in</strong>t is<br />

that too much <strong>in</strong>oculum was applied,<br />

that <strong>the</strong> resist<strong>an</strong>ce reactions <strong>of</strong> <strong>the</strong> host


Two Decades <strong>of</strong> <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong><br />

79<br />

pl<strong>an</strong>ts are blurred or that too little<br />

<strong>in</strong>oculum was applied <strong>an</strong>d no<br />

differences are visible. The high ra<strong>in</strong>fall<br />

(800 to 1000 mm) recorded dur<strong>in</strong>g <strong>the</strong><br />

grow<strong>in</strong>g cycle at <strong>the</strong> Toluca Station<br />

favors <strong>the</strong> development <strong>of</strong> severe<br />

epidemics <strong>of</strong> scald, stripe rust, <strong>an</strong>d head<br />

scab. S<strong>in</strong>ce <strong>in</strong> <strong>the</strong> barley program disease<br />

epidemics develop without direct<br />

<strong>in</strong>tervention by pl<strong>an</strong>t pathologists,<br />

compla<strong>in</strong>ts about <strong>the</strong> <strong>in</strong>tensity <strong>of</strong><br />

epidemics are not uncommon.<br />

In our experience, <strong>the</strong> use <strong>of</strong> one<br />

resist<strong>an</strong>t parent <strong>in</strong> a s<strong>in</strong>gle cross does not<br />

provide <strong>an</strong> adequate level <strong>of</strong> resist<strong>an</strong>ce<br />

under conditions favor<strong>in</strong>g disease<br />

development. This is true not only with<br />

scald, but also rust <strong>an</strong>d head scab. For<br />

this reason, three-way crosses were<br />

adopted as a tool <strong>in</strong> <strong>the</strong> cross<strong>in</strong>g<br />

program. All F1s are now top-crossed to<br />

a third parent so as to comb<strong>in</strong>e at least<br />

two resist<strong>an</strong>ce sources. In recent years,<br />

as <strong>the</strong> program matured, a comb<strong>in</strong>ation<br />

<strong>of</strong> three different sources <strong>of</strong> resist<strong>an</strong>ce<br />

was attempted for scald, head scab, <strong>an</strong>d<br />

stripe rust. For example, adv<strong>an</strong>ced l<strong>in</strong>es<br />

(F7) from <strong>the</strong> cross Sv<strong>an</strong>hals/M.Selva//<br />

Azafr<strong>an</strong>/Gob24 were screened for head<br />

scab resist<strong>an</strong>ce with good results.<br />

Sav<strong>an</strong>hals, Azafr<strong>an</strong>, <strong>an</strong>d Gobernadora<br />

are three sources <strong>of</strong> head scab resist<strong>an</strong>ce.<br />

The comb<strong>in</strong>ed use <strong>of</strong> three parents<br />

resist<strong>an</strong>t to <strong>the</strong> same disease has resulted<br />

<strong>in</strong> cultivars show<strong>in</strong>g durable resist<strong>an</strong>ce.<br />

The variety Shyri (released <strong>in</strong> Ecuador)<br />

was <strong>the</strong> result <strong>of</strong> cross<strong>in</strong>g three stripe<br />

rust resist<strong>an</strong>ce sources (Mot<strong>an</strong>, Kober,<br />

<strong>an</strong>d Ter<strong>an</strong>). Shyri has rema<strong>in</strong>ed resist<strong>an</strong>t<br />

to stripe rust s<strong>in</strong>ce 1989 <strong>in</strong> <strong>the</strong> US,<br />

Germ<strong>an</strong>y, <strong>an</strong>d several Lat<strong>in</strong> Americ<strong>an</strong><br />

countries. The variety Calicuchima was<br />

selected from <strong>the</strong> cross L.B.Ir<strong>an</strong>/Una<br />

8271//Gloria/Come, all <strong>of</strong> whose<br />

parents are resist<strong>an</strong>t to scald.<br />

Calicuchima has rema<strong>in</strong>ed scald<br />

resist<strong>an</strong>t for more th<strong>an</strong> 10 years <strong>in</strong><br />

Mexico.<br />

Partial resist<strong>an</strong>ce<br />

Studies <strong>of</strong> leaf rust virulence conducted<br />

<strong>in</strong> Israel <strong>an</strong>d Ecuador by Brodny <strong>an</strong>d<br />

Rivadeneira (1996) showed that <strong>the</strong><br />

virulence present <strong>in</strong> both countries was<br />

capable <strong>of</strong> render<strong>in</strong>g all major genes<br />

reported <strong>in</strong> <strong>the</strong> literature non effective.<br />

This suggests that <strong>the</strong> resist<strong>an</strong>ce<br />

achieved by pyramid<strong>in</strong>g major gene<br />

comb<strong>in</strong>ations may not be durable.<br />

Parlevliet <strong>an</strong>d Kuiper (1977), work<strong>in</strong>g<br />

with leaf rust <strong>in</strong> barley <strong>in</strong> The<br />

Ne<strong>the</strong>rl<strong>an</strong>ds, proposed a partial<br />

resist<strong>an</strong>ce mech<strong>an</strong>ism based on m<strong>in</strong>or<br />

genes that provide vary<strong>in</strong>g levels <strong>of</strong><br />

resist<strong>an</strong>ce aga<strong>in</strong>st all virulences <strong>of</strong> <strong>the</strong><br />

pathogen. Parlevliet developed barley<br />

cultivars (Vada, LP) <strong>in</strong> which several<br />

m<strong>in</strong>or resist<strong>an</strong>ce genes were<br />

accumulated; <strong>the</strong>y showed better <strong>an</strong>d<br />

more durable resist<strong>an</strong>ce aga<strong>in</strong>st <strong>the</strong><br />

disease.<br />

The use <strong>in</strong> <strong>the</strong> ICARDA/CIMMYT<br />

barley program <strong>of</strong> <strong>the</strong> sources <strong>of</strong> partial<br />

resist<strong>an</strong>ce to leaf rust developed by<br />

Parlevliet was hampered by <strong>the</strong> presence<br />

<strong>of</strong> o<strong>the</strong>r diseases, such as scald, net<br />

blotch, spot blotch, <strong>an</strong>d BYD. Parental<br />

material developed <strong>in</strong> Holl<strong>an</strong>d was<br />

excellent for leaf rust but very poor for<br />

leaf blotches <strong>an</strong>d BYD.<br />

The program cont<strong>in</strong>ues to breed for<br />

partial resist<strong>an</strong>ce aga<strong>in</strong>st leaf rust.<br />

Several barley l<strong>in</strong>es carry<strong>in</strong>g good levels<br />

<strong>of</strong> partial resist<strong>an</strong>ce to leaf rust, stripe<br />

rust, <strong>an</strong>d scald have been identified. Our<br />

aim is to comb<strong>in</strong>e m<strong>in</strong>or <strong>an</strong>d major<br />

genes to achieve durable resist<strong>an</strong>ce.


80<br />

H.E. Vivar<br />

Head scab<br />

In 1984 breed<strong>in</strong>g for scab resist<strong>an</strong>ce by<br />

<strong>the</strong> ICARDA/CIMMYT barley program<br />

was not popular with ICARDA<br />

m<strong>an</strong>agement, who argued that <strong>the</strong><br />

disease was not considered a problem <strong>in</strong><br />

<strong>the</strong> West Asia <strong>an</strong>d North Africa (WANA)<br />

region, <strong>an</strong>d that <strong>the</strong>re were no reports <strong>of</strong><br />

its presence <strong>in</strong> <strong>the</strong> Americas. I learned<br />

that breed<strong>in</strong>g aga<strong>in</strong>st a disease that is not<br />

considered a problem is a difficult<br />

enterprise. Despite early doubts about<br />

<strong>the</strong> project, breed<strong>in</strong>g for scab resist<strong>an</strong>ce<br />

became one <strong>of</strong> <strong>the</strong> more successful<br />

<strong>in</strong>itiatives <strong>of</strong> <strong>the</strong> ICARDA/CIMMYT<br />

barley program <strong>in</strong> Mexico.<br />

Two national programs released three<br />

scab resist<strong>an</strong>t varieties <strong>in</strong> two countries;<br />

Ecuador (Atahualpa <strong>an</strong>d Shyri) <strong>an</strong>d<br />

Ch<strong>in</strong>a (Zhenmai-1). The variety<br />

Zhenmai-1 is sown on more th<strong>an</strong> 100,000<br />

hectares <strong>in</strong> several Ch<strong>in</strong>ese prov<strong>in</strong>ces<br />

located <strong>in</strong> <strong>the</strong> lower bas<strong>in</strong> <strong>of</strong> <strong>the</strong> Y<strong>an</strong>gtze<br />

River, <strong>an</strong>d is show<strong>in</strong>g yield <strong>in</strong>creases <strong>of</strong><br />

20-25% over <strong>the</strong> Ch<strong>in</strong>ese barley varieties<br />

it replaced. Dr. He Zhonghu, CIMMYT<br />

representative <strong>in</strong> Ch<strong>in</strong>a, estimates that<br />

40% <strong>of</strong> one million hectares sown to<br />

barley <strong>in</strong> Ch<strong>in</strong>a is pl<strong>an</strong>ted to varieties<br />

<strong>in</strong>troduced from Mexico or derived from<br />

crosses between local varieties <strong>an</strong>d<br />

Mexic<strong>an</strong> <strong>in</strong>troductions.<br />

Head scab caused by Fusarium<br />

gram<strong>in</strong>earum has become a major disease<br />

<strong>in</strong> North America. S<strong>in</strong>ce 1993, <strong>the</strong><br />

epidemic has produced more economic<br />

losses th<strong>an</strong> <strong>an</strong>y o<strong>the</strong>r disease <strong>in</strong> US<br />

history. In areas such as <strong>the</strong> upper<br />

Midwest (<strong>the</strong> Dakotas, M<strong>in</strong>nesota), head<br />

scab has become a major problem, <strong>an</strong>d<br />

extensive efforts are be<strong>in</strong>g <strong>in</strong>vested <strong>in</strong><br />

breed<strong>in</strong>g <strong>an</strong>d pathology research.<br />

Over <strong>the</strong> last decade, fusarium tox<strong>in</strong><br />

production <strong>in</strong> <strong>the</strong> gra<strong>in</strong> has become a<br />

major concern due to <strong>the</strong> implications for<br />

hum<strong>an</strong> health. Tox<strong>in</strong>s such as<br />

deoxynivalenol (DON) are present <strong>in</strong><br />

gra<strong>in</strong> <strong>in</strong>fected with Fusarium<br />

gram<strong>in</strong>earum. In <strong>the</strong> developed world,<br />

tox<strong>in</strong> levels <strong>in</strong> gra<strong>in</strong> to be used as food or<br />

feed must not exceed 2 ppm; however, <strong>in</strong><br />

third world countries that have no<br />

regulations on tox<strong>in</strong> content <strong>in</strong> <strong>the</strong> gra<strong>in</strong>,<br />

<strong>the</strong> problem becomes more severe,<br />

especially <strong>in</strong> areas such as <strong>the</strong> Ande<strong>an</strong><br />

Region, where barley is a staple food.<br />

Clear et al. (1997) reported that hull-less<br />

barley showed a 59% DON reduction <strong>in</strong><br />

gra<strong>in</strong> tox<strong>in</strong> content immediately after<br />

be<strong>in</strong>g threshed <strong>in</strong> <strong>the</strong> field. Apparently<br />

<strong>the</strong> tox<strong>in</strong> is attached to <strong>the</strong> lemma <strong>an</strong>d<br />

palea, which are removed dur<strong>in</strong>g<br />

thresh<strong>in</strong>g. Clear <strong>an</strong>d colleagues<br />

concluded that hull-less barley may be a<br />

good option for farmers <strong>in</strong> areas affected<br />

by head scab.<br />

After several years <strong>of</strong> test<strong>in</strong>g under<br />

artificial <strong>in</strong>oculation at <strong>the</strong> Toluca Station,<br />

several hull-less, six- <strong>an</strong>d two-rowed<br />

barley l<strong>in</strong>es were identified as be<strong>in</strong>g<br />

resist<strong>an</strong>t to head scab. Seed <strong>of</strong> <strong>the</strong>se l<strong>in</strong>es<br />

will be distributed to national programs<br />

for test<strong>in</strong>g <strong>in</strong> areas prone to <strong>the</strong> disease.<br />

Molecular markers were used to map<br />

scab resist<strong>an</strong>ce <strong>in</strong> <strong>the</strong> doubled haploid<br />

population Gobernadora/Azafr<strong>an</strong> <strong>in</strong><br />

cooperation with Oregon State<br />

University (Zhu et al., 1999). The<br />

doubled haploid l<strong>in</strong>es were phenotyped<br />

for scab resist<strong>an</strong>ce <strong>in</strong> Mexico, North<br />

Dakota, <strong>an</strong>d Ch<strong>in</strong>a. Type II resist<strong>an</strong>ce (to<br />

spread <strong>of</strong> <strong>the</strong> fungus with<strong>in</strong> <strong>the</strong> spike)<br />

was mapped near <strong>the</strong> centromeric region<br />

<strong>of</strong> chromosome 2 with <strong>the</strong> largest R2<br />

value. Lateral florets, a morphological


Two Decades <strong>of</strong> <strong>Barley</strong> <strong>Breed<strong>in</strong>g</strong><br />

81<br />

trait, was mapped <strong>in</strong> <strong>the</strong> same region,<br />

open<strong>in</strong>g <strong>the</strong> possibilities for <strong>in</strong>direct<br />

selection for head scab resist<strong>an</strong>ce.<br />

In Alberta, C<strong>an</strong>ada, Dr. J. Helm selected<br />

40 two-rowed adv<strong>an</strong>ced l<strong>in</strong>es from a<br />

cross developed <strong>in</strong> a disease-free<br />

environment. The selected l<strong>in</strong>es had<br />

never been exposed to scab dur<strong>in</strong>g <strong>the</strong>ir<br />

development. The ma<strong>in</strong> selection<br />

objective was to f<strong>in</strong>d spikes lack<strong>in</strong>g<br />

lateral florets. The 40 l<strong>in</strong>es were sent to<br />

Mexico for screen<strong>in</strong>g under artificial<br />

<strong>in</strong>oculation dur<strong>in</strong>g <strong>the</strong> summer <strong>of</strong> 2000.<br />

Results <strong>of</strong> <strong>the</strong> screen<strong>in</strong>g done by Gilchrist<br />

are shown <strong>in</strong> Table 1. Five l<strong>in</strong>es were<br />

found to possess Type I <strong>an</strong>d II resist<strong>an</strong>ce<br />

(to primary <strong>in</strong>fection <strong>an</strong>d fungal spread,<br />

respectively). The percentage (12.5%) <strong>of</strong><br />

head scab resist<strong>an</strong>t l<strong>in</strong>es selected<br />

provides a clear <strong>in</strong>dication <strong>of</strong> <strong>the</strong><br />

effectiveness <strong>of</strong> <strong>in</strong>direct head scab<br />

selection <strong>in</strong> two-rowed barley<br />

populations.<br />

Table 1. Percent <strong>of</strong> gra<strong>in</strong> <strong>in</strong>fected with Fusarium<br />

gram<strong>in</strong>earum <strong>in</strong> five two-rowed l<strong>in</strong>es <strong>in</strong>troduced<br />

from Alberta, C<strong>an</strong>ada, <strong>an</strong>d screened at <strong>the</strong><br />

Toluca Experiment Station, Mexico, summer <strong>of</strong><br />

2000.<br />

Resist<strong>an</strong>ce (%)<br />

L<strong>in</strong>e Type I Type II<br />

H93123-003 5.35 5.39<br />

H93126-002 7.23 6.23<br />

H93125 6.88 6.83<br />

H93123-008 5.98 7.00<br />

H93126-011 4.44 8.30<br />

Susceptible check (Gob-89) 13.43 27.78<br />

Ten years <strong>of</strong> cooperation with Oregon<br />

State University has led to a deeper<br />

underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong> <strong>the</strong> genetic basis <strong>of</strong><br />

resist<strong>an</strong>ce to several diseases. Stripe rust,<br />

present <strong>in</strong> Mexico <strong>an</strong>d northwest USA,<br />

has received more attention. Two<br />

Ecuadori<strong>an</strong> varieties, Shyri <strong>an</strong>d<br />

Calicuchima, have been extensively<br />

studied. They carry different qu<strong>an</strong>titative<br />

trait loci (QTL) for stripe rust resist<strong>an</strong>ce.<br />

Shyri’s stripe rust resist<strong>an</strong>ce was mapped<br />

on chromosome 5, while Calicuchima has<br />

resist<strong>an</strong>ce QTLs on chromosomes 4 <strong>an</strong>d 7<br />

(Tooj<strong>in</strong>da et al., 2000). The diversity <strong>of</strong><br />

<strong>the</strong> resist<strong>an</strong>ce found <strong>in</strong> <strong>the</strong>se two<br />

Ecuadori<strong>an</strong> varieties provides additional<br />

<strong>in</strong>sur<strong>an</strong>ce aga<strong>in</strong>st a sudden ch<strong>an</strong>ge <strong>in</strong><br />

pathogen virulence.<br />

The ICARDA/CIMMYT <strong>Barley</strong> Program<br />

has been successful <strong>in</strong> develop<strong>in</strong>g high<br />

yield<strong>in</strong>g barley with multiple disease<br />

resist<strong>an</strong>ce. Record yields (11 t/ha)<br />

produced by <strong>in</strong>troductions from Mexico<br />

have been reported by breeders <strong>in</strong> Chile<br />

<strong>an</strong>d Peru. However, when <strong>the</strong>se high<br />

yields (obta<strong>in</strong>ed <strong>in</strong> test plots) are<br />

compared to <strong>the</strong> national average barley<br />

yield <strong>in</strong> Peru (1.1 t/ha), it is evident that<br />

<strong>the</strong> gap between experimental <strong>an</strong>d<br />

farmers’ yields has <strong>in</strong>creased.<br />

In 1999, farmers were provided with<br />

fertilizer, barley seed, <strong>an</strong>d herbicides as<br />

part <strong>of</strong> a project conducted <strong>in</strong> Saraguro,<br />

located <strong>in</strong> <strong>the</strong> highl<strong>an</strong>ds <strong>of</strong> sou<strong>the</strong>rn<br />

Ecuador. The average yield obta<strong>in</strong>ed by<br />

farmers grow<strong>in</strong>g <strong>the</strong> new variety Shyri-<br />

2000 was 3 t/ha, compared to 7 t/ha<br />

harvested with <strong>the</strong> same variety <strong>in</strong> large<br />

seed <strong>in</strong>crease plots at <strong>the</strong> Chuquipata<br />

Experiment Station. This shows that<br />

clos<strong>in</strong>g <strong>the</strong> gap entails more that just<br />

breed<strong>in</strong>g activities.<br />

I have described <strong>the</strong> successes <strong>of</strong> <strong>the</strong><br />

ICARDA/CIMMYT barley program, but<br />

I have not mentioned its weaknesses. To<br />

be fair, I would call your attention to a<br />

problem exhibited by germplasm<br />

developed by <strong>the</strong> program: its


82<br />

H.E. Vivar<br />

susceptibility to loose smut (Ustilago<br />

nuda), a disease easily controlled by<br />

apply<strong>in</strong>g fungicides such as Vitavax.<br />

Unfortunately, subsistence farmers with<br />

limited economic resources, who keep<br />

<strong>the</strong>ir gra<strong>in</strong> for use as seed <strong>the</strong> follow<strong>in</strong>g<br />

year, could decide to skip <strong>the</strong> seed<br />

treatment <strong>an</strong>d run <strong>in</strong>to a potentially<br />

serious production problem.<br />

References<br />

Anonymous. 1984. Control de la roya amarilla y<br />

parda en cebada. Colombia, 1975-84.<br />

Programa Nacional de Cereales Menores, 9.<br />

Instituto Colombi<strong>an</strong>o Agropecuario, Bogota,<br />

Colombia.<br />

Brodny, U., <strong>an</strong>d Rivadeneira, M. 1996. Physiologic<br />

specialization <strong>of</strong> Pucc<strong>in</strong>ia hordei <strong>in</strong> Israel <strong>an</strong>d<br />

Ecuador, 1992-1994. C<strong>an</strong>. J. Pl<strong>an</strong>t Pathol.<br />

18:375-378.<br />

Clear, R.M., Patrick, S.K., Nowicki, T., Gaba, D.,<br />

Edney, M., <strong>an</strong>d Babb, J.C. 1997. The effect <strong>of</strong><br />

hull-removal <strong>an</strong>d pearl<strong>in</strong>g on Fusarium species<br />

<strong>an</strong>d trichocenes <strong>in</strong> hulless barley. C<strong>an</strong>. J. Pl<strong>an</strong>t<br />

Sci. 77:161-166.<br />

Parleviet, J.E., <strong>an</strong>d Kuiper, H.J. 1977. Resist<strong>an</strong>ce <strong>of</strong><br />

some barley cultivars to leaf rust, Pucc<strong>in</strong>ia<br />

hordei: Polygenic partial resist<strong>an</strong>ce hidden by<br />

monogenic hypersensitivity. Neth. J. Pl<strong>an</strong>t<br />

Pathol. 83:85-889.<br />

Takeda, K., <strong>an</strong>d Heta, H. 1989. Establish<strong>in</strong>g <strong>the</strong><br />

test<strong>in</strong>g method <strong>an</strong>d search for <strong>the</strong> resist<strong>an</strong>t<br />

varieties to Fusarium head blight <strong>in</strong> Jap<strong>an</strong>.<br />

Jap<strong>an</strong> J. Breed. 39:203-216.<br />

Tooj<strong>in</strong>da, T., Baird, E., Broers, L., Chen, X.M.,<br />

Hayes, P.M., Kle<strong>in</strong>h<strong>of</strong>s, A., Korte, J., Kudrna,<br />

D., Leung, H., L<strong>in</strong>e, R.F., Powell, W., <strong>an</strong>d Vivar,<br />

H. 2000. Mapp<strong>in</strong>g qualitative <strong>an</strong>d qu<strong>an</strong>titative<br />

disease resist<strong>an</strong>ce genes <strong>in</strong> a doubled haploid<br />

population <strong>of</strong> barley. Theor. Appl. Genet.<br />

(<strong>in</strong> press).<br />

Vivar, H.E. 1986. Cereal Improvement Program.<br />

ICARDA Annual Report.<br />

Webster, R.K., Jackson, L.F., <strong>an</strong>d Schaller, C.W.<br />

1980. Sources <strong>of</strong> resist<strong>an</strong>ce <strong>in</strong> barley to<br />

Rynchosporium secalis. Pl<strong>an</strong>t Dis. 64:88-90.<br />

Zhu, H., Gilchrist, L., Hayes, P., Kle<strong>in</strong>h<strong>of</strong>s, A.,<br />

Kudrna, D., Liu, Z., Prom, L., Steffenson, B.,<br />

Tooj<strong>in</strong>da, T., <strong>an</strong>d Vivar, H. 1999. Does function<br />

follow form? Pr<strong>in</strong>cipal QTLs for Fusarium<br />

head blight (FHB) resist<strong>an</strong>ce are co<strong>in</strong>cident<br />

with QTLs for <strong>in</strong>florescence traits <strong>an</strong>d pl<strong>an</strong>t<br />

height <strong>in</strong> a doubled-haploid population <strong>of</strong><br />

barley. Theor. Appl. Genet. 99:1221-1232.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!